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Abstract—Finding a suitable set of controllers to which a
large set of control functions with different safety levels can be
assigned, while minimizing cost, is a significant task during the
design of the operational control system of a critical process, like
a power plant. This task is currently performed by experts and
extremely time-consuming, which explains why its automation is
a real concern. This paper shows first that the above assignment
problem can be identified as a Multiple-Choice Vector Bin-
Packing with Conflicts problem, a combination of different
variants of the well-known one-dimensional bin-packing problem.
Such a problem is known to be strongly NP-Hard and exact
techniques to solve it on large-sized examples are too time and/or
space consuming because of the combinatorial explosion. To solve
this problem in polynomial time, this article proposes a fast
heuristic based on a FFD (First-Fit Decreasing) approach. Two
strategies to perform this heuristic and several criteria to rank
the functions before assignment are defined. These strategies
and criteria are then compared on the basis of numerous
experiments. These experiments show that the proposed heuristic
scales well and provides results that are very close to optimum;
the difference in the worst case is less than 1%.

Note to Practitioners: Abstract—Designing the operational
control architecture of a critical process, like a power plant, is an
extremely time-consuming task that requires in particular to find
a suitable and minimum-cost set of industrial controllers to which
the numerous control functions can be assigned and thereafter
implemented. This design task is currently performed by experts
who imagine, evaluate and compare different solutions. Hence,
several iterations of the assignment process are necessary during
this task. The practical aim of this research is to automate this
process to facilitate and speed up architecture design. This work
has been made in the frame of a cooperative research project
with a company which designs and implements control systems of
power plants. Nevertheless, the generic results that are presented
in this article can be used for other critical processes (oil,
chemical processes, water management) where a large number of
control functions with different impacts on safety is to be assigned
to controllers, because the proposed heuristic scales well.

Index Terms—Dependable control, distributed systems, critical
systems, vector bin-packing, multiple-choice

I. INTRODUCTION

FROM a functional point of view, the control system
of a power plant is composed of several thousands of

functions (actuators control, processes synchronization, vari-
ables monitoring, etc.) that are aiming at ensuring the correct
operation of the electrical power production process as well
as safety of people and environment in case of failure of a
component of the plant. This set of functions is defined in the

earliest phases of design and is the starting point of this work.
The internal structure of every function, in the form of ECC
(Execution Control Chart) [1] or SFC (Sequential Function
Chart) [2] for instance, is unknown at these phases and in
what follows. A control function will be seen as a black-box
and only the requirements to implement the function, like its
number of input/output data and its CPU consumption, will be
considered. Moreover, a power plant is a critical system and
some functions are more important for safety than other ones.
Hence, a safety level, letter that represents the importance
of the function with regard to safety, is associated to every
function and the whole set of functions is divided into several
subsets, termed classes. All the functions of a given class own
the same safety level. Last, among every class, some functions
are redundant, i.e. they may perform the same service in
different operation modes. When an active function is no more
able to perform its service because the plant components that
it controls have failed, it is replaced by a redundant one that
ensures the same service with other faultless plant components.

On the other side, from an operational point of view,
the control system is composed of a set of some hundreds
of industrial controllers, processing devices (Programmable
Logic Controllers, industrial computers) connected to sensors
and actuators and that execute the control functions. The
internal structure of an industrial controller is not considered
in this paper, only its capacities (overall number of input and
output interfaces, processing capacity) are known. Moreover,
it matters to underline that different categories of controllers,
with different abilities to be fault-tolerant to internal failures,
are available to implement the control functions. The ability
of a controller to be fault-tolerant is represented by an integer
which is termed its criticality factor. The smaller this factor, the
more fault-tolerant the controller is. It is obvious that the cost
of the controller increases when its criticality factor decreases.

Before implementing every function on a given controller,
an assignment process must be performed. The first aim of
the assignment process (Fig. 1) is to find a suitable set of
controllers such that every function is assigned to one and only
one controller while satisfying two kinds of constraints: ca-
pacity constraints and safety constraints. Capacity constraints
mean merely that several functions can be assigned to a given
controller if and only if the capacities of this controller are
large enough to host all these functions. It is obviously not
possible, for instance, to assign three functions with M/2 input
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Fig. 1. Overview of the assignment process.

data each to a controller that owns only M input interfaces.
Two kinds of safety constraints must be introduced in addition.
The first one relates the safety level of a function to the
criticality factor of the controller to which this function may
be assigned. It is not allowed for instance to assign a function
which strongly impacts safety to a controller which is not very
fault-tolerant. The second safety constraint, termed separation
constraint, means that two redundant functions must not be
assigned to the same controller, to avoid that the failure of this
controller provokes the loss of the service. A formal definition
of the assignment problem will be given in the next section.

Assuming that there always exists a controller which can
host the larger function (otherwise this function must be
decomposed in smaller ones), a trivial assignment solution is to
choose as many controllers as there are functions and to define
the criticality factor of every controller according to the safety
level of the only function it hosts. The separation constraint
will be automatically satisfied because only one function will
be assigned to every controller. This solution is obviously
not economically viable1. Hence, the overall objective of the
assignment process is not only to find a feasible solution that
satisfies all constraints, as presented in [3], but to minimize
the cost of the set of controllers of this solution.

Currently, the assignment process is performed by experts

1The observation of existing solutions in power plants shows that a
controller hosts on average several tens of functions.

in companies that design and implement large control systems.
This process is extremely tedious and time consuming. More-
over, minimization of the cost is generally achieved only by
comparing several feasible solutions. This work aims to tackle
out these issues by proposing a bin-packing heuristic to assign
automatically the control functions, while minimizing the cost,
in a short time. Preliminary results have been presented in [4].
This article extends these results by proposing another novel
assignment strategy and comparing the two strategies on the
basis of a larger set of experiments.

