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Reducibility of the Quantum Harmonic Oscillator in

d-dimensions with Polynomial Time Dependent

Perturbation

D. Bambusi ∗, B. Grébert †, A. Maspero ‡, D. Robert §

February 20, 2017

Abstract

We prove a reducibility result for a quantum harmonic oscillator in arbitrary dimensions

with arbitrary frequencies perturbed by a linear operator which is a polynomial of degree

two in xj , −i∂j with coefficients which depend quasiperiodically on time.

1 Introduction and statement

The aim of this paper is to present a reducibility result for the time dependent Schrödinger
equation

iψ̇ = Hǫ(ωt)ψ , x ∈ R
d (1.1)

Hǫ(ωt) := H0 + ǫW (ωt, x,−i∇) (1.2)

where

H0 := −∆+ V (x), V (x) :=

d∑

j=1

ν2j x
2
j , νj > 0 (1.3)

and W (θ, x, ξ) is a real polynomial in (x, ξ) of degree at most two, with coefficients being real
analytic functions of θ ∈ Tn. Here ω are parameters which are assumed to belong to the set
D = (0, 2π)n.

For ǫ = 0 the spectrum of (1.2) is given by

σ(H0) = {λk}k∈Nd , λk ≡ λ(k1,...,kd) :=

d∑

j=1

(2kj + 1)νj , (1.4)
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with kj ≥ 0 integers. In particular if the frequencies νj are nonresonant, then the differences
between couples of eigenvalues are dense on the real axis. As a consequence, in the case ǫ = 0 most
of the solutions of (1.1) are almost periodic with an infinite number of rationally independent
frequencies.

Here we will prove that for any choice of the mechanical frequencies νj and for ω belonging to a
set of large measure in D the system (1.1) is reducible: precisely there exists a time quasiperiodic
unitary transformation of L2(Rd) which conjugates (1.2) to a time independent operator; we also
deduce boudedness of the Sobolev norms of the solution.

The proof exploits the fact that for polynomial Hamiltonians of degree at most 2 the corre-
spondance between classical and quantum mechanics is exact (i.e without error term), so that the
result can be proves by exact quantization of the classical KAM theory which ensures reducibility
of the classical Hamiltonian system

hǫ := h0 + ǫW (ωt, x, ξ) , h0 :=

d∑

j=1

ξ2j + ν2j x
2
j . (1.5)

We will use (in the appendix) the exact correspondence between classical and quantum dynamics
of quadratic Hamiltonians also to prove a complementary result. Precisely we will present a
class of examples (following [GY00]) in which one generically has growth of Sobolev norms. This
happens when the frequencies ω of the external forcing are resonant with some of the νj ’s.

We recall that the exact correspondence between classical and quantum dynamics of quadratic
Hamiltonians was already exploited in the paper [HLS86] to prove stability/instability results
for one degree of freedom time dependent quadratic Hamiltonians.

Notwithstanding the simplicity of the proof, we think that the present result could have some
interest, since this is the first example of a reducibility result for a system in which the gaps
of the unperturbed spectrum are dense in R. Furthermore it is one of the few cases in which
reducibility is obtained for systems in more than one space dimension.

Indeed, most of the results on the reducibility problem for (1.1) have been obtained in the
one dimensional case, and also the results in higher dimensions obtained up to now deal only
with cases in which the spectrum of the unperturbed system has gaps whose size is bounded
from below, like in the Harmonic oscillator (or in the Schrödinger equation on T

d). On the other
hand we restrict here to perturbations, which althought unbounded, must belong to the very
special class of polynomials in xj and −i∂j. We remark that in order to deal with more general
perturbations one needs further ideas and techniques.

Before closing this introduction we recall some previous works on the reducibility problem
for (1.1) and more generally for perturbations of the Schrödinger equation with a potential
V (x). As we already anticipated, most of the works deal with the one dimensional case. The
first one is [Com87] in which pure point nature of the Floquet operator is obtained in case of
a smoothing perturbation of the Harmonic oscillator in dimension 1 (see also [Kuk93]). The
techniques of this paper were extended in [DŠ96, DLŠV02], in order to deal with potentials
growing superquadratically (still in dimension 1) but with perturbations which were only required
to be bounded.

