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Abstract—Cloud Computing provides a convenient means of
remote on-demand and pay-per-use access to computing re-
sources. However, its ad-hoc management of quality-of-service
and SLA poses significant challenges to the performance,
dependability and costs of online cloud services. The paper
precisely addresses this issue and makes a threefold contribu-
tion. First, it introduces a new cloud model, the SLAaaS (SLA
aware Service) model. SLAaaS enables a systematic integration
of QoS levels and SLA into the cloud. It is orthogonal to
other cloud models such as SaaS or PaaS, and may apply
to any of them. Second, the paper introduces CSLA, a novel
language to describe QoS-oriented SLA associated with cloud
services. Third, the paper presents a control-theoretic approach
to provide performance, dependability and cost guarantees
for online cloud services, with time-varying workloads. The
proposed approach is validated through case studies and
extensive experiments with online services hosted in clouds such
as Amazon EC2. The case studies illustrate SLA guarantees for
various services such as a MapReduce service, a cluster-based
multi-tier e-commerce service, and a low-level locking service.

Keywords-SLA; QoS; Cloud Computing; Specific Language;
Online Control;

I. INTRODUCTION

Cloud Computing is a paradigm for enabling remote, on-
demand access to a set of configurable computing resources.
This model aims to provide hardware and software services
to customers, while minimizing human efforts in terms of
service installation, configuration and maintenance, for both
cloud provider and cloud customer. A cloud may have the
form of an Infrastructure-as-a-Service (IaaS), a Platform-as-
a-Service (PaaS) or a Software-as-a-Service (SaaS). How-
ever, clouds ad-hoc management in terms of quality-of-
service (QoS) and Service Level Agreement (SLA) poses
significant challenges to the performance, availability, en-
ergy consumption and economical costs of the cloud. Ex-
isting public clouds provide very few guarantees in terms
of performance and dependability [1]. This is the case for
Amazon EC2 compute service and Amazon S3 storage
service [2], Rackspace Cloud Servers compute service and
Rackspace Cloud Files storage service [3], Azure Compute
and Azure Storage [4].

We believe that a differentiating element between Cloud
Computing environments will be the QoS and the SLA
provided by the cloud. This raises the following questions:
(i) How to consider SLA in a general way for different cloud

environments? (ii) How to describe the SLA terms between
cloud provider and cloud customer, such as service levels,
penalties in case of SLA violation, etc. (iii) How to provide
guarantees on cloud QoS and provide better than best-effort
behavior for clouds?

The contributions of this paper are as follows:
• A novel cloud model is proposed: SLAaaS (SLA-aware-

Service). The SLAaaS model enriches the general
paradigm of Cloud Computing, and enables systematic
and transparent integration of service levels and SLA
into the cloud. SLAaaS is orthogonal to IaaS, PaaS and
SaaS clouds and may apply to any of them.

• A specific language is introduced to describe QoS-
oriented SLA associated with cloud services, the CSLA
(Cloud Service Level Agreement) language.

• A control-theoretic approach is described to provide
performance, dependability and cost guarantees for
online cloud services, with time-varying workloads.

• Three case studies running on private clusters and
Amazon EC2 public cloud illustrate the soundness of
the proposed approach. These include the first SLA-
oriented dynamically provisioned MapReduce service,
a multi-tier e-commerce service, and a SLA-oriented
locking service.

The rest of the paper is organized as follows. Section II
introduces the proposed SLAaaS cloud model, CSLA lan-
guage and online cloud control. Section III presents the
experimental case studies. Section IV reviews the related
work, and Section V draws our conclusions.

II. SLAAAS CLOUD MODEL

A. Background

In the following, we first provide preliminary definitions
before introducing the SLAaaS cloud model. A cloud pro-
vides a set of services. A cloud service exposes a functional
interface with possible operations to call on the cloud. For
instance, an IaaS cloud as Amazon EC2 exposes a functional
interface that allows users to acquire compute instances,
to run software on these instances or to release instances.
Amazon S3 IaaS cloud service exposes a functional interface
that allows users to store, read or delete any amount of data.
Amazon RDS PaaS cloud provides a relational database



service that makes it easy to set up, operate, and scale a
relational database. Google Apps SaaS cloud provides a set
of services with functional interfaces, such as Google Drive
that allows users to create, update and share documents.

