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Abstract. In this paper we propose to join the benefits of multiple in-
variant information into the well-know background subtraction method
”Codebook”. Indeed, this method mainly repose on a color model allow-
ing a separate process of color and intensity distortion. In order to man-
age hard situations involving high illumination changes, we propose to
enhance this model with the use of two supplementary steps: 1/ trans-
forming the input color image using a colorimetric invariant in order to
obtain a color-invariant image whatever the illumination conditions; 2/
using depth information as a new data inside the Codebook model, thus
performing an RGB-D fusion during the segmentation process.

Keywords: Image color analysis, subtraction techniques, segmentation,
object detection, colorimetric invariants, RGB-D, fusion

1 Introduction

Objects detection is a very common step in severals applications of Intelligent
Transportation Systems. Its use is integrated into many applications in various
domains, such as videosurveillance, pedestrian and/or vehicle detection, detec-
tion of hazardous situations in public transports[7][19][18].

Multiple methods have been proposed to address this issue [3][2][15], from
simplest techniques to more sophisticated. Basically, background subtraction
consists in modeling the background from a sequence of images, then compare
this background model to every new frame obtained from the camera to finally
obtain a foreground segmentation. Depending on each method, the model com-
putation can be made at pixel level of image, or at region-level after a simplifi-
cation of image. The representation of every part of the model is independant.

Among the most known representations, multimodal distribution methods
are known to provide the better results, such as the very common method Gen-
eralized Mixture Of Gaussians (MOG) [21][22]. In this case, each pixel is modeled
by a mixture of n gaussian distributions depending on the pixel value. Then, a
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match is being searched between each pixel of the new frame and the model. If a
match is found, then the pixel is background, else it is foreground. This kind of
representation allows a modeling of more complex backgrounds but the method
depends on a learning parameter.

Kim et al. propose the Codebook algorithm [13] that doesn’t make use of a
learning rate parameter and provides generally good detection results. Recent
results shows that even if the Codebook can adapt to little illumination changes,
it is very sensible to strong changes which can occur in the scene when the model
is not yet adapted. This paper is an attempt to tackle this kind of problems.

In the past few years, great use was made of RGB-D cameras such as Kinect
distributed by Microsoft R�, or Xtion Pro Live distributed by Asus R�. These
sensors provide high-resolution depth maps in real time at a very low cost.
Depth information is estimated by the combination of an infra-red emitter and
a standard CMOS sensor. The camera determines the quantity of infra-red light
reflected by the scene. The closer the object, the greater the quantity of light
reflected.

The use of a fourth component in BGS method can be tackled in di↵erent
ways: considering it as a separate information, thus performing a background
subtraction on RGB components in one hand and the new information in the
other hand, and only after fuse the results using a simple boolean condition [14],
or include the new information into the background model [8]. In most of cases,
noise can be observed in resulting segmentations.

The use of colorimetric invariants proposed previously helped the algorithm
to provide usable segmentations even when the background model is desynchro-
nized from the current scene [16]. But, as color information is highly dependant
of observation conditions (dark, lit, fog, rain, snow...), colorimetric invariance is
not necessarily su�cient to provide strong results. To improve further in this di-
rection, additional invariant data can then be used by the algorithm to perform
an ever better segmentation. The Codebook representation method is flexible
enough to make use of color and brightness information but also any kind of
supplementary data for the model can be provided. We then propose in this
paper to merge the use colorimetric invariants with RGB-D fusion inside the
Codebook algorithm.

In this paper, we will first describe the main components involved in our
contribution. That is, a recap of the Codebook method and its improvement for
the use of depth information will be done in Part 2. A brief recall of the concept
of colorimetric invariants will be made in Part 3, as well as a short presentation
of those which turned out to be the most interesting in our cases. Finally, results
and observations will be given in Part 4.

2 Codebook

Background modelisation is made by the Codebook method proposed by Kim
et al [13]. This method has become a reference in many fields of research such
as detection and tracking of moving objects. It is robust and e�cient in a wide
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number of use cases, including dynamic backgrounds (tree foliages, foutains, sea
shores, flags...) and little illumination changes.

This algorithm was driven by the following observation: false detections are
generally situated in dark zones of the image. Therefore, as the color of pixels
define their darkness or brightness, color should be used as an important factor
in the comparison of two pixels. This reflection led to the creation of a new color
model used inside the algorithm to evaluate separately color and brightness of
pixels.

