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Abstract. In HPC community the System Utilization metric enables
to determine if the resources of the cluster are efficiently used by the
batch scheduler. This metric considers that all the allocated resources
(memory, disk, processors, etc) are full-time utilized. To optimize the
system performance, we have to consider the effective physical consump-
tion by jobs regarding the resource allocations. This information gives
an insight into whether the cluster resources are efficiently used by the
jobs. In this work we propose an analysis of production clusters based
on the jobs resource utilization. The principle is to collect simultane-
ously traces from the job scheduler (provided by logs) and jobs resource
consumptions. The latter has been realized by developing a job monitor-
ing tool, whose impact on the system has been measured as lightweight
(0.35% speed-down). The key point is to statistically analyze both traces
to detect and explain underutilization of the resources. This could en-
able to detect abnormal behavior, bottlenecks in the cluster leading to
a poor scalability, and justifying optimizations such as gang scheduling
or besteffort scheduling. This method has been applied to two medium
sized production clusters on a period of eight months.

Keywords: Workload Traces; Monitoring; Performance Evaluation; Optimiza-
tion; High Performance Computing

1 General Context

High Performance Computing (HPC) platforms have appeared as a solution for
solving advanced computation problems. Nowadays these systems have evolved
passing from the shared memory multiprocessors to clusters which can have
hundreds of thousands of processors. In these kind of systems a central compo-
nent called the Resource and Job Management System (RJMS) is in charge of
managing the users’ tasks (jobs) on the system’s computing resources.

Studying the RJMS workload has become a widely used method for HPC
systems valuation. The workload in the RJMS context can be defined as the set
of all individual jobs that are processed by the system during a specific period of
time. With workload traces, one can reconstruct the scheduling, determine the
system’s computing resources utilization, compare different systems and their
workloads according to several metrics like Average Weighted Wait Time and



Average Weighted Response Time as used in [1]. This study can lead to the
construction of models as proposed in [2] and more generally described in [3].
However, looking only at the workload traces may not be sufficient. To get a
better understanding of the use of such systems we need to look at both how the
jobs interact with the RJMS but also how they consume the allocated resources.
In other words, we need to look at both the workload and the jobs activity on
the resources.

The idea of associating RJMS workload traces to the jobs resource consump-
tions has been mentioned in several works. [4] points out the fact that the Sys-
tem Utilization metric, commonly used in system evaluation misses information
about the computer sub-systems (network, memory, processor) usage. According
to [5] it is also necessary to take into account other characteristics such as I/O
activity which have a big impact on the global performance of HPC systems.
However, the aforementioned association has never been fully achieved.

The System Utilization metric is the ratio of the computing resources allo-
cated to the jobs over the available resources in the system. In fact, this metric
corresponds more to the System Resource Allocation as it does not give informa-
tion about the physical utilization of the resources. In this paper we will focus
on the Resource Utilization metric which reflects the ratio of the consumption of
a resource by a job over the amount of resource allocated by the system to this
job. For each resource type: core, memory, IO, we will look at their utilization
by the jobs on the clusters.

The following Section presents several works related to Workload and Jobs
tracing. The first part presents briefly D. Feitelson et al. works on workload traces
then several methods for retrieving information about the jobs consumptions
are presented. Then in Section 3 we present the solution chosen to collect jobs
resource consumptions data. Section 4 describes the clusters on which data was
collected and the trace characteristics. Section 5 presents the analysis of the
results of the different resources consumption metrics. Finally, Section 6 discusses
the results and gives some perspectives.

2 State of the Art

2.1 Workload Traces

Workload traces are provided by the Resource and Job Management System,
they contain information about the jobs arrivals, their resources request and
allocation, their characteristics like runtime, wait time or execution information.
Two workload traces format exist and are commonly used:

a) Standard Workload Format (SWF)1. It is an initiative to make workloads
data on parallel machines freely available and presented in a standard for-
mat[6]. This work is presented in the Parallel Workload Archive2. It provides

1 SWF: http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
2 PWA: http://www.cs.huji.ac.il/labs/parallel/workload



several traces from real production systems and is a big step in the field of
workload characterization. Many other works were based on this format, in
particular for workload models generation. The SWF format gives informa-
tion about the jobs requests, allocations, characteristics and consumptions.
The jobs consumptions values provided by SWF are the average processor
time and the average memory used by processor.

b) Grid Workload Archive (GWA)3. The Grid Workload Archive constitutes
an effort to build a data repository of grid workload traces for the scientific
community. This format is based on SWF, it adds some grid specific aspects
like sites, virtual organizations, co-allocations, workflows. This information
contributes to the improvement of the middleware in charge of the scheduling
process.

