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Two-phase dendrites are needle-like crystals with a eutectic internal structure growing during
solidification of ternary alloys. We present a scaling theory of these objects based on Ivantsov’s
theory of dendritic growth and Jackson and Hunt’s theory of eutectic growth. The additional
introduction of the relationship ρ ∼ λ (ρ: dendrite tip radius; λ: eutectic interphase spacing)
suggested by recent experimental results [Akamatsu et al., Phys. Rev. Lett., 104, 056101 (2010)]

leads to a complete solution of the selection problem and to the scaling rule ρ ∼ v−1/2 (v: dendrite
tip growth rate).

PACS numbers: 47.54.+r, 61.72.Mm, 81.10.Aj, 81.30.Fb

The term of two-phase dendrite is used in materials
sciences to designate needle-shaped crystals with a fine
two-phase internal structure like those observed during
univariant solidification of three-component alloys [1, 2].
Few detailed studies have so far been devoted to these
objects. The first theoretical questions that have to be
dealt with are whether two-phase dendrites can grow in
a stationary way and, if so, whether anisotropy effects
are crucial in the process. An answer to these questions
has recently been provided by the finding of stationary
spiral two-phase dendrites (for short, sp dendrite) dur-
ing directional solidification of a transparent nonfaceted
ternary eutectic [3, 4]. The properties of the sp dendrites
are illustrated in Fig. 1. Like one-phase dendrites, they
can be subdivided into a tip region characterized by a
smooth outer shape, and a tail region where this shape
is disrupted by morphological instabilities. In the tip re-
gion, the outer shape is a paraboloid. The two-phase
substructure is generated by a spiral eutectic pattern
located at the tip and rotating at a constant rotation
speed. Except close to the tip, an interphase spacing
λ, which is approximately equal to the helix pitch, can
be defined. More details are given below. For now, we
simply stress the fact that the spiral mechanism makes
possible a perfectly steady two-phase growth along the
curved solid-liquid interface, and that this mechanism in
no way involves anisotropy effects. This has recently been
confirmed by phase-field numerical simulations of sp den-
drites performed in a model ternary system in which the
level of interfacial anisotropy could be varied [5].

In this article, we present a scaling theory of the steady
state of two-phase dendrites in free growth in a ternary
system without surface tension anisotropy. Our main ob-
jective is to cast light on the mechanism of selection and
the range of existence of this growth structure in terms
of morphological and thermodynamical parameters. The
paraboloid outer shape and the regular eutectic substruc-
ture of sp dendrites suggest to view the diffusion field
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FIG. 1: Spiral two-phase dendrites. a and b: In situ op-
tical micrographs taken during directional solidfication of a
transparent ternary alloy (for experimental details, see [3]).
a) bulk sample. Horizontal dimension: 105 µm. b) Thin
samples. Horizontal dimension: 65 µm. c: Schematic 3D
representation of the solid-liquid interface. One of the solid
phase is grey, the other white. (d) Longitudinal section of the
internal microstructure (dotted line: parabolic envelope).

outside two-phase dendrites as being composed of two
parts: a long-range field, which only depends on the av-
erage composition of the liquid along the envelope of the
dendrite, and obeys a theory similar to that of one-phase
dendrites; a short-range field, which is driven by the dif-
ferences in concentration in the liquid in front of the two
eutectic phases, and is relevant to a theory similar to
that of lamellar eutectic growth. We begin with a brief
summary of these theories.

Consider the free growth of a one-phase dendrite in a
AX binary alloy, where X is the solute. As a first step,
the theory asumes that surface-tension effects are negligi-
ble. This implies that the solid-liquid interface is an iso-
concentration surface, and that the solute mole fractions
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(for short, concentrations) of the liquid and the solid are
those of the liquidus and solidus at the temperature T
of the system. Let x and xs be these concentrations, re-
spectively, and x∞ be the solute concentration far from
the dendrite. Let v be the growth speed of the dendrite
tip, ρ the tip radius, Dx the diffusion coefficient of X in
the liquid, and