2.1 Learning

Codebook algorithm consists in a clustering of the image to build a background
model from a learning period. This model is represented by a list of Codebooks
(1 per pixel) each containing a certain number of codewords. A codeword is
created (or updated if the observed pixel’s representation is similar to an existing
codeword) for each pixel of every frame of the learning sequence. A codeword
contains two vectors, respectively R,G and B values of the pixel, and other data
such minimum and maximum observed brightness, temporal data and frequency
of occurrence. During this phase, a new codeword obtained for a given pixel is
integrated in the background model if it satisfies two conditions:

1. brightness constraint: the intensity must lie in the interval [L
low

;L
high

] deter-
mined from all the minimum L

min

and maximum L

max

brightness observed
for this pixel. This range of brightness delimits the range under which a code-
word is considered as shadow, and above which it is considered as highlight.
For each codeword, we have :
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where ↵ < 1 and � > 1 are fixed parameters of the algorithm.
2. color distorsion constraint: the color distorsion � of the pixel and the code-

word must lie under a given threshold ✏. This � value is calculated from input
pixel RGB values and the tested codeword.

After the background model construction, the algorithm optimizes its size by
determining Codewords corresponding to pixels erroneously integrated as back-
ground pixels. A Codeword m is defined by a pair of vectors V

m
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defines the average value of each compo-
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define minimum and maximum brightness respectively, of
all observations that match to codeword m. �

m

denoted as Maximum Negative
Run-Length (MNRL) is defined as the longest interval of time during which the
codeword m has not been updated. p and q define first and last times of update
of codeword m, respectively.
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2.2 Foreground/background detection

The final background model represents the parts of an image that does not move.
It is then possible to compare each Codebook to determine whether an observed
pixel belongs to background or not. More simply, the existence of a similar Code-
word in the model for this pixel’s Codebook is tesed, using the same constraints
quoted before. If a Codeword matches this pixel, then it belongs to background
(black in segmentations). If no match is found, this pixel is marked as foreground
(white in segmentations). After foreground detection phase is executed for each
pixel, the algorithm updates the background codebooks model.

2.3 Codebook RGB-D

Disparity information can be used into the Codebook algorithm by incorporating
a new data obtained from the disparity map. As disparity is a 1D information,
it can be treated the same way as brightness. The modification made to the
algorithm is the addition of a new value in the first vector of Codewords, con-
taining the disparity of the corresponding pixel, that is: V

m

= [R̄, Ḡ, B̄, D̄]. Also,
new values are added into the second vector of Codeword: low disparity D

low

and high disparity D

hi

values, representing the disparity range allowed for input
values, as defined in Equation 2.
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having D

min

and D

max

respectively the minimum and maximum disparities
observed for this pixel. ↵

D

and �

D

are thresholds in the depths distortion, defined
the same way as for brightness distortion. ↵

D

value is typically between 0.4
and 0.7, �

D

between 1.1 and 1.5. Then, the new disparity distortion function
described in Equation 3 is used during both learning and process phase:
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⇢
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)
false otherwise

(3)
D is the tested disparity, and isInvalid() function determines whether D is erro-
neous. Typically, a disparity value of 0 denotes an invalid disparity. A matching
between the observed pixel and an existing codeword means it satisfies those
three conditions: color, brightness and disparity distorsions. The decision func-
tion determining whether a pixel x matches a codeword c

m

is described in Equa-
tion 4. If a pixel matches a codeword in the background model, it is also consid-
ered as background (BG), else as foreground (FG).
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Fig. 1. Color invariants and color models used. From left to right and top to bot-
tom: original RGB, Greyworld, RGB-Rank, L*a*b*, HSL, Opposite Colorspace, l1l2l3,
c1c2c3, YIQ, YCbCr

Equation 4 describes the pixel classification decision. If the disparity attached
to this pixel is valid and comprised between acceptable thresholds, the decision
function takes it into account. Otherwise,only color and brightness distorsions
are considered. If a matching occurs, the pixel is set as background. Otherwise,
it is classified as foreground.

After the segmentation process is done, we applied a chain of morphological
operators in order to remove false positives remaining in the background, and
holes filling to get plain silhouettes when possible.

