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Abstract

Near-eutectic ternary alloys subjected to thin-sample directional solidification
can exhibit stationary periodic growth patterns with an ABAC repeat unit, where
A, B and C are the three solid phases in equilibrium with the liquid at the eutectic
point. We present an in-situ experimental study of the dynamical features of such
patterns in a near-eutectic In-In2Bi-Sn alloy. We demonstrate that ABAC patterns
have a wide stability range of spacing � at given growth rate. We study quanti-
tatively the �-di↵usion process that is responsible for the spacing uniformity of
steady-state patterns inside the stability interval. The instability processes that
determine the limits of this interval are examined. Qualitatively, we show that
ternary-eutectic ABAC patterns essentially have the same dynamical features as
two-phase binary-eutectic patterns. However, lamella elimination (low-� stability
limit) occurs before any Eckhaus instability manifests itself. We also report ob-
servations of stationary patterns with an [AB]m[AC]n superstructure, where m and
n are integers larger than unity.
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1. Introduction

The solidification microstructures of ternary eutectic alloys take many di↵er-
ent forms depending on the composition and grain structure of the alloy, the ge-
ometrical and thermal features of the solidification device, and the solidification
history. The most important of these factors are the number of growing phases and
the dimensionality of the samples. We are concerned here with two-dimensional
three-phase microstructures. These are typically observed in near-eutectic ternary
alloys subjected to thin-sample directional solidification (thin-DS). Solidification
microstructures are, we recall, nothing else than the trace left behind in the solid
by out-of-equilibrium self-organized patterns formed during solidification. At
constant solidification rate V and applied thermal gradient G, these patterns gener-
ally reach, or, at least, asymptotically tend towards a steady-state. The most well-
known example of a steady-state eutectic growth pattern is the periodic (lamellar)
two-phase solidification pattern of near-eutectic binary alloys analyzed by Jack-
son and Hunt (JH) a long time ago [1]. The repeat unit of such a pattern is an AB
pair of lamellae, where A and B are the two solid phases in equilibrium with the
liquid at the eutectic point. These AB patterns have mirror symmetry with respect
to the mid-plane of the lamellae, which is actually a condition for their steadiness.
Regarding ternary eutectic alloys, the basic repeat unit of stationary thin-DS pat-
terns is ABAC, where A, B and C are the three eutectic solid phases. It has mirror
symmetry with respect to the mid-plane of the B and C lamellae (Fig. 1). This
was previously highlighted by Witusiewicz and coworkers in the In-In2Bi-Sn alloy
[2] and a transparent organic alloy [3], and numerically demonstrated by Choud-
hury et al. [4] (also see Refs. [5, 6] regarding bulk solidification). However, the
large-scale dynamics of the ABAC patterns has not yet been studied.

Here we present an experimental study of the morphological stability of ABAC
growth patterns during directional solidification of a near-eutectic In-In2Bi-Sn al-
loy. We used very thin (⇡ 13 µm thick) samples in order for the system to be
quasi two-dimensional and rid of convection flows in the liquid. Quantitative re-
sults that are presented below were obtained by studying in real time the dynamic
response of pre-uniformized ABAC patterns to upward or downward V-jumps.
Qualitatively, the results may be best understood through a comparison with the
known dynamical features of the binary AB patterns [1, 7, 8, 9, 10]: (i) binary
AB patterns have a wide stability range of spacing � at given V; (ii) any spa-
tial variation of � that is confined within the stability interval is damped out over
time through a long-range process called spacing-di↵usion or �-di↵usion, which
leads asymptotically to a perfectly periodic (uniform) pattern; (iii) the upper limit
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of the �-range of stability (�sup) is due to the onset of oscillations leading, at
still larger �-values, to lamella splitting; (iv) the lower stability limit (�in f ) cor-
responds to an instability of the �-di↵usion process, namely, a change of sign of
the �-di↵usion coe�cient (sometimes referred to as an Eckhaus instability [11]),
which leads to lamella elimination; (v) �sup varies with V as V�1/2 and is indepen-
dent of G; in other words, it obeys the well-known Jackson and Hunt (JH) scaling
law �sup / �m, where �m is a scaling length that varies with V as V�1/2; (vi) �in f