Besides the functional aspects of a cloud service, there are
also non-functional aspects related to the quality-of-service.
There are different QoS aspects, such as performance, avail-
ability, reliability, cost, etc. For each QoS aspect, multiple
QoS metrics may be considered. Examples of performance
metrics are service response time that is the necessary time
for a user request to get served, service throughput that re-
flects cloud service scalability, etc. Examples of availability
metrics are service abandon rate that is the ratio of accepted
service requests to the total number of requests, or service
use rate that is the ratio of time a cloud service is used
to the total time. Examples of reliability metrics are mean
time between failures which is the predicted elapsed time
between inherent failures of the service, or mean time to
recover which is is the average time that a service takes
to recover from a failure. Finally, examples of cost metrics
are the energetic cost that reflects the energy footprint of a
service, or the financial cost of using a cloud service.

Thus, a QoS metrics is a means to quantify the service
level with regard to a QoS aspect. One might want a service
level to attain a given objective that is the Service Level
Objective (SLO). A SLO has usually one of the following
forms: provide a QoS metrics with a value higher/lower than
a given threshold, maximize/minimize the QoS metrics, etc.
Therefore, a Service Level Agreement (SLA) is a set of SLOs
to meet and is negotiated between two parties, the cloud
service provider and its customer.

B. SLAaaS Model

We introduce SLA-aware-Service (SLAaaS), a new cloud
model that defines a non-functional interface which exposes
the SLA associated with a cloud functional service. Fig-
ure 1 illustrates the SLAaaS model at three cloud levels:
an Infrastructure-as-a-Service cloud, a Platform-as-a-Service
cloud and an example of a Software-as-a-Service cloud that
represents here a business intelligence system. The example
of this figure shows four levels: an end-user is a client of
the SaaS cloud, which is itself a client of the PaaS cloud,
which is itself a client of the IaaS cloud. Roughly speaking,
the functional interface of a cloud exposes operations that
allow a cloud customer to get new resources from the cloud,
to access/use resources in the cloud or to release resources
that he/she does no more use. With SLAaaS, the cloud
also exposes the SLA non-functional interface. Furthermore,
SLAaaS aims to provide SLA-oriented cloud reconfigura-
tion, and SLA governance. Due to space limitation, we focus
on the former in the rest of the paper.

SLAaaS first allows a user to select the QoS aspects
he/she is interested in (e.g. performance, cost), and the
QoS metrics for these aspects (e.g. service response time,

financial cost). The user can then choose the SLOs he/she
wants to apply on the QoS metrics. For instance, the SLO
for the service response time may be to guarantee that the
response time never exceeds a given threshold, and the SLO
for the financial cost may be to guarantee that the cost is
minimized. The SLA can then be defined as a combination
of SLOs. Furthermore, the SLA between a cloud service
and its customer may include additional information, such
as the agreed confidence level (e.g. SLOs are guaranteed
with a confidence of 95%), or the penalties applied in case
of SLA violation. Figure 2 presents three examples of SLAs
that apply at three different cloud levels, between the end-
user and the SaaS, between the SaaS and PaaS, or between
the PaaS and IaaS.

IaaS

cloud functional interface

get resource          release resource

compute resources, storage resources, etc.

SLA non-functional interface

SLA reconfiguration   SLA governance

PaaS

cloud functional interface

get resource          release resource

web server, data management server, etc.

SLA non-functional interface

SLA reconfiguration   SLA governance
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cloud functional interface
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Figure 1. SLAaaS cloud model

In SLAaaS, cloud SLA is defined with the CSLA language
introduced in Section II-C, and the SLA is guaranteed
following a control-theoretic approach, cf. Section II-D.

If during more than 1% of the time the IaaS service violates SLOs, a penalty of 
US$ 0.24/violated resource.hour is applied

Penalty

SLOs guaranteed on at least 99% of the time the client uses the IaaS serviceConfidence

For a maximum financial cost of US$ 0.12/resource.hour of the IaaS service, at least 
7 GB of memory and at least 4 compute units must be available

SLOs

SLA between the PaaS and IaaS cloud

If more than 2% of requests to the PaaS service violate SLOs, a penalty of 
US$ 0.02/violated request is applied

Penalty

SLOs guaranteed on at least 98% of requests to the PaaS serviceConfidence

For a maximum financial cost of US$ 0.01/request to the PaaS data management 
service, response time must be less than 1 second

