
HAL Id: hal-01471590
https://hal.science/hal-01471590

Submitted on 20 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Enumerative and Symbolic Techniques for
Diagnosis of Discrete-Event Systems
Abderraouf Boussif, Mohamed Ghazel, Kais Klai

To cite this version:
Abderraouf Boussif, Mohamed Ghazel, Kais Klai. Combining Enumerative and Symbolic Techniques
for Diagnosis of Discrete-Event Systems. VECOS 2015 - 9th Workshop on Verification and Evaluation
of Computer and Communication Systems, Sep 2015, Bucarest, Romania. 11p. �hal-01471590�

https://hal.science/hal-01471590
https://hal.archives-ouvertes.fr

Combining Enumerative and Symbolic
Techniques for Diagnosis of Discrete-Event

Systems

Abderraouf Boussif
Univ. Lille Nord de France,

F-59000 Lille, France
IFSTTAR, Cosys/Estas,

F-59650 Villenveuve d’Ascq, France
FR

abderraouf.boussif@ifsttar.fr

Mohamed Ghazel
Univ. Lille Nord de France,

F-59000 Lille, France
IFSTTAR, Cosys/Estas,

F-59650 Villenveuve d’Ascq, France
FR

mohamed.ghazel@ifsttar.fr

Kais Klai
LIPN, CNRS UMR 7030,

Univ. Paris 13, Sorbonne Paris Cité,

FR
kais.klai@lipn.univ-paris13.fr

In this paper, an efficient approach to verify diagnosability of discrete-event systems is proposed. The
approach consists in constructing a hybrid diagnoser based on the symbolic observation graph (SOG), which
is a technique that combines symbolic and enumerative representations in order to build a deterministic
observer from a partially observed model. The construction of the diagnoser as well as the verification of
diagnosability are performed simultaneously on-the-fly, which can considerably reduce the generated state
space of the diagnoser and thus the overall running time. Furthermore, the proposed approach provides
a heuristic strategy in order to converge fast into the necessary part, of the diagnoser, for analysing
diagnosability.

Discrete-Event Systems, Diagnosability Analysis, Symbolic Observer Graph, On-the-Fly Verification.

1. INTRODUCTION

In automated monitoring and fault diagnosis of
complex dynamic systems, one of the central tasks
is to detect and identify the occurrence of failures
as early as possible. This task has become an
active research area in recent years (Zaytoon and
Lafortune 2013). From the theoretical point of view
and at a high level of abstraction, Discrete-Event
Systems (DESs) are more suitable for performing
diagnosis analysis on complex systems (Cassandras
and Lafortune 2007).

One of the main issues in diagnosis activity that
must be addressed is diagnosability investigation.
Analysing diagnosability of a system intends to
determine accurately whether any predetermined
failure or class of failures can be detected and
identified within a finite delay following its occurrence
(Sampath et al. 1995).

Diagnosability verification has received considerable
attention since the seminal paper by (Sampath
et al. 1995), which provides a basic concept and
a formal definition of diagnosability analysis and
fault diagnosis of DESs that were adopted and

further developed later. In this paper, (Sampath et al.
1995), the original definition of diagnosability was
introduced in the language context. A systematic
method to check diagnosability based on a dedicated
deterministic version of the model derived from the
original system, a so-called diagnoser, was also
provided. It consists of a specific observer of the
system associated with a labelling function that
attributes to each state (or macro-state), in this
observer, a label indicating whether the state is
reached by a faulty execution or not, i.e. an execution
where some particular unobservable events, called
faults, have occurred or not.

Other automata-based approaches (Jiang et al.
2001; Yoo and Lafortune 2002), aiming to reduce
computational complexity have been then proposed.
In (Yoo and Lafortune 2002), a polynomial-time
algorithm for checking diagnosability based on
a structure called verifier is adopted. In (Jiang
et al. 2001), an algorithm based on the twin plant
structure (a parallel composition of the investigated
automaton with itself) is proposed. Reformulations
of these works in model-checking framework were
first proposed in (Cimatti et al. 2003) and extended
in (Boussif and Ghazel 2015). The goal is to check

1

VECOS 2015 - 9th Workshop on Verification and Evaluation of Computer and Communication Systems
Bucarest - Roumanie 10 & 11/09/2015

diagnosability property in the same way as to check
any safety property.

Furthermore, some works on diagnosability of
DESs turned to Petri nets (PNs) formalism,
benefiting from the mathematical and graphical
representations capability and the well-developed
theory underlying PNs (Peterson 1981). (Ushio
et al. 1998) extended Sampath’s study to systems
modelled by PNs with the assumption that some
places are observables whereas all of the transitions
are unobservable. A diagnoser is constructed from
the reachability graph. In (Wen and Li 2005),
the authors proposed a sufficient condition for
testing diagnosability by checking the structure
of T -invariants of a PN. In (Cabasino et al.
2009) the modified basis reachability graph (MBRG)
and basis reachability diagnoser (BRD), which
provide a compact representation of the reachability
graph, were developed. In (Basile et al. 2012), an
approach for checking diagnosability by quantifying
the finite delay of diagnosability (the so-called K-
diagnosability) was proposed by using the integer
linear programming (ILP) technique. A structure
called verifier net (VN) was introduced in (Cabasino
et al. 2014) to deal with diagnosability for both
bounded and unbounded PNs. Recently, (Liu et al.
2014a) has proposed an on-the-fly and incremental
diagnosis technique to construct a diagnoser from a
bounded PN in order to verify diagnosability and K-
diagnosability properties.