A slightely different approach originates from the so called KAM theory for PDEs [Kuk87,
Way90, Kuk93]. In particular the methods developed in that context in order to deal with un-
bounded perturbations (see [Kuk97, Kuk98]) where exploited in [BG01] in order to deal with the
reducibility problem of (1.1) with superquadratic potential in dimension 1 (see [LY10] for a fur-
ther improvement). The case of bounded perturbations of the Harmonic oscillator in dimension
1 was treated in [Wan08, GT11].
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The only works dealing with the higher dimensional case are [EK09] actually dealing with
bounded perturbations of the Schrödinger equation on T

d and [GP16] dealing with bounded
perturbations of the completely resonant Harmonic oscillator in Rd.

All these papers deal with cases where the spectrum of the unperturbed operator is formed
by well separated eigenvalues. In the higher dimensional cases they are allowed to have high
multiplicity, but then the perturbation must have special properties ensuring that the clusters
are essentially not destroyed under the iteration needed in order to develop KAM theory.

Finally we recall the works [Bam16, Bam17] in which pseudodifferential calculus was used
toghether with KAM theory in order to prove reducibility results for (1.1) (in dimension 1)
with unbounded perturbations. The ideas of the present paper are a direct development of
the ideas of [Bam16, Bam17]. We also recall that the idea of using pseudodifferential calculus
toghether with KAM theory in order to deal with problems involving unbounded perturbations
originates from the work [PT01] and has been developed in order to give a quite general theory
in [BBM14, BM16, Mon14].

In order to state our main result, we need some preparations. It is well known that the
equation (1.1) is well posed (see for example [MR16]) in the scale Hs, s ∈ R of the weighted
Sobolev spaces defined as follows. For s ≥ 0 let

Hs := {ψ ∈ L2(Rd) : H
s/2
0 ψ ∈ L2(Rd)} ,

equipped with the natural Hilbert space norm ‖ψ‖s := ‖Hs/2
0 ψ‖L2(Rd). For s < 0, Hs is de-

fined by duality. Such spaces are not dependent on ν for νj > 0, 1 ≤ j ≤ d. We also have
Hs ≡ Dom(−∆+ |x|2)s/2.

We will prove the following reducibility theorem:

Theorem 1.1. Let ψ be a solution of (1.1). There exist ǫ∗ > 0, C > 0 and ∀ |ǫ| < ǫ∗ a closed

set Eǫ ⊂ (0, 2π)n with meas((0, 2π)n \Eǫ) ≤ Cǫ
1
9 and, ∀ω ∈ Eǫ there exists a unitary (in L2) time

quasiperiodic map Uω(ωt) s.t. defining ϕ by Uω(ωt)ϕ = ψ, it satisfies the equation

iϕ̇ = H∞ϕ , (1.6)

with H∞ a positive definite operator which is unitarily equivalent to a diagonal operator

d∑

j=1

ν∞j (x2j − ∂2xj
),

where ν∞j = ν∞j (ω) are defined for ω ∈ Eǫ and fulfill the estimates

|νj − ν∞j | ≤ Cǫ , j = 1, . . . , d .

Finally the following properties hold

• ∀s ≥ 0, ∀ψ ∈ Hs, θ 7→ Uω(θ)ψ ∈ C0(Tn;Hs).

• ∀s ≥ 0, ∃CS > 0 such that

‖1− Uω(ωt)‖L(Hs+2;Hs) ≤ Csǫ. (1.7)

• ∀s, r ≥ 0, ∃ǫs,r > 0 s.t., if |ǫ| < ǫs,r then the map θ 7→ Uω(θ) is of class Cr(Tn;L(Hs+4r+2;Hs)).
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Let us denote by Uǫ,ω(t, τ) the propagator generated by (1.1) such that Uǫ,ω(τ, τ) = 1, ∀τ ∈ R.
An immediate consequence of Theorem 1.1 is that we have a Floquet decomposition:

Uǫ,ω(t, τ) = U∗
ω(ωt)e

−i(t−τ)H∞Uω(ωτ). (1.8)

An other consequence of (1.8) is that for any s > 0 the norm ‖Uǫ,ω(t, 0)ψ0‖s is bounded
uniformly in time:

Corollary 1.2. Let ω ∈ Eǫ. Then for every s > 0 there exists ǫs > 0 s.t. for |ǫ| < ǫs one has

cs‖ψ0‖s ≤ ‖Uǫ,ω(t, 0)ψ0‖s ≤ Cs‖ψ0‖s , ∀t ∈ R , ∀ψ0 ∈ Hs, (1.9)

for some cs > 0, Cs > 0.
Moreover there exists a constant cs s.t. if the initial data ψ0 ∈ Hs+2

‖ψ0‖s − ǫcs‖ψ0‖s+2 ≤ ‖Uǫ,ω(t, 0)ψ0‖s ≤ ‖ψ0‖s + ǫcs‖ψ0‖s+2 , ∀t ∈ R . (1.10)

It is interesting to compare estimate (1.9) with the corresponding estimate which can be
obtained for more general perturbations W (t, x,D). So denote by U(t, τ) the propagator of
H0 + W (t, x,D) with U(τ, τ) = 1. Then in [MR16] it is proved that if W (t, x, ξ) is a real
polynomial in (x, ξ) of degree at most 2, the propagator U(t, s) exists, belongs to L(Hs) ∀s ≥ 0
and fulfills

‖U(t, 0)ψ0‖s ≤ eCs|t|‖ψ0‖s , ∀t ∈ R

(the estimate is sharp!). If W (t, x, ξ) is a polynomial of degree at most 1 one has

‖U(t, 0)ψ0‖s ≤ Cs(1 + |t|)s ‖ψ0‖s , ∀t ∈ R .

Thus estimate (1.9) improves dramatically the upper bounds proved in [MR16] when the per-
turbation is small and depends quasiperiodically in time with "good" frequencies.

As a final remark we recall that growth of Sobolev norms can indeed happen if the frequencies
ω are not well chosen. In Appendix A, we show that the Schrödinger equation (which was already
studied by Graffi and Yajima in [GY00])

iψ̇ =

[
−1

2
∂xx +

x2

2
+ ax sinωt

]
ψ , x ∈ R

exhibits growth of Sobolev norms if and only if ω = ±1, which are clearly resonant frequencies.
We also slightely generalize the example.

An other example of growth of Sobolev norms for the perturbed harmonic oscillator is given
by Delort [Del14]. There the perturbation is a pseudodifferential operator of order 0, periodic in
time with resonant frequency ω = 1.

Remark 1.3. The uniform time estimate given in (1.9) is similar to the main result obtained in
[EK09] for small perturbation of the Laplace operator on the torus Td. Concerning perturbations
of harmonic oscillators in Rd most reducibility known results are obtained for d = 1 excepted in
[GP16].
Actually in these papers (1.10) is proved without loss of regularity; this is due to the fact that the
perturbations treated in [EK09, GP16] are bounded operators.

Remark 1.4. Denote by {ψk}k∈Nd the set of Hermite functions, namely the eigenvectors of
H0: H0ψk = λkψk. They form an orthonormal basis of L2(Rd), and writing ψ =

∑
k ckψk one

has ‖ψ‖2s ≃ ∑
k(1 + |k|)2s|ck|2. Denote ψ(t) =

∑

k∈Nd

ck(t)ψk the solution of (1.1) written on the
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Hermite basis. Then (1.9) implies the following dynamical localization for the energy of the
solution: ∀s ≥ 0, ∃Cs ≡ Cs(ψ0) > 0:

sup
t∈R

|ck(t)| ≤ Cs(1 + |k|)−s , ∀k ∈ N
d . (1.11)

From the dynamical property (1.11) one obtains easily that every state ψ ∈ L2(Rd) is a
bounded state for the time evolution Uǫ,ω(t, 0)ψ under the conditions of Theorem 1.1 on (ǫ, ω).
The corresponding definitions are given in [EV83]:

Definition 1.5 (See [EV83]). A function ψ ∈ L2(Rd) is a bounded state (or belongs to the
point spectral subspace of {Uǫ,ω(t, 0)}t∈R) if the quantum trajectory {Uǫ,ω(t, 0)ψ : t ∈ R} is a
precompact subset of L2(Rd).

Corollary 1.6. Under the conditions of Theorem 1.1 on (ǫ, ω), every state ψ ∈ L2(Rd) is a
bounded state of {Uǫ,ω(t, 0)}t∈R.