2.2 Jobs Consumption Traces

Two options are possible to produce a trace of the jobs consumptions. First,
giving for each job, for each type of resource (memory, processor, disk, network),
a single representative value of the resource consumption. The question is thus
“How representative of the real consumption this value is?”. Or, for each job,
giving a trace of the resource consumptions over time. This can be viewed as a
monitoring of the jobs consumptions.

In [7], R. Jain proposes one possible classification of the different monitoring
techniques. In this classification, the monitoring process can be event-driven or
by sampling. The event-driven method is very efficient and there is no monitoring
overhead if the event is rare. The sampling method as for it, is well adapted
for frequent events but a loss of data captured is inevitable and a frequency
resolution has to be chosen. This section presents the state of the art of the
existing monitoring systems that can be adapted to our context.

Monitoring provided by the existing batch schedulers. Several RJMS
provide an embedded system for monitoring the jobs consumptions.

SLURM [8]4: uses different mechanisms to know which processes are mem-
bers of a SLURM job, then monitors their consumptions. The cgroup isolation
mechanism requires a very recent kernel version, the other one is based on the
Linux process table.

OAR [9]5: provides a mechanism that monitors the jobs consumptions in
terms of processor, memory and network. As for SLURM, it uses different mech-
anisms to know which processes are members of an OAR job, these are the
cpuset or cgroup features of the kernel and require a recent kernel version. This
data collection is not automatic and is triggered at user request.

3 GWA: http://gwa.ewi.tudelft.nl/pmwiki/
4 SLURM. https://computing.llnl.gov/linux/slurm/
5 OAR: http://oar.imag.fr



LoadLeveler6: allows the user to gather information about resource con-
sumption. It offers different ways to consult this information and create different
class of reports. As for OAR, this mechanism is not automatic.

All these approaches are linked to a particular batch scheduler system. For
all of them, the traces generated give for each job a single value (generally the
mean) for each type of resource consumption. This is problematic for several
reasons. First for the memory consumption, the mean does not give valuable
information. At least the maximum value and how many times this value was
reached must be reported. Then for the IO consumption, the variance of the
reads and writes can vary a lot and the mean is still not representative enough.
We prefer to adopt a monitoring of the resources over time, that will give us
all the details of the evolution of the consumptions and thus enable a deeper
analysis of the cluster’s resources utilization.

Monitoring and Profiling Tools. Many monitoring and profiling/tracing
tools exist in the literature, but our approach needs specific requirements. First,
we need to collect the jobs resource consumptions, this is a completely different
process than machine monitoring. Then, we need to collect these data in a tem-
poral way. This means that data has to be collected over time along with the jobs
executions. Last, we want to collect jobs consumption data on production clus-
ters which implies two constraints: the impact of the monitoring on the compute
nodes has to be negligible; and the setup of the monitoring on the cluster has
to be as simple as possible. On a running production cluster it is not acceptable
to deeply modify the configuration of the nodes, nor install or update too many
softwares; and the update or modification of the nodes’ kernel is not possible.

Means and maximum values are not sufficient for analyzing the behavior of
the applications over time, we need a more fine-grain view of their consumptions.
Several systems like Ganglia[10] and Nagios[11] have been developed to monitor
a system or a cluster infrastructure but are resource centric, they perform their
monitoring at the machine level. Our approach needs to be job centric to en-
able us to extract the resource consumptions per job as proposed in [12]. Other
approaches more application-oriented exist as [13] which gathers an application
consumptions in an online manner taking advantage of two tools, TAU[14] as the
data collector and Supermon[15] as the transport layer. Or [16] which monitors
an application at runtime, with a low overhead, allowing it to study the overhead
penalties incurred by Linux Systems in the execution of HPC applications. The
difference between our approach and the systems mentioned above is the fact
that we aim to monitor all the jobs executed in the cluster, generating a trace
of the resource consumptions over time. This requires a very lightweight tool,
capable of monitoring all the jobs with a low overhead and with an amount of
data generated that can be easily stored and processed. These conditions were
not respected by these tools.

6 LoadLeveler: http://www-03.ibm.com/systems/software/loadleveler



Linux Kernel tools like Performance Counters7 or CGroups8 are not a possible
option for our systems because they imply the update of the compute nodes
kernel.