To get a general overview on the literature pertaining
to diagnosis of DESs, the reader can refer to the
recent survey in (Zaytoon and Lafortune 2013),
where theoretical and practical issues, tools and
other issues in relation with diagnosis are discussed.

The challenge of analysing diagnosability is the
combinatorial explosion problem that appears during
the building of the intermediate models (diagnoser,
verifier, twin plant, MBRG, etc.). This is due to the
high complexity of these constructed models and to
the generation of the whole state-space which may
have considerable time and memory cost.

To partially overcome this problem, we propose,
in this paper, an efficient approach to construct
a hybrid diagnoser on-the-fly, in the sense of
combining enumerative and symbolic techniques.
The contributions of this paper are twofold:

1. We provide a behavioural diagnoser based
on the Symbolic Observation Graph (Haddad
et al. 2004) which is an efficient binary
decision diagram (BDD) based abstraction of
the model state space. Thus, macro-states of
the diagnoser will be compacted using BDDs

while transitions between macro-states are
represented by enumerate observable events.

2. We design an appropriate algorithm, for
simultaneously constructing the diagnoser and
checking diagnosability on-the-fly. Actually, the
verification process is stopped (only a part
of the diagnoser is built) as soon as the
diagnosability is proven to be unsatisfied,
which can considerably reduce the generated
state space of the diagnoser. Furthermore,
the proposed algorithm is endowed with a
heuristic strategy in order to converge fast
into the necessary part of the diagnoser for
diagnosability analysis.

The proposed work is related to the CARONTE
FP7 project that focussing on the security of land
transportation systems. In particular, the technique
discussed here can be used to tackle, especially,
cyber attacks which may target railway operation
management systems.

The paper is structured as follows. In Section 2,
we introduce the basic background needed to deal
with diagnosability and to develop our approach. In
Section 3, we recall the notion of diagnosability as
well as the original diagnoser approach. Section 4 is
devoted to discuss the Symbolic Observation Graph
adapted to the context of this paper. In Section 5,
the verification approach is sketched out then an on-
the-fly algorithm based on the SOG is presented.
Section 6 discusses the pertinent existing work in
relation with the present work. Finally, conclusion
remarks and future research directions are given in
Section 7.

2. PRELIMINARIES

We first recall some standard notations that will be
used in the sequel. Let Σ be a finite alphabet of
events (actions). A string is a finite sequence of
events in Σ. ε denotes the empty string. Given a
string s, the length of s is denoted by |s|. The set
of all strings formed by events in Σ is denoted by Σ∗.
Any subset of Σ∗ is called a language. Given a string
s ∈ L, L/s , {t ∈ Σ∗|s.t ∈ L} is called the post-
language of L after s and defined as L/s. L is said
to be extension-closed when L.Σ∗ = L.

The approach introduced in this paper applies
to discrete-events systems modelled by Labelled
Transitions Systems (LTSs for short). The formal
definition of LTS is as follows.

Definition 1 (LTS): An LTS over Σ is defined by a
4-tuple 〈Q,Σ,→, q0〉, where:

• Q is a finite set of states;

• Σ is a finite set of events;

• →⊆ Q× Σ×Q is the transition relation;

• q0 ∈ Q is the initial state.

In the remainder of this section, we consider a given
LTS G = 〈Q,Σ,→, q0〉. For q, q′ ∈ Q and σ ∈ Σ, we
denote q σ−→ q′ , (q, σ, q′) ∈→. q → means that ∃q′ ∈
Q : q

σ−→ q′. If s = σ1, σ2, . . . , σn is a string (sequence
of events), s̄ denotes the set of actions occurring in s.
Moreover, q s−→ q′ denotes that ∃q1, q2, . . . , qn−1 ∈ Q
such that, q σ1−→ q1

σ2−→ . . . qn−1
σn−−→ q′. q ∗−→ q′

denotes that q′ is reachable from q (i.e. q s−→ q′ for
some s ∈ Σ∗), and q ∗−→E q′ holds if s̄ ⊆ E.

We denote by Enable(q) the set of events σ s.t. q σ−→,
for a set of states Q′ ⊆ Q, EnableE(Q′) denote the
set of enabled events from the set of states Q′, i.e.
Enable(Q′) denotes

⋃
q∈Q′Enable(q).

An execution from the initial state q0 of an LTS G is
a finite sequence of transitions π = q0

σ1−→ q1 . . .
σn−−→

qn. The event-trace of π, denoted by Tr(π), is the
sequence of events σ1, . . . , σn, π[i] stands for the
prefix of π truncated at state qi, i.e., π[i] = q0

σ1−→
q1 . . .

σi−→ qi and last(π) represents the last state of
π. The set of finite executions of LTSG from the initial
state q0 is denoted by Runs(G). The behaviour of G
is described by its language L(G) = {s ∈ Σ∗|q0

s−→}.

As we are interested in diagnosis issues, partial
observation plays a central role. In this regard, some
events in Σ are observable, i.e. their occurrence can
be observed, while the rest are unobservable. Thus,
the event set Σ can be partitioned as Σ = Σo

⊎
Σu,

where Σo denotes the set of observable events and
Σu the set of unobservable events. To reflect the
limitation on observation, we define the projection
function P : Σ∗ → Σ∗o. In the usual manner, P (σ) = σ
for σ ∈ Σo; P (σ) = ε for σ ∈ Σu, and P (sσ) =
P (s)P (σ), where s ∈ Σ∗, σ ∈ Σ. Thus, P simply
erases the unobservable events in any event-trace.
The inverse projection operation P−1

L is defined by
P−1
L (y) = {s ∈ L(G) : P (s) = y}. Any two executions
π and π′ are called indistinguishable with respect to
the projection function P if they can generate the
same observed event-trace. With a slight abuse of
notation, we write P (π) = P (π′) if π and π′ are
indistinguishable.