The outline of the paper is the following. An ILP formula-
tion of the assignment problem is given in the next section. It
is shown in the third section that this problem is a Multiple-
choice Vector Bin-Packing (MVBP) with Conflicts problem.
Two strategies are then proposed in the fourth section to
assign the different classes of functions. For both strategies, a
heuristic based on a FFD (First Fit Decreasing) approach is de-
tailed in section V. Several criteria to sort the functions before
applying the FFD are also defined in this section. The relative
performances of the two strategies and the sorting criteria are
compared and discussed on the basis of experimental results
in the sixth section, while concluding remarks and outlooks
are drawn up in the seventh one.

II. PROBLEM FORMULATION

In this section, the problem adressed in this paper is
modelled by an ILP. For the sake of comprehension and
without impacting generality, the formulation is limited to
the 2-dimensional case (only 2 capacities will be considered).
The ILP formulation can be unlimitedly extended to multiple
capacities given that they follow a linear additive consumption
scheme.

Capacities considered are cpu processing capacity and the
number of inputs (resp. outputs) from (resp. to) the physical
processes of the plant that are required for a control function
to perform its task. Inputs and outputs are considered inter-
changeable as controllers dispose of cards that can be adapted
following requirements. Therefore, the number of inputs and
outputs required by a function are summed and this sum is
noted inout.

Let us consider a set of functions F and a set of controllers
C. Each function fi ∈ F is characterized by its

• inouti : the number of its inputs and outputs,
• cpui : its cpu consumption, and
• sli : its safety level.

Four safety levels are defined in IEC standards [5] for power
plants control functions: A, B, C and NC. A function f i

with sli = A (resp. B,C,NC) is said to be of class A (resp.
B,C,NC). A function whose safety level is A impacts safety
more than a function of class B which itself is more significant
for safety than a function of class C. NC functions (not
classified) do not impact safety.

On the other hand, each controller Cj ∈ C is characterized
by its

• INOUTj : its capacity in terms of inputs/outputs,
• CPUj : its processing capacity,
• CFj : its criticality factor with CFj ∈ {0, 1, 2},
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• COSTj : its cost.

A controller Cj with CFj = 0 (resp. 1,2) is said to be
of category 0 (resp. 1,2). Controllers with smaller criticality
factor are more reliable. The cost of a controller is proportional
to its characteristics. Since in the addressed problem all
controllers are considered to have the same processing capacity
CPU , i.e.

∀Cj ∈ C, CPUj = CPU,

and the same capacity of inputs/outputs INOUT , i.e.

∀Cj ∈ C, INOUTj = INOUT,

the cost of a controller depends only on its criticality factor.
The more reliable it is, the more expensive it is.

The most critical functions (class A) must be assigned to
the most reliable controllers (category 0) and the less critical
functions (class NC) must be assigned to the cheapest, then
less reliable controllers (category 2). Moreover, two functions
whose safety levels are too different (for instance A and C,
A and NC, B and NC) must not be assigned to the same
controller because development, testing and monitoring of the
codes which will implement these functions must be different.
Hence, a controller of

• category 0 can only host A-class and B-class functions,
• category 1 can only host B-class and C-class functions,
• category 2 can only host C-class and NC-class functions.

A graphical representation of these compatibility relations
is given in Table I. The X mark indicates that a category of
controllers is compatible with the class of functions.

TABLE I
SAFETY COMPATIBILITIES BETWEEN THE CLASSES OF FUNCTIONS AND

THE CATEGORIES OF CONTROLLERS

A B C NC

0 X X
1 X X
2 X X

A loose upper bound on the number of controllers of each
category can then be derived. Let us define by FA (resp. FB ,
FC ,FNC) the set of A-class (resp. B,C,NC) functions such
that F = FA∪FB∪FC∪FNC . Then, as we seek to minimize
the cost of controllers, we need at most |FA| (resp. |FB|,
|FC |+ |FNC |) controllers of category 0 (resp. 1, 2)2. In fact,
if we consider the solution that consists in each controller
hosting only one function, functions of FA would be packed
in controllers of category 0, those of FB would be packed
into controllers of category 1, and functions of FC and FNC

would be packed into controllers of category 2.
Using this loose upper bound and following safety con-

straints, we can construct S, the set of couples (fi, Cj) ∈ F×C
such that the class of fi is incompatible with the category of
Cj .

Besides, as an input of our problem we are given a list
L of couples of redundant functions (f i, fi′). The redundancy
relation is commutative (i.e. if (fi, fi′) ∈ L then (fi′ , fi) ∈ L)

2|F| represents the cardinality of the set F.

and transitive (i.e. if (fi, fi′) ∈ L and (fi′ , fi′′) ∈ L then
(fi, fi′′) ∈ L).

Let us consider also the following Boolean variables

• xij that should take the value 1 iff the function f i is
assigned to controller Cj , and

• Usedj that should take the value 1 iff the controller Cj

is used, i.e. hosting at least one function.