does not obey the JH scaling law, but depends on both V and G in such a way that,
at fixed G, the width of the stability range relative to �m, i.e. (�sup � �in f )/�m, in-
creases as V decreases. In the following, we shall call spacing, and denote it by �,
the width of an ABAC repeat unit in a three-phase eutectic-growth pattern. Which
of the features listed above hold true for ternary-eutectic ABAC patterns? The
main results of this study may be summed up as follows: ternary ABAC patterns
have the same dynamical features as binary AB patterns, except for one significant
aspect, namely, lamella elimination is not provoked by an Eckhaus instability but
by a qualitatively di↵erent phenomenon, most probably, some short-wavelength
instability of the ABAC pattern.

!

L

AA B C

Figure 1: Sketch of the three-phase ABAC repeat unit of a ternary-eutectic directional-
solidification pattern. The thermal gradient is oriented vertically. In a thin sample of the eutectic
In-In2Bi-Sn alloy, the letters A, B, and C refer to the In2Bi, �-In, and �-Sn crystal phases, respec-
tively. L: liquid. �: local spacing value.

In the remainder of the text, we first present the experimental methods (Sec-
tion 2). We then give some important details about the preparation of extended
ABAC lamellar patterns in large eutectic grains (Section 3). The main results
(stability diagram and instability mechanisms, complex patterns) are presented
and discussed in Section 4. A conclusion is proposed in the last section.
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2. Experimental methods

The In-Bi-Sn ternary phase diagram has a nonvariant eutectic point at the tem-
perature of 332 K (TE) and the composition of In-20.7at%Bi-19.1at%Sn (CE) [12].
The solid phases in equilibrium with the liquid at this point are the intermetallic
compound In2Bi, the �-In phase and the �-Sn phase. For brevity, we will generally
call these phases A, B, and C, respectively. In2Bi has a hexagonal structure; �-In
and �-Sn have body-centered tetragonal structures. An alloy of nominal compo-
sition CE was prepared by weighting the appropriate quantities of 99.999 % pure
indium, bismuth and tin (Goodfellow), and mixing them in the liquid state under
a primary vacuum. The actual composition was within less than 0.05 at% of CE.
Glass-wall samples with inner dimensions of 4⇥ 50⇥ 0.013 mm3 were filled with
molten alloy using a vacuum-suction method.

Details about the thin-DS stage and the method of observation used can be
found elsewhere [13, 10]. Let us simply mention that the thin-DS stage is basically
made of two temperature-regulated copper blocks separated by a 5-mm gap. The
thermal gradient in the region of the solidification front is G = 8±0.9Kmm�1. The
growth direction z is parallel to the thermal gradient and opposite to the pulling
direction. The y-axis is perpendicular to the sample plane, whereas the x-axis is
parallel to the isotherms. The V-range explored is 0.01 � 0.8µms�1. The solidifi-
cation front is observed in real time in the y direction (side view) with a reflected-
light optical microscope (Leica DMI 5000) equipped with a monochrome digital
camera (Scion), connected to a PC for image capturing, processing and analysis.
With this method, what is actually observed is the surface of contact between the
metallic film and a flat glass wall. After contrast enhancing, the �-In/glass sur-
faces appeared white and the In2Bi/glass surfaces black; both the �-Sn/glass and
the liquid/glass surfaces appeared light-grey (Fig. 1). We also performed ex-situ
metallographic observations of transverse cross-sections in some samples. These
showed that the interphase boundaries were perpendicular to the glass walls, as ex-
pected, validating the use of side-view images for dynamical studies of isotropic
grains, as we explain shortly.

