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Abstract—MapReduce is a popular programming model for
distributed data processing. Extensive research has been con-
ducted on the reliability of MapReduce, ranging from adaptive
and on-demand fault-tolerance to new fault-tolerance models.
However, realistic benchmarks are still missing to analyze and
compare the effectiveness of these proposals. To date, most
MapReduce fault-tolerance solutions have been evaluated using
microbenchmarks in an ad-hoc and overly simplified setting,
which may not be representative of real-world applications.
This paper presents MRBS, a comprehensive benchmark
suite for evaluating the dependability of MapReduce systems.
MRBS includes five benchmarks covering several application
domains and a wide range of execution scenarios such as
data-intensive vs. compute-intensive applications, or batch
applications vs. online interactive applications. MRBS allows to
inject various types of faults at different rates. It also considers
different application workloads and dataloads, and produces
extensive reliability, availability and performance statistics. We
illustrate the use of MRBS with Hadoop clusters running on
Amazon EC2, and on a private cloud.
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I. INTRODUCTION

MapReduce has become a popular programming model
and runtime environment for developing and executing
distributed data-intensive and compute-intensive applica-
tions [1]. It offers developers a means to transparently handle
data partitioning, replication, task scheduling and fault-
tolerance on a cluster of commodity computers. Hadoop,
one of the most popular MapReduce frameworks, provides
key fault-tolerance features such as handling node failures
and task failures.

There has been a large amount of work towards improv-
ing fault-tolerance solutions in MapReduce. Several efforts
have explored on-demand fault-tolerance [2], replication and
partitioning policies [3], [4], adaptive fault-tolerance [5],
[6], and extending MapReduce with other fault-tolerance
models [7], [8]. However, there has been very little in the
way of empirical evaluation of MapReduce dependability.
Evaluations have often been conducted in an ad-hoc manner,
such as turning off a node in the MapReduce cluster or
killing a task process. These actions are typically dictated
by what testers can actually control, but may lead to low
coverage testing. Recent tools, like Hadoop fault injection
framework [9], offer the ability to emulate non-deterministic

exceptions in the HDFS distributed filesystem underlying
Hadoop MapReduce. Although they provide a means to
program unit tests for HDFS, such low-level tools are
meant to be used by developers who are familiar with the
internals of HDFS, and are unlikely to be used by end-users
of MapReduce systems. MapReduce fault injection must
therefore be generalized and automated for higher-level and
easier use.

Not only it is necessary to automate the injection of
faults, but also the definition and generation of MapReduce
faultloads. A faultload will describe what fault to inject
(e.g. a node crash), where to inject it (e.g. which node of
the MapReduce cluster), and when to inject it (e.g. five
minutes after the application started). Furthermore, most
evaluations of MapReduce fault-tolerance systems relied on
microbenchmarks based on simple MapReduce programs
and workloads, such as grep, sort or word count. While
microbenchmarks may be useful in targeting specific sys-
tem features, they are not representative of full distributed
applications, and they do not provide multi-user realistic
workloads.

In this paper, we present MRBS (MapReduce Bench-
mark Suite), the first benchmark suite for evaluating the
dependability of MapReduce systems. MRBS enables auto-
matic faultload generation and injection in MapReduce. This
covers different fault types, injected at different rates, which
will provide a means to analyze the effectiveness of fault-
tolerance in a variety of scenarios. MRBS allows to quantify
dependability levels provided by MapReduce fault-tolerance
systems, through an empiric evaluation of the availability
and reliability of such systems, in addition to performance
and cost metrics. In addition, MRBS covers five application
domains: recommendation systems, business intelligence,
bioinformatics, text processing, and data mining. It supports
a variety of workload and dataload characteristics, ranging
from compute-oriented to data-oriented applications, batch
applications to online interactive applications. Indeed, while
MapReduce frameworks were originally limited to offline
batch applications, recent works are exploring the exten-
sion of MapReduce beyond batch processing [10], [11].
MRBS uses various input data sets from real applications,
among which an online movie recommender service [12],
Wikipedia [13], and real genomes for DNA sequencing [14].



We illustrate the use of MRBS to evaluate Hadoop fault-
tolerance capabilities, when running the Hadoop cluster on
Amazon EC2, and on a private cloud. MRBS shows that
when running the Bioinformatics workload and injecting
a faultload that consists of a hundred map software faults
and three node faults, Hadoop MapReduce handles these
failures with high reliability (94% of successful requests)
and high availability (96% of the time). MRBS can also be
used for other purposes, such as the evaluation and compar-
ison of different MapReduce fault-tolerance approaches, or
choosing the right MapReduce cluster configuration to meet
dependability and performance objectives. In this paper, we
illustrate two use-cases of MRBS.