Then, the assignment problem can be modelled by the
following Integer Linear Program (ILP):

minimize
∑

Cj∈CCOSTj · Usedj subject to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀fi ∈ F,
∑

Cj∈C xij = 1 (1)

∀Cj ∈ C,
∑

fi∈F inouti · xij ≤ INOUT (2)

∀Cj ∈ C,
∑

fi∈F cpui · xij ≤ CPU (3)

∀(fi, Cj) ∈ F× C, xij ≤ Usedj (4)
∀Cj ∈ C, ∀(fi, fi′) ∈ L, xij + xi′j ≤ 1 (5)
∀(fi, Cj) ∈ S, xij = 0 (6)
∀(fi, Cj) ∈ F× C, xij ∈ {0, 1} (7)
∀Cj ∈ C, Usedj ∈ {0, 1} (8)

This ILP minimizes the global cost of used controllers. Con-
straint (1) models the fact that a function must be assigned to
one and only one controller. Constraints (2) and (3) satisfy the
limited capacities of controllers in terms of CPU and INOUT.
Constraint (4) indicates whether a controller is used or not.
Constraint (5) ensures the separation of redundant functions,
i.e. their assignment to different controllers. Constraint (6)
ensures the compatibility of the classes of functions with the
categories of controllers to which they are assigned.

For solvers that may be more efficient on ILPs without
Boolean constraints, the domain of variables xij in (7) and
Usedj in (8) can be relaxed to N. In fact, the minimization
objective and the set of contraints (1) and (4) bind their values
to 0 or 1.

III. PROBLEM IDENTIFICATION

The assignment problem addressed in this paper can be seen
as a generalization of more than one variant of the Bin-Packing
problem (BP) [6]. This combinatorial problem consists of
packing items of different sizes into the minimum possible
number of identical bins with a given capacity. In its multi-
dimensional variant also known as Vector Bin-Packing (VBP),
items and bins are multi-dimensional [7]. The VBP problem
is an important problem that arises in a variety of industrial
applications such as virtual machine placement [8]. In control
functions assignement, dimensions may correspond to cpu
and memory consumption and the number of inputs/outputs
required.

When considering separation constraints, the problem be-
comes a VBP with conflicts [9]. This problem combines
the VBP with the Vertex Coloring problem and has many
applications [10]. A conflict graph in which each vertex
corresponds to a conflicting item is provided. A couple of
conflicting items that cannot be assigned to the same bin are
represented by an edge in the conflict graph between the two
corresponding vertices. The number of conflicts of an item,
which indicates the number of items it is in conflict with, is
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then given by the degree of its corresponding vertex in the
conflict graph.

The conflict-free version of our problem, i.e. without con-
sidering separation constraints, can be seen as an instance of a
Multiple-Choice VBP (MVBP) [11]. In this variant of the bin-
packing problem, different types of bins with differents costs
and characteristics are provided, and items have different in-
carnations depending on these types. Due to safety constraints,
the addressed problem is a special case of the MVBP in which
a function would have no incarnation for incompatible types
of controllers.

Both the bin-packing and the vertex coloring problems are
strongly NP-hard [12]. Thus, as a generalization of these two
problems, the control functions assignment problem addressed
in this paper is also strongly NP-hard. Real instances we are
aiming at may have around ten thousand functions and need
hundreds of controllers with an average number of functions
per controller that may exceed 40. Such instances are beyond
the solving capacity of exact algorithms for which there exists
instances of two hundred items that are still open, i.e. for which
no optimal solution is known [13]. On the other hand, for such
instances with high number of items per bin, heuristics provide
good solutions because the waste in bins tends to be smaller.

A. Contribution

The main contribution of this paper is a safety-level aware
vector bin-packing approach that mimimizes the cost of the
set of controllers of the operational architecture by assigning
functions to safety compatible controllers while satisfying
capacity and separation constraints. This is accomplished as
follows.

First, two strategies are introduced in order to handle the
multiple-choice facet of the problem that results from safety
compatibilities between functions classes and controllers cat-
egories. These strategies, a class oriented and a category
oriented one, specify orders into which the different classes
of functions are assigned.

Then, at each step of these strategies, a bin-packing al-
gorithm is called to assign functions. A heuristic that is
an improved version of the First-Fit Decreasing algorithm
(FFD) is proposed. The FFD, that is a greedy algorithm,
has been shown to be a powerful fast heuristic to solve the
one-dimentional bin-packing problem. The version proposed
was developed specifically to manage the multi-dimensional
and the conflicts aspects in accordance with the proposed
strategies. The FFD operates by first sorting functions which
may greatly impact the results. Three different sorting criteria
are proposed that alternate between giving priority to capacity
constraints satisfaction and conflicts resolving.

Finally, several experiments are performed in order to check
the accuracy of the ordering strategies proposed and the
adapted version of the FFD.

B. Related works

In [3], the authors propose a technique based on the verifica-
tion of a reachability property on a network of communicating
automata to model the assignment problem. However, this

technique is meant more to find a feasible solution that
satisfies constraints than to obtain an optimized one. Besides,
controllers are considered of the same cost no matter their
criticality factor.

As mentioned before, the problem addressed in this paper
is one of several variants of bin-packing problem. Despite the
extremely rich literature in this field, we were not able to find
works that consider jointly both the multiple-choice of bins
and the conflicting items when solving a vector bin-packing
problem. In [13] and [14], the authors propose an exact
technique based on an Arc-Flow formulation that represents all
the feasible packing solutions of a problem in a compact graph.
Different arc-flow models are then built using this formulation
for the VBP, the one-dimensional BP with conflicts and the
MVBP. Though it seems possible to combine these models in
order to build an arc-flow model for our specific problem and
for general MVBP with conflicts, we will be quickly limited
by the instances that can be treated using such formulation.
In fact, in addition to the size of our real instances that may
exclude the use of any exact methods, this arc-flow technique
is very sensitive to the number of items per bin (10 items per
object is a maximum limit).