We also tested several event based tools like IPM[17], TAU[14], ltrace9, but
either their overhead was too high or the amount of data collected was too
important (hundreds of MB for a single application run) to enable a global
workload analysis. An event-driven approach would thus be too intrusive and
the amount of data produced would have been too big.

The approach chosen was then a sampling monitoring, enabling us to restrict
the amount of data collected and to set the precision required.
Because of the production constraints we chose to collect information about the
consumptions from the /proc subsystem (as in the OpenTSDB10 approach). In
this virtual file system (present on any Linux system), for each process is given
its consumption of resources such as memory, processor, or IO on the Distributed
File System (DFS). With this method, no modification nor software installation
is needed on the compute nodes.

3 Resource Consumption Capture

This section presents the approach used in order to instrument the system, which
allowed us to have more detailed information about jobs resources consumption
during their execution. This monitoring process is divided into two parts:

– The monitoring of the jobs’ processes execution in each compute node of the
cluster. This is performed by a monitor daemon running on each node.

– The collection of all the traces generated by each job.

3.1 Monitor daemon

It is important to understand that we do not want to depend on the synchro-
nization of measures. A centralized clock that forces measure times would be too
intrusive for the system. Instead, every node is responsible for measuring each
job every minute and the clocks between the nodes are synced (this is a common
requirement in HPC). Every measure is tagged with its timestamp.

The monitor daemon, written in Perl, gathers resource consumption infor-
mation for a job that is running on the machine. This information includes every
process involved in the job and their resource consumption values obtained from
/proc directory. We first validated this method by making several tests with
jobs whose behavior were well-known to ensure that information given by /proc
was consistent with what we expected. Collected values and trace format are
described in Tables 1 and 2. In order to know which processes belong to the job,
the monitor looks into the cpuset directory, which is the interface to the cpuset11

7 https://perf.wiki.kernel.org
8 http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
9 A library call tracer. http://linux.die.net/man/1/ltrace

10 http://opentsdb.net
11 http://www.kernel.org/doc/man-pages/online/pages/man7/cpuset.7.html



kernel mechanism to provide job isolation. Therefore with all this information
collected, the monitor generates a trace file per job. The cpuset feature is sup-
ported by most of the RJMS as PBS, Loadleveler, Torque12, Slurm13, OAR14,
it is the most portable method for collecting the jobs processes.

We wanted the finest granularity possible without generating a big pertur-
bation on the nodes and a minute step allowed us to have a perturbation under
1% in the worst case. It is thus a good compromise information/intrusiveness as
presented in 3.2.

As these traces will be mixed with RJMS traces, a 60 seconds granularity
seems reasonable as the scheduling decisions and the resources allocations are in
the order of the minute.

To be as lightweight as possible, the monitoring tool does not reformat or
process data during the capture. Values taken from /proc are written directly to
the log for the overhead to be in the analysis process, not during traces capture.

Trace Fields

Name Description

Time Unix Time Stamp in seconds

JOB ID Job id assigned by the batch scheduler

PID PID of process that belongs to the job

Node ID Provenance of the capture

Measure Measure as presented in Table 2

Table 1: Trace Format

Values Captured

Name Description

command Name of the binary executed

vmPeak Peak virtual memory size (KB)

vmSize Total program size (KB)

vmRss Resident Memory (KB)

vmSwap Size of swap usage (KB)

syscr Number of read syscalls

syscw Number of write syscalls

read bytes Bytes read from the DFS

write bytes Bytes written to the DFS

core Core utilization percentage

receive Bytes received from the network

transmit Bytes transmitted to the network

Table 2: Data collected during a measure

3.2 Intrusiveness and Sampling Evaluation

This section presents the evaluation of our approach in terms of disruption in
the system. The cost of retrieving information from the RJMS and converting
it to SWF format is null as it is done post mortem. We will thus study the cost
to monitor the jobs. It is very important for the validity of the data collected
that the monitoring process does not interfere with the jobs themselves. It is
obviously also important for the validity of the jobs results. We chose that the job
overhead should be strictly less than one percent. All the tests were performed
over a machine Intel Xeon E5420, with 8 cores and 24 GB of main memory.
We evaluated the implementation under a 100% processor load of the machine,
with one process per core and measured the monitor overhead by using the

12 http://www.clusterresources.com/torquedocs21/3.5linuxcpusets.shtml
13 https://computing.llnl.gov/linux/slurm/
14 http://oar.imag.fr/sources/2.5/docs/documentation/OAR-DOCUMENTATION-

ADMIN/#cpuset-feature



Sysbench multi-threaded benchmark tool. The evaluation ran 8 processes, each
one checking a prime list up to 18000. Results are presented in Table 3.

