
HAL Id: hal-01472134
https://hal.science/hal-01472134v1

Submitted on 20 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of Modular Systems with Unknown
Components Combining Testing and Inference

Roland Groz, Keqin Li, Alexandre Petrenko

To cite this version:
Roland Groz, Keqin Li, Alexandre Petrenko. Verification of Modular Systems with Unknown Compo-
nents Combining Testing and Inference. [Research Report] RR-LIG-028, LIG. 2012. �hal-01472134�

https://hal.science/hal-01472134v1
https://hal.archives-ouvertes.fr






1 

Verification of Modular Systems with 
Unknown Components Combining Testing 
and Inference  

Roland Groz 1, Keqin Li 2, Alexandre Petrenko 3 

1 Université de Grenoble, LIG Lab, France. Roland.Groz@imag.fr 

2 SAP Research, France. Keqin.Li@sap.com 

3 CRIM, Canada. Alexandre.Petrenko@crim.ca 

Abstract. Verification of a modular system composed of communicating components is a 
difficult problem, especially when the formal specifications, i.e., models of the components are not 
available. Conventional testing techniques are not efficient in detecting erroneous interactions of 
components because interleavings of internal events are difficult to reproduce in a modular system. 
The problem of detecting intermittent errors and other compositional problems in the absence of 
components’ models is addressed in this paper. A method to infer a controllable approximation of 
communicating components through testing is elaborated. The inferred finite state models of 
components are used to detect compositional problems in the system through reachability analysis. 
To confirm a flaw in a particular component, a witness trace is used to construct a test applied to 
the component in isolation. The models are refined at each analysis step thus making the approach 
iterative. 

Keywords: Model Inference, Testing, Verification, Input/Output Transition Systems, Finite State 
Machines, Intermittent Errors. 

1. Introduction 
Integration of components is now a major mode of software development. Very often, 

components coming from outside sources (such as COTS) have to be connected to build a system. 
In most cases, the components do not come with a formal model, just with executable or in some 
cases source code. At the same time, the interaction of components may lead to integration bugs 
that may be hard to find and trace, especially in the absence of any model or other development 
information. In this paper, we are targeting compositional problems in the behaviours of a system 
composed of communicating components. Specifically, we aim at identifying intermittent 
(sporadic) errors occurring in event interleavings that are difficult to reproduce in an integrated 
system. Generally speaking, the system may produce several event interleavings in response to a 
given external input sequence, if that sequence is applied several times. This occurs in particular 
when the execution order of the components changes over time from one experiment to another, 
typically because of different scheduling, varying load and communication jitters. However, it is 
unrealistic to expect to be able to enforce all the interleavings during testing. Therefore, the 
intermittent errors are hard to elicit and to reproduce in functional testing.  

On the other hand, all potential interleavings can be checked for potential errors by 
instrumenting the modular system and executing it in a controlled environment to observe all the 
possible executions and interactions of all its components, see, e.g., Verisoft [God97]. For 
components without source code, this approach may not be applicable and a model-based 
approach can be attempted. Indeed, if components’ models are available, the global model state 
space can be exhaustively searched (reachability analysis) to look for compositional problems, 
using, for instance, a model checker. As stated earlier, the models usually do not exist. One 
possibility would be to reverse engineer them from the code, but reconstruction based on static 
analysis has a number of limitations. The main alternative is to infer them from executions. 
However, given the complexity of typical software components, it is unrealistic to assume that 
components could be modelled with a perfect abstraction in a finite, compact representation. 
Inferring approximated models of components in a given modular system appears to be more 
realistic. 

In this paper, we are developing an approach to verify a modular system by inferring tuneable 
approximated models of its components through testing and performing reachability analysis to 
detect intermittent errors and other compositional problems in the system. This approach possesses 
two main advantages regarding the models that are inferred. First, it allows derivation of models of 
the components describing the behaviours that can actually be exhibited in the integrated system. 



2 

Typically, components bundle a number of functions, but it is often the case that only a subset of 
those functions are used in the system, so inferring them in isolation is hard if not impossible; 
whereas our approach delivers models which omit behaviours unused in the integrated system. 
Second, the models are determined with a controllable precision to balance between the level of 
abstraction and the amount of efforts needed to obtain the models.  

We make the following assumptions about a given system: 
• The system interacts with a slow environment which submits external inputs only when the 

system stabilizes.  
• Components are black boxes that behave as finite state (Mealy) machines and interact 

asynchronously. In response to an input, a component can produce several outputs to other 
components or the environment of the system. 

• The models of some components are unknown. 
• Each component is deterministic; however, due to possible jitter in communication delays, 

or scheduling of components, the system might not be. 
• A set of controllable external input actions of the system is known. Those are the actions 

that the tester can provide to the system under test. 
• A set of observable actions which includes all output actions of the components is given. 

Those are the actions that the tester can observe in the system under test. 
No additional information about the system, such as the number of states, a priori given positive 

or negative samples of its behaviour or teacher [KV94], often used in traditional model learning, is 
available for model inference. The components are modelled using Finite State Machine (FSM) 
with multiple outputs, or equivalently Input/Output Transition System (IOTS) (with restrictions). 
A modular system is composed of IOTS components that communicate asynchronously through 
queues modelled by IOTS. We define an approximation of an FSM, called Z-quotient, based on 
state distinguishability achieved by the set of input sequences Z. The precision of this 
approximation can be controlled by the parameter Z, which can be seen as a partial state-
characterization set. A full characterization set, as used in the W-method [Vas73], might not be 
known, since identification of a state machine is in general infeasible without knowing the number 
of its states.  

The first contribution of this paper is an algorithm that computes a Z-quotient for a system 
treated as a black box (thus, for a whole system) , by testing in the two following steps: behaviour 
exploration bounded by the parameter Z and “folding” of the observed behaviour by state merging 
using trace inclusion relation. More precisely, the inference efforts are scoped to a part of the 
system, called a testable model, defined by the controllable and testable actions. This allows one to 
focus on interesting features of the systems, while abstracting the others. We then elaborate an 
approach to infer a Z-quotient of a modular system. The Z-quotient of the system with observable 
internal actions in the form of an IOTS is used to infer initial models of unknown components by 
projecting the quotient. Reachability analysis of the models is next performed to identify witness 
(diagnostic) traces of a composition problem, such as unspecified receptions, livelocks, and races. 
The identified witness needs to be tested in the real system, to check whether it is an artefact 
coming from our approximations or the system indeed has this problem. However, since we cannot 
control the delays in the integrated system, each unknown component involved in a questionable 
execution is tested in isolation on a projection of the witness trace. A witness refuted by testing the 
components yields new observations. The models are then refined using new observations and the 
process iterates until the obtained models are well-formed or a composition problem is confirmed. 
The obtained component models are consistent with all observations made on the real system. 
Once composed, they are at least as accurate as the Z-quotient model of the system. 

The problems coming from delays and jitters are often hard to elicit and to reproduce in 
functional testing; they often appear as a side effect in stress testing, but are harder to analyse in 
that stage. The crux of our approach is precisely to make it possible to identify such intermittent 
problems that occur only under specific circumstances in integrated systems. This is achieved 
through the proposed combination of inference, reachability analysis and testing. 

The paper is organized as follows. Section 2 provides basic definitions on state models used in 
the rest of the paper: FSM and Input/Output Transition System. Section 3 defines a Z-quotient of 
those models and presents an algorithm for its inference. Inference of modular systems and a 
verification approach are elaborated in Section 4. The notion of a slow asynchronous product is 
defined to formalize the interactions of components in a slow environment and several known 
compositional problems along with the witness traces are formally defined. The approach is 
illustrated on a small example. Section 5 discusses the related work. Section 6 concludes the paper. 



3 

2. Basic Definitions 
In this section, we first give some basic definitions of the two state models, Finite State 

Machine (FSM) and Input/Output Transition System (IOTS) used to model a System Under Test 
(SUT) and then formulate the conditions, under which trace equivalence of the two models, FSM 
and IOTS, can be established, allowing to use them interchangeably.  

2.1. FSM Model 

We use a slightly generalized definition of finite state machines which allows multiple outputs 
for transitions. 

A Finite State Machine with multiple outputs (FSM) A is a 6-tuple (S, s0, I, O, E, h), where  
• S is a finite set of states with the initial state s0; 
• I and O are finite non-empty disjoint sets of inputs and outputs, respectively; 
• E is a finite set of finite sequences of outputs in O (may include the empty sequence ε); 
• h is a behaviour function h: S × I → 2S

×
E, where 2S

×
E is the powerset of S × E. 

Depending on the properties of the behaviour function, a number of various types of FSM can 
be defined as follows.  

FSM A = (S, s0, I, O, E, h) is  
• trivial if h(s, a) = ∅ for all (s, a) ∈ S × I; 
• fully specified (a complete FSM) if h(s, a) ≠ ∅ for all (s, a) ∈ S × I; 
• partially specified (a partial FSM) if h(s, a) = ∅ for some (s, a) ∈ S × I; 
• deterministic if |h(s, a)| ≤ 1 for all (s, a) ∈ S × I; 
• nondeterministic if |h(s, a)| > 1 for some (s, a) ∈ S × I; 
• observable if the automaton A× = (S, s0, I × E, δ), where δ(s, aβ) ∋ sʹ′ iff (sʹ′, β) ∈ h(s, a), is 

deterministic.  
We consider only observable machines; one could employ a standard procedure for automata 

defeminisation to transform a given FSM into an observable one. Moreover, all the machines are 
assumed to be initially connected, i.e., each state is reachable from the initial state. We use a, b, c 
for input symbols, α, β, γ for input and output sequences, s, t, p, q for states, and u, v, w for traces. 

Given FSM A = (S, s0, I, O, E, h), (s1, aβ, s2) is a transition if s1, s2 ∈ S and (s2, β) ∈ h(s1, a). A 
path from state s1 to sn+1 is a sequence of transitions (s1, a1β1, s2)(s2, a2β2, s3)…(sn, anβn, sn+1) such 
that (si+1, βi) ∈ h(si, ai), where 1 ≤ i ≤ n and n is the length of the path. A sequence u ∈ (Ι  × E)* is 
called a trace of FSM A in state s1 ∈ S, if there exists a path (s1, a1β1, s2)(s2, a2β2, s3)…(sn, anβn, 
sn+1) such that u = a1β1a2β2…. anβn. Note that a trace of A in state s0 is a word of the automaton A×. 
Let Tr(s) denote the set of all traces of A in state s and Tr(A) denote the set of traces of A in the 
initial state.  

