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On the time evolution of Bernstein processes associated with a class of parabolic equations

In this article dedicated to the memory of Igor D. Chueshov, I …rst summarize in a few words the joint results that we obtained over a period of six years regarding the long-time behavior of solutions to a class of semilinear stochastic parabolic partial di¤erential equations. Then, as the beautiful interplay between partial di¤erential equations and probability theory always was close to Igor's heart, I present some new results concerning the time evolution of certain Markovian Bernstein processes naturally associated with a class of deterministic linear parabolic partial di¤erential equations. Particular instances of such processes are certain conditioned Ornstein-Uhlenbeck processes, generalizations of Bernstein bridges and Bernstein loops, whose laws may evolve in space in a non trivial way. Speci…cally, I examine in detail the time development of the probability of …nding such processes within two-dimensional geometric shapes exhibiting spherical symmetry. I also de…ne a Faedo-Galerkin scheme whose ultimate goal is to allow approximate computations with controlled error terms of the various probability distributions involved.

Introduction and outline

This article is a tribute to some of the works and achievements of our friend and colleague Igor D. Chueshov, who unfortunately and unexpectedly passed away on April 23rd, 2016. The qualitative analysis of the behavior of solutions to various stochastic partial di¤erential equations, henceforth SPDEs, was one of Igor's strong points. I have therefore deemed it appropriate to brie ‡y summarize here the results that he and I obtained in that area over a period stretching from 1998 to 2004. As far as the presentation of the many other facets of his activities is concerned, I am thus referring the reader to the other contributions in this volume.

When Igor and I …rst met in 1994 on the occasion of an international conference on SPDEs in Luminy, we set out to investigate the behavior of solutions to those stochastic parabolic equations which speci…cally occur in population dynamics, population genetics, nerve pulse propagation and related topics, given the fact that there were already a substantial number of works in those areas concerning the deterministic case (see, e.g., [START_REF] Bernfeld | Large-time asymptotic equivalence for a class of non-autonomous semilinear parabolic equations[END_REF], [START_REF] Vuillermot | Global exponential attractors for a class of almostperiodic parabolic equations in R N[END_REF] and the many references therein). But instead of starting up front with partial di¤erential equations driven by some kind of noise, we …rst considered a class of random parabolic initial-boundary value problems mainly for the sake of simpli…cation. Assuming then various statistical and dynamical properties such as those of the central limit theorem and the Ornstein-Uhlenbeck process for the lower-order coe¢cients of the equations, we eventually elucidated the ultimate behavior of the corresponding solution random …elds in [START_REF] Chueshov | Long-time behavior of solutions to a class of quasilinear parabolic equations with random coe¢ cients[END_REF]. In particular, we established the existence of a global attractor, determined its detailed structure and were able to compute the Lyapunov exponents explicitly in some cases. We then extended these results to the case of parabolic SPDEs driven by a homogeneous multiplicative white noise de…ned in Stratonovitch's sense in [START_REF] Chueshov | Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Stratonovitch's case[END_REF], investigated there various stability properties of the non-random global attractor and established the existence of a recurrent motion of sorts among its components. Furthermore, in [START_REF] Chueshov | Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Itô's case[END_REF] we analyzed the same type of equations as in [START_REF] Chueshov | Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Stratonovitch's case[END_REF] but with the noise de…ned in Itô's sense. In this way we were able to establish the existence and many properties of a random global attractor and excluded in particular the existence of any kind of recurrence phenomena, thereby obtaining radically different results than in [START_REF] Chueshov | Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Stratonovitch's case[END_REF]. The analysis carried out in [START_REF] Chueshov | Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Itô's case[END_REF] was further deepened in [START_REF] Bergé | On the behavior of solutions to certain parabolic SPDEs driven by Wiener processes[END_REF], where it was shown that the stabilization of the solution random …elds toward the global attractor is entirely controlled by their spatial average, thereby obtaining exchange of stability results particularly relevant to the description of certain migration phenomena in population dynamics. Finally, in [START_REF] Chueshov | Non-random invariant sets for some systems of parabolic stochastic partial di¤ erential equations[END_REF] we proved the existence of invariant sets under the ‡ow generated by certain systems of SPDEs including those of Lotka-Volterra and Landau-Ginzburg. But Igor's interests did not limit themselves to investigations of solutions to SPDEs as he was also genuinely interested in the many possible connections that exist between systems of di¤erential equations on the one hand, and the theory of random dynamical systems and stochastic processes on the other hand (see, e.g., [START_REF] Chueshov | Monotone Random Systems -Theory and Applications[END_REF]). This prompted me to present here some very recent and preliminary results concerning the time evolution of certain Bernstein processes naturally associated with a class of deterministic linear partial di¤erential equations. Accordingly, the remaining part of this article is organized as follows: In Section 2 I recall what a Bernstein process is, and state there a theorem that shows how to associate such a process with the two adjoint parabolic Cauchy problems