SLOs

SLA between the SaaS and PaaS cloud

If more than 5% of requests to the SaaS service violate SLOs, a penalty of 
US$ 0.20/violated request is applied

Penalty

SLOs guaranteed on at least 95% of requests to the SaaS serviceConfidence

For a maximum financial cost of US$ 0.10/request to the SaaS business intelligence 
service, response time must be less than 1 minute

SLOs

SLA between the end-user and the SaaS cloud

Figure 2. Examples of SLAs at different cloud levels

C. CSLA Specific Language

In the following, we describe CSLA, the Cloud Ser-
vice Level Agreement language [5]. CSLA language has
been influenced by related work, in particular WSLA and
SLA@SOI [6], [7]. It allows to describe the SLA between
a cloud service provider and a cloud customer. Thus, it
describes QoS guarantees in the form of SLO clauses. One
of the novelties of CSLA is that it integrates features dealing



with QoS uncertainty and cloud fluctuations, such as confi-
dence, penalty and fuzziness. The degree of fuzziness defines
the acceptable margin around the target value of SLO. The
confidence level is the percentage of compliance of SLO
clauses. And penalties are applied in case of SLA violations,
to compensate cloud service customers. We model the SLA
violation penalty as a linear function: P = α + βdt where
β is the penalty rate and dt is delay time.

Figure 3 presents an example of SLA between a SaaS
provider and its customer, described with CSLA. Due to
space limitation, we only describe the obligations section
of the SLA. The example presents a composite SLO that is
composed (using ”and” operator) of a performance SLO and
a dependability SLO. The performance SLO specifies that
the request response time must be below 10 seconds, with
an acceptable margin less than 1 second. The dependability
SLO specifies that service abandon rate should not exceed
3% of service requests, with an acceptable margin less than
0.2%. SLOs are guaranteed on at least 95% of requests to
the cloud service. Thus, if more than 5% of requests to the
cloud service violate the SLOs, a penalty of $US 0.1/violated
request is applied.

Figure 3. Example of SLA with CSLA

Figure 4 describes a UML class diagram with the main
elements of CSLA. Here, SLA is specified in the form
of an instance of the CloudSLA class. This instance is
composed of parties and obligations. A party (typically
a cloud service provider) implements some functionalities,
exposed as one or more services. A party may rely on
services provided by other parties, which is indicated by
references to those services. The link between a service and
a reference is defined by obligations. Obligations section
is based on guarantees (i.e. SLOs). A guarantee includes
requirements, a confidence and a penalty. A guarantee is
either represented by a simple expression or by a composite

expression. A simple expression is a SLO. It is characterized
by SLAParameter, Threshold, Comparator and Fuzziness. A
composite expression is composed of other expressions. The
combination of guarantees is done using the set of operators
defined in the class Operator.

Figure 4. CSLA meta-model

Finally, once a SLA is described with CSLA and es-
tablished between a cloud service provider and a cloud
customer, it is passed to the online cloud controller system
described in the following.

D. Online Cloud Control

The online control of cloud services is based on a general
feedback control loop as described in Figure 5. To manage
cloud SLA in a principled way, we follow a control-theoretic
approach to design fully autonomic SLA-oriented cloud
services. The general approach consists in three main steps.

Cloud SLA Controller

• Performance requirements

• Dependability requirements

• Energy requirements

• etc.

Cloud SLA Controller

• Performance requirements

• Dependability requirements

• Energy requirements

• etc.

Elastic Cloud

• Service provisioning

• Service configuration

• etc.

Elastic Cloud

• Service provisioning

• Service configuration

• etc.

CSLA 

description

CSLA 

description

Cloud Monitoring

• Performance monitoring

• Dependability monitoring

• etc.

Cloud Monitoring

• Performance monitoring

• Dependability monitoring

• etc.

Figure 5. Cloud autonomic reconfiguration

First, a utility function is defined to precisely describe
the set of SLOs as specified in the cloud SLA, the weights
assigned to these SLOs if any, and the possible trade-offs and
priorities between the SLOs. The cloud service configuration



(i.e. how many resources, what is their combination) with
the highest utility is the best regarding SLA guarantees.