The projection operator ↓B, which projects sequences in (I × E)* onto the set B ⊆ Ι ∪ O, is 
recursively defined as ε↓Β = ε, (ua)↓Β = u↓Βa if a ∈ B, and (ua)↓Β = u↓Β otherwise, where u ∈ (Ι  × E)* 
and a ∈ Ι ∪ O. Given a sequence u ∈ (I × E)*, the sequence u↓I is the input projection of u. Input 
sequence α ∈ I* is a defined input sequence in state s of A if there exists u ∈ Tr(s) such that α = 
u↓I. We use Ω(s) to denote the set of all defined input sequences for state s. 

Given two states s, t ∈ S of FSM A and a set of input sequences Ζ ⊆ Ω(s) ∩ Ω(t), s and t are Ζ-
equivalent, if for all α ∈ Ζ it holds that {u ∈ Tr(s) | u↓I = α} = {u ∈ Tr(t) | u↓I = α}. Ζ-equivalent 
states are k-equivalent, if Ζ is the set of all input sequences of length k. States s and t are 
equivalent if they are Ζ-equivalent and Ζ = Ω(s) = Ω(t), i.e., Tr(s) = Tr(t). If Tr(s) ⊆ Tr(t) then s is 
trace-included in t. States s and t that are not Ζ-equivalent are Ζ-distinguishable. An input 
sequence α ∈ Ω(s) ∩ Ω(t) such that {u ∈ Tr(s) | u↓I = α} ≠ {u ∈ Tr(t) | u↓I = α} is called a sequence 
distinguishing s and t. States s and t are (k-)distinguishable, if there exists a sequence 
distinguishing them (of length k). A set of input sequences Ζ such that each pair of distinguishable 
states is Ζ-distinguishable is called a characterization set of FSM A. A complete FSM which has 
no equivalent states is called minimal.   

The introduced equivalence and distinguishability relations over states are extended to states of 
different machines. 



4 

2.2. IOTS Model 

In this paper, the labelled transition system model is used along with the FSM model, since 
certain operations on FSMs, such as composition, are simpler to formulate using their transition 
system counterparts.  

A labelled transition system (LTS) L is a quadruple (S, s0, A, λ), where  
• S is a set of states with the initial state s0; 
• A is a non-empty set of actions;  
• λ ⊆ S × (A ∪ {τ}) × S is the transition relation, with the symbol τ denoting internal actions. 
If the set A is partitioned into disjoint sets of input and output actions I and O, then the LTS L is 

an input/output transition system (IOTS). 
Given IOTS L = (S, s0, I, O, λ), (s1, a, s2) ∈ λ is called a transition; (s1, a, s2) is input, output or 

internal transition, if a ∈ I, a ∈ O or a = τ, respectively. A path from state s1 to state sn+1 is a 
sequence of transitions (s1, a1, s2)(s2, a2, s3)…(sn, an, sn+1), such that (si, ai, si+1) ∈ λ, where 1 ≤ i ≤ n.  

The projection operator ↓B, defined for FSM sequences, applies to IOTS sequences in a similar 
way. It projects sequences of actions in (Ι ∪ O ∪ {τ})* onto the set B ⊆ Ι ∪ O ∪ {τ}. We also lift 
the projection operator to IOTS, i.e., given IOTS L = (S, s0, I, O, λ) and set A ⊆ Ι ∪ O, the IOTS 
L↓Α is obtained by first replacing each transition (s1, a, s2) ∈ λ such that a ∉ A by internal transition 
(s1, τ, s2) and then defeminising the obtained IOTS by τ-reduction. 

We use en(s) to denote the set of actions enabled in state s, i.e., en(s) = {a ∈ (I ∪ O ∪ {τ}) | ∃t 
∈ S ((s, a, t) ∈ λ)}. 

Depending on the properties of the transition relation, a number of various types of IOTS can be 
defined as follows.  

IOTS L = (S, s0, I, O, λ) is 
• trivial if en(s) = ∅ for each s ∈ S; 
• deterministic if it has no internal transitions and λ is a function from S × (I ∪ O)  to S; 
• conflict-free if input actions are only enabled in stable states; state s ∈ S is stable if no 

output or internal actions are enabled in s, i.e., en(s) ∩ (O ∪ {τ}) = ∅, otherwise it is 
unstable.   

• A conflict-free IOTS is fully specified if all input actions are enabled in each stable state 
and partially specified otherwise. 

• A deterministic conflict-free IOTS L = (S, s0, I, O, λ) is output-deterministic if for all s ∈ S, 
en(s) contains at most one output action; otherwise it is output-nondeterministic. 

State s ∈ S is a deadlock if no action is enabled in it, i.e., en(s) = ∅. State s ∈ S is a livelock if 
there is a cycling path of output or internal transitions that includes s; if the path includes only 
internal transitions then livelock is internal, otherwise it is an output livelock. IOTS L is deadlock-
free or livelock-free, if there is no deadlock or livelock state reachable from the starting state, 
respectively.  

Hereafter we consider a subclass of transition systems, denoted IOTSbasic(I, O), which includes 
finite, deterministic, fully specified, conflict-, deadlock- and livelock-free IOTSs over the input 
and output action sets I and O, each of which has a stable initial state. 

A sequence u ∈ (Ι ∪ O)* is called a trace of IOTS L in state s1 ∈ S if there exists a path (s1, a1, 
s2)(s2, a2, s3)…(sn, an, sn+1), such that u = (a1…an)↓(I∪O). Similar to FSM, we use Tr(s) to denote the 
set of traces in state s ∈ S, while Tr(L) to denote the set of traces of L in the initial state.  

For the IOTS class IOTSbasic(I, O) we introduce additional definitions. Let L ∈ IOTSbasic(I, O). A 
path (s1, a1, s2)(s2, a2, s3)…(sn, an, sn+1) between two stable states s1, and sn+1 of L is called simple if 
all the intermediate states s2, s3, …, sn are unstable, thus a1 is input action, while a2, … an, if n > 1, 
are output actions. We use (s, aβ, t) to denote a simple path from stable state s to stable state t. 
Then an arbitrary path from stable state s1 to stable state sn+1 can be represented as a sequence of 
simple paths (s1, a1β1, s2)(s2, a2β2, s3)…(sn, anβn, sn+1), it defines a stable trace a1β1a2β2…anβn. 
Stable traces are, in fact, suspension traces [Tre96], though in this paper, we do not use explicit 
quiescence output action. We use STr(s) to denote the set of stable traces of L in s and STrk(s) to 
denote the set of stable traces, each of which has at most k input actions, i.e., STrk(s) = {u | u ∈ 
STr(s) ∧ |u↓I| ≤ k}.  

Given two stable states s, t ∈ S of IOTS L ∈ IOTSbasic(I, O) and a set of input sequences Ζ ⊆ I*, 
s and t are Ζ-equivalent, if for all α ∈ Ζ it holds that {u ∈ STr(s) | u↓I = α} = {u ∈ STr(t) | u↓I = α}. 
Ζ-equivalent states are k-equivalent, if Ζ is the set of all input sequences of length k. Stable states s 
and t are equivalent if they are I*-equivalent, i.e., STr(s) = STr(t), otherwise they are 
distinguishable. Stable states that are not Ζ-equivalent are Ζ-distinguishable. 



5 

2.3. Relating FSM and IOTS 

Comparison of the two models immediately reveals that trivial FSM and trivial IOTS do not 
differ; so now we consider models where inputs label at least one transition. Any transition system 
in IOTSbasic(I, O) behaves as an FSM; it produces all due outputs in response to input before the 
environment offers a next input, similar to FSM, where input along with an output sequence 
produced in response to it constitute an atomic action, thus a single transition. The set of its stable 
traces coincides with the set of traces of a corresponding FSM. On the other hand, any fully 
specified FSM can be converted into an IOTS in IOTSbasic(I, O), once each of its transitions is 
unfolded into input transition, followed, if the output of the transition is not the empty sequence, 
by output transitions; their number is defined by the length of the output sequence.  

The above discussion leads to the following statement. 
Theorem 1. Let I be input set and O be output set, then 
• For any fully specified FSM A over I and O with the set of traces Tr(A), there exists an 

IOTS L in IOTSbasic(I, O) such that Tr(A) = STr(L). 
• For any IOTS L in IOTSbasic(I, O) with the set of stable traces STr(L), there exists FSM A 

over I and O such that Tr(A) = STr(L). 
Theorem 1 allows one to convert a given FSM into an IOTS and vice versa, preserving the 

traces. This makes the existing state minimization methods developed for FSM, see, e.g., [KVB97] 
fully applicable to the class of transition systems IOTSbasic(I, O). In this paper, we use both models; 
though for technical reasons, we will use the FSM model for inferring a single model of an SUT 
and the IOTS model for inferring and verifying its components.  

3. Inferring a State Model of a System Under Test 
In this section, we introduce the concept of an initial Ζ-quotient of a given FSM and give the 

algorithm for its inference by testing. Finally, we discuss how the assumptions about an SUT can 
be relaxed to reflect more realistic situations when the SUT does not necessarily behave as an 
FSM. 

3.1. Initial Ζ-Quotient  

Assume we are given an SUT which behaves as an FSM (thus as an IOTS in the above defined 
class) and we can perform experiments with it by applying inputs and observing outputs to infer an 
FSM model. To test the SUT we need to know at least its input alphabet I. The inference can 
easily be performed assuming that the black box behaves as a deterministic machine and the 
number of distinct states n as well as a characterization set is known. Since each input can be 
applied to the SUT if needed, the machine is also fully specified. To construct an FSM model it is 
sufficient to adapt the W-method [Vas73] as follows. The set I<n of input sequences of length at 
most n – 1 allows us to reach all of the n states. The state identification is achieved with the help of 
the characterization set; all the states are identified as soon the characterization set applied after n 
different traces produced by the SUT in response to input sequences from I<n yields n different sets 
of traces. The transitions between the states are inferred using again the characterization set to 
identify the tail states of transitions, exactly as it is done according to the W-method. The actual 
machine may have equivalent states, but the inferred machine does not, it is its minimal form, i.e., 
the quotient implied by the state equivalence, which is confirmed by the known characterization 
set. The existence of a characterization set greatly simplifies the inference process; however, the 
problem is that a characterization set may seldom be given for inference.  