Proof. To prove that every state ψ ∈ L2(Rd) is a bounded state for the time evolution Uǫ,ω(t, 0)ψ,
using that Hs is dense in L2(Rd), it is enough to assume that ψ ∈ Hs, with s > d

2 . With the
notations of Remark 1.4, we write

ψ(t) = ψ(N)(t) +R(N)(t),

where ψ(N)(t) =
∑

|k|≤N

ck(t)ψk and R(N)(t) =
∑

|k|>N

ck(t)ψk.

Let be δ > 0. Applying (1.4), taking N large enough, we get that for all t ∈ R, ‖R(N)(t)‖0 ≤ δ
2 .

But {ψ(N)(t), t ∈ R} is a subset of a finite dimensional linear space. So we get that {Uǫ,ω(t, 0)ψ :
t ∈ R} is a precompact subset of L2(Rd).

This last dynamical result is deeply connected with the spectrum of the Floquet operator.
First remark that Theorem 1.1 implies the following

Corollary 1.7. The operator Uω induces a unitary transformation L2(Tn)⊗L2(Rd) which trans-
forms the Floquet operator K, namely

K := −iω · ∂
∂θ

+H0 + ǫW (θ) ,

into

−iω · ∂
∂θ

+H∞ .

Thus one has that the spectrum of K is pure point and its eigenvalues are λ∞j + ω · k.

Notice that Enss and Veselic proved that the spectrum of the Floquet operator is pure point
if and only if every state is a bounded state [EV83, Theorems 2.3 and Theorem 3.2]. So Corollary
1.7 gives another proof of Corollary 1.6.

Acknowledgements. The last three authors are supported by ANR -15-CE40-0001-02 “BEKAM”
of the Agence Nationale de la Recherche.
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2 Proof

To start with we scale the variables xj by defining x′j =
√
νjxj so that, defining

hj(xj , ξj) := ξ2j + x2j , Hj := −∂2xj
+ x2j ,

one has

h0 =

d∑

j=1

νjhj , H0 =

d∑

j=1

νjHj . (2.1)

Remark 2.1. Notice that for any positive definite quadratic Hamiltonian h on R2d there exists
a symplectic basis such that h =

∑d
j=1 νjhj, with νj > 0 for 1 ≤ j ≤ d (see [Hör85]).

For convenience in this paper we shall consider the Weyl quantization. The Weyl quantization
of a symbol f is the operator Opw(f), defined as usual as

Opw(f)u(x) =
1

(2π)d

∫

y,ξ∈Rd

ei(x−y)ξ f

(
x+ y

2
, ξ

)
u(y) dy dξ .

Correspondingly we will say that an operator T = Opw(f) is the Weyl operator with Weyl
symbol f . Notice that for polynomials f of degree at most 2 in (x, ξ), Opw(f) = f(x,D)+const,
where D = i−1∇x.

Most of the times we also use the notation fw(x,D) := Opw(f). In particular, in equation
(1.2) W (ωt, x,−i∂x) denotes the Weyl operator Ww(ωt, x,D).
Given a hamiltonian χ = χ(x, ξ), we will denote by φtχ the flow of the corresponding classical
Hamilton equations.

It is well known that, if f and g are symbols, then the operator −i[fw(x,D); gw(x,D)]
admits a symbol denoted by {f ; g}M (Moyal bracket). Two fundamental properties of quadratic
polynomial symbols are the following well known remarks.

Remark 2.2. If f or g is a polynomial of degree at most 2, then {f ; g}M = {f ; g}, where

{f ; g} :=

d∑

j=1

∂f

∂xj

∂g

∂ξj
− ∂g

∂xj

∂f

∂ξj

is the Poisson Bracket of f and g.

Remark 2.3. Let χ be a polynomial of degree at most 2, then it follows from the previous remark
that, for any Weyl operator fw(x,D), the symbol of e−itχw(x,D)fw(x,D)eitχ

w(x,D) is f ◦ φtχ.