We wish to make dependability benchmarking easy
to adopt by end-users of MapReduce and developers of
MapReduce fault-tolerance systems. MRBS allows auto-
matic deployment of experiments on cloud infrastructures.
It does not depend on any particular infrastructure and
can run on different private or public clouds. MRBS is
available as a software framework to help researchers and
practitioners to better analyze and evaluate the dependability
and performance of MapReduce systems.

The remainder of the paper is organized as follows.
Section II describes the background on MapReduce. Sec-
tions III-IV describe the dependability benchmarking in
MRBS. Section V presents experimental results, and Sec-
tion VI discusses use cases of MRBS. Section VII reviews
the related work, and Section VIII draws our conclusions.

II. SYSTEM AND PROGRAMMING MODEL

MapReduce is a programming model and a software
framework to support distributed computing and large data
processing on clusters of commodity machines [1]. High
performance and fault-tolerance are two key features of
MapReduce. They are achieved by automatic task scheduling
in MapReduce clusters, automatic data placement, parti-
tioning and replication, and automatic failure detection and
task re-execution. A MapReduce job, i.e. an instance of
a running MapReduce program, has several phases; each
phase consists of multiple tasks scheduled by the MapRe-
duce framework to run in parallel on cluster nodes. First,
input data are divided into splits, one split is assigned to
each map task. During the mapping phase, tasks execute
a map function to process the assigned splits and generate
intermediate output data. Then, the reducing phase runs tasks
that execute a reduce function to process intermediate data
and produce the output.

A. Hadoop MapReduce

There are many implementations of MapReduce. Hadoop
is a popular MapReduce framework, available in public
clouds such as Amazon EC2, and Open Cirrus. A Hadoop
cluster consists of a master node and slave nodes. Users
(i.e. clients) of a Hadoop cluster submit MapReduce jobs

to the master node which hosts the JobTracker daemon
that is responsible of scheduling the jobs. By default, jobs
are scheduled in FIFO mode and each job uses the whole
cluster until the job completes. However, other multi-user
job scheduling approaches are also available in Hadoop to
allow jobs to run concurrently on the same cluster. This is the
case of the fair scheduler which assigns every job a fair share
of the cluster capacity over time. Moreover, each slave node
hosts a TaskTracker daemon that periodically communicates
with the master node to indicate whether the slave is ready to
run new tasks. If it is, the master schedules appropriate tasks
on the slave. Each task is executed by a separate process.

Hadoop framework also provides a distributed filesystem
(HDFS) that stores data across cluster nodes. HDFS architec-
ture consists of a NameNode and DataNodes. The NameN-
ode daemon runs on the master node and is responsible of
managing the filesystem namespace and regulating access
to files. A DataNode daemon runs on a slave node and
is responsible of managing storage attached to that node.
HDFS is thus a means to store input, intermediate and output
data of Hadoop MapReduce jobs. Furthermore, for fault
tolerance purposes, HDFS replicates data on different nodes.

B. Failures in Hadoop MapReduce

One of the major features of Hadoop MapReduce is its
ability to tolerate failures of different types [15], as described
in the following.

Node Crash: In case of a slave node failure, the
JobTracker on the master node stops receiving heartbeats
from the TaskTracker on the slave for an interval of time.
When it notices the failure of a slave node, the master
removes the node from its pool and reschedules tasks that
were ongoing on other nodes. The heartbeat timeout is set in
the mapred.task.tracker.expiry.interval Hadoop property. In
the current implementation of Hadoop, failures of the master
node are not tolerated.

Task Process Crash: A task may also fail because a
map or reduce task process suddenly crashes, e.g., due to
a transient bug in the underlying (virtual) machine. Here
again, the parent TaskTracker notices that a task process has
exited and notifies the JobTracker for possible task retries.

Task Software Fault: A task may fail due to errors and
runtime exceptions in map or reduce functions written by the
programmer. When a TaskTracker on a slave node notices
that a task it hosts has failed, it notifies the JobTracker on
the master node which reschedules another execution of the
task, up to a maximum number of retries. This allows to
tolerate transient errors in MapReduce programs.

Hanging Tasks: A map or reduce task is marked
as failed if it stops sending progress updates to its
parent TaskTracker for a period of time (indicated by
mapred.task.timeout Hadoop property). If that occurs, the
task process is killed, and the JobTracker is notified for
possible task retries.