In [11], a polynomial-time approximation algorithm for the
MVBP is proposed; the approximation ratio depends on the
number of dimensions. On the other hand, VBP with conflicts
are hard to approximate for general graphs of conflicts. Then,
in most of the existing works this variant is considered on
restricted graphs of conflicts. The authors in [15] propose
approximations for the 2-dimensional bin-packing with perfect
and bi-partite conflicts graphs. In our instances specification,
separation constraints do not follow a specified pattern; their
conflict graph should then be considered as general. In [16],
a heuristic named ModifiedFFD, which adds a test for the ab-
sence of conflicts, is proposed to solve the BP with Conflicts.
The approach we propose in the present work extends, in some
way, this heuristic with multidimensional and multiple-choice
aspects.

IV. SAFETY-LEVEL MANAGEMENT

In this section, two assignment strategies are proposed to
manage safety compatibilities between functions and con-
trollers with the objective of reducing the cost of the global
set of controllers of the architecture. Both strategies specify
an order in which the classes of functions are assigned to
compatible controllers.

A. Class based strategy

The idea of this first strategy is to define an order such that
it is easy to remove the uncertainty (i.e. disambiguate) about
the category of the controller into which a function will be
assigned. Therefore, functions of classes that are compatible
with only one category are assigned first since there is no
ambiguity about the category of controllers to which they can
be assigned. The other classes with multiple choices are then
treated in a second time.

Since functions of class A and class NC can only be packed
respectively into controllers of category 0 and 2, the strategy



5

proceeds by packing them first. Packing first the functions of
class A permits to set definitely the number of controllers of
category 0 which are the most expensive ones but the only ones
able to host A functions; the B functions which are compatible
with A functions (see Table I) may be assigned later to cheaper
controllers of category 1 if there is no more room available in
the controllers of category 0. On the other hand, the number
of controllers of category 2 obtained by assigning functions of
class NC is only a lower bound on the number of controllers
of this category. These assignments are represented by steps
(1) and (2) of Algorithm 1. Since they involve different classes
of functions and different categories of controllers, these steps
can be interchanged and even parallelized.

Algorithm 1 Class based strategy
1: Pack functions of class A into controllers of category 0
2: Pack functions of class NC into controllers of category 2
3: Pack functions of class B into the remaining space of

already used controllers of category 0 or 1, otherwise use
new controllers of category 1

4: Pack functions of class C into the remaining space of
already used controllers of category 1 or 2, otherwise use
new controllers of category 2

Afterwards, the algorithm resumes at step 3 by packing
functions of class B. It uses at first the remaining capacities
in already created controllers of category 0 at step 1, and if
this is not sufficient, it creates new controllers of category 1 as
they are compatible and cheaper. Finally, at step 4, functions
of class C are packed into the available space provided by
already created controllers at step 2 and 3 and by creating
new controllers of category 2 if necessary.

Notice, for these last two steps, that it is important to
proceed as detailed in the specified order so as to avoid the
ambiguity that can arise if these steps are inverted. Indeed,
if functions of class C are packed first, it would be difficult
to determine whether new created controllers should be of
category 2 or category 1 in anticipation of the possible
assignment of functions of class B into these controllers.

B. Category based strategy

In this second strategy, the order is specified such that the
number of controllers created for each category is minimized
according to their cost. The categories of controllers are first
ordered from the most to the least expensive. Then, following
this order, new controllers of each category are allowed to be
created only by the functions that have no choice for a cheaper
compatible category. Unlike the class oriented strategy, this
approach prevent revisiting the number of controllers of a
category once it has been treated.

Since controllers of category 0 are the most expensive, they
are treated first. This category is compatible with functions of
classes A and B. However, for this last class, there is another
choice of category of controllers that is cheaper. Thus, at this
first step, only functions of class A are assigned and allowed
to create controllers of category 0. Afterwards, category 1
is processed. For similar reasons, the only functions allowed

Algorithm 2 Category based strategy
1: Pack functions of class A into controllers of category 0
2: Pack functions of class B into the remaining space of

already used controllers of category 0 or 1, otherwise use
new controllers of category 1

3: Pack functions of class C and NC into the remaining
space of already used controllers of category 1 (only class
C is compatible) or 2, otherwise use new controllers of
category 2

to be assigned at this step are those of class B. However,
since they are compatible with category 0 and in order to
preserve the objective of minimizing the cost of the global
architecture, the use of remaining space in the controllers of
category 0 takes priority over the creation of new controllers
of category 1. Finally, functions of class C are packed together
with functions of class NC since they are both compatible with
category 2 that is the cheapest one. Nonetheless, functions of
class C that fit in the available space provided by already
created controllers of category 1 must be assigned in these
controllers before using controllers of category 2 for obvious
reasons.

The predetermined orders specified by these strategies allow
handling the multiple choice facet of the MVBP with conflicts.
In fact, at each step of Algorithms 1 and 2 the category of
controllers to be created is defined. Thus, at each one of these
steps, the assignment problem to be solved is a VBP with
conflicts for which a heuristic is proposed in the next section.

V. HEURISTIC FOR THE VBP WITH CONFLICTS

The algorithm to solve the VBP with conflicts problem is
first presented in this section. Since this algorithm relies on
a FFD approach, several criteria to sort the functions to be
assigned are then defined. Complexity of the heuristic is finally
addressed.

A. First-Fit Decreasing Assignment Approach

The first-fit decreasing packing algorithm (see. Algorithm 3)
consists in going through the list of functions (lines 4-16) and
for each function to pack it in the first encountered controller
in which it can fit in (lines 5-10). If there is no already created
controller in which the function can fit in, then a new controller
is created and the function in assigned to this controller (lines
11-15). In this decreasing variant, the functions are first sorted
in a non-increasing order following their characteristics (line
2) before they are packed, which corresponds to the simple
policy that consists of packing big items first in the original
algorithm.