@ t u(x; t) = 1 2 4 x u(x; t) V (x) u(x; t); (x; t) 2 R d (0; T ] ; u(x; 0) = '(x) = N ' 0 (x); x 2 R d (1) 
and

@ t v(x; t) = 1 2 4 x v(x; t) V (x) v(x; t); (x; t) 2 R d [0; T ) ; v(x; T ) = (x) = N T (x); x 2 R d ; (2) 
where T > 0 is arbitrary and where 4 x stands for Laplace's operator with respect to the spatial variable. In these equations N > 0 is a normalization factor whose signi…cance I explain below. Moreover, V is real-valued while ' 0 and T are positive data which are assumed to be either Gaussian functions of the form

' 0 (x) = exp " jx a 0 j 2 2 0 # ; (3) 
T (x) = exp " jx a T j 2 2 T # (4) 
where 0;T > 0 and a 0;T 2 R d are arbitrary vectors with j:j the usual Euclidean norm, or

' 0 (x) = d Y j=1 1 jx j a 0;j j 0 _ 0 ; (5) 
T (x) = d Y j=1 1 jx j a T;j j T _ 0 : (6) 
In ( 5)-( 6), x j and a 0;T;j denote the j th component of x and a 0;T , respectively. Furthermore these initial-…nal conditions have localization properties which are more clear-cut than those of ( 3)-( 4) in that they vanish identically outside hypercubes in R d . The cases where

' 0 (x) = 0 (x) (7) 
with 0 the Dirac measure concentrated at the origin and T given by ( 4) or [START_REF] Chueshov | Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Stratonovitch's case[END_REF] are also considered. An important observation here is that (3)-( 4) and ( 5)-( 6) are not normalized as standard probability distributions, for the only normalization condition needed below involves ' 0 , T and N in a rather unexpected way which is inherently tied up with the construction of Bernstein processes. Finally, the following hypothesis is imposed regarding the potential function in (1)-( 2):

(H) The function V : R d 7 ! R is continuous, bounded from below and satis…es V (x) ! +1 as jxj ! +1.

An immediate consequence of this hypothesis is that the resolvent of the usual self-adjoint realization of the elliptic operator on the right-hand side of (1)-( 2) is compact in L 2 C R d , the usual Lebesgue space of all square integrable, complex-valued functions on R d . This means that the operator in question has an entirely discrete spectrum (E n ) n2N d , and that there exists an orthonormal basis

(f n ) n2N d L 2
C R d consisting entirely of its eigenfunctions (see, e.g., Section XIII.14 in [START_REF] Reed | Methods of Modern Mathematical Physics IV : Analysis of Operators[END_REF]). In the context of this article the convergence of the series X

n2N d exp [ tE n ] < +1 (8) 
for every t 2 (0; T ] is also required. Then, under the above conditions the construction of a Markovian Bernstein process rests on two essential ingredients, namely, Green's function (or heat kernel) associated with (1)-( 2), which satis…es the symmetry and positivity conditions g(x; t; y) = g(y; t; x) > 0

for all x; y 2 R d and every t 2 (0; T ], and the probability measure on R d R d whose density is given by (x; y) = '(x)g(x; T; y) (y); [START_REF] Davies | Heat Kernels and Spectral Theory[END_REF] which satis…es the normalization condition Z

R d R d dxdy'(x)g(x; T; y) (y) = N 2 Z R d R d dxdy' 0 (x)g(x; T; y) T (y) = 1: (11) 
Notice that (11) may be considered as the de…nition of N , and that the inequality in ( 9) is a consequence of two-sided Gaussian bounds for g whose existence follows from the general theory developed in [START_REF] Aronson | Non-negative solutions of linear parabolic equations[END_REF] and further re…ned in Chapter 3 of [START_REF] Davies | Heat Kernels and Spectral Theory[END_REF]. Moreover, as a consequence of (H) and ( 8), Green's function admits an expansion of the form

g(x; t; y) = X n2N d exp [ tE n ] f n (x)f n (y) (12) 
which converges strongly in L 2 C R d R d for every t 2 (0; T ] (unless more detailed information about the f n 's or ultracontractive bounds become available, in which case the convergence can be substantially improved, see, e.g., Chapter 2 in [START_REF] Davies | Heat Kernels and Spectral Theory[END_REF]). Thus, in Section 2 the knowledge of g and is used to state a theorem about the existence of a probability space which supports a Markovian Bernstein process Z 2[0;T ] whose state space is the entire Euclidean space R d , and which is characterized by its …nite-dimensional distributions, the joint distribution of Z 0 and Z T and the probability of …nding Z t at any time t 2 [0; T ] in a given region of space. In that section a very simple result regarding the time evolution of Z 2[0;T ] is also proved when considering (1)-( 2) with ( 5)- [START_REF] Chueshov | Long-time behavior of solutions to a class of quasilinear parabolic equations with random coe¢ cients[END_REF]. Section 3 is devoted to the analysis of the function that determines the time evolution of the probability of …nding Z 2[0;T ] in particular two-dimensional geometric shapes that exhibit spherical symmetry in the case of the so-called harmonic potential

V (x) = jxj 2 2 ; (13) 
and for various combinations of the initial-…nal data given above. Finally, a simple Faedo-Galerkin scheme is proposed whose ultimate goal is to allow approximate computations of all the probability distributions involved.