∆x =
x− x∞
x− xs

(1)

the degree of supersaturation of the liquid. Ivantsov
demonstrated that all the paraboloids such that

vρ

Dx
= F Iv(∆x) , (2)

where F Iv(∆x) ∼ ∆x/ln(∆−1x ) when ∆x << 1 (which
is the case we consider here), are steady-state solutions
of the equations of growth without surface-tension ef-
fects [6]. In the next step an additional equation of the
form ρ2v = constant is provided by introducing slightly
anisotropic surface-tension or kinetic effects. As a re-
sult, v and ρ are uniquely determined and linked by a
ρ ∼ v−1/2 scaling relationship at given ∆x. This has been
established for both 2D [7–10] and 3D dendrite growth
[11, 12]. Similar selection and scaling rules for v and
ρ have been found for various other needle-like crystal
growth shape, such as the doublon (also called double
finger) [13, 14] and the two-phase finger [15, 16]. Unlike
the dendrite, these last growth shapes are not crucially
dependent on interfacial anisotropy and are not selected
in orientation. On the other hand, like the dendrite, their
shape does not depart much from an Ivantsov paraboloid,
except at the tip, where a specific local structure ensures
their stabilization and speed selection.

Consider now a AB binary alloy, where B is the solute,
having a eutectic plateau at some temperature TE and a
global concentration c∞ falling well inside this plateau.
The growing solid contains two different crystal phases,
namely, a A-rich α phase and a B-rich β phase. At small
solidification rates the system admits steady states con-
sisting of a planar αβ growth front with a uniform spacing
λ and a small average undercooling with respect to TE .
We summarize the Zener-Hillert-Jackson-Hunt (JH) the-
ory of these states [17]. This theory was formulated for
directional solidification in the G/V → 0 limit and thus
also holds in free growth. It is valid under the condition
that λV/D << 1, where D is the diffusion coefficient of B
in the liquid, which was verified during the experimental
observation of sp dendrites. The average concentration
cα of the liquid in front of the α-liquid interfaces is larger
than the average concentration cβ in front of the β-liquid
ones at the temperature T of the growth front. This
forms the basis of the exchange of solute between solid
phases during growth. To a good approximation, cα is on
the α liquidus of the alloy and therefore is in equilibrium
with a point cαs of the α solidus. The same applies to cβ

mutatis mutandis. JH showed that the mass conservation

equation at the interface leads to

P
λV

D
= ∆sol , (3)

where

∆sol =
cα − cβ

cβs − cαs
(4)

and P is a small (< 0.1) numerical factor occurring from
the summation over the periodic structure. Note, inci-
dentally, that the fraction η of β phase in the solid is
related to c∞ by the global mass conservation equation
c∞ = ηcβs + (1 − η)cαs . Furthermore, capillary effects
(namely, the interface equilibrium conditions at the α-β-
liquid junctions) generate a mean curvature of the solid-
liquid interface. This gives an additional ”capillary” con-
tribution to the average undercooling of the growth front,
which reads

d0
λ

= ∆cap , (5)

where d0 is a material-dependent capillary length. The
spacing value λJH =

√
P−1d0DV −1 at which

∆sol = ∆cap =
∆E

2
(6)

is an important characteristic length for eutectic growth
patterns. To be sure, there is no ”strong selection” (in the
sense that λ tends towards λJH , or a value close to λJH ,
over time at constant V ) of the spacing in binary eutectic
growth, contrary to what was long believed. However, it
is also true that any local structure containing λ values
deviating from λJH by a factor of more than about 2 is
short-lived so that, broadly speaking, λ is almost always
close to λJH , a fact which is sometimes referred to as
”weak selection” [18–20].

Consider finally the directional solidification of a αβ
solid in a ABX ternary alloy, as studied in Ref. [3].
The rejection of X into the liquid during growth gen-
erated a concentration gradient that caused a large-scale
(compared to λ) Mullins-Sekerka-like instability of the
αβ growth front at values of V larger than a thresh-
old value Vc [21, 22]. Spiral two-phase dendrites were
observed at V >> Vc and appeared in the form of iso-
lated objects. Their tip region was thus growing under
nearly free-growth (virtually zero G/V and infinite pri-
mary spacing) conditions [23–25]. The theory presented
herein should therefore be applicable to them. Their
growth direction, like those of doublons and two-phase
fingers, was not fixed, but history dependent, meaning
that different sp dendrites had different values of their
tip growth rate v at fixed V . The explored v-range was
0.1− 1 µms−1. The tip radius ρ of the sp dendrites was
measured by fitting a parabola to the contour of the im-
ages. The extension of the tip region was between 5 and
10 ρ. The spacing λ was determined as the product of v



3

and the period of rotation of the spiral pattern. The mea-
sured λ values turned out to be within 10% of the λJH
ones for the AB binary alloy (λ2JHV ≈ 10.2 µm3s−1) over
the whole experimental v range. The ρ values showed a
similar variation, with ρ ≈ 0.75λJH in average. Most im-
portantly, two sp dendrites growing simultaneously, side
by side, had the same values of λ, ρ and tip temperature.
There is thus a clear indication of a strong selection of
both the tip radius and the eutectic spacing of sp den-
drites according to a λ ∼ ρ ∼ v−1/2 law.