Therefore, when no characterization set is known for testing, we need to find a way of inferring 
an approximated model with a controllable precision. To infer not the minimal form of the FSM 
but some approximation in the form of a quotient, we can use instead of a characterization set an 
arbitrary set Ζ of input sequences. This set defines the Ζ-equivalence relation between states of the 
unknown FSM, so states of this machine could be identified modulo Ζ-equivalence. The idea leads 
to the following definition and eventually to an inference algorithm. 

Given a complete FSM A = (S, s0, I, O, E, h) and a finite non-empty set of input sequences Ζ ⊆ 
I*, let πΖ be the partition on the set of states S induced by the Ζ-equivalence relation. For state s, all 
of the states that are Ζ-equivalent to state s constitute the equivalence class πΖ(s). It is known that a 
state equivalence relation induces a quotient model of the original machine, see, e.g., quotient 
model of Kripke structure [CGP99]. The idea, which can be traced back to work in [Ner58] and 
[BF72] is to collapse all Ζ-equivalent states (k-equivalent in [BF72]) while preserving all 



6 

transitions. The obtained model preserves all the traces of the original machine, but contains 
additional traces.  

Formally, a Ζ-quotient model of a complete FSM A = (S, s0, I, O, E, h) is an FSM K = (Q, q0, I, 
O, E, k), where each state qi is an equivalence class πΖi

 of the partition πΖ,  q0 = πΖ(s0), and for any 
πΖi

 ∈ Q and a ∈ I, k(πΖi
, a) = {(πΖ(t), β) | (t, β) ∈ h(s, a) ∧ s ∈ πΖi

}.  
Consider the example of an FSM A in Figure 1. Assume Z = {a}. Then, in A, s1 and s2 are the 

only Z-equivalent states. The FSM K is the Z-quotient of A, in which q1 = {s1, s2}. We can see in 
this example that although A is deterministic, the Z-quotient is nondeterministic, if some states are 
Z-equivalent but nevertheless distinguishable. 

 
(a) FSM A 

 
(b) FSM K as {a}-quotient of A 

Figure 1: FSM A and its {a}-quotient 
Quotient models are widely used in model checking, however, for inference purposes we are 

constrained to a single representative of each equivalence class πΖ. The reason is that once a 
distinct Ζ-distinguishable state is identified it should be included into the inferred model. This 
constraint leads to the following definition. 

Definition 1. Given a complete FSM A = (S, s0, I, O, E, h) and a set of input sequences Ζ, an 
FSM K = (Q, q0, I, O, E, k) is an initial1 Ζ-quotient model of A, if there exists an injection f from 
Q to S such that  

• f(q0) = s0  
• for any two distinct states q1, q2 ∈ Q, f(q1) and f(q2) are Z-distinguishable  
• for any q ∈ Q there exists a path (s0, a1β1, s1)…(sn-1, anβn, sn), such that si = f(qi), qi ∈ Q, 1 ≤ 

i ≤ n and sn = f(q) 
• for any q ∈ Q and a ∈ I, β ∈ O*, (p, β) ∈ k(q, a) iff there exists s ∈ S, such that (s, β) ∈ 

h(f(q), a) and s and f(p) are Z-equivalent. 
In Figure 2, an initial Z-quotient of FSM A is depicted, in which Z = {a}, f(q0) = s0 and f(q1) = 

s1. Note that the initial Z-quotient is deterministic. 

 
Figure 2: Initial Z-quotient of FSM A 

In Figure 3, an FSM L is provided, we want to check whether L is an initial Z-quotient of A, 
assuming as before Z = {a}. Suppose there is an injection f from Q to S, f(q0) must be s0. f(q2) can 
only be equal to s3, since k(q2, a) = {(q0, 3)}. Now, we need to determine f(q1). If f(q1) = s1, 
according to the last clause of the definition, s2 and s3 should be Z-equivalent, which is not the 
case, they produce different outputs. If f(q1) = s2, the third clause is not satisfied. We conclude that 
there is no injection f from Q to S with the required properties, thus, L is not an initial Z-quotient 
of A. 

                                                             
1 We use “initial” in the introduced term of initial Z-quotient to emphasize the fact that the latter represents a 

part reachable from the initial state of a given FSM modulo Z-equivalence. It is not related to the usage of 
“initial” such as “initial object” in category theory. 

 



7 

 
Figure 3: An FSM L which is not initial Z-quotient of FSM A 

Comparing the two models, Z-quotient and initial Z-quotient, we may identify several 
differences. One difference is that given an FSM, an equivalence class is not represented in the 
initial Ζ-quotient if each path leading the FSM to any state in that class traverses several Ζ-
equivalent states. Another difference is that any FSM has a unique Ζ-quotient, but may have 
several initial Ζ-quotients. As Figure 1 and Figure 2 illustrate, Z-quotient of a deterministic FSM 
could be nondeterministic, while its initial Z-quotients always remain deterministic.  

There is special case of a Ζ-quotient, when the set Z is a characterization set of a given FSM A. 
In this case, as any two states of A could be distinguished by a string in Z, as a result, each state of 
the given machine is represented by a separate state in the quotient, which thus becomes 
equivalent to A. Recall that in the case of Figure 2, where Z = {a} is not a characterization set of A, 
the FSM K and A are not equivalent. This observation leads to the following theorem about 
properties of initial Ζ-quotients. 

Theorem 2. Given a Z-quotient K of a complete FSM A, if Z is a characterization set of A, then 
FSM A and K are equivalent; otherwise, if A has distinguishable but Z-equivalent states, then A 
and K are distinguishable. 

The proof is given in Appendix A. 
The more sequences of a characterization set are included into the set Ζ the more precise the 

approximation. The precision of Ζ-quotient of an FSM can be controlled by the parameter Ζ, 
henceforth called the inference parameter. 

Given a natural k, a Ζ-quotient is called a k-quotient if Ζ = Ik. It is known that the set Ik contains 
distinguishing sequences for any pair of states in any FSM over the input alphabet I with at most n 
= k + 1 states, hence it is a characterization set of such machines.  

The case of k = n – 1 corresponds actually to worst case situations, which occur in special 
pathological machines, such as Moore locks. For other types of machines k-equivalence of states 
becomes state equivalence for much lower value of k and thus it may be more appropriate to 
consider instead of upper bounds asymptotic characterization of FSM parameters for “almost all 
FSMs”. The monograph [TB73] indicates that for complete FSM with n states, m inputs, and l 
outputs, the length of input sequences reaching all n states is asymptotically equal to logmn and 
distinguishing states just logmlogln. These results suggest that even when the value of the 
parameter k is well below the actual number of states of a given FSM the approximation of the 
FSM in the form of a k-quotient might be sufficiently precise and thus acceptable for practical 
applications. This also means that choosing a set Z, one is not obliged to focus on long input 
sequences, but rather on those which can discriminate various operational modes of an SUT and 
thus its internal states. 

For completeness we also provide the definition of an initial Z-quotient for an IOTS in 
IOTSbasic(I, O) which is derived from that for FSM and Theorem 1.  

Definition 2. Given an IOTS L = (S, s0, I, O, λ) with the set of stable states Sstable, L ∈ 
IOTSbasic(I, O) and a set of input sequences Ζ, an IOTS K=  (Q, q0, I, O, µ), K ∈ IOTSbasic(I, O) 
with the set of stable states Qstable is an initial Ζ-quotient model of L, if there exists an injection f 
from Qstable to Sstable such that  

• f(q0) = s0  
• for any two distinct states q1, q2 ∈ Qstable, states f(q1), f(q2) ∈ Qstable are Z-distinguishable  
• for any q ∈ Qstable there exists a path (s0, a1β1, s1)…(sn-1, anβn, sn) with the stable trace 

a1β1…anβn, such that si = f(qi), qi ∈ Q, 1 ≤ i ≤ n and sn =  f(q) 
• for any q, p ∈ Qstable, a ∈ I, β ∈ O*, there exists a simple path (q, aβ, p) iff there exists a 

simple path (f(q), aβ, s), such that s and f(p) are Z-equivalent. 
When the set of input sequences Z is clear from the context, we call an initial Z-quotient of 

FSM A just an initial quotient or simply a quotient of FSM A, and similarly for IOTS. 

3.2. Inferring Ζ-Quotient of the SUT  

We assume that a given SUT viewed as a black box can be modelled by a fully specified and 
deterministic FSM (or an IOTS) over the input I and output E sets. We also assume that a reliable 
reset can be performed on the SUT, so that several test sequences can be applied to the SUT from 



8 

its initial state. As usual, for testing we are restricted to controllable and observable actions, via 
interfaces or ports open for testing; namely let the set of controllable inputs be Icon ⊆ I and the 
subset of observable outputs be Eobs ⊆ E. If some action of the given FSM is either non-
controllable input or unobservable output then by testing we can infer a model which represents 
only a corresponding part of the given machine. This constraint motivates the following definition. 

Definition 3. Given controllable inputs Icon ⊆ I and observable outputs Eobs ⊆ E for an FSM A, 
an FSM which is obtained from A by removing all transitions labelled with uncontrollable inputs 
and removing each non-observable output in the output sequences of the remaining transitions is 
called a testable model of the FSM A. Similarly, an IOTS obtained from L by removing all 
transitions with uncontrollable inputs and replacing all transitions with non-observable outputs by 
internal transitions is called a testable model of the IOTS L. 

We further assume that we are given a set of input sequences Ζ needed to infer a Ζ-quotient of a 
testable model A by testing its implementation, the SUT. A basic idea of our inference method 
which directly follows from the clauses of the definition of Z-quotient is as follows: 

• We start building an initial Z-quotient by including an initial state which could be injected 
to the initial state of A; the remaining states should not be Z-equivalent to those already in 
the quotient; 

• We explore the states of A from the initial state step by step. For each visited state, we 
decide whether to include a corresponding state in the initial Z-quotient. If the current state 
is Z-equivalent to a state already visited then we do not explore states of A further from this 
state. 

• For each state, the transitions are defined respecting the Z-equivalence.  
This basic idea is described in more detail in the following algorithm.  To represent the 

observed traces, we use a tree FSM. 
Definition 4. Given a (prefix closed2) set U of observed traces of an FSM over input set I and 

output set O, the observation tree is FSM (U, ε, I, O, EU, hU), where the state set is U, EU = {β ∈ 
O* | ∃u ∈ U, ∃a ∈ I (uaβ ∈ U)}, and hU(u, a) = {(uaβ, β) | ∃β ∈ O* (uaβ ∈ U)}. 

We use U to refer to both, a prefix-closed set of FSM traces and the corresponding observation 
tree FSM (U, ε, I, O, EU, hU). 