An existence result for a class of Bernstein processes in R d

As a stochastic process a Bernstein process may be de…ned independently of any reference to a system of partial di¤erential equations, and there are several equivalent ways to do so (see, e.g., [START_REF] Jamison | Reciprocal processes[END_REF]). I shall restrict myself to the following:

De…nition. Let d 2 N + and T 2 (0; +1) be arbitrary. An R d -valued process Z 2[0;T ] de…ned on the complete probability space ( ; F; P) is called a Bernstein process if E f (Z r ) F + s _ F t = E (f (Z r ) jZ s ; Z t ) (14) 
for every bounded Borel measurable function f : R d 7 ! R and for all r; s; t satisfying r 2 (s; t) [0; T ]. In ( 14), the -algebras are

F + s = Z 1 (F ) : s; F 2 B d (15) 
and

F t = Z 1 (F ) : t; F 2 B d ; (16) 
where B d stands for the Borel -algebra on R d . Moreover, E denotes the (conditional) expectation functional on ( ; F; P).

The dynamics of such a process are, therefore, solely determined by the properties of the process at times s and t, irrespective of its behavior prior to instant s and after instant t. Of course, it is plain that this fact generalizes the usual Markov property.

In what follows an important rôle is played by the positive solution to (1) and the positive solution to (2), namely,

u(x; t) = Z R d dyg(x; t; y)'(y) (17) and v(x; t) = Z R d dyg(x; T t; y) (y); (18) 
respectively. Taken together, ( 1) and ( 2) may thus be looked upon as de…ning a decoupled forward-backward system of linear deterministic partial di¤erential equations, with [START_REF] Roelly | A characterisation of reciprocal processes via an integration by parts formula on the path space[END_REF] wandering o¤ to the future and ( 18) evolving into the past. The functions p (x; t; z; r; y; s) = g 1 (x; t s; y)g(x; t r; z)g(z; r s; y)

and

P (x; t; F; r; y; s) = Z F dzp (x; t; z; r; y; s) (20) 
with F 2 B d , both being well de…ned and positive for all x; y; z 2 R d and all r; s; t satisfying r 2 (s; t) [0; T ], are equally important as is the probability measure whose density is [START_REF] Davies | Heat Kernels and Spectral Theory[END_REF], namely,

(G) = Z G dxdy'(x)g(x; T; y) (y) (21) 
where G 2 B d B d , which satis…es the normalization condition [START_REF] Erdélyi | Higher Transcendental Functions[END_REF]. The corresponding initial and …nal marginal distributions then read

F R d = Z F dx'(x) Z R d dyg(x; T; y) (y) = Z F dx'(x)v(x; 0) and (R d F ) = Z F dy (y) Z R d dxg(x; T; y)'(x) = Z F dyu(y; T ) (y)
respectively, as a consequence of ( 17) and [START_REF] Schrödinger | Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique[END_REF]. It is the knowledge of ( 20) and ( 21) that makes it possible to associate with ( 1) and ( 2) a Bernstein process in the following sense:

Theorem. Assume that V satis…es Hypothesis (H), that condition (8) holds and that P and are given by ( 20) and [START_REF] Vuillermot | Bernstein di¤ usions for a class of linear parabolic partial di¤ erential equations[END_REF], respectively. Then there exists a probability space ( ; F; P ) supporting an R d -valued Bernstein process Z 2[0;T ] such that the following properties are valid:

(a) The process Z 2[0;T ] is Markovian, and the function P is its transition function in the sense that P (Z r 2 F jZ s ; Z t ) = P (Z t ; t; F; r; Z s ; s) for each F 2 B d and all r; s; t satisfying r 2 (s; t) [0; T ]. Moreover,

P (Z 0 2 F 0 ; Z T 2 F T ) = (F 0 F T ) (22) 
for all F 0 ; F T 2 B d , that is, is the joint probability distribution of Z 0 and Z T .

(b) The …nite-dimensional probability distributions of the process are given by

P (Z t1 2 F 1 ; :::; Z tn 2 F n ) (23) = Z F1 dx 1 ::: Z Fn dx n n Y k=2 g (x k ; t k t k 1 ; x k 1 ) u(x 1 ; t 1 )v(x n ; t n )
for every integer n 2, all F 1 ; :::; F n 2 B d and all t 0 = 0 < t 1 < ::: < t n < T , where u and v are given by ( 17) and ( 18), respectively.

(c) The probability of …nding the process in a given region F R d at time t is given by

P (Z t 2 F ) = Z F dxu(x; t)v(x; t) (24) 
for each F 2 B d and every t 2 [0; T ] : (d) P is the only probability measure leading to the above properties.