III. DEPENDABILITY BENCHMARKING IN MRBS

To use MRBS, three main steps are needed: (i) build a
faultload (i.e. fault scenario) to describe the set of faults to
be injected, (ii) conduct fault injection experiments based on
the faultload, and (iii) collect statistics about dependability
levels of the MapReduce system under test. This is presented
in Figure 1.
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Figure 1. Overview of MRBS dependability benchmarking

The evaluator of the dependability of a MapReduce sys-
tem chooses an application from MRBS’ set of benchmarks,
depending on the desired application domain and whether
he/she targets compute-oriented or data-oriented applica-
tions. MRBS injects (default) workload and dataload in the
system under test. MRBS also allows the evaluator to choose
specific dataload and workload, to stress the scalability of
the MapReduce system. Further details about workload and
dataload injection, and dependability analysis in MRBS are
given in Section IV.

MRBS is available as a software framework to help testers
to better analyze and evaluate the dependability of MapRe-
duce systems. The current implementation of MRBS runs
on top of Hadoop MapReduce [15]. It can be downloaded
from http://sardes.inrialpes.fr/research/mrbs/

A. Faultload Builder

A faultload in MRBS is described in a file, either by
extension, or by intention. In the former case, each line of
the faultload file consists of the following elements: the time
at which a fault occurs (relatively to the beginning of the
experiment), the type of fault that occurs and, optionally,
where the fault occurs. A fault belongs to one of the fault
types handled by Hadoop MapReduce1, and introduced in
Section II-B. A fault occurs in one of the MapReduce
cluster nodes; this node may be either explicitly specified
in the faultload or randomly chosen among the set of nodes.
To make the parsing of this faultload file more efficient,
redundant lines, that correspond to multiple occurrences
of the same fault at the same time, are grouped into one
line with an extra parameter that represents the number of
occurrences of that fault. Another way to define a more

1Other types of faults, such as network disconnection, may be emulated
by MRBS, although we do not detail them in this paper.

concise faultload is to describe it by intention. Here, each
line of the faultload file consists of: a fault type, and the
mean time between failures (MTBF) of that type.

Thus, testers can explicitly build synthetic faultloads
representing various fault scenarios. A faultload description
may also be automatically obtained, either randomly or
based on previous application runs’ traces. The random
faultload builder produces a faultload description where,
with each fault type, is associated a random MTBF between
0 and the length of the experiment. Similarly, the random
faultload builder may produce a faultload by extention,
where it generates the i-th line of the faultload file as fol-
lows: < time stampi, fault typei, fault locationi >,
with time stampi being a random value between
time stampi−1 (or 0 if i = 1) and the length of the ex-
periment, fault typei and fault locationi random values
in the set of possible values. A faultload description may
also be automatically generated based on traces of previous
runs of MapReduce applications and workloads. The trace-
based faultload builder parses the MapReduce framework’s
logs and identifies the faults that occurred in these runs:
their time stamp, their type, and possibly their location. We
designed the trace-based faultload builder to work directly
on the MapReduce framework’s logs, which allows it to
work on workloads and benchmark applications from the
MRBS benchmark suite, but also with other workloads and
MapReduce applications. As with the other variants of the
faultload builder, the faultload that results from the trace-
based faultload builder may be described by extension or
intention. In the latter case, a statistical analysis of the traces
is performed to calculate MTBF for the different types of
faults.

MRBS faultload builder is relatively portable: its two first
variants – explicit faultload builder and random faultload
builder – are general enough and do not rely on any specific
platform. The trace-based faultload builder is independent
from the internals of the MapReduce framework, and pro-
duces a faultload description based on the structure of the
MapReduce framework’s logs; it currently works on Hadoop
MapReduce framework.

B. Fault Injection

The output of the MRBS faultload builder is passed to the
MRBS fault injector. The MRBS fault injector divides the
input faultload into subsets of faultloads: one crash faultload
groups all crash faults that will occur in all nodes of the
MapReduce cluster (i.e. node crash, task process crash), and
one per-node faultload groups all occurrences of other types
of faults that will occur in one node (i.e. task software faults,
hanging tasks).

The MRBS fault injector runs a daemon that is responsible
of injecting the crash faultload. In the following, we present
how the daemon injects these faults, in case of a faultload de-
scribed by extension, although this can be easily generalized



to a faultload described by intention. Thus, for the i-th fault
in the crash faultload, the dameon waits until time stampi
is reached, then calls the fault injector of fault typei (see
below), on the MapReduce cluster node corresponding to
fault locationi. This fault injector is called as many times
as there are occurrences of the same fault at the same time.
The fault injection dameon repeats these operations for the
following crash faults, until the end of the faultload file is
encountered or the end of the experiment is reached.