Next we need to know how a time dependent transformation transforms a classical and
a quantum Hamiltonian. Precisely, consider a 1-parameter family of (hamiltonian) functions
χ(t, x, ξ) and denote by φτ (x, ξ, t) the time τ flow it generates, precisely the solution of

dx

dτ
=
∂χ

∂ξ
(t, x, ξ) ,

dξ

dτ
= −∂χ

∂x
(t, x, ξ) . (2.2)

Consider the time dependent coordinate transformation

(x, ξ) = φ1(t, x′, ξ′) := φ1(t, x′, ξ′)
∣∣
s=1

. (2.3)
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Remark 2.4. Working in the extended phase space in which time and a new momentum con-
jugated to it are added, it is easy to see that the coordinate transformation (2.3) transforms a
hamiltonian system with Hamiltonian h into a hamiltonian system with Hamiltonian h′ given by

h′(t, x′, ξ′) = h(φ1(t, x′, ξ′, t))−
∫ 1

0

ds
∂χ

∂t
(t, φs(x′, ξ′, t)) . (2.4)

Remark 2.5. If the operator χw(t, x,D) is selfadjoint for any fixed t, then the transformation

ψ = e−iχw(t,x,D)ψ′ (2.5)

transform iψ̇ = Hψ into iψ̇′ = H ′ψ′ with

H ′ = eiχ
w(t,x,D)He−iχw(t,x,D) −

∫ 1

0

eisχ
w(t,x,D) (∂tχ

w(t, x, ξ)) e−isχw(t,x,D)ds . (2.6)

This is seen by an explicit computation. For example see Lemma 3.2 of [Bam16].

So in view of Remark 2.3, provided that transformation (2.5) is well defined the quantum
transformed Hamiltonian (2.6) is the exact quantization of the transformed classical Hamiltonian
(2.4).
The properties of χw in the case of quadratic polynomials are specified in the following lemma.

Lemma 2.6. Let χ(t, x, ξ) be a polynomial in (x, ξ) of degree at most 2 with real coefficients
depending in a C1 way on t ∈ R. Then ∀t ∈ R, the operator χw(t, x,D) is selfadjoint in L2(Rd).
Furthermore ∀s ≥ 0, ∀τ ∈ R the following holds true:

(i) the map t 7→ e−iτχw(t,x,D) ∈ C0(R, L(Hs+2,Hs)).

(ii) ∀ψ ∈ Hs, the map t 7→ e−iτχw(t,x,D)ψ ∈ C0(R, Hs).

(iii) ∀r ∈ N the map t 7→ e−iτχw(t,x,D) ∈ Cr(R, L(Hs+4r+2,Hs)).

(iv) If the coefficients of χ(t, x, ξ) are uniformly bounded in t ∈ R then for any s > 0 there exist
cs > 0, Cs > 0 such that we have

cs‖ψ‖s ≤ ‖e−iτχw(t,x,D)ψ‖s ≤ Cs‖ψ‖s, ∀t ∈ R, ∀τ ∈ [0, 1].

Proof. Since χ(t, x, ξ) is a real valued polynomial in (x, ξ) of degree at most 2, the operator
χw(t, x,D) is selfadjoint in L2(Rd), so ∀t ∈ R the propagator e−iτχw(t,x,D) is unitary on L2(Rd).
We show now that e−iτχw(t,x,D) maps Hs to itself, ∀s > 0. This follows from a general result
proved in [MR16]. More precisely Theorem 1.2 of [MR16] guarantees that e−iτχw(t,x,D) ∈ L(Hs)
provided the operator χw(t, x,D)H−1

0 and the commutator [H0, χ
w(t, x,D)]H−1

0 (where H0 is
the harmonic oscillator of (1.3)) belong to L(Hs), ∀s ≥ 0. But this follows easily by using that
[H0, χ

w(t, x,D)] has a polynomial symbol of degree at most 2, so [H0, χ
w(t, x,D)]H−1

0 ∈ L(Hs),
∀s ≥ 0.
Now item (i) follows from [MR16, Theorem 2.6] with m = 2. Continuity in item (ii) is deduced
by (i) with a density argument.
Item (iii) is easily proved by induction on r starting with the Duhamel formula

e−iτB − e−iτA =

∫ τ

0

e−i(t−s)A (B −A) e−isBds . (2.7)

7



Then choosing B = χw(t+ t′, x,D), A = χw(t, x,D) and taking the difference quotient one gets

∂te
−iτχw(t,x,D) =

∫ τ

0

e−i(τ−s)χw(t,x,D) (∂tχ
w(t, x,D)) e−isχw(t,x,D)ds

from which the result for r = 1 follows using r = 0 (from item (i)). By a recursive argument one
proves the general case.
The upper-bound in item (iv) follows from [MR16] where it is proved that the operator norm
in Hs of the propagator depends only by ‖[H0, χ

w(t, x,D)]H−1
0 ‖L(Hs) which by assumption is

uniformly bounded in t ∈ R. The lower-bound follows by applying the upper-bound to the
identity ψ = U(t)∗U(t)ψ, where U(t) = e−iτχw(t,x,D).