I omit the proof of this theorem, which can be adapted either from the abstract arguments in [START_REF] Jamison | Reciprocal processes[END_REF] or from the more analytical approach in [START_REF] Vuillermot | Bernstein di¤ usions for a class of linear parabolic partial di¤ erential equations[END_REF], and will rather focus on its consequences regarding the time evolution of Z 2[0;T ] . Prior to that some comments are in order:

Remarks. (1) Hypothesis (H) and condition (8) are su¢ cient but not necessary for the theorem to hold. However, the advantage of having ( 12) is that such an expansion greatly simpli…es some calculations and also has the virtue of making theoretical results amenable to approximations and computations. I will dwell a bit more on this point in the next section.

(2) Bernstein processes may be Markovian but in general they are not. Independently of that they have played an increasingly important rôle in various areas of mathematics and physics over the years. It is not possible to give a complete bibliography here, but I will refer instead the interested reader to [START_REF] Jamison | Reciprocal processes[END_REF], [START_REF] Roelly | A characterisation of reciprocal processes via an integration by parts formula on the path space[END_REF] and [START_REF] Vuillermot | Bernstein di¤ usions for a class of linear parabolic partial di¤ erential equations[END_REF] which contain many references describing the history and earlier works on the subject, tracing things back to the pioneering works [START_REF] Bernstein | Sur les liaisons entre les grandeurs aléatoires[END_REF] and [START_REF] Schrödinger | Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique[END_REF]. Moreover, Bernstein processes have also lurked in various forms in more recent applications of Optimal Transport Theory, as testi…ed by the monographs [START_REF] Galichon | Optimal Transport Methods in Economics[END_REF] and [START_REF] Villani | Optimal Transport: Old and New, Grundlehren der Mathematischen Wissenschaften[END_REF]. In this regard it is worth mentioning that they are also referred to as Schrödinger processes or reciprocal processes in the literature.

(3) The probability measure of a non-Markovian Bernstein process does not have as simple a structure as that given by [START_REF] Vuillermot | Bernstein di¤ usions for a class of linear parabolic partial di¤ erential equations[END_REF]. A case in point is the so-called periodic Ornstein-Uhlenbeck process, which is one of the simplest stationary Gaussian non-Markovian processes that can be viewed as a particular Bernstein process, as was recently proved in [START_REF] Vuillermot | On some Gaussian Bernstein processes in R N and the periodic Ornstein-Uhlenbeck process[END_REF] (see also, e.g., [START_REF] Roelly | A characterisation of reciprocal processes via an integration by parts formula on the path space[END_REF] and the references therein for other analyses of the periodic Ornstein-Uhlenbeck process). In this case the construction of the measure is much more complicated than in the Markovian case, as it involves a weighted average of a sequence of suitably constructed signed measures naturally associated with an in…nite hierarchy of forward-backward linear parabolic equations.

Coming back to the main theme of this article, it is interesting to note that the probability of …nding the process at any given time t 2 [0; T ] in an arbitrary region of space is expressed as an integral of the product of u and v through the simple formula (24). This is a manifestation of the fact that the process Z 2[0;T ] is actually reversible and exhibits a perfect symmetry between past and future, a property already built to some extent into the de…nition given at the beginning of this section. It is of course di¢ cult to say more about the time evolution of Z 2[0;T ] unless we know more about the potential function V . However, at the very least the following result holds, which in e¤ect describes a recurrence property of the process in a particular case: Proposition 1. Let Z 2[0;T ] be the Bernstein process associated with (1)-( 2) in the sense of the above theorem, where ' 0 and T are given by ( 5) and ( 6), respectively, and let C a0; 0 = x 2 R d : jx j a 0;j j < 0 ; j = 1; :::; d be the hypercube outside which ' 0 vanishes identically, that is, ' 0 = 0 on F a0 ; 0 = R d n C a0; 0 . Let C a T ; T be de…ned in a similar way. Then

P (Z 0 2 C a0; 0 ) = 1 and P (Z T 2 C a T ; T ) = 1:
Proof. This is an immediate consequence of (24), for

P (Z 0 2 F a0 ; 0 ) = Z Fa 0 ; 0 dx'(x)v (x; 0) = 0 and P (Z T 2 F a T ; T ) = Z Fa T ; T dxu (x; T ) (x) = 0.
Thus, in this case the process certainly starts its journey within C a0; 0 and ends it within C a T ; T . Since this is true no matter how small 0;T are, that constitutes a generalization of the class of Bernstein bridges constructed in [START_REF] Vuillermot | On some Gaussian Bernstein processes in R N and the periodic Ornstein-Uhlenbeck process[END_REF]. In particular, if a 0 = a T and if T 0 the inclusion C a T ; T C a0; 0 holds, so that the process goes back to the region where it started from with probability one, independently of its unknown whereabouts at intermediary times t 2 (0; T ). These properties and Proposition 1 remain true for all choices of ' 0 , T that vanish identically outside of a given Borel set, for instance for the isotropic version of ( 5)-( 6), namely,

' 0 (x) = 1 jx a 0 j 0 _ 0; T (x) = 1 jx a T j T _ 0;
provided the sets C a 0;T ; 0;T are replaced by the d-dimensional open balls B a 0;T ; 0;T = x 2 R d : jx a 0;T j < 0;T of radius 0;T centered at a 0;T . It would be interesting to carry out a numerical simulation in real time of the behavior of the processes generated in this way. The preceding result fails to hold if the initial-…nal data are not of the above form. In the next section I investigate this issue more closely in case the potential function is given by (13).