3. Extended ABAC lamellar patterns

Concerning binary AB eutectic patterns, it is known that near-uniform eutec-
tic patterns can only be grown in samples consisting of “floating” eutectic grains
with a size much larger than the spatial average of �. To explain the origin for
this requirement, we must recall the following facts [14, 15]: (i) a (eutectic) grain
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is a portion of the solid, inside which the crystal-lattice orientation of each of the
eutectic phases is uniform; (ii) eutectic growth patterns are sensitive to the degree
of anisotropy of the surface energies of the various interfaces present, especially,
AB interphase boundaries; this degree of anisotropy depends on the orientation
of the di↵erent phases with respect to one another and the sample, and therefore
varies from grain to grain; (iii) eutectic grains can be classified into two broad
categories called “floating” and “locked”. The floating grains are those in which
anisotropy e↵ects are su�ciently weak for the dynamical features of the eutectic
patterns to be those that are reviewed in the Introduction (including, in particular,
uniformisation over time by �-di↵usion). In locked grains, on the contrary, sur-
face tension anisotropy has dramatic e↵ects on the pattern formation. These grains
most probably have a special orientation relationship between A and B, and low-
energy planes for the AB boundaries. The interphase boundaries become locked
onto these low-energy directions entailing that �-di↵usion is blocked; (iv) the
boundaries between floating eutectic grains are a source of perturbations (lamella
terminations, long-range spacing gradients) preventing the growth pattern to ap-
proach a fully steady state [14]. The same considerations apply to ternary ABAC
patterns. In this case, however, three di↵erent orientation relationships (AB, BC,
CA) come into play. The floating grains are those, in which the AB, BC and CA
boundaries have weak anisotropy.

A large floating ABAC grain in near-eutectic In-In2Bi-Sn is shown in Fig.
2. The experimental procedure used to create such grains was as follows. After
partial directional melting, the system was maintained at rest (V = 0) in order to
let it return to equilibrium. During this period, two thin solid layers progressively
formed between the liquid and the unmelted part of the solid: a polycrystal layer
of C (i.e. �-Sn) in equilibrium with the liquid, and, immediately below it, a two-
phase layer of AC (i.e. In2Bi+�-Sn). This indicated that the actual composition of
the alloy was slightly o↵-eutectic with a small excess of Sn and an even smaller
excess of Bi. The deviation of the alloy composition from CE was estimated from
the observed phase fractions of A, B and C during stationary growth to be less
than 0.05 at%. Immediately after the onset of the pulling, the solid-liquid inter-
face recoiled along the z-axis due to solute redistribution until a few AC grains
overgrew the C layer through an invasion/splitting process (see Ref. [16]). We
repeated this melting-annealing-invasion procedure several times in order to de-
crease the number of AC grains. We then performed a two-phase (univariant) AC
solidification until a three-phase solid appeared and overgrew the AC-liquid front,
as previously reported by Rex et al. [17]. Figure 3a shows the tip region of a
three-phase solid invading the surface of a floating AC eutectic grain. In the wake

5



of the invasion, lamella splitting generated a disordered three-phase pattern with
a very small spacing, which slowly reorganized through lamella elimination and
�-di↵usion (Fig.3b) and eventually formed a regular ABAC pattern.
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Figure 2: Near steady-state In-In2Bi-Sn solidification pattern. V = 0.35 µms�1. Bar: 100 µm.
Leftmost inset: �(x)-plots at the Z1 and Z2 time points. The subdivision of the field of view into
three areas along the x axis is explained in the text. Rightmost inset: close-up view of an ABAC
pattern at V = 0.11 µms�1(Horizontal dimension: 90 µm).

In the case of the experiment of Fig. 2, the sample contained two distinct float-
ing grains, both of about 2 mm of lateral extension (one of them is shown in the
figure). The boundary between the two grains is visible on the left-hand side, and
the contact with the edge of the sample on the right-hand side of Fig. 2. The sub-
division of the field of view into three areas indicated in the (left) inset is justified
by the presence of two low-angle grain boundaries. All these defects generated
lamella termination events and spacing gradients in their vicinity (regions I and
III). However, and more importantly, the ABAC pattern inside the unperturbed
region II clearly underwent a �-di↵usion smoothing process. The quantitative
studies reported below were performed in this type of regions. We noticed a slight
outward curvature of the isotherms (radius of curvature is about 10 cm), but this
had no detectable e↵ect on the growth dynamics. We checked that the volume
fractions of the eutectic phases measured in the micrographs did not vary with x
or �, and were close to nominal values ( fB = 0.475, fC = 0.185).
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Figure 3: a) Invasion of an AC two-phase growth front by a three-phase solid during the early
stages of thin-DS. V = 0.53 µms�1. b) Snapshot of the same area 300s later (see the early formation
of an ABAC pattern on the left). The pronounced curvature of the growth front is due to the fact
that it has not yet grown out of the funnel-shaped crystal selector placed at the cold end of the
sample.