Sampling Freq. Mean Min Max Overhead

No 573 573 573 0%

60 sec 573.6 573 574 0.10 %

30 sec 574.4 574 575 0.24 %

10 sec 577 576 578 0.69 %

Table 3: Overhead (in terms of perturba-
tion in the application execution time) vs.
sampling period. All values are in seconds

16 processes

Type Mean Min Max Overhead

No monitoring 513 513 513 0 %

monitoring 514.1 514 515 0.21 %

32 processes

Type Mean Min Max Overhead

No monitoring 512 512 512 0%

monitoring 513.8 513 516 0.35 %

Table 4: Overhead (in terms of perturba-
tion in the application execution time) vs.
number of processes monitored per job.
All values are in seconds

We also evaluated the noise for more than 8 processes with a 60 seconds
frequency to have an idea of the scalability of the solution. The results are
shown in Table 4. The disruption caused by the monitoring was found to be
almost linear regarding the number of processes to monitor in these conditions.
Given that there were four times more processes than cores in the 32 processes
benchmark, the result of a 0.35% overhead is acceptable.

The memory used by the daemon is very small (few MB) and it doesn’t
use the network during the capture. The reads and writes are a few KB every
minute on the local disk and the Distributed File System is not solicited so the
IO perturbation is negligible.

3.3 Collecting mechanism

Data is gathered using dedicated jobs that collect the logs when the system is
underloaded. This operation does not need to be frequent; week-ends, holidays,
night-times or maintenance periods can be used for this. We used a special
maintenance period during holidays for this purpose. Each job requests a whole
node and is in charge of gathering and compressing the trace files generated so
far by the jobs executed on that machine. Then it sends them to a dedicated
node in charge of storing the trace data.

3.4 Off-line data processing

Once we have collected data about jobs resources consumption we need to bind
it to the RJMS log to be able to compute the resource utilization ratio. This
ratio is at a given time, for a given job, the amount of resource consumed by the
job over the amount of resource allocated by the system to this job. To make it
simpler to use and redistributable, we first build the SWF file from the RJMS
log. The SWF is an abstract view of the log, this format gives us the amount of
resource allocated by the system for each job.



As measures are not guaranteed to be synchronized between nodes during
the capture, a shift in the measures dates can appear. Thus we first re-sample
the measures then bind them to the RJMS logs with R15. The whole re-sampling
and binding process is available in a R script. See 5.3 for more information.

4 Experiment Environment

Data was collected from production clusters of the Ciment project16. This project
aims at gathering several computational infrastructures to provide computing
power to users in different disciplines like environment, chemistry, astrophysics,
biology, health, physics. The CiGri project relies upon the OAR RJMS to submit
the jobs on the clusters. All the Ciment clusters are managed by the CiGri17

lightweight grid software that gathers clusters resources to make them available
as a grid for the users.

The monitoring tool was implanted and run on two of the Ciment production
clusters: Foehn and Gofree. As they come from the same grid, their respective
workload should not be too different from each other. Their characteristics are
detailed in table 5. A short summary of data collected is presented in Table 6.

Foehn Gofree

Brand SGI Dell

CPU Model X5550 L5640

Nodes 16 28

CPU/node 2 2

Cores/cpu 4 6

Memory/node 48 GB 72 GB

Total storage 7 TB 30 TB

Network IB DDR IB QDR

Total Gflop/s 1367.04 3177.6

Buy date 2010-03-01 2011-01-01

Table 5: Clusters characteristics

Foehn Gofree

Capture start 2011-06-01 2011-05-24

Capture months 8 7

Log Size 2.6 GB 3.1 GB

Number of jobs 53662 20093

Besteffort jobs 50403 15596

Normal jobs 3259 4497

Active users 54 35

Table 6: Trace summary for both clusters.

One particularity of the Ciment platform is that users can submit a particular
type of job: the “besteffort” jobs. These jobs are scheduled in a dedicated queue.
They have a very low priority and can be preempted whenever a “normal” job
arrives and needs the resource. The goal of such jobs is to maximize the cluster
utilization as they are plentiful. Generally, these jobs request one core to the
RJMS. These special jobs are multiparametric sequential jobs. A user using these
kind of jobs has generally several instances of the same application running in
different jobs with different parameters.