Some new results for the harmonic case

The starting point is thus the forward-backward system

@ t u(x; t) = 1 2 4 x u(x; t) jxj 2 2 u(x; t); (x; t) 2 R d (0; T ] ; u(x; 0) = ' (x) =N ' 0 (x) ; x 2 R d (25) 
and

@ t v(x; t) = 1 2 4 x v(x; t) jxj 2 2 v(x; t); (x; t) 2 R d [0; T ) ; v(x; T ) = (x) =N T (x) ; x 2 R d : (26) 
Green's function associated with (25)-( 26) is known to be Mehler's multidimensional kernel g(x; t; y)

= (2 sinh (t)) d 2 exp 2 4 cosh (t) jxj 2 + jyj 2 2 (x; y) R d 2 sinh (t) 3 5 (27) 
where (:; :) R d denotes the usual inner product in R d (see, e.g., the Appendix in [START_REF] Vuillermot | On some Gaussian Bernstein processes in R N and the periodic Ornstein-Uhlenbeck process[END_REF]). Then if ' 0 , T are given by ( 3)-( 4), the solutions ( 17)-( 18) and the integral on the left-hand side of ( 11) can all be computed explicitly since the integrals are Gaussian. For instance, the forward solution reads u(x;t) = N 0 0 cosh(t) + sinh(t)

d 2 exp " ja 0 j 2 2 0 # exp " cosh(t) jxj 2 2 sinh(t) + j 0 x+ sinh(t)a 0 j 2 2 0 sinh(t) ( 0 cosh(t) + sinh(t)) # ( 28 
)
for every t 2 (0; T ], while the backward solution is obtained from (28) by replacing 0 by T , a 0 by a T and t by T t, respectively. The downside is that these expressions are complicated, cumbersome and in any case unsuited to extract valuable information out of (24) unless particular choices are made for these parameters. For example, if 0 = T = 1 and a 0 = a T = 0, the forward solution (28) and the related backward solution reduce to

u(x;t) = N exp " jxj 2 + dt 2 # ; (29) v(x;t) = N exp " jxj 2 + d(T t) 2 # ; (30) 
respectively, while an explicit computation from [START_REF] Erdélyi | Higher Transcendental Functions[END_REF] gives

N = d 4 exp dT 4 
9
for the corresponding normalization factor. Therefore, the substitution of these expressions into (24) leads to

P (Z t 2 F ) = Z F dxu(x; t)v(x;t) = d 2 Z F dx exp h jxj 2 i
for each t 2 [0; T ] and every F 2 B d , so that the probability of …nding the process in any region of space is here independent of time. The reason for this independence can easily be understood by means of the substitution of ( 27) and ( 29)-( 30) into ( 23), which …rst leads to the Gaussian law of (Z t1 ; :::; Z tn ) 2 R nd and from there eventually to the covariance

E Z i s Z j t = 1 2 exp [ jt sj] i;j
for all s; t 2 [0; T ] and all i; j 2 f1; :::; dg, where E denotes the expectation functional on the probability space of the theorem. Therefore, the Bernstein process thus constructed identi…es in law with the standard d-dimensional Ornstein-Uhlenbeck velocity process, so that the choice of ( 3)-( 4) as initial-…nal data corresponds in a sense to an equilibrium situation whereby the law remains stationary (see, e.g., [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF] for general properties of this and related processes). For instance, if

A R1;R2 = x 2R 2 : R 1 jxj < R 2
is the two-dimensional annulus centered at the origin with R 1 0 and R 2 > 0, then

P (Z t 2 A R1;R2 ) = exp R 2 1 exp R 2 2 :
The situation is quite di¤erent if the system (25)-( 26) is considered with ' 0 given by [START_REF] Chueshov | Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Stratonovitch's case[END_REF] and T given by ( 4) where T = 1 and a T = 0. In this case

u(x;t) = N (2 sinh(t)) d 2 exp " coth(t) jxj 2 2 # (31) and v(x;t) = N exp " jxj 2 + d(T t) 2 # ( 32 
)
for the forward and backward solutions, respectively, and furthermore the value of N can again be determined directly from [START_REF] Erdélyi | Higher Transcendental Functions[END_REF]. Indeed the relevant integral is Z

R d R d dxdy 0 (x)g(x; T; y) exp " jyj 2 2 # = exp dT 2
by virtue of (27), so that

N = exp dT 4 :
Therefore, one obtains in particular

P Z 0 2 R d n fog = N Z R d nfog dx 0 (x)v(x; 0) = 0
so that the process is conditioned to start at the origin since