Note that each time a function is assigned to a controller,
the remaining capacities of this controller must be updated
(lines 7 and 13).

Initially the FFD was designed for the one-dimensional bin-
packing problem and without considering conflicts between
the items to be assigned. Thus, the FFD algorithm has to be
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Algorithm 3 First-Fit Decreasing
input: A set of functions F

output: A set C of nbrControllers new controllers to which the functions of F are assigned
1: function FFD(F)
2: sortedF← sorted functions of F in a non-increasing defined order
3: C← ∅ and nbrControllers← 0
4: for All functions fi ∈ sortedF/i← 1 to |sortedF| do
5: for All controllers Cj ∈ C/j ← 1 to nbrControllers do
6: if fi fits in Cj then
7: Assign fi to Cj

8: Break the inner loop to assign the next function
9: end if

10: end for
11: if fi is not assigned then
12: nbrControllers← nbrControllers+ 1
13: CnbrControllers ← CREATENEWCONTROLLER(fi) and C← C ∪ CnbrControllers

14: end if
15: end for
16: return C

17: end function

extended and adapted to consider these new constraints. First,
the fitting in conditions must be defined which is detailed in
the next subsection. Besides, the policy of controllers creation
has to be specified since for some classes of functions different
categories may be compatible (Subsection V-C). Finally, since
the addressed problem is multidimensional, it is necessary to
define how functions are sorted (Subsection V-D).

B. Fitting in conditions

A function fi fits in a controller Cj if and only if the
following conditions are satisfied

• the safety level sli is compatible with the criticality factor
CFj .

• the controller Cj has enough remaining cpu and inout
capacities to perform fi.

• fi is not in conflict with any already assigned function
fi′ to the controller Cj .

Several ways exist to check quickly the last condition. One
way is to keep for each function a list of controllers to which
a conflicting function has already been assigned. These lists
are updated as the assignment process advances. Then, if a
controller satisfies the first two fitting in conditions but belong
to this list, it is excluded.

C. Controllers creation policy

The policy used to set the category of a new created
controller is defined in Algorithm 4

The consistency of a creation policy with the cost minimiza-
tion objective is ensured by the order in which functions of
different classes are packed. Notice that the policy specified in
Algorithm 4 is compatible with the orders defined by both the
class and the category based strategies presented in Section
IV.

Algorithm 4 Create a new controller
input: A function fi
output: A new controller Cj of a compatible category
with fi

1: function CREATENEWCONTROLLER(fi)
2: if fi is of class A then
3: Create a new controller Cj of category 0
4: else if fi is of class B then
5: Create a new controller Cj of category 1
6: else if fi is of class C or NC then
7: Create a new controller Cj of category 2
8: end if
9: Assign fi to Cj

10: return Cj

11: end function

D. Sorting criteria

In the original version of the bin-packing problem, items are
sorted based on their unique dimension: their size. Given the
additional set of constraints to be treated, several criteria can
be adopted to sort functions. The generic idea in that case is
to aggregate subsets of characteristics of an object to get only
one characteristic that represents this object. In one sense, this
will have for effect to reduce the multidimensional problem
into a mono-dimensional one for which the original version
of the algorithm can be applied [7], [8].

Two aggregators were adopted whereby functions are sorted
according to:

• maxConsumption: the relative maximum of the
consumption of inout and cpu capacities

max(
cpui

CPU
,

inouti
INOUT

).

• meanConsumption: the relative mean of the consumption



7

of inout and cpu capacities

cpui

CPU
+

inouti
INOUT

.

It is necessary to use relative values instead of absolute ones
as in the general case dimensions are not of the same nature.
Note also that these aggregators present the advantage of being
easily extensible to more than 2 dimensions. Nonetheless,
they present the disadvantage of giving priority to resolving
capacity constraints and ignore the conflicting aspect of the
problem addressed, which may lead to an overestimation of
the necessary number of controllers. This can be highlighted
by the following example.

Let us suppose that at the end of an assignment process two
last functions fj , fk remain such that fj > fk according to
both previously defined sorting criteria. It is also supposed that
there exists only two controllers C1 and C2 that offer enough
capacities to host fj and fk but cannot host both of them at
the same time (Fig. 2).

is in conflict with

without conflicts

sorting sorting

(a) (b)

Fig. 2. Impact of sorting functions according to their number of conflicts.

Then, according to Algorithm 3 and a criterion based on
relative consumption, fj is assigned first to C1. Now, if it is
supposed that a function fi that is in conflict with fk is already
assigned to C2, then a new controller C3 must be created to
assign fk (Fig. 2a) while a better solution would have been to
assign fk to C1 and fj to C2 (Fig. 2b). In order to overcome
such a case another aggregator is considered. This agregator
sorts functions according to

• nbrConflicts: their number of conflicts +( cpui

CPU +
inouti
INOUT )/2.

According to the first term of this sum, the more a function
has conflicts with other functions the more it is preferable to
assign it first. Functions with no conflicts will be assigned
at last. The second term is a relative mean of capacities
consumption that permits to differentiate functions with the
same number of conflicts. The value of this second term is
intentionally smaller than one in order to avoid disrupting the
influence of the first term.

The impact of these different criteria will be discussed
through experiments in the next section.