15 http://www.r-project.org/
16 CIMENT Project. https://ciment.ujf-grenoble.fr/
17 CiGri Project: http://cigri.imag.fr/



5 Analysis

In this section we analyze the consumption of the jobs from data collected during
the capture regarding their requests. This analysis is done for the following
metrics: core utilization, memory utilization and IO activity on the network file
system. The two clusters although belonging to the same platform are located in
two different laboratories. When submitting a job, the users of the platform can
both choose on which cluster the job will run or don’t specify anything. In this
case it is the local cluster which is selected by default. As we know, most of the
users don’t request specifically a cluster or tend to prefer the local cluster. Thus
we analyze separately the results from the two clusters. Moreover, jobs from
the normal class and besteffort class have very different patterns. Besteffort
jobs are multiparametric jobs that generally request only 1 core (although we
know that some besteffort jobs request several cores). They are supposed to be
processor intensive with few memory usage and few IO activity. Normal jobs
are generally parallel jobs requesting several nodes/cores. Their consumption
patterns are not really known and are probably more varied. Hence, the following
analysis of the jobs consumptions is done on the two classes separately on each
cluster.

To address the analysis of the consumptions in a global way for each class
we look at the resources utilization distribution. This will give us an idea of the
different existing patterns.

Squashed Area Ratio. Along with the distribution of the utilizations we
will also consider the impact of a particular phenomenon into the global system
activity. We present thus the Squashed Area metric (SA) that represents the jobs
execution activity. [18] defines SA as the total system’s resource consumptions
of a set of jobs, computed by:

SA =
∑

j∈jobs

allocated coresj × run timej .

Thus, for a job or a set of jobs, we look at the SA ratio of this set regarding
the workload SA of its class (i.e. the proportion of this set area over the total
class area). This enables us to determine if a particular phenomenon is significant
enough regarding the rest of the workload.

Core. In data collected we have for each job j, for each core c allocated to j,
the proportion of core consumed by the processes running on c and belonging
to j along its execution. We denote this value: core consumptionc

j(ti). With ti
being the date of the measure i. Thus, we can compute for each measure date ti
the total amount of core consumed by a job with:

core consumptionj(ti) =
∑

c∈allocated coresj

core consumptionc
j(ti).

Then, with n being the number of consumption measures taken for j, we can



compute per job its core utilization mean by:

core utilization meanj =

∑
i∈[1,n]

core consumptionj(ti)

allocated coresj × n
.

In the following analysis we consider the distribution of these values to iden-
tify different utilization patterns.

Memory. The OAR version managing Foehn and Gofree clusters doesn’t pro-
vide a memory isolation of the jobs on the nodes. This feature in OAR is only
available with the Cgroup feature of the kernel enabled which is not the case.
Thus it is interesting to look whether jobs use a lot of memory or not. Indeed,
a job which uses intensively the memory could disturb other jobs sharing the
same node.

We introduce the theoretical memory per core value which is equal to a
node memory over the number of cores on the node. As each cluster has an
homogeneous architecture, this value is the same for all the nodes in a cluster.
Foehn and Gofree doesn’t have the same number of cores and memory per node
but their theoretical memory per core is the same and is equal to 6GB. We
consider thus that a job which consumes less than this value per allocated core
is not disturbing for the other jobs.

Then, for a given job we know its theoretical maximum memory. This value
is equal to theoretical memory per core×allocated coresj . Thus we know that
jobs that consume more than 100% of this value are potentially disturbing other
jobs by using too much memory on at least one node.

For the analysis of the memory utilization we will look at two sub-metrics:

– The mean memory used by a job (computed by the same method than the
core utilization mean) vs. its theoretical maximum memory. This tells us
how the job behaves on average regarding its theoretical maximum memory.

– The maximum memory used on the cores allocated to this job. This will tell
us if the job used more than the theoretical memory per core on one of its
allocated cores or not.

File System IO. As the Distributed File System (DFS) is a central component
of a cluster we are also interested into its usage patterns. On Gofree no user has
complained about slow IO on the DFS. This is not the case for Foehn where
users have reported several IO problems. Unfortunately we could only monitor
the IO utilization on the Distributed File System on the Gofree cluster and this
for only two months and a half. Gofree DFS consists in an NFS server that serves
the users’ home directories through the GigaBit Ethernet network. We tested its
capabilities in terms of bandwidth with the IOR18 benchmark[19]. We used IOR
in a single file/single client mode with file sizes of 64MB and blocks of 4KB. 4KB
is the default block size. 64MB and 64KB are the most frequent write sizes in