The quotient inference method includes two phases: first constructing an observation tree while 
identifying all the quotient’s states and then determining transitions between the states. In the state 
identification phase, we apply inputs to an SUT, observe traces and add them to an observation 
tree FSM U. We perform Breadth First Search (BFS) on the tree and if the current state u is Z-
distinguishable with each already traversed state in the observation tree FSM, we add the state u 
into the set of states of a quotient, which is initialized with {ε}. Otherwise, if there exists a 
traversed state w which is Z-equivalent to u, we label the state u with w, i.e., label(u) = w, u is not 
included into the states of a quotient, and the behaviour of the FSM A will no longer be explored 
from the state u. Once the tree stops growing, all the states of a quotient are identified. Transitions 
between the states of the quotient are determined from the transitions of the observation tree. 
Namely, a transition is considered if neither the source state nor any of its predecessors is labelled 
in the tree. If the target state is not labelled either, the same transition exists in the quotient. 
Otherwise the transition is redirected to the state which is used to label the target state. 

The inference algorithm is formalized as follows.  
Input: 
The set of inputs I of an unknown testable FSM A; 
the inference parameter Z. 
Output: 
An FSM K = (Q, q0, I, O, E, k).  
1. U := {ε}, q0 := ε, Q : = {q0} 
2. for (each state u of U being traversed during Breadth First Search)  
3. begin 
4. if (u has no labelled predecessor) 
5. begin 
6. while (there exists a1a2…ak ∈ (I ∪ Z) such that a1a2…ak ≠ v↓I , where k ≥ 1, for 

any v ∈ Tr(u)) do   
7. begin 
8. Reset A to its initial state 
9. Apply u↓I to A 

                                                             
2 Recall that a symbol of an FSM trace is a pair of an input from I and a sequence of outputs from O, so 

every prefix takes an FSM from its initial state into some state. 



9 

10. Apply inputs a1, a2, …, ak to A, let the corresponding observed output 
sequences be β1, β2, …, βk 

11. Add the trace ua1β1a2β2…akβk and its prefixes ua1β1, ua1β1a2β2, …, 
ua1β1a2β2…ak-1βk-1 to U 

12. end 
13. if (u is Z-equivalent to a traversed state w of U) 
14. Label u with w, i.e., label(u) = w 
15. else 
16. Add u into Q 
17. end 
18. end 
19. for (each transition hU(u, a) = (v, β), such that neither state u nor any of its predecessors is 

labelled) 
20. begin 
21. if (v is not labelled) 
22. Add transition k(u, a) = (v, β) to K 
23. else if (label(v) = w) 
24. Add transition k(u, a) = (w, β) to K. 
25. end 
26. OK = O, EK = EU. 
27. Return the resulting FSM K as an initial Z-quotient of the FSM A. 

We illustrate the procedure by inferring an {a}-quotient of FSM A in Figure 4. 

 
Figure 4: An FSM A 

Initially, U = Q = {ε}. We have (I ∪ Z) = {a, b}; we use the inputs a and b to explore the 
behaviour of FSM A from the state ε. The output 1 is observed in both cases and the tree becomes 
U = {ε, a1, b1}. We apply then a and b to state a1 and observe output 2 and 3, respectively. Then 
U = {ε, a1, b1, a1a2, a1b3}. We determine that state a1 is not {a}-equivalent to state ε, so state a1 
is added into Q. Similarly, state b1 is added into Q and the tree becomes U = {ε, a1, b1, a1a2, 
a1b3, b1a3, b1b2}. When we apply a and b to state a1a2 and observe the output 2 in both cases, 
we determine that state a1a2 is {a}-equivalent to state a1. State a1a2 is labelled with a1 and we 
stop exploring further from this state. Similarly, we label a1b3, b1a3, b1b2 and we stop exploring 
from those states. The final observation tree U is depicted in Figure 5, and the set of states of a 
quotient is Q = {ε, a1, b1}. 

Transitions between the initial state and states a1 and b1 are also transitions in the resulting 
quotient, while the target states of transitions from states a1, b1 are defined by the labels in the 
tree, e.g., the transition from a1 to a1a2 is redirected to state a1 in the quotient, shown in Figure 6. 

The following theorem claims that the above method can be used to infer an initial Z-quotient 
of the FSM from which traces are collected during testing. 

Theorem 3. If the inference method is applied to a deterministic FSM A and yields an FSM K, 
then FSM K is an initial Z-quotient of FSM A. 

The proof is provided in Appendix B.  
The above algorithm can also be used to infer an initial Z-quotient model of an IOTS; in the 

state identification phase, the identified states are stable states and the transitions between them 
represent simple paths. 

3.3. Discussions 

In this section, we discuss how the assumptions made about an SUT can be relaxed. 
To infer an initial Z-quotient of a testable model for a given SUT our basic assumption is that 

the SUT can be modelled by an FSM. Since our FSM model may produce not only single outputs 



10 

in response to a single input, but multiple outputs in a row, by assuming a finite state model we, in 
fact, require that the SUT in hand never produce unbounded output sequences. If the SUT is 
treated as a black box, we need to check this property by testing. Thus, executing tests according 
to the proposed inference method against a real SUT, it is sufficient to set a bound on the allowed 
number of outputs produced by the SUT in response to a single test input. As soon as the length of 
any observed output sequence exceeds the given bound, the testing process may terminate. This 
equally applies to checking the absence of output livelock, one of basic assumptions used when an 
initial Z-quotient for a given SUT has to be inferred in the form of an IOTS.  

 
Figure 5: Observation Tree U 

 
Figure 6: Initial {a}-Quotient K of FSM A 

  
Another assumption about an IOTS model of the SUT is absence of internal livelock. When a 

test input is applied to a real SUT one has to use a timer to conclude that in response the SUT has 
not produced any observable output. However, it is difficult, if not impossible, to detect by testing 
that an IOTS modelling the SUT has an internal livelock. We may, however, conclude that the 
SUT had no internal livelock if after some test input it remains quiescent until a timeout expires 
and it can produce observable outputs in response to subsequent test inputs. This means that non-
catastrophic livelock can still be present in an SUT and will not be represented in the inferred 
model, but catastrophic one which blocks the system terminates testing. The absence of observable 
outputs does not result in any output transition if the IOTS model is used and it yields the empty 
output sequence for a corresponding transition in the FSM model. 

Our next assumption about the SUT is that if an FSM is its model, then it is a complete FSM; 
and if an IOTS is used then it is deadlock-free and fully specified. Indeed, the assumption that the 
SUT is ready to accept any input in any state is justified in many situations: FSM by definition 
does not “refuse” any input, and in IOTS a deadlock state cannot be observationally distinguished 
from a stable state where all inputs cause looping transitions. Nevertheless, it is possible to 
consider a partially specified FSM and IOTS models and adjust the results of previous sections to 
such models. The first adjustment we need is to assume that the set of defined input sequences of a 
testable model of the SUT is known. It should represent in fact the behaviour of the environment 
of the SUT and can be specified as an automaton. We also need to require that the set Ζ used in the 
Ζ-quotient contains only input sequences which are defined in every state of a testable model. We 
also notice that a model of a constrained environment helps reduce the number of input sequences 
used during the exploration phase. In fact, Steps 6-11 of the above procedure require application of 
all possible controlled inputs in each newly reached state, modelling the unconstrained 
environment. Since this may be sometimes costly, a judicious choice of controllable inputs may 
reduce the exploration, however, a more radical save can be achieved once a constrained 
environment for model inference is used.  



11 

Another assumption about models of a given SUT used in the inference method is determinism. 
In particular, we require that its testable FSM model be deterministic and its IOTS model be 
output-deterministic. The definition of initial Z-quotient is given for an observable (not necessarily 
deterministic) FSM, thus one can infer by testing Ζ-quotients which are nondeterministic FSMs or 
equivalently output-nondeterministic IOTSs. Theoretically, it is feasible, but only with the help of 
an additional assumption about the fairness of a nondeterministic system known as “all weather”, 
aka “complete testing”, assumption [LBP94][EGI10].  

Finally, our approach for inferring a quotient assumes that the tester predefines a set of input 
sequences which allow one to distinguish distinct states of a testable model of the SUT. From the 
theoretical perspective, ideally this has to be its characterization set; if we wish to infer a precise 
model, which is the testable model itself. From a more practical viewpoint, it might be sufficient 
for this set to possess the discriminative power of identifying the most important states of the 
testable model, needed to represent a feature of the SUT targeted by the verification efforts. Ζ-
equivalent states of the testable model do not change the behaviour of the SUT executing the 
chosen feature and thus are collapsed together in the quotient.  

The approach to the model inference problem elaborated in this section can be used in an 
iterative way to increase the precision of the resulting model by augmenting the set of input 
sequences used to discriminate the states. In particular, when two states of the observation tree are 
Z-equivalent, but 1-distinguishable, an input which distinguishes them could be added to the set Z. 
On the other hand, using as an inference parameter a predefined discriminative input set instead of 
a predefined bound on the state number (as, e.g., in [PVY99]) offers new possibilities, such as 
inference of a quotient focusing on a part of the system of interest. State distinguishability 
achieved by the discriminative input set provides a useful characterization of states of the system 
which are reflected in the inferred model.  

Concluding our discussion of the proposed approach for inferring a quotient of a testable model 
of a given system, we notice that the definition of a quotient as well as a procedure for its 
construction assume a universal environment, which can submit any controllable input to any 
system’s state. At the same time, there might be applications where the environment is constrained 
and may not submit all the controllable inputs to every state. On the other hand, the tester may use 
such environment to specify its assumptions about transfer sequences which are expected to take 
the system into “most interesting” states which should be included into a quotient. The proposed 
approach can further be generalized by incorporating a model of a restricted environment, in the 
form of, e.g., an automaton whose language is the set of input sequences which could be submitted 
to a given system. 

4. Modular System Verification by Inference, 
Testing, and Reachability Analysis 

In this section, we first give some basic definitions related to modelling modular systems, where 
components use queues to communicate and then present an approach to verify a modular SUT 
with unknown components. The approach relies on the inference of a quotient of a system 
elaborated in the previous section; we illustrate it on an example and conclude by discussing how 
various simplifying assumptions about the SUT can be relaxed. 