4. Results and discussion

4.1. Stability diagram
Each experimental run basically consisted of growing a near steady-state ABAC

lamellar pattern at a given pulling velocity and then applying one, or a series of,
upward or downward V-jumps. The initial pattern was characterized by its average
spacing value �0 (equal to the width of the region of interest divided by the number
of repeat units in this region). After a V-jump, the pattern either remained stable
over a su�ciently long period of time or exhibited some instabilities. Downward
V-jumps revealed only one kind of instability, namely, lamella termination, lead-
ing, self-evidently, to an increase in average spacing. Upward V-jumps gave rise
to a more complex response combining oscillations and lamella splitting. We will
first leave aside the oscillations, and assume that �in f coincides with the threshold
�el for the occurrence of lamella elimination, and �sup with the threshold �br for
lamella splitting. To construct a stability diagram, we represented any near steady-
state ABAC pattern studied by a point in the �-V coordinates using di↵erent sym-
bols according to the long-term evolution of the pattern (stable pattern, lamella
splitting, lamella elimination). As shown in Fig. 4a, this revealed the existence of
two clearly distinct stability limits, namely, �el(V) and �br(V). All the observed

7



patterns that initially had a spacing distribution lying within these limits remained
stable for the duration of the experiment. As an illustration, Fig. 5 shows two
stable ABAC patterns at the same V-value, with �-values that di↵er by a factor
of about 1.4. Incidentally, we note that, in this example, the highest �-value was
only slightly smaller than �br and the pattern exhibited externally-sustained oscil-
lations. We also plotted the data in terms of the dimensionless variable ⇤ = �/�m,
where �m = KmV�1/2 and Km = 11.6 µm3/2s�1/2 (see below). As can be seen in
Fig. 4b, ⇤br(⇡ 1.9) was independent of V , within experimental uncertainty. In
other words, �br obeyed the JH scaling law. By contrast, �el clearly deviated from
this law at the lowest V-values explored. This is qualitatively similar to what was
observed in binary AB patterns.

4.2. Instability mechanisms
Figure 6 shows a typical example, in which two successive upward V-jumps

triggered oscillations and lamella splitting. The oscillations were coherent on a
large scale and clearly belonged to an oscillatory mode which preserves the spa-
tial period (1�O). We did not observe any other mode of oscillation during this
study. In Fig. 6, a 1�O oscillation transiently appeared after a first upward V-
jump and then was damped out. The second upward V-jump reinstalled the 1�O
oscillations, which amplified over time until a series of lamella splitting events
occurred, thus decreasing �0 and killing the oscillations. It is worth noting that
the attenuation/amplification times after the two V-jumps were of the same order
of magnitude. This is consistent with the view that �sup actually corresponded to
the instability threshold spacing for the 1�O mode, as is the case in near-eutectic
AB patterns in binary alloys [7, 8]. However, contrary to what occurs in binary
eutectics, there does not exist any stability domains of the 1�O oscillations in the
ABAC patterns. Concerning lamella splitting, little can be said of the underly-
ing mechanism, which is intrinsically 3D. On the other hand, we note that each
lamella splitting event resulted in the creation of a single new AB grain disrupting
the ABAC stacking. In the example of Fig. 6, the motif of the resulting pattern
is no longer ABAC but ABABAC, or, more briefly, [AB]2AC. We will discuss the
stability of such complex patterns later on. Incidentally, it can be deduced from
Fig. 6 that the error made by merging �sup with �br was 10%, or less.