In the context of fault diagnosis, let Σf ⊆ Σu
denote the set of failure events. They are usually
represented using unobservable events, since their

detection and diagnosis would be trivial if they were
observable. We partition the set of failure events into
disjoint failure classes Σf = Σf1

⊎
Σf2

⊎
· · ·

⊎
Σfm ,

with Σfi denotes the failure class fi.

3. DIAGNOSABILITY ANALYSIS

In this work, only diagnosability analysis of
permanent faults is considered. Once a fault has
occurred, the system remains irreparably faulty. We
assume that the LTS G under consideration satisfies
the following two assumptions:

1. The language generated by G is live, i.e. there
is an executable transition from any state of the
system.

2. The LTS G is finite, in term of the state space,
and does not contain cycles formed only by
unobservable events.

3.1. Definition of diagnosability

Diagnosability is an important property in the
monitoring and fault diagnosis activities. In simple
terms, it refers to the ability to infer accurately,
from a partially observed execution, about the
faulty behaviour within a finite delay after possible
occurrences of faults. The original definition of
diagnosability, introduced in the seminal work of
(Sampath et al. 1995) is recalled in the following.

Definition 2 (diagnosability (Sampath et al. 1995))
A prefix-closed and live language L is said to be

diagnosable with respect to the projection function P
and with respect to a failure class of faults Σf if the
following holds

(∃ni ∈ N) [∀s ∈ Ψ(Σf)] (∀t ∈ L/s) [|t| ≥ ni ⇒ D]

where the diagnosability condition D is

ω ∈ P−1[P (s.t)]⇒ Σf ∈ ω.

with Ψ(Σf) is the set of finite sequences that
terminate with a faulty event from Σf .

The above definition means the following. Let s be
any sequence generated by the LTSG that ends with
a failure event from Σf , and let t be any sufficiently
long continuation of s. Condition D then requires that
every sequence ω belonging to the language that
produces the same observable trace as sequence
s.t (P (ω) = P (s.t)) must hold a failure event from
Σf . In other terms, diagnosability requires that every
failure event leads to observations distinct enough to
identify the failure type within a finite delay.

3.2. Verification of diagnosability

In order to analyse diagnosability, (Sampath
et al. 1995) has proposed a systematic approach
that consists in building a specific model called
diagnoser. It is a deterministic automaton whose
transitions correspond to the observable events of
the system and whose states are estimation system
state associated with labels to indicate if a state is
reached by an observable trace containing a faulty
event or not.

Definition 3 (Diagnoser (Sampath et al. 1995))

Let G = 〈Q,Σ,→, q0〉 be an LTS to be diagnosed.
A diagnoser of G is a deterministic LTS Gd =
〈X ,Σo,→d,X0〉 associated with a tagging function
Diag : X → 24, with 4 = {N,F} (for only one class
of failures). with N means normal and F means
faulty.

Each diagnoser state x has the form x =
{(q1, l1), . . . , (qn, ln)}, with qi ∈ Q and li ∈ 4. If
∀i = 1, . . . , n, we have li = N (resp. li = F), the
diagnoser state x is said to be N -certain (resp. F -
certain), otherwise F -uncertain state.

For more details about the formal framework and
algorithmic procedure of constructing the diagnoser,
we refer the reader to the original paper (Sampath
et al. 1995).

We define an f -indeterminate cycle in a diagnoser
to be a cycle composed exclusively of F -uncertain
diagnoser states and corresponding to the presence
of two cycling traces, in the system, that sharing the
same observable events, such that the faulty event
f from the class Σf occurs in the 1st trace but not
in the 2nd. The notion of f -indeterminate cycle is
very important, since it helps to give a necessary and
sufficient condition for diagnosability analysis.

Theorem 1 ((Sampath et al. 1995))

A system modelled by an LTS G is diagnosable if
and only if there are no f -indeterminate cycles in its
diagnoser Gd for any class of faults Σf .

3.3. Example

Let us consider the LTS G in Figure 1 (adapted from
(Sampath et al. 1995)). The set of observable events
is Σo = {a, b, d, t} and the set of unobservable events
is Σu = {u, f} with f a faulty event in Σf .

The diagnoser Gd corresponding to the LTS G
is depicted in Figure 2. There exists a cycle
of f -uncertain states composed of {3F, 7N} and
{5F, 10F, 12N} w.r.t. the observable sequence (bd)∗.

1start

2 3 4 5

7

8 9 10 6

11 12

f

a b u

d

ta
f

b u
t

b u

d

Figure 1: The LTS G

This cycle corresponds to two cycles in the LTS
G. The 1st one, which is composed of states
{3}, {4}, {5} w.r.t. the sequence (bud)∗, which is
reachable from the faulty sequence fa. The 2nd

cycle, which is composed of states {7}, {11}, {12}
and reached by the fault-free sequence a. Thus
we can infer, according to Theorem 1, that there
exists an f -indeterminate cycle in the diagnoser and
consequently the LTS G is not diagnosable w.r.t. to
faulty class Σf and the projection function P .

{1N}start {3F, 7N}

{5F, 10F, 12N}{6F}

a

bd

t

t

Figure 2: Diagnoser Gd of the LTS G

It is worth noticing that the diagnoser can be used
either off-line to check diagnosability or on-the-fly by
connecting it to the system in order to provide on-line
diagnosis upon the occurrence of observable events.