Then, control theory techniques are applied to model
cloud service behavior, and propose control laws and algo-
rithms for fully autonomic SLA-oriented cloud services. The
challenges for modeling cloud services are to build accurate
models that are able to capture the non-linear behavior of
cloud services, and that are able to self-calibrate to render
the variations of service workloads.

The challenges for controlling cloud services is to pro-
pose accurate and efficient algorithms and control laws that
calculate the best service configuration, and rapidly react to
changes in cloud service usage. In the following, we will
illustrate this approach to control online cloud services and
guarantee their SLA.

III. CASE STUDIES

A. Experimental Environment

The experiments presented in the following were con-
ducted in a cluster running on Amazon EC2 [2], and in two
clusters running in Grid’5000 [8], see the hardware config-
uration in Table I. The underlying software configuration is
as follows. Amazon EC2 instances run Fedora Linux 8 with
kernel v2.6.21. Nodes in Grid’5000 (i.e. G5K I and G5K II)
run Debian Linux 6 with kernel v2.6.32. Experiments of
Section III-B use Apache Hadoop v1.0 MapReduce frame-
work, Java 6, and the high-level MRBS benchmark suite [9].
Experiments of Section III-C use Apache Tomcat v7 web
server, MySQL v.5.5.1 database server, and the TPC-W
benchmark [10]. Finally, experiments of Section III-D are
based on C++ and OpenMPI, and use micro-benchmarks.

Table I
HARDWARE CONFIGURATIONS

Cluster CPU Memory Storage Network
Amazon
EC2

large instances, 4 EC2
Compute Units in 2
virtual cores

7.5 GB 850 MB 10 Gbit
Ethernet

G5K I 4-core 2-CPU 2.5 GHz
Intel Xeon E5420 QC

8 GB 136 GB
SATA

1 Gbit
Ethernet

G5K II 4-core 1-CPU
2.53 GHz Intel
Xeon X3440

16 GB 278 GB
SATA II

Infiniband
20G

B. SLAaaS-Oriented MapReduce PaaS

MapReduce is a programming model and a software
framework to support distributed computing and large data
processing on clusters of commodity machines [11]. High
performance and fault-tolerance are two key features of
MapReduce. They are achieved by automatic task scheduling
in MapReduce clusters, automatic data placement, partition-
ing and replication, and automatic failure detection and task
re-execution. A MapReduce job, i.e. an instance of a running
MapReduce program, is automatically divided into multiple
tasks scheduled by the MapReduce framework to run in
parallel on cluster nodes.

MapReduce is usually provided as a Platform-as-a-Service
by cloud providers, such as Amazon and Azure. The func-
tional interface of such a service includes operations such as
starting a MapReduce cluster of a given size (i.e. #nodes),
running a job on a MapReduce cluster, stopping a MapRe-
duce cluster, etc. In the following, we consider the case
of a MapReduce PaaS that follows the SLAaaS model.
Thus, a SLA is contracted between the MapReduce PaaS
and its customer. Figure 6 provides an example of SLA
that specifies that the MapReduce job response time should
not exceed 90 seconds, while the MapReduce cluster size
(i.e. #nodes) is kept as small as possible.

<Guarantees>

<Guarantee guaranteeID="G1" serviceID= "MapReduce" >

<SLO sloID="Rt" Metric="ResponseTime"

unit="second" comparator="le" threshold= "90" fuzziness="0" />

<SLO sloID="Rc" Metric=“ResourceCost"

unit=“#nodes" comparator="min" />

<SLO sloID="CompSlo" A="Rt" Operator="andThen" B="Rc" />

</Guarantee>

</Guarantees>

Figure 6. SLA for MapReduce PaaS in CSLA language

In order to guarantee the SLA, we applied a control-
theoretic approach to provide SLA-oriented self-elastic
MapReduce cluster. Although some initiatives exist to add
elasticity to MapReduce [12], [13], as far as we know, this
is the first attempt to provide fully self-elastic MapReduce
that is able to automatically adapt cluster size to workload
variations in order to guarantee the SLA. To this purpose, the
SLA is translated into a utility function. First, the following
boolean expression is defined to reflect whether the service
performance SLO is met at a given time t:

PO(t) = `(t) ≤ `max (1)

where `(t) is the average MapReduce job latency (i.e. re-
sponse time) at time t, and `max is the maximum job latency
not to exceed. Note that ∀t, PO(t) ∈ {0, 1}, depending on
whether Eq. (1) holds or not. Then, the utility function com-
bines both performance and cost (cluster size) objectives:

θ(t) =
PO(t)
ω(t)

(2)

where ω(t) is the MapReduce cluster size at time t. Here,
∀t, θ(t) ∈ [0, 1]. Intuitively, the MapReduce cluster with the
highest utility is the one that guarantees the performance
SLO (if possible) with minimal cluster size.