The mechanism of lamella elimination showed some variability, as illustrated
by the two examples of Fig. 7. Nevertheless, the following features were common
to all the examples studied: (i) the process was strictly local before the elimina-
tion event occurred, but, on the contrary, gave rise to a long-range �-di↵usion
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Figure 4: Stability diagram of the ABAC lamellar patterns: (a) spacing �, and (b) dimensionless
spacing⇤ = �/�m of the pattern (see text), as a function of velocity V . Triangles: lamella splitting.
Circles: lamella elimination. Diamonds: six stable patterns, in which the �-di↵usion coe�cient
was measured (see Table 1). Continuous line: best-fitting �br / V1/2 curve. Broken line: the
�-di↵usion instability threshold �c as given by Eq. 6 with D� = 0. Vertical bar: error margin.
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Figure 5: Near-uniform ABAC lamellar patterns observed at V = 0.11 µms�1(bar: 50µm), with
two di↵erent average spacing values: a) �0 = 42.5µm; b) �0 = 60µm.
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Figure 6: Oscillations and lamella splitting events triggered by two successive velocity-jumps.
V0 = 0.11 µms�1. V1 = 0.13 µms�1. V2 = 0.20 µms�1. The lowest line of the field of view
corresponds to the time of the jump from V0 to V1. Image width: 610 µm.
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process after the event (see Section 4.3); (ii) globally, the process resulted in the
elimination of a whole repeat unit and thus in a restoration of the ABAC stacking.

4.3. Spacing di↵usion in stable ABAC patterns
The best method of proving the stability of a dynamical pattern is probably to

demonstrate that any imperfection it may contain spontaneously disappears over
time. We therefore studied the time evolution of spatial modulations of the spacing
profile �(x) in ABAC patterns with a value of the average spacing �0 belonging
to the stability range, as defined in Fig. 4. In all cases, we indeed observed a
uniformisation of �(x). A clear manifestation of this smoothing process could be
observed after isolated lamella elimination events, as shown in Fig. 8, and in the
upper part of Fig. 7a. This definitely identifies �el and �br as being the stability
limits of basic ABAC patterns.

A few explanatory remarks will be useful before we present our quantitative
results. Let us consider a �-distribution consisting of a sinusoidal modulation of
amplitude A and wavevector k (or wavelength L = 2⇡/k) about an average value
�0. It is a general property of 1D dynamical patterns that, if A is su�ciently small
and L >> �0, the time evolution of �(x) is governed by an equation of the form:

@�

@t
= D�

@2�

@x2 , (1)

where t is time, and D� is a �0-dependent coe�cient called �-di↵usion coe�cient.
The di↵usion equation imposes that the amplitude of the �-modulation evolves
according to

A(t) / exp(�D�k2t). (2)

Thus A(t) either increases or decreases exponentially over time depending on the
sign of D�. It has been shown experimentally and numerically that, in two-phase
solidification patterns, D� changes sign at a critical spacing value �c [D�(�c) =
0)], and that the spontaneous amplification of the �-modulation that occurs when
�0 < �c leads to lamella elimination events. This entails that, in thin-DS binary
eutectics, �el and �c, while theoretically distinct, cannot be distinguished from one
another experimentally. We will show shortly that this is not the case as regards
the ABAC patterns.

We performed six independent experimental determinations of D�. In that pro-
cedure, we chose as an initial time (t = 0) a moment at which a peaked modulation
of � existed as a result of a recent elimination event, or some other occurrence.
The overall results are displayed in Table 1. Two exemplary cases are shown in
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(a) 

(b) 

Figure 7: Two di↵erent examples of lamella elimination events occurring after a long pulling time
at constant velocity. a) V = 0.177 µms�1. b) V = 0.21 µms�1. Bar: 50 µm.
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Figure 8: Time evolution of an ABAC pattern in the wake of an elimination event. Arrows: time
points corresponding to the lambda plots shown in Fig. 9a. V = 0.15 µms�1. The image has been
compressed by a factor of 3 along the growth direction in order to highlight the time evolution of
�(x). Image width: 468 µm

Figure 9. In Fig. 9a (which corresponds to the pattern in Fig. 8), a time series of
eight �(x)-plots were measured (for clarity, only 3 of them are plotted in Fig. 9a).
Functions of the form