4. SYMBOLIC OBSERVATION GRAPH (SOG)

In this section, we present the so-called symbolic
observation graph (Haddad et al. 2004) and we
show how it is used to abstract LTS behaviour. In
(Haddad et al. 2004), the authors have introduced
the SOG as an abstraction of the reachability
graph of concurrent systems and showed that the
verification of an event-based formula of LTL/X on
the SOG is equivalent to the verification on the
original reachability graph. The construction of the
SOG is guided by the set of observable events.

The SOG is defined as a graph where each node
is a set of states linked by unobserved events and
each arc is labelled with an observable event. The
SOG nodes are called aggregates and may be
represented and handled efficiently using decision
diagram techniques (BDDs, see for instance (Bryant
1992)). The SOG is said to be hybrid since it is
both an explicit and a symbolic structure: the graph
is represented explicitly while the nodes are sets of
states encoded and managed symbolically. Despite
the exponential theoretical complexity of the size of
a SOG, it has a very moderate size in practice (see
(Haddad et al. 2004; Klai and Petrucci 2008); (Klai
and Poitrenaud 2008) for experimental results).

In the following, we first define what an aggregate
is formally, before providing a formal definition of a
SOG associated with an LTS.

Definition 4 (aggregate)

Consider the LTS G = 〈Q,Σ,→, q0〉 with Σ =
Σo

⊎
Σu. An aggregate a is a non empty set of states

satisfying: q ∈ a ⇔ SaturateΣu
(q) ⊆ a; where

SaturateΣu(q) = {q′ ∈ Q|q ∗−→Σu q
′}.

In the following, SaturateΣu
is extended to

sets of states as follows: SaturateΣu
(Q′) =⋃

q∈Q′ SaturateΣu
(q).

Definition 5 (symbolic observation graph)

The deterministic symbolic observation graph
SOG(G) associated with an LTS G is an LTS
〈A,Σo,→Σo , a0〉 where:

1. A is a finite set of aggregates such that:

a) There is an aggregate a0 ∈ A s.t. a0 =
SaturateΣu

(q0);

b) For each a ∈ A and for each σ ∈ Σo, if
∃q ∈ a, q′ /∈ a: q σ−→ q′ then Saturate({q′ /∈
a|∃q ∈ a, q

σ−→ q′}) equals a′ for some
aggregate a′ and (a, σ, a′) ∈→Σo

;

2. →Σo
⊆ A × Σo × A is the transition relation,

obtained by applying 1.b).

The SOG can be constructed by starting with
the initial aggregate a0 and iteratively adding new
aggregates as long as the condition of 1.b) holds
(see (Haddad et al. 2004) for a construction
algorithm).

5. USING SOGS TO ANALYSE
DIAGNOSABILITY

In this section, we discuss how the SOG is used in
order to build a hybrid diagnoser and we provide an

on-the-fly algorithm to construct the hybrid diagnoser
and to verify diagnosability simultaneously.

The underlying idea behind using SOG for diag-
nosability analysis is basically to tackle the state
explosion phenomenon raised when building the
diagnoser. It is worth recalling here that the Sam-
path’s diagnoser is computed with an exponential
complexity regarding the state space of the model
(Sampath et al. 1995). Obviously, this represents a
serious limit of the diagnoser based approach when
large models are handled.

Using the results of Section 4, we would use the
SOG to perform a hybrid diagnoser construction.
In order to capture the feature of analysing
diagnosability which is tracking the ambiguous
behaviour of the system, i.e. normal and faulty
executions which share the same observable events,
we modify the structure of the aggregate, introduced
in Definition 4, by splitting the set of states (managed
using BDDs) into tow sets of states in the same
aggregate: one set contains normal states, i.e.
states reachable by fault-free sequences, and the
other contains faulty states, i.e. states reachable by
sequences containing one (or more) faulty events.
Both of sets are represented and managed using
BDDs.

Figure 3 depicts the general form of a diagnoser
aggregate where two BDDs represent two sets of
states; BDDn represents the set of normal states,
while BDDf represents the set of faulty ones. The
set of faulty states may be reached from the set of
normal states by the occurrence of a faulty event,
and thus a faulty transition form BDDn to BDDf

may exist in any diagnoser aggregate. Depending on
the executed behaviour, i.e. the executed sequence,
the diagnoser aggregate may contain the two sets
of states (BDDs) or only one set. If a diagnoser
aggregate contains only BDDn (resp. BDDf), it
is called an N -certain (resp. F -certain) diagnoser
aggregate, else it is an F -uncertain diagnoser
aggregate in the same way as in the classic
diagnoser (Definition 3).

The dashed arrows show the different possibilities
that a transition from a diagnoser aggregate can
produce. For instance, observable event b enabled
by the diagnoser aggregate can be enabled from
both normal and faulty sets or from only one set.
This feature will be considered during the on-the-fly
construction of our hybrid diagnoser, since we do not
need to construct the diagnoser aggregates reached
through an observable event from only the faulty set
of an aggregate. Moreover, this information will be
used to establish some heuristics that prioritizing the
branches to be followed while building the hybrid
diagnoser.

Figure 3: A diagnoser aggregate

Definition 6 (diagnoser aggregate)

Consider an LTSG = 〈Q,Σ,→, q0〉 with Σ = Σo
⊎

Σu
and Σf ⊂ Σu. A diagnoser aggregate a = 〈Qn, Qf 〉
is a non empty set of states satisfying:

1. ∀q ∈ Q s.t. q0
∗f∗−−→ q (i.e. q is reachable by a

faulty sequence): q ∈ a ⇔ SaturateΣu
(q) ⊆

a.Qf ;

2. ∀q ∈ Q s.t. q0
∗−→Σ\Σf

q (i.e. q is
reachable by a fault-free sequence): q ∈
a ⇔ Q′ = SaturateΣu\Σf

(q) ⊆ a.Qn ∧
SaturateΣu(Img(Q′, f) ⊆ a.Qf .