The MRBS fault injector handles the per-node faultloads
differently. First, it synthesizes a new version of the MapRe-
duce framework library using aspect-oriented techniques.
The synthetic MapReduce library has the same API as
the original one, but underneath this new library includes
interceptors that encode the fault injection logic. These
interceptors create a fault-oracle per MapReduce node, this
oracle is responsible of analyzing the per-node faultload and
orchestrating its injection in the tasks running on that node.
In addition, task creation is intercepted to automatically ask
the fault-oracle whether a fault must be injected in that task,
in which case the fault injector corresponding to the fault
type is called, as described in the following. The overall
architecture of the faultload injection in MRBS is described
in Figure 2.
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Figure 2. Architecture of the faultload injector

Node Crash Injection: A node crash is simply imple-
mented by shutting down a node. This fault injector uses
the API of the underlying cloud infrastructure to implement
such a fault. For example, in case of a public cloud such
as Amazon EC2, a node crash consists in a premature
termination of an Amazon EC2 instance. However, if a
tester wants to conduct multiple runs of the same de-
pendability experiment, and if faults are implemented by
shutting down machines, new machines must be acquired
from the cloud at the beginning of each run, which may
induce a delay. For efficiency purposes, we propose an
implementation of MapReduce node fault which kills all
MapReduce daemons running on that node. Specifically,
in the case of Hadoop these include the TaskTracker and

DataNode daemons running in a slave node2. The timeout to
detect a MapReduce node failure is set to 30 seconds, a value
set in mapred.task.tracker.expiry.interval Hadoop property.

Task Process Crash Injection: This type of fault is
implemented by killing the process running a task on a
MapReduce node.

Task Software Fault Injection: A task software fault is
implemented as a runtime exception thrown by a map task or
a reduce task. This fault injector is called by the interceptors
injected into the MapReduce framework library by MRBS.

Provoking Hanging Tasks: A task is marked as hanging
if it stops sending progress updates for a period of time. This
type of fault is injected into a map task or a reduce task
through the interceptors that make the task sleep a longer
time than the maximum period of time for sending progress
updates (mapred.task.timeout Hadoop property).

The MRBS faultload injector is relatively portable: it is
independent from the internals of the MapReduce framework
and the per-node faultload injectors are automatically inte-
grated within the framework based upon its API. The current
version of the MRBS faultload injector works for Hadoop
MapReduce; porting to new platforms is straightforward.

IV. LOAD INJECTION AND DEPENDABILITY ANALYSIS

MRBS allows to inject various faultloads, workloads and
dataloads in MapReduce systems, and to collect information
that helps testers understand the behavior observed as a
result of fault injection. In addition, MRBS allows to au-
tomatically deploy extensive experiments and test various
scenarios on cloud infrastructures such as Amazon EC2 and
private clouds. The overall architecture of load injection and
dependability analysis in MRBS is presented in Figure 3,
and is detailed in the following.

A. Benchmark Suite

The MRBS benchmark suite is a set of five benchmarks
covering various application domains: recommendation sys-
tems, business intelligence, bioinformatics, text processing,
and data mining. As we showed in a previous study [16],
these benchmarks were chosen to exhibit different behaviors
in terms of computation pattern and data access pattern:
the recommendation system is a compute-intensive bench-
mark, the business intelligence system is a data-intensive
benchmark, and the other benchmarks are relatively less
compute/dataintensive. Conceptually, each benchmark im-
plements a service providing different types of requests,
which are issued by external clients. Each client request
requires executing one or a series of MapReduce jobs.
MRBS allows to emulate clients implemented as external
entities that remotely request the service; and the service
runs on a MapReduce cluster. The benchmarks are briefly
described in the following, more details can be found in [16].

2A node crash is not injected to the MapReduce master node since this
node is not fault-tolerant, c.f. Section II.
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Recommendation System: MRBS implements an online
MapReduce-based movie recommender system. It builds
upon a set of movies, a set of users, and a set of ratings
and reviews users give for movies to indicate whether and
how much they liked or disliked the movies. These data
have been collected from a real movie recommendation
web site [12]. The benchmark provides four types of client
requests: (i) provide the top-10 recommendations for a user,
(ii) list all the ratings given to a movie, (iii) list all the ratings
given by a user, (iv) provide a recommendation for a movie
to a given user.

Business Intelligence: This benchmark represents a
decision support system for a wholesale supplier, compat-
ible with the TPC-H industry-standard benchmark [17]. It
uses Apache Hive on top of Hadoop MapReduce, a data
warehouse that facilitates ad-hoc queries using the HiveQL
language [18]. The benchmark provides 22 types of client
requests that examine large volumes of data, and execute
queries with a high degree of complexity, e.g. retrieving the
ten unshipped orders with the highest value, or identifying
geographies where there are customers who may be likely
to make a purchase. The benchmark consists of eight data
tables populated with the TPC DBGen TPC package [17],
which allows to use input datasets of (almost) any size.