�(x) = �0 + A1(t)sin(2⇡x/L) + A2(t)sin(2⇡x/(2L)) (3)

could be fitted satisfactorily to each �(x)-plot, thus yielding a set of A1(t) and A2(t)
data for a given value of L (⇡ 239 µm). We then fitted a decreasing exponential
function to the A1(t) data, in accordance with Eq. 2. This yielded D� ⇡ 0.85±0.02
µm2s�1. In the second case (Fig. 9b), �(x) measurements were made after the
lamella elimination shown in Fig. 7b. Then, the �(x)-plots turned out to be best
fitted by the gaussian function

�(x) = �0 + A(t)exp
"
� x2

�2(t)

#
, (4)

where
A(t) =

Ap
t � t0

, �(t) =
p

4D�(t � t0). (5)

which is also a well-known solution of the di↵usion equation. In this case, we
found D� ⇡ 0.43 ± 0.02 µm2s�1. In overall, the margin of error yielded by the
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best-fit procedures used was about 15% for all the data. The errors from other
origins (grain boundaries, sample edges, curved isotherms) were most probably
substantially smaller than this value.

V (µms�1) �0 (µm) L (µm) D� (µm2s�1)
0.025 77.6 241 0.17
0.035 68.4 226 0.20
0.046⇤ 49.2 - 0.15
0.15 36.1 239 0.85
0.21⇤ 25.8 - 0.43
0.50 24.4 364 7.8

Table 1: Measured values of the �-di↵usion coe�cient D� at the indicated values of V and �0. L:
wavelength of the �-modulation. ⇤ Fit by a gaussian function.

In the case of binary AB patterns, it has previously been shown that the de-
pendence of D� on �0 in the vicinity of �c can be approximated by

D� =
Kr�0V2

G

✓
1 � 1
⇤2

0

◆
+ BV�0⇤0, (6)

where ⇤0 = �0/�m, �m =
p

Kc/KrV�1/2, and B is an empirical dimensionless
constant [9]. Kr and Kc are called the Jackson-Hunt constants of the alloy (the
coe�cient Km introduced in Section 4.1 is equal to

p
Kc/Kr). Let us assume that

Eq. 6 is also valid for ABAC patterns, and consider Kr, Kc, and B as adjustable
parameters. A least-squares fitting of Eq. 6 to the data of Table 1 yielded the
values displayed in Table 2. Due to the dispersion of the experimental data, the
error margin is rather large (' 25%). In spite of this uncertainty, the data of Table
2 clearly have the same order of magnitude as those generally found in binary
eutectics [9, 10].

Kr Kc B �2
mV

[Ksµm�2] [Kµm] [µm3s�1]
0.0166 2.23 0.054 135

Table 2: Best-fit values of the adjustable coe�cients of Eq. 6 and of �2
mV = Kc/Kr.

According to Eq. 6, there exists, at given V and G, a particular value �c of the
spacing at which D� vanishes, that is, for �0 < �c, one has D� < 0. However, as
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Figure 9: Time series of �-plots measured in stable ABAC patterns (the time origin was defined
just after a lamella elimination event). (a) V = 0.15 µms�1(same experiment as in Fig. 8). Circles:
t = 440 s. Squares: t = 1340 s. Triangles: t = 3890 s. Thick lines: best-fitting curves to the
�-plots using Eq. 3. Inset: Decreasing exponential function fitted to A1(t) using Eq. 2. (b) V=
0.21 µms�1(same experiment as in Fig. 7b). Circles: t = 1710 s. Squares: t = 2330 s. Triangles: t
= 2940 s. Diamonds: t = 4130 s. Thick lines: best-fitting curves to the �-plots using Eq. 4. Inset:
best-fitting curves to A(t) (continuous line) and �(t) (broken line) using Eq. 5.
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mentioned above, we did not observe the amplification of a � modulation, even
in those ABAC patterns, in which lamella elimination occurred. This contrasts
to what has been observed previously in two-phase patterns during thin-DS of
various binary-eutectic alloys. Therefore, we are led to conclude that, in ABAC
growth patterns, the threshold �el for lamella elimination is not related to �c. We
obtained a �c(V) curve by plugging the data of Table 2 into Eq. 6, and setting
D� = 0. This curve has been plotted in Fig.4b as a dashed line. As can be seen,
the calculated values of �c are close to, and probably smaller than �el. This sup-
ports the view that a �-di↵usion instability exists, but is hidden by the instability
process leading to lamella elimination. What then was this process? Close-up ex-
aminations of the lamella elimination events were only capable of showing that it
was very fast and highly localized. To sum up, lamella elimination was triggered
by a short-wavelength instability occurring at a �-value slightly larger than �c. The
same has already been observed in other 1D dynamical systems (for instance cel-
lular solidification patterns, see [18]). In our case, the instability involved seems
to have a wavelength shorter than � (i.e. the width of the ABAC motif).