3. ∀q, q′ ∈ a,∃s, s′ ∈ Σ∗, s.t. q0
s−→ q, q0

s′−→ q′, and
P (s) = P (s′)

with SaturateΣu\Σf
(q)={q′ ∈ Q|q →Σu\Σf

q′}, and

Img(Q′, f)={q′|q ∈ Q′ : q
f−→ q′}, i.e. it returns

the set of immediate successors of states in Q′

through the occurrence of event f .

To simplify the notation, we denote by a.Qn (resp.
a.Qf) the set of normal (resp. faulty) states in an
aggregate a.

5.1. Constructing the hybrid diagnoser

We now introduce the hybrid diagnoser which is a
modified SOG built from the LTS model G.

Definition 7 (hybrid diagnoser)

The hybrid diagnoser DSOG(G) associated with an
LTS G is a modified SOG 〈Γ,Σo,→SOG,Γ0〉.

1. Γ is a finite set of diagnoser aggregates.

2. Γ0 is the initial diagnoser aggregate with;

a) Γ0.Qn = SaturateΣu\Σf
(q0);

b) Γ0.Qf =SaturateΣu(Img(Γ0.Qn, f)).

3. →SOG⊆ Γ × Σo × Γ is the transition relation,
defined as below,

∀a, a′ ∈ Γ, σ ∈ Σo s.t. σ ∈ Enable(a.Qn∪a.Qf):

a
σ−→SOG a′ ⇔ a′.Qn= SaturateΣu\Σf

(Img(a.Qn, σ))

∧ a′.Qf=SaturateΣu
(Img(a′.Qn, f) ∪

Img(a.Qf, σ))

To summarize, the hybrid diagnoser DSOG(G) is
constructed as follows: let the current aggregate of
the diagnoser be a, and the next observed event be
σ. The target diagnoser aggregate a′ of the hybrid
diagnoser is computed following these rules:

1. If σ ∈ Enable(a.Qn) ∩ Enable(a.Qf) then:

a. a′.Qn = SaturateΣu\Σf
(Img(a.Qn, σ)).

b. a′.Qf =
SaturateΣu(Img(a′.Qn, f) ∪

Img(a.Qf, σ)).

2. If σ ∈ Enable(a.Qn)\Enable(a.Qf) then:

a. a′.Qn = SaturateΣu\Σf
(Img(a.Qn, σ)).

b. a′.Qf = SaturateΣu(Img(a′.Qn, f)).

3. If σ ∈ Enable(a.Qf)\Enable(a.Qn) then:

a. a′.Qn = ∅.
b. a′.Qf = SaturateΣu

(Img(a.Qf , σ)).

These rules preserve a specific fault propagation.
From an F -uncertain diagnoser aggregate, we can
reach either another F -uncertain, an F -normal
or an F -certain diagnoser aggregate, from an N -
certain diagnoser aggregate, we can reach either
another N -certain diagnoser aggregate or an F -
uncertain one, and finally from an F -certian
diagnoser aggregate, we can reach only another F -
certain diagnoser aggregate, which depicts exactly
the hypothesis of permanent failures. Figure 4
illustrates these points.

N -certain F -uncertain

F -certain

Figure 4: Fault propagation on the hybrid diagnoser

Example 1 Figure 5 represents the hybrid diag-
noser associated with the LTS of Example 1, de-
picted in Figure 1. As it is intended to construct
the hybrid diagnoser on-the-fly, it is more convenient
to represent the hybrid diagnoser as a tree-like
structure.

The initial aggregate composed of the initial state
of the LTS and the state 2 reachable from state
1 by the occurrence of faulty event f . Both of the
diagnoser aggregates (2) and (3) contain two sets

of states (each one is represented by a BDD).
After the occurrence of event d we reach diagnoser
aggregate (4), which is the same as diagnoser
aggregate (2) thus, there exists a cycle on the
hybrid diagnoser composed of aggregates (2) and
(3) by executing the observable event sequence
(bd)∗. Diagnoser aggregate (5) is reached after the
occurrence of event t and it contains only the set
of faulty states thus, it is an F -certain diagnoser
aggregate. As F -certain diagnoser aggregates are
not necessary to analyse diagnosability, in on-the-
fly constructing of the hybrid diagnoser, we do
not construct them. Indeed, one knows that all
the subsequent aggregates will be F -certain as
well. Besides, computing such aggregates is not
necessary for online diagnosis.

Figure 5: Hybrid diagnoser of the LTS in Figure 1.

We recall that our goal is to avoid the state-explosion
problem, not only by providing this compact form
(SOGs) to build the hybrid diagnoser but also by
constructing the hybrid diagnoser on-the-fly and
verifying diagnosability simultaneously. Constructing
the hybrid diagnoser on-the-fly serves to avoid
generating the whole state space of the diagnoser
even if the system is diagnosable, i.e. as we deal
with permanent faults, we do not need to construct
the part, of the hybrid diagnoser, containing only F -
certain diagnoser aggregates since such a part is not
necessary for analysing diagnosability (see (Liu et al.
2014a) for more details).

Hereafter, we provide the SOG-based algorithm
needed for on-the-fly construction of the hybrid
diagnoser. The following function and data structures
are used:

• Img(S, t), as described previously, returns the
set of immediate successors of the states of a
set S through the occurrence of event t.