We now come to the theory of two-phase dendrite
growth. A letter c will designate a concentration of B,
a letter x a concentration of X and a pair (c, x) a com-
position of the alloy. Concentrations in the solid phases
will be tagged by a subscript s and average concentra-
tions along the growth front by a bar. As a first step, we
consider the long-range concentration field of a sp den-
drite. For ease of exposition, we assume that there is no
cross-diffusion in the liquid and that the diffusion coef-
ficients of B and X, called D and Dx, respectively, have
the same order of magnitude, as is in fact often the case
in the experiments. Then an Ivantsov equation holds for
each component separately: we have

vρ

D
= F Iv(∆c) ,

vρ

Dx
= F Iv(∆x) , (7)

where

∆c ∼
c̄− c∞
c̄− c̄s

; ∆x ∼
x̄− x∞
x̄− x̄s

. (8)

The average concentration x̄ is defined by the equation

x̄ = ηxβ + (1− η)xα , (9)

where η is unknown. Similar equations hold for c̄, c̄s and
x̄s. By elimination of vρ, Eqs. (7) lead to a relationship
between ∆c and ∆x, and thus between the average con-
centrations. Knowing that Dx ≈ D, we rewrite Eqs. (7)
in the form

∆c ∼ ∆x , (10)

and

vρ

D
∼ ∆x

ln
(
∆−1x

) . (11)

Regarding the short-range part of the concentration
field, we approximate the spiral substructure near the
dendrite tip by some effective lamellar structure. The
resulting uncertainty in the definition of λ and v is within
the limits of the scaling theory proposed here. Then,
according to Eqs. (3) and (5), and assuming that λ/λJH
is kept constant at a value close to 1 in agreement with
the experimental measurements:

P
λv

D
∼ ∆E , (12)

and

d0
λ
∼ ∆E , (13)

where ∆E is given by Eqs. (4) and (6). There are ap-
parently twelve unknown concentration variables in Eqs.
(10) to (13), but their actual number is only two due to
the four relationships defining the average concentrations
and the six relationships giving, for each phase, three
equilibrium concentrations as a function of the fourth
one. Thus, at this stage there are six unknowns, say, xα,
xβ , η, v, ρ and λ, at fixed (c∞, x∞), and four relation-
ships between them.

We now look for additional relationships. Figure 2
schematically represents the isothermal section of the
ABX phase diagram at the temperature T . It features:
two two-phase domains delimited by the intersections of
the liquidus and solidus surfaces by the T -plane; the
point of intersection (cu, xu) of the univariant groove with
the T -plane; the points (cαsu, x

α
su) and (cβsu, x

β
su) on the

solidus lines that are in equilibrium with (cu, xu); the tri-
angular three-phase domain delimited by the conjugation
lines between, (cu, xu), (cαsu, x

α
su) and (cβsu, x

β
su).

(csu , xsu)
! !
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FIG. 2: Isothermal section of the phase diagram of the ABX
alloy in Gibbs’ triangular coordinates. Grey areas: two-phase
domains. Triangle: three-phase domain.

For the sake of clarity, we begin by considering the
particular case of a system having A↔B symmetry (Fig.
3a). In other words, we assume that the isothermal sec-
tion of the phase diagram is symmetrical with respect to
the x = 1− 2c axis and that (c∞, x∞) is on this axis. In-
cidentally, these conditions were approximately fulfilled
in the experimental system in which sp dendrites were
observed. Under these conditions, the sp dendrites must
satisfy the symmetry requirements η = 1/2 and xα = xβ .
The number of unknowns is now four, say, x̄, v, ρ, λ. On
the other hand, the A↔B symmetry also imposes that
x̄ = 1 − 2c̄ and x̄s = 1 − 2c̄s, so that Eq. (10) becomes
an identity and is no longer part of the equations of the
problem. One additional relationship arising from the
interaction between the long-range and the short-range
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dynamics must be found. The experiments clearly sug-
gest that there is a linear, or almost linear, relationship
between λ and ρ. We therefore write:

λ ∼ ρ . (14)

Given that λ ∼ λJH , Eq. (14) also implies that λ ∼ ρ ∼
v−1/2. Presumably, Eq. (14) arises from the fact that
sp dendrites cannot grow with ρ << λ for geometrical
reasons while, on the other hand, sp dendrites with ρ >>
λ are unstable with respect to a decrease in ρ that would
make them grow faster. So, the only ρ vs λ-range in
which sp dendrites can stabilize is the one given by Eq.
(14).