18 http://sourceforge.net/projects/ior-sio/



Gofree (see Figure 15). We chose 64MB instead of 64KB because this last value
is too small (only 16 physical writes) to have a correct idea of the bandwidth.
We repeated the test 10000 times and got a max speed of 103MB/s for the writes
and 4030MB/s for the reads. The mean write speed was 98MB/s with a standard
deviation of 5. Several other tests with higher values of file sizes gave us similar
results. For concurrent sequential tests IOR showed that the bandwidth was
more or less fairly divided between the different writing processes. For parallel
tests (with MPIIO API, one file per process, up to 48 processes) IOR showed
a maximum value close to 96MB/s which is a little less than with the single
process mode but still in the same bandwidth range than the mean speed of
sequential writes. This gives us an approximative idea of the global bandwidth
of Gofree DFS.

The read bandwidth is quite high (close to a local file system bandwidth)
and generally the type of IO which are problematic are the writes, thus we will
focus on the analysis of the writes patterns.

5.1 Foehn Cluster

Normal Class Jobs. Figure 1 presents the distribution of the core utiliza-
tion means for normal class jobs on Foehn cluster. We observe a peak in the
distribution corresponding to a core utilization near 100%. An other peak, less
important corresponds to a low core utilization (between 0% and 25%). However
when looking at the SA ratio of these two peaks the tendency reverts. The SA
ratio of the high utilization peak is only 12.7% of the total workload SA and the
SA ratio of the low utilization peak is of 53.7%. For these jobs, very few of them
consume a lot of memory (only 22 jobs). Among them only 5 consume more
than their theoretical maximum memory. For these memory intensive jobs, the
maximum memory used per core is 125% of the theoretical memory per core.
Figure 2 presents the distribution of the mean memory used per job. We can
observe that memory intensive jobs are very rare on Foehn but exist.

Figures 3 and 4 present the maximum memory used on a core per job. We
split the representation of the distribution in two groups for more clarity: up to
100% and more than 100%.

There are 31 jobs whose mean memory usage is over 100%. Unsurprisingly,
jobs that have a mean memory usage over 100% are the same than the jobs that
have a peak memory usage on an allocated core over 100%. These jobs have
a peak value grouped around 140%. Only 1 job has a very high peak memory
usage of 480%, it is a job that requested 2 cores and lasted for 18 minutes then
was canceled by its user.

In Foehn, we observe that many jobs are using the cores computing power
very efficiently and don’t use a lot of memory. These jobs seem to be cpu bound.
However their weight in the workload is counterbalanced by larger and shorter
jobs (larger number of resources but with a runtime being a little shorter on
average). Regarding the memory usage distribution, we can think that these
jobs suffered from something else than memory problems. But when we look at
the number of cores allocated to the jobs of the two groups (jobs with average
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core utilization under 25% and jobs with average core utilization near 100%)
we remark something very particular. The mean number of allocated cores is 4
times bigger for the jobs that have a core utilization in the lower peak. This can
be an IO scalability issue with jobs waiting on IO, as we know that Foehn DFS
has bandwidth problems, this having been reported several times by the users.
However this can also come from an over-reservation of cores by the users. Sadly,
we currently miss information to explain the reason of this phenomenon.

Besteffort Class Jobs. Figure 5 presents the distribution of core utilization
for besteffort jobs on Foehn cluster. We observe two peaks, one corresponding
to a core utilization mean around 25%, the other around 100%. For the lower



utilization peak (from 0 to 25%), its SA ratio is 55.5%. The SA ratio for the jobs
exactly in the 25% peak is 42.4%. For the jobs involved in the higher distribution
peak, even though there are fewer, their SA ratio is about the same (40.8%).
99.2% of these jobs reserve only 1 core. These jobs never use more than the
theoretical memory per core. 99.5% of them actually use less than 1/3 of this
theoretical memory per core.

Only 6 users are involved in the low core utilization peak, but 5 of them
are also involved in the high utilization peak. The user only present in the low
utilization peak accounts for 41.9% of the besteffort SA and has a core utilization
less than 25% in 99.4% of the cases. He reserves 4 cores in all his besteffort jobs.
In almost all the cases his processes consume less than 310MB and never higher
than 620MB.
After contacting the user, he explained that he noticed that if two of his jobs
were running on the same node, the performances of the two jobs were very
bad. After investigating the cause of this it was found that the application was
memory intensive in terms of bandwidth. The maximum memory used was small
compared to the amount of memory available on the node but when two jobs
were accessing the memory at same time, there was a bottleneck in the access
to the memory. The solution adopted by the user to avoid this performance loss
was to reserve the whole socket (corresponding thus to 4 cores) even though the
application only used 1 core. As Foehn nodes are NUMA, reserving the whole
socket enabled the jobs to have their own memory slot and thereby not being
disturbed. The problem here was not a misconfiguration of the job or a bad
reservation request but a lack in the RJMS constraint description that forced
the user to over-reserve.
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Fig. 5: Distribution of the jobs’ core uti-
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Fig. 6: Distribution of the mean memory
used by job.