• OBDDs (Ordered Binary Decision Diagram)
are used to represent the sets of states
belonging to an aggregate, i.e. the set of
normal states and the set of faulty states in
an aggregate. This task is performed by the
function Reduce().

• The hybrid diagnoser is represented by a
standard graph representation with a set of
vertices, namely V , and a set of edges, namely
E, connecting these aggregates and labelled
with observable events.

• EnableObs(S) returns the set of observed
events that are enabled by at least one of the
states in set S.

• SaturateΣi
(), as defined before, computes the

various states reached through events from set
Σi.

• Stack is an ordered set of 5-uplet, which
contains two sets of states (Sn, Sf) and three
sets of events (Evtf , Evtn, Evt) with Evt =
(Evtn ∪ Evtf)\(Evtn ∩ Evtf).

• IsUncertain() is a function that returns
Boolean value (true if the encountered cycle
is composed of only f -uncertain diagnoser
aggregates and false otherwise).

• IsIndeterminate(): is a function that returns
Boolean value (true if the existing cycle is an f -
indeterminate cycle and faulse otherwise. This
function will be discussed later.

• RemoveLast(S) is an operation that removes,
then returns, the last event of a set S.

• For the sake of simplicity, we consider that Σf
contains only one faulty event, generalization
to a set of faulty events is straightforward.

The initialization step (lines 1-11) serves to compute
the initial diagnoser aggregate, handle it efficiently
using OBDD (function Reduce()), and push it,
associated with its enabled observable events, into
the stack. The construction of the hybrid diagnoser
is performed using a depth first exploration: As long
as the stack in not empty, a new observable event t,
enabled by the diagnoser aggregate a at the top of
the stack, is removed from the set of enabled events
(Evt) and then processed. If such an event does
not exist, the corresponding aggregate is poped from
the stack (lines 13-15). Otherwise, if the set Evtn of
events enabled by the set of normal states Sn of the
diagnoser aggregate a, is empty then the aggregate
a is poped from the stack (lines 16 and 18). This step
serves to avoid the construction of the subsequent
F -certain diagnoser aggregates, i.e. since this part

of the hybrid diagnoser is not necessary to analyse
diagnosability.

The computation of the new aggregate a′, reachable
through an observable event from aggregate a, is
completed by saturation on the unobservable events
(lines 20-26). If a′ has already been encountered
(i.e. existence of a cycle) then the hybrid diagnoser
is updated by adding a new edge (lines 27-28)
and if the cycle is uncertain (i.e., contains only
f -uncertain diagnoser aggregates), the function
IsIndeterminate() is launched in order to detect
whether there exists an f -indeterminate cycle or
not (line 29-32). If the cycle is an f -indeterminate
one then we output that the model is undiagnosable
and we stop the diagnoser construction. Otherwise,
construction is continued, a′ with its enabled
observable events are pushed into the stack, and
so on. When the stack is empty, then the necessary
part of the diagnoser, for analysing diagnosability,
is completely built, we output that the model is
diagnosable.

As mentioned in Section 3, diagnosability analysis
is performed by searching two infinite executions
that share the same observed event-sequences
such that one sequence contains a faulty event
and not the other one. That means to search an
f -indeterminate cycle in the diagnoser (Sampath
et al. 1995). The same procedure is used in our
case, i.e. searching f -indeterminate cycles in the
hybrid diagnoser. Two steps are needed to check
the existence of f -indeterminate cycles when a cycle
of F -uncertain diagnoser aggregate is found in the
hybrid diagnoser:

1. Extract the observed event-sequence that
leads to this cycle (of F -uncertain diagnoser
aggregates).

2. Check if this observed event-sequence corre-
sponds to two cycle in the LTS model. One
cycle is reached by a fault-free event-sequence
and the other one is reached by a faulty event-
sequence.

This task is performed by function
IsIndeterminate() in the Algorithm 1 (line 28)
which calls a specific function (path exists()) from
the digraph library (Rushton 2012). (digraph is
a library dedicated for searching cycles from the
system model).

We emphasize that verification of the existence of
f -indeterminate cycles is performed on-the-fly in
parallel to the process of constructing the hybrid
diagnoser, i.e. the process of constructing the hybrid
diagnoser runs and when a cycle of F -uncertain
diagnoser aggregates is found, we check whether

Algorithm 1 On-the-fly algorithm to construct the
hybrid diagnoser
DiagSOG (LTS,Σo,Σu, f);
Diagnoser aggregate a, a′;
Set of vertices V ;
Set of edges E;
Set of Events Evtn, Evtf , Evt;
Set of states Sn, Sf , S′n, S′f ;
Stack st = ∅;

1: Sn = SaturateΣu\f (q0);
2: Sf= Img(Sn, f);
3: if (Sf 6= ∅) then
4: Sf = SaturateΣu

(Sf);
5: end if
6: a = 〈Sn, Sf 〉;
7: Reduce (a,Σu);
8: V = a; E = ∅;
9: Evtn = EnableObs(Sn);