4.1. Basic Definitions 

We consider a reactive modular system consisting of components communicating 
asynchronously, where each component reads inputs from its input queue and writes outputs to 
other components’ input queues. Modelling queues, we distinguish the same action at the two ends 
of a queue by using the relabeling ' operator [HP09]. The operator is defined on input actions: for a 
∈ I, (a)' = a', and (a')' = a. It is lifted to the sets of input actions, traces, and IOTS: for an action set 
I, I' = {a' | a ∈ I}; for traces, ' is recursively defined as ε' = ε and (ua)' = u'a' for trace u if a is an 
input action, otherwise (ua)' = u'a; L' is obtained from L by relabeling each action a ∈ I to a'. Then 
a (unbounded) queue with input set I, is an IOTS <I*, ε, I, I', λI>, denoted QI, where I* is the state 
set and λI = {(u, a, ua) | u, ua ∈ I*} ∪ {(av, a', v) | av, v ∈ I*} is the transition relation. The only 
stable state of a queue is its initial state.  

Let C = {C1, …, Cn} be a system of communicating components, where Ci = (Si, s0i, Ii, Oi, λi) is 
a finite IOTS with the stable initial state s0i, such that Ii ∩ Ij = ∅ and Oi ∩ Oj = ∅ for i ≠ j. For 
each component Ci with the input set Ii, there is an unbounded input queue QIi

 = (Ii*, εi, Ii, Ii', λIi
). 

Outputs of the queue are inputs of the component, we thus use Ci' = (Si, s0i, Ii', Oi, λi) instead of Ci 



12 

= (Si, s0i, Ii, Oi, λi) when composing a component with its input queue. The architecture of the 
system is defined as a directed graph, A = (C, D), where C is the set of nodes and D is the set of 
directed edges, called connections, such that (Ci, Cj) ∈ D if Oi ∩ Ij ≠ ∅. 

Let I and O denote the union of all input action sets and output action sets of the components 
and queues, respectively. The set Iext = I\O contains external inputs; components constitute a 
closed system, if Iext is empty, otherwise an open system. Let Oext = O\I be the set of external 
outputs of the system, while I\Iext be that of internal actions. In this paper, we consider only an 
open system with at least one external output, such that for each component Ci it holds that if a ∈ Ii 
then either a ∈ Iext or a ∈ Oj and if a ∈ Oi then a ∈ Oext or a ∈ Ij for some Cj.   

The behaviour of an open system usually depends on the speed of its environment. We 
distinguish two types of the environment, fast and slow. A fast environment can supply external 
inputs at any state of the system. A slow environment does so only when the system is in a stable 
global state.  

The behaviour of the system operating in the fast environment is described by the IOTS C1' || … 
Cn' || QI1

 || … || QIn
, where || is the standard LTS parallel composition operator, Ci' = (Si, s0i, Ii', Oi, 

λi), for Ci = (Si, s0i, Ii, Oi, λi), and QIi
 = (Ii*, εi, Ii, Ii', λIi

). To describe the behaviour caused by the 
slow environment, we modify the composition to allow external inputs only in stable global states 
as follows.  

Definition 5. Given a system of communicating components C = {C1, …, Cn} and the set of 
queues over input alphabets of the components Q = {QI1

, …, QIn
}, the slow asynchronous product 

(or simply product) of C, denoted Π, is the IOTS (R, s01...s0nε1...εn, Iext, O, λ), where Iext = I\O, I = I1 
∪ … ∪ In ∪ I1' ∪ … ∪ In' and O = I1' ∪ … ∪ In' ∪ O1 ∪ … ∪ On; the set of states R ⊆ S1 × ... × Sn 
× I1* × ... × In* and the transition relation λ are the smallest sets obtained by applying the 
following inference rules:  

• s01...s0nε1...εn ∈ R; 
• if a ∈ Iext ∩ Ii, (s1...snε1...εn) ∈ R such that states s1, ..., sn are stable, then (s1...snε1…εn, a, 

s1...snb1…bn) ∈ λ and (s1...snb1…bn) ∈ R such that bi = a, and bj = εj for j  ≠ i (external input 
is buffered into the queue of the component Ci); 

• if a ∈ Ii, (s1...snb1…bn) ∈ R such that a ∈ en(si), bi = av, then (s1...snb1…bn, a', s1'...sn'c1…cn) 
∈ λ and (s1'...sn'c1…cn) ∈ R, such that (si, a, si') ∈ λi, and ci = v; sj' = sj and cj = bj for j  ≠ i 
(input is consumed from a queue, and input transition of Ci is executed); 

• if a ∈ Oi, (s1...snb1…bn) ∈ R, such that a ∈ en(si), then (s1...snb1…bn, a, s1'...sn'c1…cn) ∈ λ 
and (s1'...sn'c1…cn) ∈ R, such that (si, a, si') ∈ λi, sj' = sj for all j  ≠ i, and if a ∈ Ij then cj = 
bja, otherwise, cj = bj (output transition of Ci is executed, and output is buffered into the 
queue of the component, for which it is an input). 

Notice that all components’ inputs, save external ones, become outputs of the composition 
along with external outputs, as is usually the case for input-output automata composition [LT89].  

Definition 6. A system C has 
• unspecified reception, if in the product Π, there exists a state (s1...snb1…bn) such that for 

some component Ci, a is a prefix of bi and a ∈ Ii, but a ∉ en(si); 
• compositional livelock, if Π has output livelock; 
• divergence, if Π is not a finite IOTS; 
• races, if the component IOTSs are output-deterministic and there exist traces α, β ∈ Tr(Π) 

such that α↓Iext
 = β↓Iext

 and α↓Oext
 ≠ β↓Oext

; 
• unused connection, if there exists a connection (Ci, Cj) ∈ D such that in the product Π, for 

each action a ∈ Oi ∩ Ij, there is no transition labelled with a; 
• isolated component, if there exists a component such that all its connections are unused. 
The first four properties, namely, unspecified reception, compositional livelock, divergence, 

and races, indicate compositional problems in the system. Indeed, unspecified reception causes 
compositional deadlock, compositional livelock results in unbounded output sequences in the 
composition, divergence causes buffer overflow in a system with bounded queues, while race 
indicates that the system even if it is composed of output-deterministic components may exhibit a 
nondeterministic behaviour. The other two, the existence of unused connections and isolated 
components, point to redundancy in the system and do not affect the behaviour of the system, thus 
they are less critical. For example, isolated components which have thus only external inputs and 
outputs can be excluded from the given system and analysed independently. By this reason, we 
call a system well-formed if it has no unspecified reception, compositional livelock, divergence, 
and races. The number of unused connections may characterize the quality of the models used to 
represent an SUT, as we discuss later in Section 4.4. 



13 

Given a system of communicating components, the slow asynchronous product can be 
constructed (if it is finite, of course) and, thus, its well-formedness can be checked using a 
classical reachability analysis (RA) procedure which we will not discuss further in this paper. We 
simply assume that given a system C = {C1, C2, …, Cn} with bounded queues Q = {QI1

, …, QIn
} of 

known sizes, the procedure either confirms that the system is well-formed or outputs the following 
witness (diagnostic) traces for: 

• unspecified reception of a ∈ Ii, a trace βa, such that β takes the product into a state, where 
the action a is not enabled in the corresponding state of some component Ci whose input 
queue contains just a; 

• compositional livelock, a trace αβ, such that α takes the product into a state of a cycle 
labelled by the sequence β; 

• divergence, a trace which causes violation of the size of a queue in the system3. 
• races, two traces with a common external input projection which leads to races4. 
A reachability analysis procedure can also detect any unused connections and isolated 

components in the given system.   

4.2. Verification Problem and the Approach  

Given a modular SUT consisting of components communicating asynchronously each of which 
can be modelled as a complete deterministic FSM, and thus as a corresponding IOTS, we want to 
verify the well-formedness of the system, assuming that precise models for some of them may be 
known. Clearly, if all the components’ models are available then the problem can be solved using 
a RA procedure. Thus, at least one model is assumed to be missing. 

We assume that the SUT architecture is known and has no unused connections; the system with 
isolated components can always be decomposed into connected subsystems. The knowledge of the 
SUT architecture means that in testing all internal output actions could be observable, e.g., by 
intercepting each message in transit, while only external input actions are controllable by the 
tester. 

To infer missing models needed for checking the well-formedness of the SUT one could infer 
Z-quotients one by one by testing unknown components in isolation following the method of 
Section 3.  This approach would require defining an appropriate value of the inference parameter 
Z for each component. The sets of input sequences needed for quotients inference would then 
differ for various components, and it is unclear how one could define them without taking into 
account the components’ interactions. A trial-and-error approach can be followed, and even if it 
succeeds, it may result in “redundant” models of components which describe functionalities 
unused in a given system. 

Another approach elaborated in this paper relies on the components’ interactions and is 
summarized in Figure 7. The idea is to verify a modular SUT by first inferring a Z-quotient of a 
testable model of the slow asynchronous product and thus simultaneously inferring missing 
models of its components or at least their parts involved in the testable model. The obtained 
models are used to detect compositional problems by RA, which then can be either confirmed or 
refuted by testing components in isolation. In the latter case, the inferred models could be refined 
until the obtained models constitute a well-formed system or a compositional problem is 
confirmed in the SUT. 

Note that if several actions can concurrently be executed in the SUT, the system could produce 
several output interleavings in response to a given external input sequence, and thus become 
output-nondeterministic. Our main goal is precisely to be able to detect such potential 
interleavings, even though when a system is tested in a practical configuration, only one 
interleaving can be observed. Therefore, we assume that during the inference the system behaves 
as an output-deterministic IOTS and use the inference method of Section 3. Actually, if it does not, 
this simply implies that a race could already be detected during the inference phase.  

Among n components, C1, …, Cn, we assume that models for the first p components are 
unknown, while the remaining components are supplied with the precise, i.e., adequate, complete 
FSM/IOTS models Mp+1, …, Mn.   

An initial Z-quotient of the testable model of the SUT’s slow asynchronous product can be 
inferred using the method in Section 3. The resulting Z-quotient M can be used to determine 
missing models of components by projecting the quotient onto the action sets of each component 
with a missing model. In particular, Mi = (M↓(Ii' ∪ Oi)

)', where i = 1, …, p. Notice that if some 
                                                             

3 This is, of course, not a sufficient, but necessary condition for divergence. 
4 One can use “a single message in transit” as a sufficient condition for their absence [PY98]. 



14 

projection is a trivial model, while we know that the system has no unused connection (hence no 
unused components), then this indicates that the obtained Z-quotient misses interactions of that 
component and the set Z has to be reconsidered. The obtained models can be minimized to reduce 
the number of states and thus the complexity of the subsequent RA. 