Figure 6 shows that besteffort jobs don’t consume a lot of memory on average.
Only 6 jobs (not represented on the figure for clarity) have a mean memory



utilization greater than their theoretical available memory. Their mean memory
use is between 7 and 8 GB.
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Fig. 8: Distribution of the maximum
memory used per job by an allocated core
to this job, values>100%.

In Figures 7 and 8 we observe that besteffort jobs don’t have big memory
peaks. Only 6 jobs have peaks between 115 and 135%. these jobs are all 1 core
jobs and five of them belong to the same user.

Except the singularity of the user reserving one entire socket and few jobs
with memory usage peaks, besteffort jobs on Foehn tend to be cpu bound.

5.2 Gofree Cluster

Normal Class Jobs. Figure 9 shows the distribution of the core utilization
means for jobs in the normal class in Gofree. We observe a very particular
distribution with four peaks around 0, 1/4, 1/2 and 1 of core utilization mean.
The most surprising is when we look at the number of cores allocated to these
jobs vs their core utilization. The higher peak has a core allocation of 1 node
in 50% of the cases (with a maximum of 1 node). The peak around 1/2 has a
core allocation of 2 nodes in 85% of the cases (with a maximum of 2 nodes).
The peak around 1/4 has a core allocation of 3 nodes in 48% of the cases and
4 nodes in 35% of the cases (with a maximum of 4 nodes). The jobs below 50%
of core utilization are not an isolated phenomenon, 2/3 of the users are involved
in these jobs and their presence is distributed all along the trace. These users
are also involved in the high utilization peak. The memory used for these jobs
is low (less than 1/3 of theoretical memory) for 89% of them. Only 7 jobs use
up to 100% of their theoretical available memory. Figures 10 and 11 show us a
memory utilization quite low for most of the jobs of this class.
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Fig. 9: Distribution of the jobs’ core utilization means.
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Fig. 10: Distribution of the mean memory
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Fig. 11: Distribution of the maximum
memory used per job by an allocated core
to this job.

This behavior of core utilization vs core allocation is very noteworthy and we
suspect a scalability problem although we can’t say where is the bottleneck (re-
sults of IO consumption on data collected during the IO capture period showed
the DFS is usually not very stressed, see 5.2). However, as for Foehn, this can
also come from an over-reservation of cores by the users. These two phenomena
of low core utilization on both clusters will need further investigations and the
jobs’ knowledge of the users involved.

Besteffort Class Jobs. Figure 12 shows that besteffort jobs in Gofree have
a high core utilization. Jobs below 75% of core utilization represent 0.37% of
the normal jobs SA and jobs below 90% account for 7% of the class’ SA. Core
allocation for besteffort jobs in 85% of the cases is 1 with other values being 4



and 6 (1 cpu socket). Figures 13 and 14 show us a low memory utilization on
average and on maximum. Regarding these results we can say that besteffort
jobs in Gofree are cpu bound.
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Fig. 12: Distribution of the jobs’ core utilization means.
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Fig. 13: Distribution of the mean memory
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0

2500

5000

7500

0 25 50 75
Maximum Memory Used (%)

GoFree − BestEffort Jobs

N
um

be
r 

of
 J

ob
s

Fig. 14: Distribution of the maximum
memory used per job by an allocated core
to this job.

Global IO Activity. Figure 15 shows the distribution of the size of the files
written by the jobs. We can observe a big peak at 64KB. This comes from many
besteffort jobs that write small files. Generally, besteffort jobs tend to write
either files of 64KB or 32MB. Normal jobs tend to write files of 4KB and 16MB.