3 Color invariance

Prior to any Codebook-related action, we propose to apply a colorimetric invari-
ant to modify the color aspect of the image to give it the aspect it would have
under a canonical illuminant. This concept assumes that one can perceive the
color of an object, whichever the color of the illuminant. To perform this task,
it is necessary to estimate this illuminant color. Multiple methods can achieve
this, which can be sorted into 3 categories:

1. Use of low-level characteristics: these methods are based on low-level statis-
tics or a dichromatic reflection model, physics-based

2. Use of a learning phase: the illuminant is determined using a model obtained
from a learning dataset

3. A combination of these two methods.

Every colorimetric invariance method does not produce identic images. They
often need to create a new model, adapted to the characteritics they make use
of. Therefore, no method can be considered as ”universal”. Some works also
consist in a combination of multiple strategies: Gijsenij et al. [12] showed that
di↵erent colorimetric invariance algorithms perform better on di↵erent types
of images; Bianco et al. [1] proposed a CART-based algorithm to choose the
best colorimetric invariant for a given image, using a decision forest technique.
In this paper, we prefer testing several colorimetric invariants: Greyworld [4],
A�ne Normalization [17], Chromaticity Space, Comprehensive Normalization
[10], Opposite Colorspace, Reduced Coordinates, m1m2m3, l1l2l3 and c1c2c3
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[11], YIQ [5], YCh1Ch2 [6], YCbCr, RGB-Rank [9], CIE L*a*b*, HSL color
models [20].

Figure 1 shows some invariant images tested from one RGB image and used
as input images in the Codebook algorithm.

4 Results and observations

4.1 Dataset, tests and metrics

Images acquisitions have been made in a room six times at di↵erent moments
of day, implying di↵erent lighting conditions. The scenario for all bases is the
same: a person enters the room, walk before his desk, then after, sits down on a
chair, stays for a while, then stands up and walks out. Figure 2 shows six images
taken from each database. In certain cases, the curtains are closed and light can
be turned o↵, in order to simulate a very di�cult case when the room is very
dark.

Fig. 2. Original color images from images L1 to L6
These six cases provide di↵erent tests to determine the benefits of the RGB-

D fusion inside the Codebook when applied to di↵erent bases and not up-to-date
learning bases, because illuminations and colors are very di↵erent from one base
to another. That is, learnings are applied on 50 frames (RGB and disparity maps
obtained from the Kinect) from each learning base, with every tested colorimetric
invariant or color model. From each of these learnings, we compute segmentations
for all six processing bases, using corresponding colorimetric invariant / color
model as well. Thus, a naming convention was created for each test performed:
we call Lx the learning bases and Px the processing bases, where x is the number
of the corresponding base as enumerated before. Consequently, a test named
L1 P3 defines a test where the learning was done with base 1 and the process
was done with base 3. Of course, a colorimetric invariant name (or color model)
is attached to every test.

The use of color-invariant images is supposed to increase the robustness of the
Codebook model. As a consequence, the codebook algorithm was also modified
to avoid the model update occurring after the detection phase of the Codebook
process. This way, we were able to obserse the e↵ects of colorimetric invari-
ants on adaptative as well as fixed RGB and RGB-D codebook model. Non-
adaptative codebooks correspond to algorithms which do not update their back-
ground model while adaptative codebooks do update their model. This detail is
critical in the way to compare results, since these two modes do not correspond
to the same algorithm anymore. Therefore, adaptative Codebooks results can be
compared only with each other, as non-adaptative Codebooks can be compared
only amongst them.
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To evaluate our method and be able to perform a quantitative analysis,
hand-segmented ground truths were produced. Relatives measures Recall and
Precision were then calculated using true/false positives and true/false negatives
(TP, FP, TN, FN) for both foreground and background classes. This choice is
motivated by the fact that considering the e↵ectiveness of the Codebook (RGB)
algorithm, the improvements the new method including disparity will mostly
be situated in the background zones of the images. These measures are then
combined into an accuracy metric, F-Measure FM to evaluate the quality of the
segmentions. Recall, Precision and F-Measure are defined as follows:

Recall

fg

= TP

TP+FN

, Recall

bg

= TN

TN+FP

,

P recision

fg

= TP

TP+FP

, P recision

bg

= TN

TN+FN

,

FM

c

= 2.(Recallc.Precisionc)
Recallc+Precisionc

(5)

Tests were performed with a learning base image L1 constituted of 50 images.
Codebook values used are: ↵

c

= 0.4,�
c

= 1.7,↵
D

= 0.75,�
D

= 1.25, ✏1 =
10, ✏2 = 16. These values were determined empirically to allow the algorithm to
produce interesting enough results with every tested database.