Bioinformatics: Clients of this online bioinformatics
service may choose a complete genome to analyze among
a set of genomes. The service includes a MapReduce-based
implementation of DNA sequencing [19]. DNA sequencing
attempts to find where reference reads (i.e. short DNA
sequences) occur in a genome. The data used in the bench-
mark are publicly available genomes [14]. Currently, the
benchmark provides three types of client requests.

Text Processing: It is a MapReduce text processing-
oriented benchmark, with three types of requests allowing
clients to search words or word patterns in text documents,
to know how often words occur in text documents, or to sort
the contents of documents. These are classical operations for
web search engines and log analysis. The benchmark uses
Wikipedia dumps of different sizes as its input data [13].

Data Mining: This benchmark provides two types of
client requests: classification and clustering [20]. It considers
the case of classifying newsgroup documents into categories,
and uses collections of data publicly available from [21].
The benchmark also provides canopy clustering operations,
which partitions a large number of elements into clusters
in such a way that elements belonging to the same cluster
share some similarity. The benchmark uses datasets of
synthetically generated control charts, to cluster the charts
into different classes based on their characteristics [20].

B. Dataload

Interestingly, MRBS considers different aspects of load:
faultload, dataload, and workload. This allows testers and
developers to stress different aspects of MapReduce sys-
tems, such as dependability, and scalability. The dataload
is characterized by the size and nature of data sets used as
inputs for a benchmark. Obviously, the nature and format
of data depend on the actual benchmark and its associated
MapReduce programs. For instance, the MRBS movie rec-
ommendation system benchmark takes input data consisting
of users, movies, and ratings users give to movies. Whereas
the bioinformatics benchmark uses input data in the form of
genomes for DNA sequencing. Users of MRBS may choose
between datasets of different sizes (see Table I, the default
input data for each benchmark being the first one).

Table I
MRBS BENCHMARKS’ DATALOADS.

Benchmark Dataload

Recommendation system
dataload 100,000 ratings, 1000 users, 1700 movies
dataload+ 1 million ratings, 6000 users, 4000 movies
dataload++ 10 million ratings, 72,000 , 10,000 movies

Business intelligence
dataload 1GB
dataload+ 10GB
dataload++ 100GB

Bioinformatics dataload genomes of 2,000,000 to 3,000,000 DNA characters

Text processing
dataload text files (1GB)
dataload+ text files (10GB)
dataload++ text files (100GB)

Data mining
dataload 5000 documents, 5 newsgroups, 600 control charts
dataload+ 10,000 documents, 10 newsgroups, 1200 control charts
dataload++ 20,000 documents, 20 newsgroups, 2400 control charts

C. Workload

The workload is characterized by the benchmark to exe-
cute, and the number of concurrent clients issuing requests
on that benchmark application; this number may vary.
The workload is also characterized by the execution mode
which may be interactive or batch. In interactive mode,
concurrent clients share the MapReduce cluster (i.e. have
their requests executed) at the same time. In batch mode,
requests from different clients are executed in FIFO order,
without concurrently accessing the MapReduce cluster (see
Section II-A). Thus, in interactive mode, a client interacts



with the MapReduce service in a closed loop where he
requests an operation, waits for the request to be processed,
receives a response, waits a think-time, before requesting
another operation.

The workload is also characterized by client request dis-
tribution, that is the relative frequencies of different request
types. It may follow different distribution laws (known as
workload mixes), such as a random distribution. Request
distribution may be defined using a state-transition matrix
that gives the probability of transitioning from one request
type to another.

D. Automatic Deployment of Experiments

MRBS enables the automatic deployment of experiments
on a cluster in a cloud infrastructure. The cloud infrastruc-
ture and the size of the cluster are configuration parameters
of MRBS. MRBS acquires on-demand resources provided
by cloud computing infrastructures such as private clouds,
or the Amazon EC2 public cloud [22]: one node is dedicated
to run MRBS load injectors, and the other nodes are used to
host the MapReduce cluster. MRBS automatically releases
the resources when the benchmark terminates. We expect
to provide MRBS versions for other cloud infrastructures
such as the OpenStack open source cloud infrastructure [23].
Once the cluster is set up, the MapReduce framework
and its underlying distributed file system are started on
the cluster. The current implementation of MRBS uses the
popular Apache Hadoop MapReduce framework and HDFS
distributed file system.

E. Using MRBS

Once the user of MRBS has defined a workload, a dat-
aload, and a faultload (or used the default ones), MRBS au-
tomatically deploys the experiment on a cluster in a cloud,
and injects the load into the MapReduce cluster. It first
uploads input data in the MapReduce distributed file system.
This is done once, at the beginning of the benchmark, and
the data are then shared by all client requests. Afterwards,
it creates as many threads as concurrent clients there are.
Thread clients will remotely send requests to the master
node of the MapReduce cluster which schedules MapReduce
jobs in the cluster (see Figure 3). Clients continuously send
requests/receive responses until the execution run terminates.
An experiment run has three successive phases: a warm-up
phase, a run-time phase, and a slow-down phase. Statistics
are produced during the run-time phase, whereas the warm-
up phase allows the MapReduce system to reach a steady
state before collecting statistics, and the slow-down phase
allows to terminate the benchmark in a clean way. An
experiment may also be automatically run a number of times,
to produce variance reports and average statistics.