E. Complexity of the heuristic

In its original version, the First-Fit Decreasing algorithm
has a complexity O(n log n + kn); n being the number of
monodimensional items to be assigned and k the number of
bins in the solution. The first part O(n log n) is the result of the
sorting of items performed at the beginning of the algorithm
[17] and the second part O(kn) is due to the fitting-in test.
This last part supposes that the FFD will have to visit all
the bins before being able to assign any item. Using a 2-3
tree data structure [18], the complexiy of finding the first bin
with enough capacity can be improved to O(n log k) instead
of O(kn). However, this structure assumes that bins can be
ordered (i.e. sorted) which cannot be done when considering
conflict constraints. In fact, conflicts are functions dependent
unlike capacities that are controllers inherent.

In the d-dimensional case, the first part becomes
O(n logn+dn) and the second part O(d×kn). If we assume
that the number of conflicts of a function is of the same order
of magnitude as the final number of controllers, the global
complexity of the heuristic is O(|F| log |F|+ d|F|+ d|C||F|)
which is equal to O(|F| log |F|+ d|C||F|).

VI. EXPERIMENTAL RESULTS AND DISCUSSION

The objective of this section is twofold:
• First, the accuracy of the results which are provided by

the proposed heuristic is assessed by comparing these
results to optimal solutions. This comparison must clearly
be done on the basis of samples of reduced size (200
functions) because optimal solutions cannot always be
obtained for full scale problems (10,000 functions), oth-
erwise heuristics would not be needed. The impact of the
three sorting criteria defined at Subsection V-D is studied
too in this set of experiments with reduced size samples.

• Second, the two safety-level management strategies de-
veloped in Section IV are compared on the basis of full
scale samples.

A. Accuracy evaluation

The input data of the experiments whose results are given
and discussed in this part are one thousand samples of 200
functions each. Those samples were generated automatically
according to characteristics provided in a specification of
anonymized data that specifies by mean of intervals and
their proportions: cpu loads, number of inouts, number of
functions by class, number of conflicting functions and for
each conflicting function its number of conflicts (see. provided
datasets).

Cost computation has been based on the assumption that a
controller of a certain category is twice more expensive than a
controller of the immediately below category and the optimal
solutions were obtained by solving the ILP proposed in Section
II by using the CPLEX solver [19].

Before a thorough analysis of the results, two general
conclusions can be drawn up:
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TABLE II
COMPARISON OF SORTING CRITERIA (VALUES IN %)

Running time per sample per criterion < 1ms

CLASS BASED STRATEGY CATEGORY BASED STRATEGYCriterion
NbrOptimal AvgRelInc MaxRelInc NbrOptimal AvgRelInc MaxRelInc

maxConsumption 18.8 5.87 26.67 11.6 6.55 30.00
meanConsumption 20.7 5.53 24.14 10.3 6.33 24.14
nbrConflicts 56.2 1.92 14.29 67.9 1.39 12.90

Best solution 59.8 1.63 13.79 70.1 1.21 12.90

• In most cases, the optimal solutions were delivered by
CPLEX in less than one minute per sample; however,
some samples needed more than one hour to be solved.
The proposed heuristic provided a solution in less than
one millisecond per sample thanks to the adopted greedy
approach. If this solution is accurate, i.e. near the optimal,
enough, as it will be shown in what follows, this very
short runtime is a clear benefit of our contribution, even
on small-sized examples.

• For the optimal solutions, the controllers are on av-
erage filled up to 76% in INOUT and 96% in CPU.
These optimal occupancy rates indicate how much of
the capacities offered by the controllers are consumed
in an optimal solution and, for bin-packing problems,
may help to evaluate how hard is a sample to solve
to the optimum using a heuristic. The high rates which
were experimentally obtained, in particular for the cpu
consumption, point out that the addressed problem was
not trivial.

However, the heuristic may provide for some samples an
overestimation of the cost of the set of controllers that is
required to host every function of this sample. This overesti-
mation may come from the strategies to manage the different
safety levels which are described in Section IV, the underlying
packing FFD algorithm or the adopted sorting criterion used
to solve the VBP with conflicts problem. The impact of the
last two causes is studied in the remainder of this subsection;
that of the first cause is the topic of the next part.

1) Impact of the FFD algorithm:
In order to isolate the impact of this algorithm from that of the
safety-level management strategy, focus must be put only on
the number of controllers of category 0 that is obtained at the
end of the first step of Algorithm 1 (or 2); the numbers of the
controllers of the other categories are not considered because
they are computed at following steps and therefore depend on
the strategy. Hence, experiments were performed to compute
this number by using separately the three criteria described
in Subsection V-D for each sample. The best solution, among
the three obtained, was kept to evaluate the impact of the FFD
algorithm.

Those experiments showed that the FFD algorithm com-
puted the optimal number of controllers of category 0 for
97.3% of samples. This very high performance of the heuristic
is closely related to the large number (several tens) of functions
per controller that characterizes the solutions and that allows
reducing the unused capacities. In fact, the FFD is known for
suffering from a high fragmentation rate of unused capacities

due to its policy that consists in choosing the first encountered
controller in which a function can fit in. As a result, while
the total of unused capacities in already created controllers
might be several times greater than the needed capacities to
host a function, the heuristic may not be able to assign this
function otherwise than by creating a new controller because
of the fragmentation. Fortunately, for cases with a high number
of functions per controller, these unused parts of capacities
are quickly and progressively filled in by the numerous small
functions. The excellent result obtained using the adapted
FFD proposed avoids adapting more advanced and consuming
techniques to solve the VBP with conflicts [20].