P (Z 0 = o) = 1: (33) 
Moreover, for positive times an explicit evaluation from (24) leads to

P (Z t 2 F ) = (2 (t)) d 2 Z F dx exp " jxj 2 2 (t) #
where the width parameter is identi…ed as

(t) = sinh(t) exp [ t] : (34) 
It is then instructive to consider again the case of Z 2 [0;T ] wandering in the two-dimensional annulus A R1;R2 , and to investigate the way that 

P (Z t 2 A R1;R2 ) = exp R 2 1 2 (t) exp R 2 2 2 (t) (35 
P (Z 0 2 A 0;R2 ) = 1
and the function t 7 ! P (Z t 2 A 0;R2 ) is monotone decreasing on [0; T ], eventually reaching the minimal value

P (Z T 2 A 0;R2 ) = 1 exp R 2 2 2 (T ) : (b) If 0 < R 1 < R 2 < 1 one has P (Z 0 2 A R1;R2 ) = 0 (36) 
and P (Z t 2 A R1;R2 ) > 0 as soon as t > 0. Moreover, if T is su¢ ciently large there exists a t 2 (0; T ) such that the function t 7 ! P (Z t 2 A R1;R2 ) is monotone decreasing for every t 2 [t ; T ] :

(c) If 1 R 1 < R 2 one still has (36), but the function t 7 ! P (Z t 2 A R1;R2 ) is monotone increasing throughout [0; T ].
Proof. Statement (a) follows immediately from (33) and (35) for R 1 = 0, as does the very …rst part of (b) since then o = 2 A R1;R2 . Now

d dt P (Z t 2 A R1;R2 ) = 0 (t) 2 2 (t) ( (R 1 ; t) (R 2 ; t))
where

(R; t) = R 2 exp R 2 2 (t) ; (37) 
and for any …xed t 2 (0; T ] this function is monotone increasing for R < p 2 (t) and monotone decreasing for R > p 2 (t). Furthermore, (34) and t 7 ! p 2 (t) are monotone increasing and concave with p

2 (t) < 1 uniformly in t. Therefore, if 0 < R 1 < R 2 < 1 and if T is large enough, there exists a t 2 (0; T ) such that R 1 < R 2 < p 2 (t ) p 2 (t) for every t 2 [t ; T ], which implies the last claim of (b) since then (R 1 ; t) (R 2 ; t) < 0. Finally, if 1 R 1 < R 2 one has a fortiori p 2 (t) < R 1 < R 2 for every t 2 [0; T ] so that (R 1 ; t) (R 2 ; t) > 0, which implies (c).
A natural interpretation of Statement (a) is that the process leaves the origin as soon as t > 0, and tends to quickly "leak out" of the disk A 0;R2 when R 2 is su¢ ciently small. Moreover, Statement (b) means that the probability of …nding the process in the annulus increases for small times, then reaches a maximal value and eventually decreases for large times when R 1 and R 2 are su¢ ciently small, in sharp contrast to Statement (c) where the probability in question is monotone increasing for all times if R 1 and R 2 are su¢ ciently large. Finally, the substitution of ( 27) and ( 31)-(32) into (23) again determines the projection of the law onto R nd and, after long algebraic manipulations, the covariance

E Z i s Z j t = 1 2 exp [ (t + s)] (exp [2(t ^s)] 1) i;j
for all s; t 2 [0; T ] and all i; j 2 f1; :::; dg. Therefore, the Bernstein process thus constructed is identical in law with the Ornstein-Uhlenbeck process conditioned to start at the origin of R d .

A last example can be provided by choosing ' 0 and T both of the form ( 7) in ( 25)-(26). In this case one gets

u(x;t) = N (2 sinh(t)) d 2 exp " coth(t) jxj 2 2 # and v(x;t) = N (2 sinh(T t)) d 2 exp " coth(T t) jxj 2 2 #
for the respective solutions, where the exact value of the normalization factor is

N = (2 sinh(T )) d 4 .
Arguing as in the preceding example one then obtains

P (Z 0 = o) = P (Z T = o) = 1 (38) 
so that the process is conditioned to start and end at the origin, thereby representing a random loop in R d . Moreover, for positive times one still gets from ( 24)

P (Z t 2 F ) = (2 (t)) d 2 Z F dx exp " jxj 2 2 (t)
# and in particular

P (Z t 2 A R1;R2 ) = exp R 2 1 2 (t) exp R 2 2 2 (t) (39) 
in the case of the two-dimensional annulus, but with a width parameter now given by Moreover, the function t 7 ! P (Z t 2 A 0;R2 ) is monotone decreasing on 0; T 2 and monotone increasing on T 2 ; T , thereby taking the minimal value

(t) = sinh(t) sinh(T t) sinh(T ) (40 
P Z T 2 2 A 0;R2 = 1 exp " R 2 2 2 T 2 # : (b) If 1 R 1 < R 2 one has P (Z 0 2 A 0;R2 ) = P (Z T 2 A 0;R2 ) = 0:
Moreover, the function t 7 ! P (Z t 2 A R1;R2 ) is monotone increasing on 0; T 2 and monotone decreasing on T 2 ; T , thereby taking the maximal value