10: Evtf = EnableObs(Sf);
11: st.Push(〈Sn, Sf , Evtn, Evtf , Evt〉;
12: while (st 6= ∅) do
13: 〈Sn, Sf , Evtn, Evtf , Evt〉 = st.Top();
14: if Evt = ∅ then
15: 〈S′n, S′f , Evtn, Evtf , Evt〉 = st.Pop();
16: else
17: if (Evtn = ∅ then
18: 〈S′n, S′f , Evtn, Evtf , Evt〉 = st.Pop();
19: else
20: t = RemoveLast(Evt);
21: S′n = Img(Sn, t);
22: S′n = SaturateΣu\f (S′n);
23: S′f = Img(Sf , t) ∪ Img(S′n, f);
24: S′n = SaturateΣu(S′f);
25: a′ = 〈S′n, S′f 〉;
26: Reduce (a′,Σu);
27: if (∃w ∈ V | w = a′); then
28: E = E ∪ a t−→SOG w;
29: if (IsUncertain()) then
30: if (IsIndeterminate()) then
31: return UNDIAGNOSABLE;
32: end if
33: end if
34: else
35: V = V ∪ {a′};
36: E = E ∪ a t−→SOG a′;
37: Evtn = EnableObs(S′n);
38: Evtf = EnableObs(S′f ;
39: st.Push〈S′n, S′f , Evtn, Evtf , Evt〉;
40: end if
41: end if
42: end if
43: end while
44: return DIAGNOSABLE;

this cycle corresponds to an f -indeterminate cycle
or not. If it is the case (i.e. the cycle is an f -
indeterminate cycle), then the whole process is
stopped and a negative verdict is emitted regarding
diagnosability, else the building process is continued.

Example 2 Let us take again LTS G of Figure 1 and
its hybrid diagnoser (Figure 5). We have a cycle, in
the hybrid diagnoser, composed of only F -uncertain
diagnoser aggregates (2)
 (3). Once the algorithm
of construction arrives at this cycle, we check if
this cycle is an f -indeterminate one or not, before
continuing the construction process. The cycle of
f -uncertain diagnoser aggregates (2)
 (3) is
reached by executing the observed event-sequence
a(bd)∗.

In LTS G, the observed event-sequence a(bd)∗

corresponds to two event-sequences:

1. The faulty sequence fa(bud)∗ that leads to a
cycle composed of states 3, 4, and 5.

2. The fault-free sequence a(bud)∗ that leads to a
cycle composed of states 7, 11, 12.

Thus, we can infer that the cycle, in the hybrid
diagnoser, composed of diagnoser aggregates (2)
and (3) is an f -indeterminate cycle. Thus, we stop
constructing the hybrid diagnoser and we output that
LTS G is non diagnosable with respect the fault f .

5.2. A heuristic strategy to improve the building
algorithm

Our algorithm for constructing the hybrid diagnoser
is based on a depth-first search (DFS) to investigate
the state space (diagnoser aggregate in the devel-
oped tree-like structures) execution by execution.
Generally, no rules are defined to select the execu-
tion to be investigated first, i.e. the order of execution
exploring is arbitrary. However, as we deal with
diagnosability analysis, in our case, the diagnoser
aggregate structure provides some information that
can be exploited to direct the search in such a way
as to increase the chances of quickly obtaining a di-
agnosability verdict by exploring the most promising
executions at first.

When we deal with diagnosability analysis, the
interesting executions of the system are those which
share the same observed event-sequence such
that some of them contain a faulty event and the
others are fault-free. This is reduced to track the
observed event-sequences, in the hybrid diagnoser,
leading to F -uncertain aggregates. Generally, there
exists three types of enabled transitions from any
aggregate, as depicted in Figure 6.

1. Transitions enabled only by states from the
faulty set (Figure 6.(a)). As said before, this
type of branches will not be explored.

2. Transitions enabled only by states from the
normal set (Figure 6.(b)). In this case, we need
to continue the construction since other faults
may occur in the future.

3. Transitions enabled from both normal and
faulty sets (Figure 6.(c)). In this case, the
reached diagnoser aggregate will be certainly
F -uncertain.

Figure 6: Types of enabled transitions from an
aggregate

This last type of transitions is the most-promising to
find an f -indeterminate cycle since we know, a priori,
that the new diagnoser aggregate will be certainly an
f -uncertain aggregate, contrary to the other above
cases. Thus, it will be the first to be explored in order
to direct the construction of the hybrid diagnoser and
to potentially speed up the verification process. We
note that in the actual version of the algorithm, this
heuristic strategy is not implemented.

6. RELATED WORKS

In the literature, there are several diagnoser-based
approaches for analysing diagnosability inspired
from the seminal work of (Sampath et al. 1995). In
(Zad et al. 2003) a state-based approach for on-line
passive fault diagnosis was introduced. In the state-
based approach, it is assumed that the set of states
of the system model can be partitioned according
to the faulty or normal condition of the system. In
this work, a specific diagnoser is constructed as
a finite state machine that takes information from
the system (i.e. sequences of inputs/outputs) and
generates an estimate of the condition of the system
(i.e., faulty or normal). Establishing of this diagnoser
has exponential time complexity. However, a model
reduction scheme with polynomial time complexity is
proposed to reduce the computational complexity of
the procedure.

(Schumann et al. 2004) propose a symbolic
framework based on binary decision diagrams

for the diagnosis of DESs. A symbolic version
of Sampath’s diagnoser was proposed, while
requiring considerably lower space and time than
the enumerative approach of (Sampath et al.
1995). Recently, (Liu et al. 2014a) propose an
on-the-fly algorithm for constructing and checking
diagnosability of discrete-event systems modelled by
LPNs using an enumerative approach. The goal is
to avoid the construction of the whole state-space
of the diagnoser especially when the system is not
diagnosable. The approach was experimented over
a Petri net benchmark and the obtained results
were promising compared to those of Sampath’s
approach. A tool, called OF-PENDA (Liu et al.
2014b), was developed based on this approach to
analyse diagnosability, K-diagnosability and Kmin-
diagnosability of systems, modelled by Labelled Petri
Nets.