Then, the MapReduce cluster is modeled following a
queueing network approach, where each queue represents a
cluster node and is modeled as an M/M/c queue. Here, client
communication with the MapReduce service is modeled as a
closed loop to reflect the synchronous communication model
that underlies this service, that is a client waits for a request
response before issuing another request. Moreover, multiple
clients may concurrently request the service (i.e. execute
MapReduce jobs). The model is able to predict the average



MapReduce client request latency, based on the service
workload and the service cluster size. Then, a capacity
planning is applied to calculate the MapReduce cluster
size with the highest utility, and to apply it to the online
MapReduce service. The used model and capacity planning
are adaptations from our previous work on Internet services
to MapReduce services [14].
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Figure 7. Self-elastic MapReduce service

Figure 7 shows the results of experiments with SLAaaS-
oriented MapReduce PaaS running on Amazon EC2. The
experimental setup consists of a set of nodes hosting the
MapReduce cluster, and an additional node hosting MRBS
MapReduce benchmark suite and emulating MapReduce
clients [9]. In order to stress the MapReduce service, MRBS
bechmark suite implements a movie recommender system
that builds upon a set of movies, a set of users, and a set of
ratings and reviews users give for movies to indicate whether
and how much they liked or disliked the movies. Clients can
request the top-10 recommendations, or the ratings given to
a movie, etc. Our experiments are based on the following
set of real data: 1700 movies, 1000 users, 100,000 ratings.

The MapReduce service initially runs on a four node
cluster, and the service is warmed up for 10 minutes with
5 clients and then, measures are taken during 65 minutes as
shown in Figure 7. The number of clients that concurrently
access the MapReduce service varies over time between
5 and 10 as shown in the figure. When additional clients
access the service, client request response times increase,
until the SLA is violated at time 13 minutes. Nevertheless,
the automatic self-elastic MapReduce service adapts and
increases its capacity to guarantee the SLA again. Finally,
when the workload descreases after minute 40, the automatic
self-elastic service releases underused nodes. Thus, this
experiment shows that SLAaaS successfully applies to an
online MapReduce service to guarantee performance- and
cost-oriented SLA. In this case study, we considered the
resource cost metrics (i.e. #nodes) in the SLA. In a future
work, we will consider the financial cost which relies on
both resource cost and units of time (usually hours) during
which the resource is used.

C. SLAaaS-Oriented Multi-Tier Bookstore SaaS

In this case study, we apply the SLAaaS model to the
TPC-W online bookstore Software-as-a-Service [10]. TPC-
W follows a multi-tier architecture consisting of a front-
end web tier and a back-end database tier. For scalability
purposes, each tier may consist of many server instances.
Intuitively, the higher the number of instances in each tier,
the better the performance and availability of the service.
However, the number of instances hosting a cloud service
has a direct impact on the cost of the service, and it actually
depends on the current workload of the service.

Figure 8 presents an example of SLA established between
the multi-tier bookstore SaaS and its customers. This con-
tract combines performance, availability and cost SLOs as
follows: request response time should not exceed 500 ms and
least 95% of client requests should be served, with a number
of instances hosting the service as small as possible.

<Guarantees>

<Guarantee guaranteeID="G1" serviceID=“MultiTierBookstore" >

<SLO sloID="Rt" Metric="ResponseTime"

unit="millisecond" comparator="le" threshold=“500" fuzziness="0" />

<SLO sloID="Av" Metric=“Availability"

unit="% of req." comparator="ge" threshold="95" fuzziness="0" />

<SLO sloID="Rc" Metric=“ResourceCost"

unit= "#nodes" comparator="min" />

<SLO sloID="PerfAvailSlo" A="Rt" Operator="and" B="Av"/>

<SLO sloID="CompSlo" A="PerfAvailSlo" Operator="andThen"B="Rc" />

</Guarantee>

</Guarantees>

Figure 8. SLA for multi-tier bookstore SaaS in CSLA language

First, a utility function is drawn from the SLA. The
following boolean expression reflects whether the service
performance SLO and the service availability SLO are met
at a given time t:

PAO(t) = (`(t) ≤ `max) · (α(t) ≤ αmax) (3)

where `(t) is the average service request latency, `max the
maximum request latency not to exceed, α(t) the service
availability (i.e. ratio of non-rejected requests), and αmax

is the minimum service availability to guarantee. Note that
∀t, PAO(t) ∈ {0, 1}, depending on whether Eq. (3) holds or
not. Then, the utility function combines both performance,
availability and cost (#nodes) objectives:

θ(t) =
T · PAO(t)

ω(t)
(4)

where ω(t) is the number of nodes that host the multi-tier
SaaS at time t, and T is the number of tiers of the multi-tier
service (here, T = 2). T is used in Eq. (4) for normalization
purposes. Here, ∀t, θ(t) ∈ [0, 1], since ω(t) ≥ T (at least
one instance per tier) and PAO(t) ∈ {0, 1}.

The multi-tier service is then modeled following a queue-
ing network approach, where each queue represents a server
replica and is modeled as an M/M/c/K queue, and the
network of queues represents the series of tiers in a multi-
tier service. The model predicts the client request latency
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Figure 9. Self-elastic multi-tier bookstore service

and service availability, based on the service workload, the
multi-tier service size and the admission control level (MPL:
Multi-Programming Level) usually applied on each tier of a
multi-tier service. Then, the capacity of the multi-tier service
that provides the highest utility (cf. Eq. (4)) is calculated,
and applied to the online service. Due to space limitations,
the model and capacity planning algorithms are not detailed
here, more information can be found in [14].

We conducted experiments on the online multi-tier book-
store service, in the G5K I platform (see Table I). Figure 9
depicts the results considering the SLA given in Figure 8
when the number of concurrent clients accessing the online
service increases from 50 to 500 and then decreases again.
Initially, the online service is composed of one instance for
the web tier, and one instance for the database tier. The SLA
is violated when the number of concurrent clients increases
to 500 (see Figure 9(a)), that triggers the reconfiguration of
the cloud service creating two new instances in the database
tier and adjusting the MPL as shown in Figures 9(c) and
9(d). Once the reconfiguration of the cloud service has
been applied, the service is able to cope with the SLA

requirements again (see Figure 9(a) and 9(b)). Finally, when
the load decreases, the system is over-provisioned and some
instances are released and the MPL adjusted accordingly.
Therefore, the SLAaaS-oriented multi-tier service is able to
successfully guarantee SLA despite workload variations.

D. SLAaaS-Oriented Locking PaaS

Locking allows to ensure exclusive access to shared
resources by concurrent processes, and is usually provided
as a Platform-as-a-Service in the cloud. For instance, Google
provides the Chubby distributed locking mechanism that is
used by other cloud services such as Google Filesystem
service and Bigtable data storage service [15]. Such a
mechanism provides a functional interface with operations
to acquire or release locks, etc. However, locking procedures
remain costly. Locking was identified as an important and
poorly resolved problem [16]; these protocols have to be
scalable and take into account QoS objectives.

In the following, we apply the SLAaaS model to a locking
PaaS. Thus, a SLA is contracted between the locking service
and its customer. Figure 10 gives an example of SLA that



combines performance and availability objectives. The SLA
specifies that the response time of a request to the lock
service should not exceed 400 ms. It also specifies that
the usage of the locked shared resource is kept as high as
possible. This is translated into a utility function:

θ(t) =
PO(t)
ρ(t)

(5)

where PO(t) is given in Eq. (1), and ρ(t) is the use rate
of locked resource. Intuitively, the locking service with the
highest utility is the one that guarantees the performance
SLO (if possible) with a high resource use rate, thus, the
SLA. Then, we combine admission control techniques with
a distributed locking algorithm in order to guarantee the
SLA [17]. Thus, before accepting a request, the locking
service first verifies that, taking into account current system’s
state, the performance SLO can be satisfied. If so, the
request for lock acquisition is accepted and will be served;
otherwise, the request is rejected. Due to space limitations,
algorithm details are not provided but can be found in [17].
In the present paper, we show how the locking algorithm is
integrated with the SLaaS model.