Remark 2.4, Remark 2.5 and Lemma 2.6 imply the following important proposition.

Proposition 2.7. Let χ(t, x, ξ) be a polynomial of degree at most 2 in x and ξ with smooth time
dependent coefficients. If the transformation (2.3) transforms a classical system with Hamiltonian
h into a Hamiltonian system with Hamiltonian h′, then the transformation (2.5) transform the
quantum system with Hamiltonian hw into the quantum system with Hamiltonian (h′)w.

As a consequence, for quadratic Hamiltonians, the quantum KAM theorem will follow from
the corresponding classical KAM theorem.

To give the needed result, consider the classical time dependent hamiltonian

hǫ(ωt, x, ξ) :=
∑

1≤j≤d

νj
x2j + ξ2j

2
+ ǫW (ωt, x, ξ) , (2.8)

with W as in the introduction. The following KAM theorem holds.

Theorem 2.8. Assume that νj ≥ ν0 > 0 for j = 1, · · · , d and that Tn × R
d × R

d ∋ (θ, x, ξ) 7→
W (θ, x, ξ) ∈ R is a polynomial in (x, ξ) of degree at most 2 with coefficients which are real analytic
functions of θ ∈ Tn.
Then there exists ǫ∗ > 0 and C > 0, such that for |ǫ| < ǫ∗ the following holds true:

(i) there exists a closed set Eǫ ⊂ (0, 2π)n with meas((0, 2π)n \ Eǫ) ≤ Cǫ
1
9 ;

(ii) for any ω ∈ Eǫ, there exists an analytic map θ 7→ Aω(θ) ∈ sp(2d) (symplectic algebra1 of
dimension 2d) and an analytic map θ 7→ Vω(θ) ∈ R2d, such that the change of coordinates

(x′, ξ′) = eAω(ωt)(x, ξ) + Vω(ωt) (2.9)

conjugates the Hamiltonian equations of (2.8) to the Hamiltonian equations of a homoge-
neous polynomial h∞(x, ξ) of degree 2 which is positive definite. Finally both Aω and Vω
are ǫ close to zero.

Furthermore h∞ can be diagonalized: there exists a matrix P ∈ Sp(2d) (symplectic group of
dimension 2d) such that, denoting (y, η) = P(x, ξ) we have

h∞ ◦ P−1(y, η) =
d∑

j=1

ν∞j (y2j + η2j ) (2.10)

where ν∞j = ν∞j (ω) are defined on Eǫ and fulfill the estimates

|ν∞j − νj | ≤ Cǫ, j = 1, · · · , d. (2.11)
1recall that a real 2d× 2d matrix A belongs to sp(2d) iff JA is symmetric
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Remark 2.9. In general, the matrix P is not close to identity. However, in case the frequencies
νj are non resonant, then P = 1.

KAM theory in finite dimensions is nowadays standard. In particular we believe that Theorem
2.8 can be obtained combining the results of [Eli88, You99]. However, for the reader convenience
and the sake of being self-contained, we add in Section 3 its proof.

Theorem 1.1 follows immediately combining the results of Theorem 2.8 and Proposition 2.7.

Proof of Theorem 1.1. We see easily that the change of coordinates (2.9) has the form (2.3) with
an Hamiltonian χω(ωt, x, ξ) which is a polynomial in (x, ξ) of degree at most 2 with real, smooth
and uniformly bounded coefficients in t ∈ R.
Define Uω(ωt) = e−iχw

ω (ωt,x,D). It fulfills (i)–(iv) of Lemma 2.6 and by Proposition 2.7 it conju-
gates the original equation (1.1) to (1.6) where H∞ := Opw(h∞).
Then using the metaplectic representation (see [CR12]) and (2.10), there exists a unitary trans-
formation in L2, R(P−1), such that

R(P−1)∗H∞R(P−1) =

d∑

j=1

ν∞j (x2j + ∂2xj
).