Figure 16 presents the distribution of the aggregated writes by the jobs on
the File System. We can observe that the most frequent sizes the DFS has to
write in a minute is either small (between 4KB and 16KB) or medium (between



8MB and 64MB). It seems that the DFS is not really overloaded. Very few values
are high (up to 6GB in a minute).
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In order to see how the load is distributed along the time we plot Figures 17
and 18. Figure 17 presents the aggregated writes per day on the DFS. We can
observe that the daily IO write activity is very irregular with intense periods
and an empty period. The period with no IO activity occurred during holidays,
there was almost no job submitted during this time.
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Fig. 17: Daily aggregated writes on the
DFS.
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Figure 18 plots the write load in terms of speed on the Gofree DFS server. In
this figure, we isolate some remarkable values above the vertical line at 93MB/s.
The value of 93MB/s has been chosen because it reflects the speed where the
DFS might start to be overloaded. It corresponds to the mean write speed minus
the standard deviation given by our bandwidth tests with IOR. We refer at the
area above this line as the DFS hot zone.

We observe five ranges of dates where the DFS is in the hot zone. These dates
are respectively the June 9, June 22, June 28, July 18 and August 8. The most
remarkable period is July 18 where in a period of two hours the DFS reached
the hot zone 10 times. When looking at the jobs involved in this activity we see
that two jobs (belonging to two different users) where competing for IO on the
DFS. The jobs where using 4 and 12 nodes. They didn’t use much memory and
their mean core utilization was quite low. The job using 4 nodes was canceled by
the user before its end. This particular scenario let’s us think that this job that
was canceled was suffering for slow IO and thus killed by its owner. The scenario
is about the same during June 22 where four jobs where competing on IO. One
ended, canceled by the user and one had an IO write pattern alternating big
writes with periods of inactivity (few memory used, no core activity) probably
being blocked on IO. However this event lasted for only 10 minutes. The other
periods are less remarkable as the presence of the DFS in the hot zone was brief
(only one peak) with few jobs involved in IO activity.

5.3 Reproducibility

All the tools, traces and R-Sweave documents used to process this analysis are
available on a Git repository19 for the sake of reproducibility and sharing.

6 Discussion and Perspectives

Monitoring the jobs resource consumptions and linking it to their resource allo-
cation enabled us to detect some particular behaviors on the clusters. Moreover,
the monitoring over time allowed us to have a more precise view of the resources
utilization, particularly it enabled us to reconstruct the DFS write load along
time. The study of the utilization for the different resource types gave us a better
comprehension of our users’ usage of the clusters. We are now able to propose
some enhancements in our future scheduling strategies based on the observed
usage of the system.

The problem of memory bandwidth risen in the analysis is very interesting
because we can encounter the same lack of constraint description for memory,
IO or network in most current RJMS. As the Squashed Area ratio of the user
involved in this phenomenon weights a lot regarding the rest of the workload,
the core computing power loss is important. Here it is not a resource quantity
problem, but a problem concerning the bandwidth to access the resource. We

19 git clone https://forge.imag.fr/anonscm/git/evalys-tools/evalys-tools.git



cannot try strategies like scheduling other besteffort jobs on the same socket
since we don’t know their bandwidth usage patterns. A possible solution would
be to define memory, IO and network bandwidths as resources in the RJMS in
the same way cores are defined as resources. Thus we enable the user to reserve
not only a set of cores but an amount of bandwidth on the node depending
his/her need. However, this kind of guarantee is not possible nowadays.

It is also noteworthy that besteffort jobs on both clusters are core efficient
with a low memory usage. This will be used as a scheduling tweak; besteffort
jobs, whenever it is possible, should be scheduled on the same nodes. As we now
are sure that they will not disturb with one another, we will pack these jobs
on the same set of nodes to improve their efficiency. Besteffort jobs are killed
whenever a normal job needs the resource they are running on. By packing them
we reduce the fragmentation and thus the probability for them to be killed.

The problem of the Distributed File System (DFS) overload is also interest-
ing. We observed that generally the DFS is not too loaded but when it happens
and there are jobs competing for IO it ends with the cancellation of one of these
IO intensive jobs. Giving the users the possibility to tag their jobs (e.g. as IO
intensive) at the submission to the RJMS might prevent such situations, the
RJMS will simply not schedule two IO intensive jobs at the same time.

Monitoring jobs resource consumptions revealed problems that were not vis-
ible with the sole System Utilization metric. Coupling jobs consumptions and
RJMS logs enabled us to exhibit and quantify significant particular cases. On
mid-sized computing centers, the study of the jobs resource utilization will be-
come a necessary way to a deeper understanding of the users needs and their
jobs consumption patterns. Particular patterns discovered by the analysis of the
jobs resource utilization will lead to dedicated system setup and optimizations
to improve both users and administrators satisfaction.
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