A detailed analysis of the results pinpointed that the crite-
rion nbrConflicts that prioritizes conflicts resolution allowed
by itself obtaining 96.8% of optimal solutions while each
one of the other two criteria provides only 55% of such
solutions. However, at this stage, it was too early to decide
definitely whether to prune or not those criteria that consider
only consumptions and not conflicts. Therefore, it was decided
to deepen the analysis on the impact of the sorting criteria and
their interaction with the safety-level management strategies.

2) Impact of Sorting Criterion:
Each step of Algorithm 1 or 2 requires to sort the functions
that are considered at this step before assigning them. As
three sorting criteria have been defined at Subsection V-D,
two approaches are worth considering: using only one criterion
for every step of a strategy or selecting several criteria for the
different steps. The results obtained for these two approaches
and the two strategies are given respectively at Table I and
Table II. Three indicators were adopted to compare the criteria:

• NbrOptimal: The number of optimal solutions obtained.
• AvgRelInc: The average relative increase in cost.
• MaxRelInc: The maximum relative increase in cost.

The second indicator is an average value over the thousand
samples whereas the third indicator highlights the worst case
performance.

a) Sorting according to only one criterion: Comparison
of the first and second rows of Table II shows that sorting
functions according to the relative mean of their capacities
consumption performs slightly better than sorting by using the
maxConsumption criterion for the class-based strategy. This
is not true for every indicator for the other strategy; only
103 optimal solutions are obtained with the meanConsumption
criterion whereas 116 such solutions are given when the
functions have been sorted according to maxConsumption
criterion. Hence, no definite conclusion about the relative
interest of these two criteria can be stated from these results.
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TABLE III
COMBINING CRITERIA (VALUES IN %)

Running time per sample per combination of criteria < 1ms

CLASS BASED STRATEGY CATEGORY BASED STRATEGYCombined criteria
NbrOptimal AvgRelInc MaxRelInc NbrOptimal AvgRelInc MaxRelInc

maxCons. & meanCons. 31.2 4.28 21.43 23.2 4.77 20.00
maxCons. & nbrConfl. 65.8 1.37 13.33 75.0 1.01 11.76
meanCons. & nbrConfl. 65.9 1.34 13.33 76.0 0.95 10.35
All three criteria 67.9 1.24 13.33 77.6 0.88 9.68

This is not the case for the third criterion nbrConflicts.
The third row of Table II confirms that sorting functions
according to this criterion far outperforms sorting based on
maxConsumption or meanConsumption.

This result must not be misinterpreted as a dominance of the
vertex coloring facet of the addressed problem over the bin-
packing one, in which case the heuristic proposed at Section
V would be considered as a greedy coloring technique, i.e. a
technique that computes a coloring of the vertices by means
of a greedy algorithm [21]. Actually, additional experiments
have shown that, if the capacity constraints are removed, i.e.
the capacities of controllers are considered infinite, the global
number of controllers is reduced more than three times for
every sample. This result highlights that, even if conflicts
resolution may greatly impact the size of the solution, the
bin-packing facet is what constrains the most the addressed
problem.

This is confirmed by the last row of Table II, Best solution,
that keeps for each sample the best solution amongst the three
solutions obtained with the sorting criteria. Comparison of the
results of this line with those of the third line shows clearly
that the optimal solution can be obtained with another criterion
than nbrConflicts for some samples, whatever the strategy. For
instance, the percentage of optimal solutions obtained by the
class-based strategy is equal to 56.2% with this only criterion
and 59.8% for the best solution.

To sum up, if only one criterion must be selected for every
step of a strategy, nbrConflicts is the most relevant choice.
Nonetheless, better solutions may be provided exclusively by
consumption-based criteria, for some samples. Consequently,
the combined use of several criteria is a promising idea that
is investigated in the following part.

b) Sorting according to several criteria: Table III reports
the results of experiments where two (first three rows) or three
(last row) sorting criteria have been combined for the different
steps of the strategies. When the three criteria are used,
34 = 81 and 33 = 27 combinations are respectively possible
for the class-based and the category-based strategies. This
approach increases of course the execution time; nevertheless,
this increase is not prohibitive, due to the short running time
of the heuristic proposed to solve the VBP with conflicts (less
than one millisecond per sample per combination) and to the
possibility of running simultaneously several occurrences of
Algorithms 1 and 2 with different combinations of criteria.

All indicators are improved, whatever the strategy, which
shows that, within the same sample, different classes of
functions may need different sortings. Combining maxCon-
sumption with meanConsumption enhances the results which

nevertheless stay far behind those obtained when one of
these criteria is combined with nbrConflicts. More than 65%
(resp. 75%) of exact solutions with the class (resp. category)
based strategy are yielded in these cases (rows 2 and 3 of
Table III). This is an improvement of more than 10% in
comparison with the third row of Table II. The combination of
the three criteria allows getting 2% more of exact solutions.
Hence, this study clearly highlights that the combination of
at least one consumption-based sorting criterion (preferably
meanConsumption) with the conflicts-based sorting criterion
is mandatory for more accurate results. Moreover, it matters to
underline that the solutions obtained with these combinations
of two or three criteria are very close to the optimal ones. The
average relative increase in cost (AvgRelInc) is smaller than
1.5% and the maximum relative increase in cost (MaxRelInc)
is less than 14%. This shows experimentally the quality of our
contribution.

Last, no detailed comparison of the results that are provided
by the two strategies from Table III will be carried out, even if
it is clear that the category-based strategy seems better than the
class-based strategy from this table. The results presented have
been obtained with reduced size samples (200 functions each)
indeed, while our objective is to deal with full scale samples
(10,000 functions each). Comparison of the two strategies on
this basis is the aim of the following subsection.