The approach proposed in this paper, takes
advantage from these two last approaches (i.e.,
(Schumann et al. 2004) and (Liu et al. 2014a)) by
combining the symbolic representation of diagnoser
states and on-the-fly techniques for constructing the
hybrid diagnoser and verifying diagnosability. We
believe that this approach will improve efficiently
analysis of diagnosability in terms of runtime
and memory resources. We still need to apply
the approach on several benchmarks in order to
assess its efficiency. Indeed, determining analytical
complexity while considering the worst case is not
appropriate for such an on-the-fly approach.

7. CONCLUSION

In this work, we have developed an on-the-fly
approach for diagnosability analysis, based on a
hybrid diagnoser. The approach is based on the
symbolic observation graph (SOG), which is a
paradigm that combines symbolic and enumerative
representations in order to build a deterministic
observer from a partially observed model. The
approach aims to improve the efficiently in terms
of runtime and memory resources when analysing
diagnosability.

Several future directions are considered. First,
we wish to make experimentations over case-
studies in order to assess the efficiency and the
scalability of our approach and also to compare
the obtained results with those provided by other
existing approaches. Then, we will investigate
some other practical versions of diagnosability,
namely K-diagnosability and Kmin-diagnosability.
Finally, we intend to extend the proposed approach
for analysing diagnosability based on the verifier
approach by means of a non deterministic version
of the symbolic observation graph.

ACKNOWLEDGEMENT

This research project has been supported by the
European Commission under the 7th Framework
Programme through the CARONTE project -
Contract N: FP7-SEC-2013-606967

REFERENCES

J. Zaytoon and S. Lafortune. Overview of fault
diagnosis methods for discrete event systems.
Annual Reviews in Control, pages 308–320, 2013.

C. G. Cassandras and S. Lafortune. Introduction to
discrete event systems. Second Edition, Springer,
2007.

M. Sampath, R. Sengupta, and S. Lafortune.
Diagnosability of discrete-event systems. IEEE
Transactions on Automatic Control, pages 1555–
1575, 40(9), 1995.

S. Jiang, Z. Huang, V. Chandra, and R. Kumar.
A polynomial algorithm for testing diagnosability
of discrete-event systems. IEEE Transactions
on Automatic Control, pages 46(8), 1318–1321,
2001.

T. S. Yoo and S. Lafortune. Polynomial-time
verification of diagnosability of partially observed
discrete-event systems. IEEE Transactions on
Automatic Control, pages 47(9), 1491–1495,
2002.

A. Cimatti, C. Pecheur, and R. Cavada. Formal
verification of diagnosability via symbolic model
checking. Int. Joint Conference on Artificial
Intelligence, 2003.

A. Boussif and M. Ghazel. Diagnosability analysis
of input/output discrete event system using model
checking. The 5th International Workshop on
Dependable Control of Discrete Systems, 2015.

J. Peterson. Petri Net Theory and the Modeling of
Systems. Prentice Hall PTR, 1981.

T. Ushio, I. Onishi, and K. Okuda. Fault detection
based on Petri net models with faulty behaviors.
Systems, Man, and Cybernetics, pages 113–118,
1998.

Y. Wen and C. Li. A polynomial algorithm for
checking diagnosability of Petri nets. IEEE
International Conference on Systems, Man and
Cybernetics, 3:2542–2547, 2005.

M. P. Cabasino, A. Giua, S. Lafortune, and C. Seatzu.
Diagnosability analysis of bounded Petri nets.
Proceedings of the 48th IEEE Conference on
Decision and Control (CDC) held jointly with 28th
Chinese Control Conference, pages 1254–1260,
2009.

F. Basile, P. Chiacchio, and G. De Tommasi. On
k-diagnosability of Petri nets via integer linear
programming. Automatica, 48(9):2047–2058,
2012.

M. P. Cabasino, A. Giua, and C. Seatzu. Diagnosabil-
ity of discrete-event systems using labeled Petri
nets. IEEE Transactions on Automation Science
and Engineering, 11(1):144–153, 2014.

B. Liu, M. Ghazel, and A. Toguyéni. Toward an
efficient approach for diagnosability analysis of
des modeled by labeled petri nets. Proceeding of
the 13th European Control Conference, 2014a.

S. Haddad, J.-M. Ilié, K. Klai, and F. Wang. Design
and Evaluation of a Symbolic and Abstraction-
based Model Checker. 2nd International Sympo-
sium on Automated Technology for Verification and
Analysis (ATVA’04), pages 198–210, 2004.

R. E. Bryant. Symbolic boolean manipulation with
ordered binary-decision diagrams. ACM Comput.
Surv., 24(3):293–318, 1992.

K. Klai and L. Petrucci. Modular construction of the
symbolic observation graph. The 8th International
Conference on Application of concurrency to
System Design, pages 23–27, 2008.

K. Klai and D. Poitrenaud. MC-SOG: An LTL model
checker based on symbolic observation graphs.
Proceedings of the 29th International Conference
on Application and Theory of Petri Nets, pages
23–27, 2008.

A. Rushton. A directed graph conainer. http://
www.andyrhshton.co.un/programming/stlplus-
library-collection, 2012.

S. H. Zad, R .H. Kwong, and W. M. Wonham. Fault
diagnosis in discrete-event systems: Framework
and model reduction. IEEE Transactions on
Automatic Control, 48(7):1199–1212, 2003.

A. Schumann, Y. Pencole, and S. Thiebaux.
Diagnosis of discrete event systems using ordered
binary decision diagrams. 15th International
Workshop on Principles of Diagnosis, 2004.

B. Liu, M. Ghazel, and A. Toguyéni. OF-PENDA:
A software tool for fault diagnosis of discrete
event systems modeled by labeled petri nets.
International Worshop Petri Nets for Adaptive
Discrete-Event Control Systems, 2014b.