4.4. ABC patterns and complex patterns
In addition to the ABAC patterns, we also observed, under certain conditions,

other types of extended growth patterns. Recent numerical simulations demon-
strated the possible existence of stationary patterns with an ABC repeat unit in
ternary eutectics [4]. We indeed observed small domains of ABC patterns in the
In-In2Bi-Sn eutectic, but only as transients following large-amplitude V-jumps
(Fig. 10). Interestingly, these patterns were drifting laterally, in accordance with
the fact that the ABC motif does not have a mirror symmetry. The order of mag-
nitude of the drift angles observed was 10o with respect to the growth direction.

We also observed three-phase growth patterns with a large variety of super-
structures, which remained stable over the duration of the experiments. The sim-
plest of these superstructures was [AB]2AC (see Fig. 6). Patterns with much wider
superstructures could be obtained by applying a particular velocity program dur-
ing the melting-annealing-invasion procedure (see Section 3). Two examples, one
with an [AB]2[AC]2 motif, the other with an [AB]4[AC]6B motif are shown in
Fig. 11. These patterns, although essentially periodic, contained numerous (sta-
tionary) “stacking faults”. We note the presence of stationary BC interfaces in Fig.
11b, which was exceptional. The stability of such patterns is somewhat surprising
given that an [AB]m[AC]n pattern actually consists of wide adjacent two-phase
domains, which, under other conditions, could invade each other. The explanation
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Figure 10: Transient ABC patterns observed in two distinct experiments: (a) a short time after the
onset of pulling (V = 0.531 µms�1); (b) after a velocity decrease of a factor 10 (V = 0.071 µms�1).
Bars: 50 µm.
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probably lies in the detailed local structure of the boundary between the two-phase
domains, which remains to be studied.

(b) 

(a) 

Figure 11: Stationary growth patterns with complex superstructures. (a) V = 0.247 µms�1. (b)
V = 0.177 µms�1. Bars: 100 µm.

5. Conclusion

We have shown experimentally that three-phase ABAC growth patterns in
thin-sample directional solidification of a ternary eutectic alloy have a finite-
width stability range of spacing. The upper stability limit corresponds to lamellar
branching, and the lower limit to lamella elimination. We have measured the value
of the �-di↵usion coe�cient in a series of stable patterns with di↵erent V and �
values in the particular case of the In-In2Bi-Sn eutectic. We have evaluated the
ABAC Jackson-Hunt constant of the alloy to be �2

mV = 135± 20 µm3s�1. In terms
of the reduced spacing ⇤ = �/�m, the upper instability threshold was shown to
be independent of V (⇤sup = 1.9 ± 0.2). The lower instability threshold ⇤in f (of
about 0.6 at the smallest pulling velocity used in this study, that is, V = 0.01
µms�1) increases with V , and is roughly equal to 1 above V = 0.2 µms�1. In
Ref [2], Witusiewicz et al. have measured an average value < � > of the ABAC
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spacing in the In-In2Bi-Sn eutectic under the same thermal gradient as we used,
over a large V range. Using the above mentioned estimate of �m, we may sum up
their results as < ⇤ >⇡ 1.5 at high V , which is well inside the stability range we
have measured and hence agrees with the results of this study. This investigation
opens up new questions such as: What is the precise nature of the instability pro-
cess which triggers lamella elimination and thereby determines the value of �in f

in ABAC patterns? How can three-phase patterns with a complex superstructure
grow in a stationary way? Numerical studies will probably be necessary in order
to elucidate these questions.
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