4.2 Results and analysis

Tables 1 and 3 display mean F-measures corresponding to Codebook RGB algo-
rithms, non-adaptative and adaptative respectively. Positive (bold values) and
negative values describe respectively improvement and deterioration, refering to
values obtained without any use of colorimetric invariants or color spaces. More
precisely, Chromaticity Space, RGB-Rank, c1c2c3, L*a*b* and HSL provided
the best results amongst all tested colorimetric invariants and color models. Red
and green values indicate for each line the maximum and minimum value, respec-
tively. In the case of non-adaptative Codebook RGB, gains appear important.
Chromaticity Space especially provide the best results improvements, between
+22% and +77% for background regions and between 0% and +46% for fore-
ground regions, even though improvements are brought by every colorimetric
invariant displayed in Table 1.

Depth information usage in non-adaptative Codebook RGB-D to improve
these results showed interesting results as well, as showed in Table 2. In this table,
F-Measures appear a little lower than in Table 1, even though improvements still
remain situated between +33% and +70% in background, and between +13%
and 42% in foreground. Again, Chromatictiy Space showed the best results in
this case.

Figures 3, 4 and 5 show segmentations obtained when the learning was per-
formed on L1 (first database, corresponding to the top-left corner image) with
three algorithm versions presented, respectively adaptative Codebook RGB, non-
adaptative Codebook RGB-D and adaptative Codebook RGB-D. Tests were
processed on all databases, from L1 to L6 in the following order, with every
colorimetric invariant and color model separately. Learning and process phases
were done using the same colorimetric invariant or color model for both phases.
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Table 1. F-Measures gains and deteriorations for non-adaptative Codebook RGB

cs rgb-r c1c2c3 hsl yiq ych1ch2 lab
bg fg bg fg bg fg bg fg bg fg bg fg bg fg

L1 P1 45,5% 45,7% 31,8% 20,2% 43,5% 39,6% 31,2% 15,3% 26,7% 22,6% 8,2% 9,2% 41,1% 45,0%
L1 P2 57,3% 43,6% 40,7% 12,5% 52,4% 32,3% 31,0% 6,3% 40,9% 15,3% 10,2% 1,0% 51,2% 37,0%
L1 P3 60,2% 39,6% 43,5% 11,9% 45,0% 23,8% 20,4% 4,9% 12,9% 3s,4% 6,4% 0,4% 39,4% 22,2%
L1 P4 34,7% 31,6% 23,3% 16,8% 33,0% 25,7% 21,1% 8,3% 19,6% 10,7% -10,8% -1,6% 36,2% 41,9%
L1 P5 22,9% 0,4% 2,9% 0,2% 21,1% 0,3% 14,5% 0,5% 22,7% 0,2% 12,3% 0,4% 6,2% 0,3%
L1 P6 76,8% 14,8% 43,6% 4,2% 57,2% 8,0% 23,9% 2,0% 9,4% 1,1% 19,0% 1,4% 8,4% 1,2%

Average 49,6% 29,3% 31,0% 11,0% 42,0% 21,6% 23,7% 6,2% 22,0% 8,9% 7,5% 1,8% 30,4% 24,6%

Table 2. F-Measures gains and deteriorations for non-adaptative Codebook RGB-D

cs rgb-r c1c2c3 hsl yiq ych1ch2 lab
bg fg bg fg bg fg bg fg bg fg bg fg bg fg

L1 P1 34,9% 38,1% 26,4% 33,8% 33,9% 31,8% 22,1% 6,9% 13,5% 6,7% -2,7% -4,2% 28,2% 31,9%
L1 P2 51,9% 41,3% 43,2% 25,6% 48,5% 30,8% 11,5% 1,1% 15,8% 4,1% -4,5% -1,1% 40,3% 31,5%
L1 P3 50,1% 41,5% 41,9% 23,7% 45,8% 29,8% 15,4% 4,5% -4,9% 2,3% -4,7% -0,8% 25,6% 20,0%
L1 P4 18,7% 22,2% 13,0% 19,5% 16,7% 15,3% 7,2% 0,4% -9,7% -5,7% -31,3% -12,1% 19,7% 29,1%
L1 P5 14,4% 0,6% -1,6% 0,0% 13,8% 0,6% 9,1% 0,4% 33,6% 3,0% 5,5% 0,1% 3,6% 0,3%
L1 P6 70,3% 13,5% 51,7% 6,1% 56,0% 8,5% 24,7% 2,2% 2,0% 0,6% 19,0% 1,4% 3,4% 0,6%