To make MRBS flexible, a configuration file is provided,
that involves several parameters such as the length of the

experiment, the size of MapReduce input data, etc. Never-
theless, to keep MRBS simple to use, these parameters come
with default values that may be adjusted by MRBS users.

F. Dependability Analysis

MRBS produces runtime statistics related to depend-
ability, such as reliability, and availability [24]. Reliability
is measured as the ratio of successful MapReduce client
requests to the total number of requests, during a period of
time. Availability is measured from the client’s perspective
as the ratio of, on the one hand, the time the benchmark
service is capable of returning successful responses to the
client, and on the other hand, the total time; availability is
measured during a period of time. In addition, MRBS pro-
duces performance and cost statistics, such as client request
response time, request throughput, and the financial cost of
a client request.

MRBS also provides low-level MapReduce statistics re-
lated to the number, length and status (i.e. success or failure)
of MapReduce jobs, map tasks, reduce tasks, the size of data
read from or written to the distributed file system, etc. These
low-level statistics are built offline, after the execution of the
benchmark. Optionally, MRBS can generate charts plotting
continuous-time results.

V. EVALUATION

A. Experimental Setup

The experiments presented in Sections V-B and VI were
conducted in a cluster running on Amazon EC2 [22], and on
two clusters running in Grid’5000 [25]. Each cluster consists
of one node hosting MRBS and emulating concurrent clients,
and a set of nodes hosting the MapReduce cluster. The
experiments below use several benchmarks of MRBS with
default dataloads (see Table I); the benchmarks are run
in interactive mode, with multiple concurrent clients. In
these experiments, client request distribution is random, and
request interarrival time is an average of 7 seconds. Avail-
ability and reliability are measured in periods of 30 minutes,
and cost is based on Amazon EC2 pricing at the time we
conducted the experiments, which is $0.34 per instance·hour.
In the following, each experiment is run three times to report
average and standard deviation results.

The underlying software configuration is as follows. We
used Amazon EC2 large instances which run Fedora Linux
8 with kernel v2.6.21. Nodes in Grid’5000 run Debian
Linux 6 with kernel v2.6.32. The MapReduce framework
is Apache Hadoop v0.20.2, and Hive v0.7, on Java 6.
MRBS uses Apache Mahout v0.6 data mining library [20],
and CloudBurst v1.1.0 DNA sequencing library [19]. The
hardware configuration used in the experiments is described
in Table II.



Table II
HARDWARE CONFIGURATIONS OF MAPREDUCE CLUSTERS

Cluster CPU Memory Storage Network
Amazon
EC2

4 EC2 Compute Units
in 2 virtual cores

7.5 GB 850 MB 10 Gbit
Ethernet

G5K I 4-core 2-cpu 2.5 GHz
Intel Xeon E5420 QC

8 GB 160 GB
SATA

1 Gbit
Ethernet

G5K II 4-core 1-cpu 2.53 GHz
Intel Xeon X3440

16 GB 3200 GB
SATA II

Infiniband
20G

B. Experimental Results

In this section, we illustrate the use of MRBS to evaluate
the fault-tolerance of Hadoop MapReduce. Here, a ten-node
Hadoop cluster runs the Bioinformatics benchmark, used by
20 concurrent clients, in the G5K I cluster. The experiment
is conducted during a run-time phase of 60 minutes, after
a warm-up phase of 15 minutes. We consider a synthetic
faultload that consists of software faults and hardware faults
as follows: first, 100 map task software faults are injected
5 minutes after the beginning of the run-time phase, and
then, 3 node crashes are injected 25 minutes later. Although
the injected faultload is aggressive, the Hadoop cluster
remains available 96% of the time, and is able to successfully
handle 94% of client requests (see Table III). This has an
impact on the request cost which is 14% higher than the
cost obtained with the baseline (non-faulty) system.

Table III
RELIABILITY, AVAILABILITY, AND COST

Reliability Availability Cost (dollars/request)
94% 96% 0.008 (+14%)

To better explain the behavior of the MapReduce cluster,
we will analyze MapReduce statistics, as presented in Fig-
ures 4 and 5. Figure 4 presents successful MapReduce jobs
and failed MapReduce jobs over time. Note the logarithmic
scale of the right side y-axis. When software faults occur,
few jobs actually fail. On the contrary, node crashes are
more damaging and induce a higher number of job failures,
with a drop of the throughput of successfull jobs from
16 jobs/minute before node failures to 5 jobs/minute after
node failures.