P Z T 2 2 A R1;R2 = exp " R 2 1 2 T 2 # exp " R 2 2 2 T 2 # :
Proof. While (41) follows from (38), Relation (39) with R 1 = 0 leads to

d dt P (Z t 2 A 0;R2 ) = 0 (t) 2 2 (t) (R 2 ; t)
where 0 (t) 0 for t 2 0; T 2 and 0 (t) 0 for t 2 T 2 ; T according to (40), which implies Statement (a). Statement (b) follows from these properties of 0 and an analysis similar to that of Statement (c) in Proposition 2. Indeed, we remark that the curve : [0; T ] 7 ! [0; +1) given by ( 40) is concave aside from satisfying (0) = (T ) = 0, and that it takes on the maximal value

T 2 = sinh 2 T 2 sinh(T )
at the mid-point of the time interval. Therefore, the inequalities

p 2 (t) s 2 T 2 1
hold for every t 2 [0; T ], which implies that (37) is monotone decreasing throughout the time interval as a function of R, a consequence of the hypothesis regarding the radii.

The above properties of (40) thus show that the Bernstein process of Proposition 3 constitutes a generalization of a Brownian loop, that is, of a particular case of a Brownian bridge (see, e.g., [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]). This renders the preceding result quite natural, in that the probability of …nding the process in the disk A 0;R2 is minimal at the mid-point of the time interval where there is maximal randomness. At the same time, the situation is reversed if the annulus is relatively far away from the origin.

As long as the regions of interest are spherically symmetric, the preceding calculations may be performed in any dimension and not merely for d = 2. However, I shall refrain from doing that and rather focus brie ‡y on what to do when the values of the parameters 0;T and a 0;T are arbitrary, or when other combinations of the above initial-…nal data are chosen. It is here that an expansion of the form ( 12) is essential, and I will now show what [START_REF] Galichon | Optimal Transport Methods in Economics[END_REF] reduces to in the case of (27). First, the spectral decomposition of the elliptic operator on the right-hand side of (25)-( 26) is known explicitly (the operator identi…es up to a sign with the Hamiltonian of an isotropic system of quantum harmonic oscillators, see, e.g., [START_REF] Messiah | Quantum Mechanics[END_REF]). Indeed, let (h n ) n2N be the usual Hermite functions

h n (x) = 1 2 2 n n! 1 2 exp x 2 2 H n (x) (42) 
where the H n 's stand for the Hermite polynomials

H n (x) = ( 1) n exp x 2 d n dx n exp x 2 : (43) 
Then, it is easily veri…ed that the tensor products d j=1 h nj where the n j 's run independently over N provide an orthonormal basis of eigenfunctions in L 2 C R d which satisfy the eigenvalue equation

1 2 x + jxj 2 2 ! h n (x) = E n h n (x)
for each n 2N and every x 2 R d , where n = (n 1 ; :::; n d ) 2 N d and

E n = d X j=1 n j + d 2 ; (44) 
h n = d j=1 h nj : (45) 
The immediate consequences are that (8) holds, and that expansion ( 12) for (27) takes the form

g(x; t; y) = X n2N d exp [ tE n ] h n (x) h n (y) (46) 
where the series is now absolutely convergent for each t 2 (0; T ] uniformly in all x; y 2 R d . This very last statement follows from Cramér-Charlier's inequality

jh n (x) h n (y)j k 2d d 2 (47) 
valid uniformly in n, x and y, where k 1:086435 (see, e.g., Section 10.18 in [START_REF] Erdélyi | Higher Transcendental Functions[END_REF] and the references therein).

The advantage of having ( 46) is that the forward solution (17) may now be rewritten in terms of the Fourier coe¢ cients of ' and along the basis

(h n ) n2N d , namely, u(x;t) = X n2N d n exp [ tE n ] h n (x) (48) 
where

n = N Z R d dx' 0 (x)h n (x) ; (49) 
which in case of Gaussian initial-…nal data provides a nice representation of (28). In a similar way the backward solution (18) is

v(x;t) = X n2N d n exp [ (T t)E n ] h n (x) (50) 
where

n = N Z R d dx T (x)h n (x) ; (51) 
so that the normalization condition (11) now reads X

n2N d n exp [ T E n ] n = 1: (52) 
Proof. It is clear that (57) holds because of (56) since ^ 0 > 0, ^ 0 > 0 by virtue of the fact that the eigenfunction h 0 associated with the bottom of the spectrum is strictly positive in R d . Then, the proof that the remaining term satis…es N

0;T X n2N d ; n6 =0 ^ n exp [ T E n ] ^ n = O (exp [ T ]) 2 
follows from the fact that the ^ n 's and the ^ n 's are uniformly bounded in n, and from the summation of the underlying geometric series which is made possible thanks to the explicit form (44).