<Guarantees>

<Guarantee guaranteeID="G1" serviceID= "LockingService" >

<SLO sloID="Rt" Metric="ResponseTime" unit="millisecond"

comparator="le" threshold= "400" fuzziness="0" />

<SLO sloID="Ru" Metric= “ResourceUsage" unit="% of time"
comparator= "max" />

<SLO sloID="CompSlo" A="Rt" Operator="andThen" B="Ru"/>

</Guarantee>

</Guarantees>

Figure 10. SLA for locking PaaS in CSLA language

We conducted experiments with our SLAaaS-oriented
locking service, running in a 40 node cluster in the G5K II
infrastructure (see Table I). To emulate long distance, we
injected network latency between nodes. Each node runs a
process that may request to acquire the lock on a shared
resource. The load varies over time, and is characterized by
the ratio of processes requesting lock acquisition to the total
number of processes, as shown in Figure 11. Figure 11(a)
presents lock request response times over time. When the
load is low, the response time remains low compared to the
SLO. When the load increases, there is more contention on
the shared resource, with an increase of lock request latency.
However, the locking service is able to automatically adapt
to keep request latency below the threshold as specified by
the SLA. This is obtained thanks to admission control.

Figure 11(b) illustrates the availability of the shared
resource, i.e. how often the resource is actually locked and
used by one of the processes. It shows the ratio of the time
during which the resource is used by processes to the total
time. In our network configuration this ratio cannot exceed
50% since half of time is spent in message transmission.
Interestingly, when the load increases the locking service
adapts to the load, with an increasing use rate till the max-
imum value, which corresponds to the availability objective
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Figure 11. Self-adaptive locking service

of the underlying SLA. In summary, SLAaaS successfully
applies to associate SLA with a locking PaaS.

IV. RELATED WORK

Existing public clouds provide very few guarantees in
terms of performance and dependability [1]. Amazon EC2
compute service offers a service availability of at least
99.95% [2], and Amazon S3 storage service guarantees a
service reliability of 99.9% [2]. However, in case of an
outage Amazon requires the customer to send it a claim
within thirty business days for Amazon EC2 and ten days
for Amazon S3. Amazon cloud services do not provide
performance guarantees or other QoS guarantees. Rackspace
and Azure cloud services provide similar behaviors [3], [4].

Several recent research works consider SLA in cloud
environments [18], [19], [20], [21]. Chhetri et. al. propose
the automation of SLA establishment based on a clas-
sification of cloud resources in different categories with
different costs, e.g. on-demand instances, reserved instances
and spot instances in Amazon EC2 cloud [18]. However,
this approach does not provide guarantees in terms of
performance, dependability, etc. Macias and Guitart follow a
similar approach for SLA enforcement, based on classes of
clients with different priorities, e.g. Gold, Silver, and Bronze
clients [19]. Here again, a relative best-effort behavior is



provided for clients with different priorities, but no strict
performance and dependability SLOs are guaranteed. Other
works propose heuristics for SLA management [20], or
target specific environments such SaaS [21]. The former
work provides best-effort without strict guarantees on SLA,
and the latter does not tackle the many types of clouds.

Regarding the specification of SLA, some initiatives
contributed to this effort, such as WSLA [6], and WS-
Agreement [22]. The proposed CSLA language shares mo-
tivations with these projects and goes further by taking
into account high cloud elasticity and QoS instability. Its
general concepts were introduced in [5]; in the present paper
we describe its integration with the SLAaaS model and its
application to real cloud services.

V. CONCLUSION

This paper presents SLA-aware-Service (SLAaaS) cloud
model, for a systematic and principled way to integrate
quality-of-service (QoS) and service level agreement (SLA)
into the cloud. The CSLA specific language is proposed to
describe SLAs associated with cloud services in a convenient
way. A control-theoretic approach is followed to provide
performance, dependability and cost guarantees for online
services. Our experiments on online cloud services through
various case studies successfully demonstrate the usefulness
of SLAaaS. While this paper illustrates SLA with QoS
metrics such as client request response time, availability, re-
source usage and resource cost, we believe that the proposed
model and control approach may apply to other metrics, such
as service throughput, and energetic cost. This work opens
interesting perspectives in terms of cooperative clouds and
cooperative SLAs. We hope that such a model will lead to
more principled, less ad-hoc solutions of cloud QoS and
SLA management.
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