Average 40,0% 26,2% 29,1% 18,1% 35,8% 19,4% 15,0% 2,6% 8,4% 1,8% -3,1% -2,8% 20,1% 18,9%

Table 3. F-Measures gains and deteriorations for adaptative Codebook RGB

cs rgb-r c1c2c3 hsl yiq ych1ch2 lab
bg fg bg fg bg fg bg fg bg fg bg fg bg fg

L1 P1 3,0% -19,2% 1,8% 0,3% 2,6% -16,8% 3,3% 10,3% 3,2% 0,2% 1,5% 3,5% 3,0% -15,5%
L1 P2 -0,1% 0,0% 0,6% 0,0% 0,0% 0,0% -0,2% 0,0% -0,4% 0,0% -0,8% 0,0% 0,3% 0,0%
L1 P3 -0,2% 5,7% 0,6% 3,7% -0,1% -4,7% 0,8% 14,7% -0,5% -0,3% -3,1% 1,2% 0,3% -2,3%
L1 P4 0,4% 7,0% 0,3% 4,7% -0,2% -2,0% 0,4% 8,9% 0,6% 1,0% 0,8% 7,7% -0,1% -1,7%
L1 P5 -1,9% -11,3% -7,8% 16,2% -3,3% -16,5% -0,5% -2,1% -5,2% -13,0% 1,5% -6,7% -1,5% -6,9%
L1 P6 -1,2% -52,1% -0,7% -11,5% -1,6% -50,9% -0,8% -19,5% -0,5% -8,4% -1,4% -10,5% -0,8% -37,3%

Average 0,0% -11,7% -0,8% 2,2% -0,4% -15,2% 0,5% 2,1% -0,5% -3,4% -0,2% -0,8% 0,2% -10,6%

Table 4. F-Measures gains and deteriorations for adaptative Codebook RGB-D

cs rgb-r c1c2c3 hsl yiq ych1ch2 lab
bg fg bg fg bg fg bg fg bg fg bg fg bg fg

L1 P1 1,4% 10,6% -0,2% 0,2% 1,4% 13,3% 0,3% 12,1% -1,3% 1,8% -0,9% 4,9% -0,4% 0,6%
L1 P2 -1,4% 12,0% 0,5% 4,4% 0,7% 17,5% -0,3% 15,8% -0,7% 6,5% -0,4% 6,9% 0,2% 5,3%
L1 P3 -0,1% 8,6% 0,6% 4,9% 0,4% 14,1% 0,5% 12,7% -0,8% 3,1% -1,4% 4,8% 0,1% 1,1%
L1 P4 0,8% 11,5% 0,3% 4,2% 0,7% 14,1% 0,6% 13,4% 0,9% 6,2% 0,8% 10,3% 0,1% 2,5%
L1 P5 -1,6% 17,9% -5,8% 24,3% -4,3% 8,5% 0,2% 14,0% -5,3% -9,6% 0,4% -3,8% -2,0% -3,9%
L1 P6 -0,4% -29,9% -0,1% -4,6% -0,4% -23,1% 0,2% 4,7% -0,6% -6,5% -0,8% -0,9% 0,1% -12,2%

Average -0,2% 5,1% -0,8% 5,6% -0,2% 7,4% 0,2% 12,1% -1,3% 0,2% -0,4% 3,7% -0,3% -1,1%

The quality of segmentations obtained with adaptative Codebook RGB (Fig-
ure 3) is low as no average F-Measure came upper than 2.2% and 0.5% improve-
ment in foreground and background classes respectively. This did not allow a
post-processing operation to provide better results. Noise is observed in the back-
ground parts of images and foreground silhouettes were not homogen enough to
allow a proper reconstruction.

Figures 4 and 5, in another hand, display results making use of depth informa-
tion. In these two cases, a post-processing was applied consisting in performing
morphological operations (closing, opening, holes filling) in order to remove noise
and false positives in the background as well as to improve silhouettes shapes.