From Eqs. (11), (12) and (14) one finally obtains

∆E ∼
P∆x

ln
(
∆−1x

) . (15)

Both the quantities P and 1/ln(∆−1x ) are substantially
smaller than unity. Thus ∆E/∆x << 1 and xu−x̄ << 1.
We can therefore approximate ∆x as

∆x ≈
xu − x∞
xu − xsu

. (16)

Plugging this relationship into (15), it can be seen that
∆x and ∆E , i.e. the driving forces for growth, now de-
pend only on control and material parameters. Expend-
ing the equilibrium equations to the first order in x− xu
near the univariant points, one obtains from Eq. (8)

xu − x̄ ∼
cβsu − cαsu

2|∂cα/∂xu| − 1
∆E , (17)

which yields x̄ as a function of the control and material
parameters. Then one gets from Eqs. (12) (13) and (14)

v ∼ D

Pd0
∆2
E (18)

and

λ ∼ ρ ∼ d0
∆E

, (19)

which completely solves the selection problem. As a last
remark, we put Eq. (17) into the form

xu − x̄ ∼ K (xu − x∞) . (20)

It can be seen from Eqs. (15), (16) and (17) that K is
the product of P/ln

(
∆−1x

)
and some material parameters

that generally are on the order of unity. Thus, in general,
K << 1 and x̄ is much closer to xu than x∞.

In the case of systems without any particular symme-
try, there are two more independent unknowns (say, η
and xα−xβ) and one more relationship than in symmetri-
cal systems. One additional relationship is thus required
for determining all the unknowns uniquely. However, this
relationship is about the details of the short-range field

!
"c
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b)

c   (x) c  (x)
a)

cs (x)#   cs (x)$ 

A B

x=1-2c
#  $ 

0.5

FIG. 3: Isothermal section of a phase diagram having A↔B
symmetry. a) Symmetrical system. b) Symmetry-broken sys-
tem. Closed circles: (c∞, x∞). Closed squares: (c̄, x̄). Closed
triangles: (c̄s, x̄s). Open squares: (cα, xα) and (cβ , xβ). Open
triangles: (cαs , x

α
s ) and (cβs , x

β
s ).

and is of little consequence as regards the domain of ex-
istence of two-phase dendrites. As an exploratory sug-
gestion, we therefore set xα − xβ to zero. Keeping the
same symmetrical phase diagram as above, we introduce
a small departure δc∞ of the alloy concentration from the
axis of symmetry and calculate the departures of η, c̄ and
c̄s from their values at δc∞ = 0. Expending Eqs. (8) and
(10) to first order and using the fact that ∆E << ∆x,
one gets δc̄ ∼ −δc∞∆E/∆x, δc̄s ∼ δc∞/∆x and

δη ∼ δc∞

(cβsu − cαsu)∆x

. (21)

It is interesting to note that δη, δc̄s and δc∞ have the
same sign and that |δc̄s| is substantially larger than |δc∞|.
When, for instance, δc∞ is positive, the dendrite is, on
average, more enriched in B than the liquid. The concen-
tration range of existence of sp dendrites, as determined
by Eq. (21) and the condition |δη| < 0.5, is delimited
by the conjugation lines (cσ, xσ)-(cσs , x

σ
s ). Thus, as x̄ is

close to xu, the range of existence of sp dendrites roughly
coincides with the three phase domain (Fig. 3b). The
operating point of the dendrite tip remains close to the
univariant groove of the phase diagram as the alloy com-
position goes through this domain.

In conclusion, we have obtained a complete solution of
the selection problem for two-phase dendrites on the con-
dition of postulating a relationship linking the tip radius
of the dendrite to the interphase spacing of the eutec-
tic microstructure. This relationship reads ρ ∼ λ and
is based on the geometry of the source of the eutectic
patterns located at the tip of the dendrite. This very
natural length scale selection by the underlying eutectic
structure replaces the much more delicate surface tension
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anisotropy mechanism that takes place in one-phase den-
drites (the so-called microscopic solvability criterion). No
particular condition appears to be required for the alloy
to display two-phase dendrites beyond the fact that its
composition is close to a univariant groove of the phase
diagram and that it solidifies in a nonfaceted way. This
suggests that sp dendrites should be of common occur-
rence in univariantly solidified ternary eutectics.
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