B. Safety-level management strategies comparison

At full scale, all indicators, and in particular the maximum
relative increase MaxRelInc, are expected to be improved.
This expectation relies on well-known results for the one-
dimensional bin-packing problem. In that case indeed, the FFD
heuristic has been shown to use at most ( 11

9 · Optimal + 1)
bins3 [22], where Optimal is the number of bins for the
optimal solution, which in the worst case corresponds to
a maximum relative increase of ( 11

9 ·Optimal+1)−Optimal

Optimal =
2
9 + 1

Optimal . Hence, higher is the number of bins in the
optimal solution, better is the performance of the heuristic.
Even if these formulas are using the number of bins and not
the cost of this set of bins, a similar behavior is expected for
the adapted FFD proposed in Section V to address the VBP
with conflicts.

Several experiments have been carried out to compare the
two strategies and assess their scalability. The input data of
these experiments are one thousand samples of ten thousand

3The worst-case ratio 11
9

of the FFD can be even smaller when the items
are much smaller than a fraction of the bin capacity; the interested reader is
referred to [18] for further details on FFD performance ratios.
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TABLE IV
COMPARISON OF STRATEGIES AT FULL SCALE (VALUES IN %)
Running time per sample per combination of criteria < 60 ms

CLASS BASED STRATEGY CATEGORY BASED STRATEGYCombined criteria
NbrBest AvgRelInc MaxRelInc NbrBest AvgRelInc MaxRelInc

maxConsumption 0.0 3.16 4.35 0.0 4.09 5.27
meanConsumption 0.0 2.76 3.93 0.0 3.47 4.57
nbrConflicts 92.7 0.005 0.13 42.3 0.08 0.51
maxCons. & meanCons. 0.0 2.69 3.93 0.0 3.40 4.57
maxCons. & nbrConfl. 93.1 0.005 0.13 42.3 0.08 0.51
meanCons. & nbrConfl. 97.2 0.002 0.13 42.3 0.08 0.51
All three criteria 97.4 0.002 0.13 42.3 0.08 0.51

functions each. The distribution of the functions into the
different classes and the features of every function in a sample
were generated automatically, as explained at the beginning
of the previous subsection (see. provided datasets). These
experiments reproduced at full scale the ones performed in the
previous subsection, using several criteria, with the exception
that no optimal solution was searched because this solution
could not be obtained with CPLEX for this size of problem.
The results are reported in Table IV, where the indicator
NbrOptimal has been replaced by NbrBest that features, for
a given strategy and a criterion or a combination of criteria,
the percentage of best solutions among those that have be
obtained for every strategy and combination of criteria. The
other indicators are also computed in a relative way.

The execution time is a hundred times longer than in the
previous experiment, where each sample was composed of 200
functions, which confirms the linearithmic (i.e. O(|F| log |F|)
running time of the heuristic. Consequently, the proposed
heuristic scales well and can be selected for the industrial
application that motivated its development and for which only
one sample is considered generally.

At full scale, the domination of the nbrConflicts criterion
over the consumption based criteria is clearly confirmed. No
best solution is obtained with one of these criteria or their
combination. Moreover, it may be noticed that, for the class-
based strategy, using the only nbrConflicts criterion provides
92.7% of the best solutions.

Unlike what was observed on reduced size samples, the
class-based strategy takes the lead at full scale by delivering
more than 97% of the best solutions. With only 42.3% of best
solutions, among which only a little more than 6% are not
already included in the set obtained by the class-based strategy,
the category-based strategy obtains a very low score. However,
despite this result, the overestimation of this strategy amounts
to the cost of one controller of category 1 on average and
two controllers of category 0 in the worst case. Brought back
to the hundreds of controllers that compose the solution, this
overestimation is around 0.1% on average and therefore not
very significant. As the runtimes are short, the two strategies
may be performed in parallel to be sure to always obtain the
best solution when dealing with a given sample.

The accuracy of obtained best solutions was assessed by
comparison to a lower bound that was computed on the basis
of capacity constraints as follows. The smallest number of
controllers of category 0 is computed such that the sum of
their capacities exceeds the sum of consumptions of functions

of class A. The sum of the remaining capacities of these
controllers is then substracted from the sum of consumptions
of functions of class B that is in turn used to compute the
smallest number of controllers of category 1. This process is
repeated again for functions of class C and NC to determine
the smallest number of controllers of category 2.

The difference between the best solution and this bound
is less than 0.9% in the worst case and 0.15% on average.
These results highlight the accuracy of the heuristic to solve
the problem addressed in this paper.

VII. CONCLUSION

This paper has shown that the industrial issue that consists
in assigning a large set of control functions with different
safety levels to safety compatible controllers, while satisfying
capacity and separation constraints and minimizing cost, can
be modeled as a Multiple-choice Vector Bin Packing with
Conflicts problem. Two strategies have been proposed to solve
this NP-hard problem; both are based on a FFD heuristic for
which several sorting criteria have been defined.

Experiments on small-size sets of functions have clearly
highlighted the accuracy of the results of this heuristic. Ex-
periments with full scale sets have shown that both strategies
scale well. The proposed method has been tested by a major
company on a real instance of nuclear power plant including
around 30,000 functions. The engineers performing the work
confirmed that the technique scales well (a solution was
obtained for every variant of the initial data set) and that the
number of controllers was always smaller than that of usual
solutions.

Nevertheless, it must be underlined that sets and not archi-
tectures have been considered in this work. Data exchanges
between functions and communications on networks between
controllers [23] have not been taken into account. Considering
these features for control functions assignment is a challenging
issue for further work.
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