Figure 5 shows results with the adaptative Codebook as it provided the best
results (with post-processing). These segmentations lead to some first qualitative
observations: when processing original images (line 3) depending on the moment
of day, hollowed foreground appear and noised background remain in results.
Tests driven with the use of colorimetric invariants helped the filling of fore-
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Fig. 3. Segmentations obtained with algorithm adaptative Codebook RGB with a
learning on L1. From left to right: P1 to P6 processes. Bottom lines display most
interesting colorimetric invariants and color models according to our results.

ground silhouettes, especially in L1 P5 case: at the price of a higher background
noise (-0.2%), c1c2c3 increased the foreground F-Measure by 7.4%. In certain
test cases though (L1 P4), the improvement is less visible.

Certain colorimetric invariants such as YCbCr, YCh1Ch1 or m1m2m3 do
not converge towards one similar image. Depending on the moments of the day,
two images which look originally similar can look very di↵erent when using
one colorimetric invariant on both. Moreover, certain colorimetric invariants (ie:
l1l2l3, Opposite colorspace, HSL...) do not output ”real world color” images.
This state of fact explains some results less interesting than others, depending
on databases.

Previous qualitative observations are confirmed by F-Measure values. Re-
sults obtained in [16] with Codebook RGB are very similar, as we obtain slightly
better results with certain colorimetric invariants increasing F-Measures. Non-
adaptative Codebooks (RGB and RGB-D) e↵ectively improve more importantly
the F-Measure values for both foreground and background classes than adap-
tative Codebooks do. Table 1 demontrates these improvements as F-Measure
increase up to 78% for background and 45% foreground (with Codebook RGB
and Chromaticity space color invariant). Table 2 also shows improvements as
F-Measure increase up to 70% for background and more than 40% in foreground
(with Codebook RGB-D and Chromaticity space color invariant). More globally,
these results confirm the interest of the use of colorimetric invariant to improve
the segmentation of moving objects.
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Fig. 4. Segmentations obtained with algorithm non-adaptative Codebook RGB-D with
a learning on L1. From left to right: P1 to P6 processes. Bottom lines display most
interesting colorimetric invariants and color models according to our results. Segmen-
tations are filtered with morphological operators.

As statued previously, depth inclusion into the codebook algorithm globally
improves segmentations quality by +7% for foreground class and +5% for
background class when using original RGB images jointly with depth values in
L

x

P

x

cases (learning and processing bases are the same).

When learning and process times are di↵erent (L
x

P

y

) cases, of course F-
Measure decrease since these cases are more di�cult. When no colorimetric
invariant is used, foreground F-Measures decrease below 22% and 50%. But even
then, colorimetric invariants such as c1c2c3, Chromaticity space, RGB-Rank,
HSL and YCh1Ch2 improve foreground F-Measure in certain cases by more
than 40%. One can also notice that these average values are widely reduced by
L1 P6 average F-Measures. This denotes a limit of the method: very time-shifted
databases are di↵ult for the algorithm to manage, and colorimetric invariants
are not su�cient enough to limit this e↵ect, which denote the need of a proper
learning update even if it can be shifted. When no improvement is brought,
no noticeable deterioration exists either. This means that for best colorimetric
invariants, results are at least very close to results obtained when using original
images, at best they are better. Little deteriorations are observed in background
class while this method interestingly improves detection quality of foreground
class. These results confirm the benefits of the joint use of depth in a background
subtraction technique as well as the use of modified images with colorimetric
invariants or di↵erent color spaces.
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Fig. 5. Segmentations obtained with algorithm adaptative Codebook RGB-D with a
learning on L1. Bottom lines display most interesting colorimetric invariants and color
models according to our results. Post-processing is applied after segmentation.

5 Conclusion

In this paper, we have proposed a new solution for foreground detection meth-
ods involving colorimetric invariance and RGB-D fusion. Depth information col-
lected from active sensors were used together with di↵erent colorimetric invariant
modified images, thus occasionally providing better segmentation results. This
method opens a door for future works dealing with di�cult, indoor and outdoor
environments which often cause detection problems because of important light-
ing changes. Future works should propose a di↵erent way to manage the color
constancy inside the background model, and determine the best colorimetric
invariance method according to each situation.
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