Figure 5 shows the number of successful MapReduce
tasks and the number of failed tasks over time, differenting
between tasks that fail because they are unable to access
data from the underlying filesystem (i.e. I/O failures in the
Figure), and tasks that fail because of runtime errors in all
task retries3 (i.e. task failures in the Figure). We notice that
software faults induce task failures that appear at the time
the software faults occur, whereas node crashes induce I/O
failures that last fifteen minutes after the occurrence of node
faults. Actually, when some cluster nodes fail, Hadoop must
reconstruct the state of the filesystem, by re-replicating the

3By default, in Hadoop MapReduce, a task is executed at most four times
before it fails.

data blocks that were on the failed nodes from replicas in
other nodes of the cluster4. This explains the delay during
which I/O failures are observed.
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Figure 5. Successful vs. failed MapReduce tasks

We now analyze the impact of these failures on the
performance of the Hadoop MapReduce cluster. Figure 6
shows the response time of successful client requests. With
software faults, there is no noticeable impact on response
times. Conversely, response time sharply increases when
there are node faults, and while Hadoop is rebuilding miss-
ing data replicas. Similarly, Figure 7 presents the impact
of failures on client request throughput. Interestingly, when
the Hadoop cluster looses 3 nodes, it is able to fail-over,
however, at the expense of a higher response time (+30%)
and a lower throughput (-12%).

VI. USE CASES

MRBS has several possible uses, among which helping
developers and testers to better analyze the fault-tolerance of
MapReduce systems, or to better choose the configuration of
the MapReduce cluster to provide service level guarantees.
In the following, we present two possible use cases of
MRBS.

4By default, data have three replicas in HDFS
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Figure 7. Client request throughput

A. Which MapReduce Cluster Size

We consider the case of a service provider that hosts
a data-intensive MapReduce service, such as the Business
Intelligence service provided in MRBS [16]. The service
provider has to decide the right Hadoop MapReduce cluster
size to meet a set of desired service level objectives, com-
bining dependability, performance and cost requirements.
The question to answer would have the following form:
What is the MapReduce cluster size that can handle three
node failures, while guaranteeing at least 85% of successful
requests, and at least 150 requests/hour, with a minimum
cost?

We conducted experiments with MRBS’ Business Intel-
ligence service running on Hadoop MapReduce, hosted on
the G5K II cluster. We considered an average number of
5 concurrent clients accessing the service, and an input
dataload of 1GB, although these values could be changed.
We conducted experiments with clusters of various sizes.
Each experiment was run three times, and consists of a 30
minute run-time phase, after a 15 minute warm-up phase.
For each cluster size, we injected three node faults into the
MapReduce cluster at the beginning of the run-time phase.

We report on the measured reliability, throughput and
cost in Figure 8; these numbers are average values of
three runs, with a relative standard deviation lower than
6% for reliability, and lower than 9% for throughput and

cost. Figure 8(a) shows that the MapReduce cluster should
include at least 15 nodes to achieve a reliability of 85%.
However, for a throughput of at least 150 requests/hour,
the MapReduce cluster should have at least 17 nodes, as
shown in Figure 8(b). Finally, to meet all these service level
objectives with a minimal cost, the MapReduce cluster size
should contain 17 nodes (see Figure 8(c)).

B. How Many Faults Are Tolerated?
We consider the case of a service provider that hosts

MapReduce services on a ten-node cluster. One question
that it has to answer would have the following form: Up to
how many node failures can the MapReduce cluster tolerate,
while guaranteeing an availability of at least 85%?

We conducted experiments with three benchmarks of
MRBS, showing three different behaviors: the Business
Intelligence service is data-intensive, the Recommendation
System is compute-oriented, and the Bioinformatics service
is in between (refer to [16] for more details about benchmark
profiles). Each benchmark service runs on Hadoop MapRe-
duce, hosted on Amazon EC2. We considered an average
number of 5 concurrent clients accessing the service, and
the default input dataload, although these values could be
changed. We conducted experiments when injecting various
numbers of node faults into the Hadoop MapReduce cluster,
at the beginning of the run-time phase. Each experiment was
run three times, and consists of a 30 minute run-time phase,
after a 15 minute warm-up phase.