Then, in case of Gaussian initial-…nal initial data in (25)-(26) one gets: Proposition 4. Assume that ' 0 and T are given by ( 3) and ( 4), respectively, and let Z 2[0;T ] be the Markovian Bernstein process associated with (25)-(26). Then the following statements hold:

(a) For all F 0 ; F T 2 B d we have

P (Z 0 2 F 0 ; Z T 2 F T ) = 4 2 0 T d 2 Z F0 dx exp " 1 2 0 x a 0 1 + 0 2 # Z F T dx exp " 1 2 T x a T 1 + T 2 # + O (exp [ T ]) (58) 
for T su¢ ciently large, where where g is given by (46), that is, g(x; T; y) = ĝ(x; T; y) + X because of (57), as desired. Finally (58) implies (59), and also (60) under the hypothesis in (b) since the function t 7 ! P (Z t 2 F ) given by (24) is then independent of t.
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 2 ) varies in the course of time for various values of the radii: The following statements hold: (a) If 0 = R 1 < R 2 one has

) for every t 2 Proposition 3 .

 23 [0; T ]. This function is quite di¤erent from (34), and the following result is valid: The following statements hold: (a) If 0 = R 1 < R 2 one has P (Z 0 2 A 0;R2 ) = P (Z T 2 A 0;R2 ) = 1: (41)
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 222 +O (exp [ T ]) :(59) (b) If 0 = T : = and a 0 = a T := a and if the process Z 2[0;T ] is stationary, the preceding relations reduce toP (Z t 2 F ) = (2 ) +O (exp [ T ])(60)for T large enough, each t 2 [0; T ] and every F 2 B d , where = 1+ .Proof. From (21) and (22) one hasP (Z 0 2 F 0 ; Z T 2 F T ) = N F0 dx' 0 (x)Z F T dyg(x; T; y) T (y)
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 2 n2N d ; n6 =0exp [ T E n ] h n (x) h n (y) 44) and (45) for n = 0. One then obtains N replacing N by N 0;T together with the explicit evaluation of these Gaussian integrals gives the leading term in (58).It remains to show that the contribution to (58) coming from the second term on the right-hand side of (61) is exponentially small. Writing momentarily g(x; T; y) = Xn2N d ; n6 =0 exp [ T E n ] h n (x) h n (y)and estimating the absolute value of g by using (44) and (47), one eventually gets jg(x; T; y)j c d [ T ]) d uniformly in all x; y 2 R d by summing the underlying geometric series as before, where c d is a positive constant depending only on d. Therefore, [ T ]) d = O (exp [ T ])
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This way of formulating things, in turn, leads to the possibility of constructing a sequence of Faedo-Galerkin approximations to the problem at hand. Thus for any positive integer N 1, let E N R d be the N d -dimensional subspace of L 2 C R d generated by the h n 's where n j 2 f0; :::; N 1g for each component of n. Green's function (46) may then be approximated by

to ( 48) and (50), respectively. Consequently, various numerical computations and controlled approximations of the probability distributions of interest now become possible. I complete this short article by a simple illustration of this fact stated in Proposition 4 below, whose proof is based on the following result which provides an approximate value for N :

Lemma. Let (52) be written as

where

for every n 2 N d . Then for all 0;T > 0, a 0;T 2 R d , the unique positive solution to

is of the form

where c > 0 is a constant depending only on 0;T and a 0;T . Moreover, with the value (57) in ( 49) and (51) one gets X

for T su¢ ciently large.

Remark. The …rst term on the right-hand side of (61) corresponds to the minimal choice N = 1 in the Galerkin approximation (53), for (44) and (45) with n = 0 imply that (62) is

Using once more (44) and (45) with n = 0, the corresponding approximation (54) for t = T then reads

so that replacing N by (57) and arguing as in the above proofs one eventually gets

for T su¢ ciently large. A similar approximation procedure applies to the backward solution, so that in the end one obtains yet another algorithm to compute (59) since ^ 0 and ^ 0 can be determined explicitly in case of Gaussian initial-…nal data. It would have been di¢ cult to evaluate (64) directly from (24) given the complicated form (28). As a matter of fact, the technique used also works if the data are of the form ( 5)-( 6) since ^ 0 and ^ 0 are then easily determined by numerical calculations.

More generally, there is an important computational issue about (54) and (55), namely, that of knowing how large one has to choose N as a function of the desired degree of precision to reconstruct u and v. As long as error terms of the form O (exp [ T ]) are considered satisfactory, the above considerations show that the choice N = 1 is su¢ cient. If not, larger values of N will do.

Finally, thanks to an expansion of the form [START_REF] Galichon | Optimal Transport Methods in Economics[END_REF], similar Faedo-Galerkin approximation methods may be applied to the forward-backward solutions of (1)-(2) when the potential function satis…es Hypothesis (H) and [START_REF] Chueshov | Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Itô's case[END_REF], or even more general conditions, provided that precise information be available about the spectrum (E n ) n2N d and the corresponding sequence of eigenfunctions (f n ) n2N d . The detailed results will be published elsewhere.