 
Figure 7: The Verification Approach 

The resulting models together with the initially given models are an input to a RA procedure. 
The necessity of RA comes from the fact that even if the components themselves compose a well-
formed system the inferred models do not necessarily do so. Each obtained model is only an 
approximation of the actual behaviour of a real component and may possess a behaviour absent in 
the component, so the inferred models may exhibit compositional problems. To detect divergence 
the RA procedure should also be given the maximal allowable size of each queue.  

The models exhibit a compositional problem in two cases: either the problem exists in the SUT 
or the inferred models are not adequate models of the behaviour of the components exposed during 
the exploration step and need to be further refined. To confirm that a compositional problem 
detected in RA exists in the real system, one can check whether each projection of a witness trace, 
which was not observed in the exploration step, belongs to the set of traces of each involved 
component with an inferred model, by executing the projected trace against the components in 
isolation. Testing terminates as soon as the first component involved in the execution for which a 
discrepancy between the inferred model and actual behaviour exists is discovered. In this case, the 
compositional problem is refuted, and the newly obtained trace is used to refine the model of that 
component. RA is repeated again using the refined models. The iterative process terminates when 
either a compositional problem is confirmed to exist in the SUT or a well-formed system of 
models is obtained. Notice the SUT with compositional livelock should exhibit a cyclic behaviour 
in all the involved components when they are tested using the projected witness traces. Since the 
initially given models Mp+1, …, Mn are assumed to be precise, these components are omitted from 
testing. 

 While the main steps of this procedure are intuitive and clear from the previous discussions, 
the model refinement needs some explanation. Assume that for some witness trace, the component 
Ci in response to the input projection of the witness trace produces a trace α which is not in the 
inferred IOTS Mi. To refine the IOTS Mi one needs to replace outputs produced by Mi in response 
to the input projection by newly observed ones.  To achieve this, we use the fact that any 
incorrect output in the model Mi can only be a result of state merging in the Z-quotient IOTS M 
which is obtained from the global observation tree U or in its projection to the action sets of Ci. 
Indeed, the global observation tree contains only traces actually observed from the SUT and 



15 

additional traces occur when states are merged. To obtain a refined model for the component Ci, it 
is thus sufficient to determine the local observation tree Ui by projecting the global observation 
tree U, add the newly observed trace to it, Ui := Ui ∪ {α}, and minimize the states of the obtained 
tree FSM (using the trace inclusion relation). The problem of constructing a minimal machine 
consistent with a given finite regular language is well studied from different perspectives, such as 
automata identification [BF72], FSM minimization [KVB97] and test coverage analysis [PBY96]. 
Its complexity is known [KVB97]; notice, however, that in our case, there is no need to aim at 
constructing a machine with the minimal number of states; in fact, any machine without deadlock 
states could be used for RA. Removing deadlock states reduces the number of iterations involving 
detecting unspecified receptions (usually caused by such states), testing in isolation, and model 
refinement. 

Dealing with unspecified receptions, the witness trace βa could be extended to end in a stable 
state. The projection of such a trace βaγ could provide more inputs after a to be tested on the 
component Ci thus reducing the number of steps as will be shown on the example. 

Dealing with livelock, we need to test whether a projected cycle corresponds to a real cycle in 
each involved component. To that end, we set a repetition bound r to generate tests corresponding 
to the projection of αβr. If testing provides a trace that does not cycle r times for one of the 
components, then the model of that component is updated with the new trace. Otherwise, we 
assume that the livelock exists in the SUT. A similar argument is used for divergence since we 
only get a necessary condition for divergence from the witness. 

4.3. Example 

 
Figure 8: A Modular System 

We illustrate the proposed approach using the example shown in Figure 8. It consists of four 
components. External inputs and outputs are labelled with letters from t to z, while internal ones 
range from a to f. Among the inputs, t is not controllable, while among the outputs, u is not 
observable. The models of components A, B, C, and D are depicted in Figure 9, Figure 10, Figure 
11, and Figure 12, respectively. In the figures depicting IOTS in this section, double circles denote 
stable states. 

In this example, we suppose that the models of the components A and B are known, while the 
components C and D are black boxes. 

In the example, we take Z as {xx}. Note that x and z are controllable inputs, and from the 
knowledge of A, it makes sense to consider that sending two consecutive inputs x will trigger 
sufficiently diverse behaviours in the rest of the system (after the first x, A cycles over xx). 

 

 
Figure 9: Component A 



16 

Initial Z-Quotient Inference 

We use the inference algorithm in Section 3.2. Starting from the initial state ε, the global 
observation tree U obtained after applying the external input strings in the set I ∪ Z = {z, x, xx} is 
depicted in Figure 13. The set of states Q of the initial Z-quotient is {ε}.  

 
Figure 10: Component B 

 
Figure 11: Component C 

 
Figure 12: Component D 

 
Figure 13: Behaviour Exploration from ε 

We assume here that the concurrent events a and b result in the interleaving cd, which the 
system under test always produces in our testing configuration. 

After that, we explore the behaviour of the system starting from state zv. The obtained U is 
depicted in Figure 14. The state zv is Z-equivalent to state ε. Thus, we label state zv with ε, and Q 
is still {ε}. 



17 

 
Figure 14: Behaviour Exploration from zv 

Then, we explore the behaviour of the system starting from state xf. The obtained U is depicted 
in Figure 15. The state xf is not Z-equivalent to any visited stable state. Thus, Q = {ε, xf}. 

 
Figure 15: Behaviour Exploration from xf 

Next, we explore the behaviour of the system starting from state xfzv. The state xfzv is Z-
equivalent to state xf. Thus, we label state xfzv with xf, and Q is still {ε, xf}. 

After, we explore the behaviour of the system starting from state xfxabcdy. The obtained U is 
depicted in Figure 16. The state xfxabcdy is not Z-equivalent to any visited stable state. Thus, Q = 
{ε, xf, xfxabcdy}. 

 
Figure 16: Behaviour Exploration from xfxabcdy 

As the next step, we explore the behaviour of the system starting from state xfxabcdyzv. The 
state xfxabcdyzv is Z-equivalent to state xfxabcdy. Thus, we label state xfxabcdyzv with xfxabcdy, 
and Q is still {ε, xf, xfxabcdy}. 



18 

Then, we explore the behaviour of the system starting from state xfxabcdyxfbcdy. The obtained 
U is depicted in Figure 17. At this point, we identify that the state xfxabcdyxfbcdy is Z-equivalent 
to state xf. We label the state with xf. The observation tree construction terminates. 

 
Figure 17: Behaviour Exploration from xfxabcdyxfbcdy 

In the transition determination phase, we obtain the FSM M, which is an initial Z-quotient of 
the testable model of the given system depicted in Figure 18. 

 
Figure 18: The Initial Z-Quotient M as FSM 

Next, we determine models of components C and D by projection. M3 and M4 are shown in 
Figure 19, and Figure 20, respectively. 

 
Figure 19: M3 

 
Figure 20: M4 

At this point, we may note that M3 is a testable model of component C and the model M4 of 
component D is only a part of the actual model of that component. In particular, the absence of the 
interleaving dc made it impossible to observe the e event and the corresponding branch in 
component A. RA will spot this missing interleaving. 

Iterative Refinement 

Now we perform reachability analysis of the system composed of A, B, M3 and M4 to check 
whether it is well-formed. This starts the iterative process of reachability analysis, testing in 
isolation, and component model refinement as described in Section 4.2. In these iterations, only M4 
is updated. The iterations are shown in Table 1. The table contains local observation trees and 
models of the components D as well as a witness trace for each version of the model. Note that the 
reachability analysis is performed using the model checker SPIN. The sequence chart generated by 
SPIN for the first step is shown in Figure 21, while detection of livelock is illustrated in Figure 22. 

The RA of the obtained models results now in the witness traces for races: xx'ffʹ′xxʹ′aaʹ′ccʹ′bbʹ′ddʹ′y 
and xx'ffʹ′xxʹ′aaʹ′bbʹ′ddʹ′ccʹ′eeʹ′aaʹ′bbʹ′ddʹ′ccʹ′w. In fact, the external input sequence xx yields several 
traces in the product which differ in their output projections, y and w. We project the two traces to 



19 

each component, and find that all the obtained traces are already in the corresponding local 
observation trees. The compositional problem is confirmed. With this report the procedure 
terminates. To further illustrate the proposed approach, we next assume that the detected 
compositional problem is resolved by the system designer and our procedure is used to check the 
updated design. 

Table 1: Iterative Model Refinement 
 U4 M4 Witness traces 

  

 

xx'ff'xxʹ′aaʹ′bbʹ′d 
(unspecified reception) 

 

1 

 
 

xx'ff'xxʹ′aaʹ′bbʹ′ddʹ′c 
(unspecified reception) 

2 

  

xx'ff'xxʹ′aaʹ′bbʹ′ddʹ′ccʹ′eeʹ′aaʹ′c 
(unspecified reception) 

3 

  

Prefix: xx'ff'xxʹ′ 
Cycle: aaʹ′bbʹ′ddʹ′ccʹ′eeʹ′ 

(livelock) 
 

4 

 
 

xx'ff'xxʹ′aaʹ′bbʹ′ddʹ′ccʹ′eeʹ′aaʹ′cc
ʹ′bbʹ′d 

(unspecified reception) 

5 

 
 

xx'ff'xxʹ′aaʹ′ccʹ′bbʹ′ddʹ′y 
and 

xx'ff'xxʹ′aaʹ′bbʹ′ddʹ′ccʹ′eeʹ′aaʹ′bb
ʹ′ddʹ′ccʹ′w 
(race) 

Model Update 

When the compositional problem is reported, the system designer re-checks the design, and 
confirms that the race exists in the real system. Then the system designer changes the design and 
correspondingly the implementation of component D as depicted in Figure 23. 



20 

 

 
Figure 21: Unspecified Reception 

 
Figure 22: Livelock 



21 

 
Figure 23: Updated model of component D 

Now, we redo the verification procedure. Until iteration 3 in Table 1, the observations and the 
models obtained are the same as before. The subsequent iterations are depicted in Table 2. 

Table 2: Iterations after model update 
 U4 M4 Witness traces 

4 

 
 

xx'ff'xxʹ′aaʹ′bbʹ′ddʹ′ccʹ′eeʹ′aaʹ′ccʹ′bbʹ′d 
(unspecified reception) 

5 

  

no compositional problem is 
detected 

 
In iteration 5, no compositional problem is identified, and thus the procedure terminates. 