Figure 9 shows the measured availability, with different
faultloads. To guarantee the target availability objective
of 85%, the MapReduce cluster hosting the data-intensive
Business Intelligence service would not tolerate more than
two node failures. In comparison, the less data-intensive
Bioinformatics service would tolerate four node failures for
the same availability objective, while the compute-oriented
Recommendation System would be able to tolerate up to
6 node faults in a ten-node cluster. In summary, Hadoop
is able to transparently tolerate failures when there is one
node crash. With more node failures, Hadoop MapReduce
may handle failures with an acceptable availability level if
the MapReduce service it hosts is more compute-intensive
than data-intensive.
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VII. RELATED WORK

Benchmarking is an important issue for evaluating dis-
tributed systems. Various research and industry standard
performance benchmarking solutions exist such as TPC-
C that evaluates on-line transaction processing (OLTP)
systems [26], TPC-H for benchmarking decision support
systems [17], and YSCB for evaluating different data storage
systems in cloud environments [27]. Benchmarks have been
also developed for evaluating dependability of distributed
systems, such as a benchmark for software RAID Sys-
tems [28], a benchmark for OLTP systems [29], and a
benchmark for web servers [30].

The need of MapReduce dependability benchmarking
is motivated by the many recent works that have been
devoted to the study and improvement of fault-tolerance of
MapReduce. These include on-demand fault-tolerance [2],
adaptive fault-tolerance [5], [6], and extending MapReduce
with other fault-tolerance models [7], [8]. All these works
evaluate the proposed fault-tolerance solutions in an ad-
hoc way. Although some low-level tools exist to test fault-
tolerance of Hadoop MapReduce and HDFS [9], there is
no principled way to describe faultloads, and to measure
reliability and availability of MapReduce clusters. To the
best of our knowledge, MRBS is the first dependability
benchmark suite for MapReduce. Other works have more
specifically studied MapReduce performance benchmark-
ing, such as HiBench [31], MRBench [32], PigMix [33],
Hive Performance Benchmarks [34], GridMix3 [35], and
SWIM [36].

HiBench consists of eight MapReduce jobs (e.g. sort,
word count, etc.) [31]. The benchmark measures perfor-
mance in terms of job processing time, MapReduce task
throughput, and I/O throughput. While HiBench includes
different types of jobs, it does not support concurrent job
execution, that is the whole MapReduce cluster is dedicated
to a single job at a time, which inhibits cluster consolidation.
Thus, it fails to capture different workloads and job arrival

rates. Furthermore, HiBench does not consider faultload
injection and does not allow the evaluation of MapReduce
dependability.

MRBench is a domain-specific benchmark that evaluates
business-oriented queries [32]. It uses large datasets and
complex MapReduce queries derived from TPC-H [17].
However, as HiBench, MRBench fails to capture job concur-
rency and arrival rates, workload variations, and it does not
evaluate MapReduce dependability in presence of failures.

Similarly, PigMix and Hive Performance Benchmarks
use a set of queries to specifically track the performance
improvement of respectively Pig and Hive platforms [15].
Pig and Hive run on top of Hadoop MapReduce, the former
provides a high-level language for expressing large data
analysis, and the latter is a data warehouse system for ad-hoc
querying.

GridMix3 takes as input a job trace from a specific work-
load and emulates synthetic jobs mined from that trace [35].
GridMix3 is able to replay synthetic jobs that generate a
comparable job arrival rate and a comparable load on the
I/O subsystems as the original jobs in the specific workload
did. However, GridMix3 does not capture the processing
model and the failure model from the traces. Thus, it fails
to reproduce comparable job processing times and failures
in the MapReduce cluster.

SWIM is a similar framework that synthesizes specific
MapReduce workloads [36]. The framework first samples
MapReduce cluster traces, and then executes the synthetic
workloads using an existing MapReduce infrastructure to
evaluate performance. Here again, the proposed framework
does not capture job failures and does not model the de-
pendability of the MapReduce cluster.

VIII. CONCLUSION

The paper presents MRBS, the first benchmark suite
for evaluating the dependability of MapReduce systems.
MRBS allows to characterize a faultload, generate it, and
inject it in a MapReduce cluster. This covers different



fault types, injected at different rates, which provides a
means to analyze the effectiveness of MapReduce fault-
tolerance systems in a variety of scenarios. MRBS performs
an empirical evaluation of the availability and reliability of
such systems, to quantify their dependability levels. It also
evaluates the impact of failures on the performance and cost
of MapReduce.

MRBS is available as a software framework to help
researchers and practitioners to better analyze and evalu-
ate the fault-tolerance of MapReduce systems. The current
prototype is provided for Hadoop MapReduce, a popular
MapReduce framework available in public clouds. MRBS al-
lows automatic deployment of experiments on cloud infras-
tructures, which makes it easy to use. The paper describes
the use of MRBS to evaluate fault-tolerance capabilities of
Hadoop clusters running on Amazon EC2 and a private
cloud, and presents two possible uses cases of MRBS. We
expect to provide MRBS versions for other cloud infrastruc-
tures, and to explore other use cases.
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