4.4. Relaxing the Assumptions about the Modular SUT 

Presenting the approach to verification of a modular system with unknown components, we 
made a number of simplifying assumptions about the SUT in hand; some of them are not essential 
and can be relaxed, along with those listed in Section 3.3.  

The verification approach relies on the accuracy of the initially supplied models and avoids 
determining their local observation trees from the global observation tree and inferring their 
models. If, however, the accuracy of supplied models cannot be taken for granted then the 
observed traces of a concerned component can be used to check whether they actually belong to 
the component’s model. If it is not the case then either the verification process terminates or 
continues provided that the model is refined or completely discarded (the component needs then 
complete model inference). The initially supplied models are assumed to be fully specified, 
defining the behaviour of the components for each input action. Nevertheless, it is possible to 
allow these models to be partial; in this case, RA may discover an unspecified reception for a 
component with a partial model. The model could then be completed, using observations obtained 
by testing the component in isolation, should the verification continue after discovering 
incompleteness of the model. 

The assumptions used by the approach to infer an initial Z-quotient of the system in a slow 
environment are that the SUT architecture has no unused connection and the inference parameter 
is set such that each connection is at least once used when the Z-quotient is inferred. However, the 
absence of unused connections may not always be taken for granted; a system in hand may have 
“dead” connections and even components. To discover them by testing requires repeatedly 



22 

extending the inference parameter; though, there seems to be no general termination rule. 
Conversely, without some knowledge about the application domain and specifics of a given SUT, 
it is difficult to choose the right inference parameter even if there is no dead connection. In the 
situations, when the value of this parameter cannot guarantee the use of each and every 
connection, the verification procedure may still continue with a given inference parameter even if 
no activity is observed on some connections. The ratio of the number of connections used in the 
product to their total number in the given architecture may be used to characterize the degree to 
which the SUT architecture is discovered in testing and thus the quality of the inferred models in a 
well-formed system. In addition, if the global observation tree contains no action executed by 
some component, with or without the initial model, then the component is declared isolated in the 
given architecture for a fixed inference parameter.   

Finally, the approach assumes that the SUT can be disassembled to perform components testing 
in isolation needed to confirm or refute a compositional problem found in the inferred models. One 
can argue that it may not always be possible and the SUT should only be tested as an integrated 
system. In this scenario, one possibility is to check whether the detected problem persists when the 
inference parameter is extended and more precise models are inferred. Additional knowledge 
about the SUT or heuristics would then be needed to terminate the verification process.    

5. Related Work 
State model learning is widely addressed, specifically in the grammatical inference works, e.g., 

[BDG97], [KV94] [Hig10]. Angluin presents a seminal algorithm [Ang87] to infer regular 
language as deterministic finite automaton, based on the Minimally Adequate Teacher (MAT) 
paradigm. This paradigm uses an equivalence oracle which decides on the equivalence between 
the inferred machine and the ideal minimal recognizer. In our work, the state Z-equivalence 
relation can be viewed as an approximated equivalence oracle: checking Z-equivalence of all states 
(including the initial one) is a weakened relation from checking full equivalence. A MAT provides 
a counterexample in case of non-equivalence, which in our case corresponds to test sequences in 
u.Z for non pruned traces u.  

Learning and testing through model checking approach is used to infer a grey box system 
[EGP06]. However, the upper bound on the number of states in the system is required to test 
conformance of the conjectured model to the actual system. On the other hand, the notion of Z-
quotient provides a means for inferring a variable size approximation without upper bound on the 
number of states. Additionally, whereas the length of conformance testing sequences is 
exponential in the upper bound, Z-equivalence provides a flexible way to avoid exponential blow-
up.  

The observation tree FSM used in this paper is, in fact, an input-output version of a prefix tree 
machine [CW98] used in various techniques for learning an automaton from positive examples. 
However, we do not require samples of the behaviour given for inference, the samples (traces) are 
obtained by testing whose termination is determined based on a predefined inference parameter, a 
set of input sequences Z. At the same time, as in a common paradigm in learning from positive 
examples, the local observation tree FSM is also iteratively minimized. The rule used for machine 
minimization in the proposed approach is language containment (input-output trace inclusion). 
Similar to the parameter k used for k-tail in [BF72], the parameter Z allows one to control the 
precision and complexity of the resulting machine. However, differently from that work, the latter 
is a deterministic FSM. 

There is much less work published on the direct inference of modular systems, although 
[EGP06] and [PGB08] for instance consider inference of components in modular systems. The 
work [HBP06] relies on observed traces to construct automata models of communicating 
components which are then model-checked using user defined properties. An object flattening 
technique [MP05] is used to collect system behaviour and then invariants are calculated on the 
behaviours to check against the new version of the system. This work is more related to regression 
testing. Moreover, the system behaviour is observed while the system is running as in [HBP06]. In 
this paper, we rely on testing a modular system by stimulating it through external inputs and then 
use the observations to obtain tuneable approximated models. The verification of a modular 
system treated as a black box on the architectural level is also addressed in [BMP06]. Similar to 
the previous approaches, the system is monitored at runtime by instrumenting the middleware, no 
testing strategy is used. On the contrary, we infer models by testing and use them to check the 
system for compositional problems.  

Our past work [LGS06] and [SLG07] in this domain also concerned the inference of 
components as finite state machines through testing. In fact, given an input alphabet I of a 



23 

component, we were implicitly inferring an I-quotient of each component in isolation without 
defining the Z-quotient. Moreover, the previous approaches focused on learning components 
separately, one component at a time; whereas in this paper, we proposed to test the integrated 
system avoiding thus unnecessary testing efforts to learn models which may not be related to the 
composition. An earlier version of this paper appeared in [GLP08], where we elaborated several 
initial ideas of the proposed modular system verification approach. That work introduced the 
notion of a k-quotient, which is a special case of the proposed Z-quotient, namely, Ik-quotient, and 
the inference algorithm of [GLP08] is now further refined along with underlying assumptions 
about a given system and information available for inference.  

6. Conclusion 
In this paper, we offered a solution to the problem of modular system verification by blending 

together techniques of inference, testing, and reachability analysis.  
We first defined a controlled approximation of finite state systems with the notion of a Ζ-

quotient. More precisely, we defined the notion of initial Ζ-quotient, which is well-suited to 
testing, as it covers parts of the system that can be reached by testing while still being based on a 
Ζ-equivalence relation, and associated Ζ-distinguishability w.r.t. a set of input sequences Ζ. The 
precision of this approximation can be varied with the parameter Ζ. We then proposed an approach 
to infer models of a modular system. We first infer an initial Ζ-quotient approximation of (a 
testable model of) the modular system, from which we get initial models of components by 
projecting the quotient. Then we iterate between reachability analysis (RA) of intermediate models 
and pinpointed testing of components in isolation to check potential problems and refine models. 
RA of the models is used to identify composition problems, such as unspecified receptions, 
livelocks, divergences, and races. A witness (diagnostic) trace is then used to test concerned 
components in isolation either to confirm that a problem exists in the real system or to obtain new 
observations. The models are then refined using new observations until the obtained models are 
well-formed. 

The approach assumes that the modular system can be modelled as a deterministic finite state 
system. Actually, since it is assumed to be built from deterministic components, non-deterministic 
behaviours would be the result of communication races which should be avoided and would be 
detected either in testing or in reachability analysis. A nice point of the approach is that it can 
reveal non-determinism that would not be detected by testing in a fixed environment. One key 
advantage of the approach is that it adapts to the verification goal and efforts, with the help of the 
inference parameter Ζ, which allows one to find a compromise between complexity of testing of 
the integrated system and precision of the resulting models. Moreover, the use of large sets of 
input sequences is completely avoided in testing a component in isolation, since only single 
diagnostic test is executed in each iteration. Another advantage of the approach is that inferred 
models capture the functionalities of components used in the given system; unused behaviours of 
components are not modelled. 

As a future work, it would be interesting to investigate whether instead of testing a number of 
components in isolation based on a witness trace one would test just a subsystem consisting of 
these components to reduce the number of iterations needed to infer well-formed models. There 
are also a number of options for treating witness traces to update the global observation tree once 
the individual models are refined. This may help converge faster and shorten the RA process. It is 
known that reachability analysis can provide more than one witness traces, evidencing multiple 
problems in one step. The treatment of multiple traces at a time could be another improvement in 
the approach. Finally, the inference method is based on a universal environment which can provide 
all controllable inputs to a system in any stable state. Just as we use an inference parameter with a 
restricted set of input sequences for state distinguishability, it might be worth considering 
constrained environments that could provide only specific transfer sequences in the exploration 
step.  

Acknowledgement 
This work was partially supported by the EU FP7 Project no. 257876, “SPaCIoS: Secure 

Provision and Consumption in the Internet of Services” (www.spacios.eu). 



24 

References 
[Ang87] D. Angluin, Learning Regular Sets from Queries and Counterexamples, Information 

and Computation, 2:87–106, 1987. 
[BDG97] J. L. Balcazar, J. Diaz, and R. Gavalda, Algorithms for Learning Finite Automata 

from Queries: A Unified View. In Advances in Algorithms, Languages, and Complexity, Kluwer, 
pages 53–72, 1997. 

[BF72] A. Biermann and J. Feldman, On the Synthesis of Finite State Machines from Samples 
of their Behavior. IEEE Transactions on Computers, 21(6):592–597, 1972. 

[BMP06] A. Bertolino, H. Muccini, and A. Polini, Architectural Verification of Black-box 
Component-based Systems. In Proceedings of the 3rd International Workshop on Rapid 
Integration of Software Engineering Techniques (RISE), LNCS 4401, pages 98–113, 2006. 

[CGP99] E.M. Clarke, O. Grumberg and D. Peled, Model Checking. Cambridge, Mass. MIT 
Press, 1999. 

[CW98] J. E. Cook and A. L. Wolf, Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology, 7(3):215–249, 1998. 

[EGI10] K. El Fakih, R. Groz, M.N Irfan, M. Shahbaz, Learning Finite State Models of 
Observable Nondeterministic Systems in a Testing Context. In 22th IFIP International Conference 
on Testing Software and Systems (ICTSS), short papers, pages 97-102, 2010. 

[EGP06] E. Elkind, B. Genest, D. Peled, and H. Qu, Grey-box Checking. In Proceedings of 
26th IFIP International Conference on Formal Techniques for Networked and Distributed Systems 
(FORTE), pages 420–435, 2006. 

[GLP08] R. Groz, K. Li, A. Petrenko, M. Shahbaz, Modular System Verification by Inference, 
Testing and Reachability Analysis, In Proceedings of 20th IFIP International Conference on 
Testing of Software and Communication Systems (TestCom), pp. 216-233, 2008. 

[God97] P. Godefroid, Model Checking for Programming Languages Using VeriSoft, In 
Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming 
Languages (POPL), ACM Press New York, pages 174–186, 1997. 

[HBP06] H. H. Hallal, S. Boroday, A. Petrenko, and A. Ulrich, A Formal Approach to Testing 
Properties in Causally Consistent Distributed Traces. Formal Aspects of Computing, 18 (1): 63-83, 
2006. 

[Hig10] C. de la Higuera, Grammatical Inference: Learning Automata and Grammars, 
Cambridge University Press, 2010. 

[HP09] J. Huo, A. Petrenko, Transition Covering Tests for Systems with Queues, Software 
Testing, Verification and Reliability, 19 (1): 55-83, 2009. 

[KV94] M. J. Kearns and U. V. Vazirani, An Introduction to Computational Learning Theory. 
MIT Press, Cambridge, MA, USA, 1994. 

[KVB97] T. Kam, T. Villa, R. Brayton, A. Sangiovanni-Vincentelli, Synthesis of FSMs: 
Functional Optimization, Boston, USA, Kluwer Academic Publishers, 1997. 

[LBP94] G. Luo, G. v. Bochmann, A. Petrenko, Test Selection Based on Communicating 
Nondeterministic Finite State Machines Using a Generalized Wp-Method, IEEE Transactions on 
Software Engineering, 20(2): 149-162, 1994. 

[LGS06] K. Li, R. Groz, and M. Shahbaz, Integration Testing of Components Guided by 
Incremental State Machine Learning. In Proceedings of Testing: Academia and Industry 
Conference - Practice And Research Techniques (TAIC PART), pages 231–247, 2006. 

[LT89] N. Lynch, M. Tuttle, An Introduction to Input/output Automata, CWI-Quarterly, 
2(3):219–246, 1989. 

[MP05] L. Mariani and M. Pezzè, Behavior Capture and Test: Automated Analysis of 
Component Integration. In Proceedings of 10th International Conference on Engineering of 
Complex Computer Systems (ICECCS), pages 292–301, 2005. 

[Ner58] A. Nerode, Linear Automaton Transformations. In Proceedings of the American 
Mathematical Society, 9(4):541-544, 1958. 

[PBY96] A. Petrenko, G. v. Bochmann, and M. Yao, On Fault Coverage of Tests for Finite 
State Specifications, Computer Networks and ISDN Systems, 29(1): 81-106, 1996.  

[PGB08] C. S. Pasareanu, D. Giannakopoulou, M. G. Bobaru, J. M. Cobleigh, H. Barringer, 
Learning to Divide and Conquer: Applying the L* Algorithm to Automate Assume-Guarantee 
Reasoning, Formal Methods in System Design 32(3): 175-205 (2008). 

[PVY99] D. Peled, M. Y. Vardi, M. Yannakakis, Black Box Checking, In Proceedings of 12th 
IFIP International Conference on Formal Techniques for Networked and Distributed Systems 
(FORTE), pages 225-240, 1999. 



25 

[PY98] A. Petrenko and N. Yevtushenko, Solving Asynchronous Equations. In Proceedings of 
11th IFIP International Conference on Formal Techniques for Networked and Distributed Systems 
(FORTE), pages 231–247, 1998. 

[SLG07] M. Shahbaz, K. Li, and R. Groz, Learning and Integration of Parameterized 
Components Through Testing. In Proceedings of 19th IFIP International Conference on Testing of 
Software and Communication Systems (TestCom), pages 319–334, 2007. 

[TB73] B. A. Trakhtenbrot, and Y. M. Barzdin, Finite Automata, Behaviour and Synthesis. 
North-Holland, 1973. 

[Tre96] J. Tretmans, Test Generation with Inputs, Outputs and Repetitive Quiescence. Software 
- Concepts and Tools 17(3): 103-120, 1996. 

[Vas73] M. P. Vasilevskii. Failure Diagnosis of Automata. Cybernetics and Systems Analysis, 
9:653-665, 1973. 

Appendix A: Proof of Theorem 2 
The first part of Theorem 2 is “if Z is a characterization set of A, then FSMs A and K are 

equivalent.” 
The FSM K is a Z-quotient of A, there exists an injection f from Q to S.  To demonstrate that K 

is equivalent to A, we first prove that f is a bijection, i.e., f(Q) = S. 
Assume that f(Q) ≠ S. f(Q) ≠ ∅, as f(q0) = s0. Then since A is initially connected, there exists a 

transition from s ∈ f(Q) to t ∉ f(Q), i.e., (t, β) ∈ h(s, a) for some input a and output sequence β. 
Since K is Z-quotient and it is a complete FSM, there should be a transition such that (p, β) ∈ k(f-

1(s), a). Moreover, t and f(p) are Z-equivalent.  Since Z is a characterization set of the minimal 
FSM A, t = f(p), i.e., t ∈ f(Q). A contradiction. Thus, f(Q) = S. 

According to the last condition of the definition of a quotient, for any p, q ∈ Q, a ∈ I, and β ∈ 
O*, (p, β) ∈ k(q, a) iff there exists s ∈ S, such that (s, β) ∈ h(f(q), a) and s and f(p) are Z-
equivalent. Since Z is a characterization set of A, s = f(p). Thus, we have (f(p), β) ∈ h(f(q), a). In 
other words, the transitions in K are also preserved by the bijection f. Thus, f is an isomorphism 
and the FSMs K and A are equivalent. 

The second part of Theorem 2 is “if A has distinguishable but Ζ-equivalent states, then A and K 
are distinguishable.” 

Assume that the two minimal FSMs A and K are equivalent.  Thus we have |Q| = |S|. Thus, f is 
an isomorphism. Let the two distinguishable but Z-equivalent states be s and t, then there exist p, q 
∈ Q, p ≠ q, such that f(p) = s, and f(q) = t. By the definition of quotient, f(p) and f(q) are Z-
distinguishable, this implies that states s and t have to be Z-distinguishable. A contradiction. 

This concludes the proof of Theorem 2.  

Appendix B: Proof of Theorem 3 
We introduce an additional notation to simplify the presentation. Given a deterministic FSM A 

= (S, s0, I, O, E, h), state s and trace u ∈ TrA(s), we let s-after-u to denote the state that is reached 
by A executing trace u from the state s.  

Let the unknown deterministic FSM be A = (S, s0, I, O, E, h), and an FSM derived by the 
algorithm is K = (Q, q0, I, O, E, k). Without loss of generality, we assume that the states of K are in 
fact traces constituting states in the observation tree U = (U, ε, I, O, E, hU) constructed by the 
algorithm. 

We need to prove that K is an initial Z-quotient of A, i.e., we need to prove that there exists an 
injection f from Q to S satisfying all the conditions in the definition.  

Consider a function f from Q to S such that for q ∈ Q, f(q) = s0-after-q. 
(1) According to Step 1 of the algorithm, f(q0) = s0-after-ε = s0. 
(2) Growing an observation tree from an arbitrary state u, we explore the behaviour of the 

FSM A by applying input sequences from the set Z and observing the set of traces {v ∈ TrA(s0-
after-u) | v↓I ∈ Z}; it is equal to {v ∈ TrU(u) | v↓I ∈ Z} in U. For two distinct states q1, q2 ∈ Q, we 
know that q1 and q2 are Z-distinguishable in U. In other words, {v ∈ TrU(q1) | v↓I ∈ Z} ≠ {v ∈ 
TrU(q2) | v↓I ∈ Z}. Thus, {v ∈ TrA(s0-after-q1) | v↓I ∈ Z} ≠ {v ∈ TrA(s0-after-q2) | v↓I ∈ Z}. This means 
s0-after-q1 and s0-after-q2 are Z-distinguishable, i.e., f(q1) and f(q2) are Z-distinguishable. But then 
f(q1) ≠ f(q2), thus, f is an injection. 

(3) For q = a1β1a2β2…anβn ∈ Q, this is a state of a quotient, hence according to the algorithm, 
in U there exist q1 = a1β1, q2 = a1β1a2β2, …, qn-1 = a1β1a2β2…an-1βn-1 and a path (ε, a1β1, q1) (q1, 
a2β2, q2)…(qn-1, anβn, qn) from ε to qn = q, and qi ∈ Q (1 ≤ i ≤ n). Thus, in A there exists a path (s0, 



26 

a1β1, s0-after-q1) (s0-after-q1, a2β2, s0-after-q2) … (s0-after-qn-1, anβn, s0-after-q), moreover, s0-after-
qi = f(qi), for all 1 ≤ i ≤ n, and s0-after-q = f(q).  

(4) for any q ∈ Q and a ∈ I, β ∈ O*, (p, β) ∈ k(q, a) iff there exists s ∈ S, such that (s, β) ∈ 
h(f(q), a) and s and f(p) are Z-equivalent. There are two directions to be considered. In one 
direction, for q ∈ Q, a ∈ I, suppose that there exist a transition (f(q), aβ, s) in A and a 
corresponding transition (q, aβ, qaβ) in U. Executing the algorithm, the state qaβ is either labelled 
or not. If qaβ  is not labelled, then (q, aβ, qaβ) is also a transition in K, and f(qaβ) = s0-after-qaβ 
= f(q)-after-aβ = s. If the state qaβ is labelled, then let label(qaβ) = p, this means that in U qaβ is 
Z-equivalent to p, while in A s0-after-qaβ is Z-equivalent to s0-after-p, and in K we have (p, β) ∈ 
k(q, a). Then s is Z-equivalent to f(p). In the other direction, for q ∈ Q, a ∈ I, suppose there exist a 
transition (q, aβ, p) in K, and a corresponding transition (q, aβ, qaβ) in U. If qaβ = p, there exists a 
transition (s0-after-q, aβ, s0-after-p) = (f(q), aβ, f(p)) in A. Otherwise, in U label(qaβ) = p, which 
means that in U qaβ is Z-equivalent to p, and thus in A, s0-after-qaβ is Z-equivalent to s0-after-p. 
Thus, in A there exists a transition (s0-after-q, aβ, s) = (f(q), aβ, s) and s is Z-equivalent to s0-after-
p = f(p).   

The injection f possesses all the conditions of the definition of quotient; thus, K is an initial Z-
quotient of A.  

 
 
 




	01cover
	02
	TR_GLP_Verification
	04