We prove now Corollary 1.2.

Proof of Corollary 1.2. Consider first the propagator e−itH∞ . We claim that

sup
t∈R

‖e−itH∞‖L(Hs) <∞ , ∀t ∈ R . (2.12)

Recall that H∞ = hw∞(x,D) where h∞(x, ξ) is a positive definite symmetric form which can be
diagonalized by a symplectic matrix P . Since h∞ is positive definite, there exist c0, c1, c2 > 0
s.t.

c1h0(x, ξ) ≤ c0 + h∞(x, ξ) ≤ c2(1 + h0(x, ξ)) ,

which implies that C1H0 ≤ C0+H∞ ≤ C2(1+H0) as bilinear form. Thus one has the equivalence
of norms

C−1
s ‖ψ‖Hs ≤ ‖(H∞)s/2ψ‖L2 ≤ Cs‖ψ‖Hs .

Then

‖e−itH∞ψ0‖Hs ≤ Cs‖(H∞)s/2 e−itH∞ψ0‖L2 = Cs‖(H∞)s/2 ψ0‖L2 ≤ C′
s‖ψ0‖Hs

which implies (2.12).
Now let ψ(t) be a solution of (1.1). By formula (1.8), ψ(t) = U∗

ω(ωt)e
−itH∞Uω(0)ψ0. Then

the upperbound in (1.9) follows easily from (2.12) and supt ‖Uω(ωt)‖L(Hs) < ∞, which is a
consequence of Lemma 2.6. The lower-bound follows by applying Lemma 2.6 (iv).

Finally estimate (1.10) follows from (1.7).
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3 A classical KAM result.

In this section we prove Theorem 2.8. We prefer to work in the extended phase space in which
we add the angles θ ∈ Tn as new variables and their conjugated momenta I ∈ Rn. Furthermore
we will use complex variables defined by

zj =
ξj − ixj√

2
,

so that our phase space will be Tn × Rn × Cd, with Cd considered as a real vector space. The
symplectic form is dI ∧ dθ + idz ∧ dz̄ and the Hamilton equations of a Hamiltonian function
h(θ, I, z, z̄) are

İ = −∂h
∂θ

, θ̇ =
∂h

∂I
, ż = −i

∂h

∂z̄
.

In this framework h0 takes the form h0 =
∑d

j=1 νjzj z̄j and W takes the form of polynomial
in z, z̄ of degree two W (θ, x, ξ) = q(θ, z, z̄). The Hamiltonian system associated with the time
dependent Hamiltonian hǫ (see (2.8)) is then equivalent to the Hamiltonian system associated
with the time independent hamiltonian ω · I + hǫ (written in complex variables) in the extended
phase space.

3.1 General strategy

Let h be a Hamiltonian in normal form:

h(I, θ, z, z̄) = ω · I + 〈z,N(ω)z̄〉 (3.1)

with N ∈ MH the set of Hermitian matrix. Notice that at the beginning of the procedure N is
diagonal,

N = N0 = diag(νj , j = 1, · · · , d)
and is independent of ω. Let q ≡ qω be a polynomial Hamiltonian which takes real values:
q(θ, z, z̄) ∈ R for θ ∈ Tn and z ∈ Cd. We write

q(θ, z, z̄) = 〈z,Qzz(θ)z〉+ 〈z,Qzz̄(θ)z̄〉+ 〈z̄, Q̄zz(θ)z̄〉+ 〈Qz(θ), z〉+ 〈Q̄z̄(θ), z̄〉 (3.2)

where Qzz(θ) ≡ Qzz(ω, θ) and Qzz̄(θ) ≡ Qzz̄(ω, θ) are d × d complex matrices and Qz(θ) ≡
Qz(θ, ω) is a vector in Cd. They all depend analytically on the angle θ ∈ Tn

σ := {x + iy | x ∈
Tn, y ∈ Rn, |y| < σ}. We notice that Qzz̄ is Hermitian while Qzz is symmetric. The size of
such polynomial function depending analytically on θ ∈ Tn

σ and C1 on ω ∈ D = (0, 2π)n will be
controlled by the norm

[q]σ := sup
|Imθ|<σ

ω∈D, j=0,1

‖∂jωQzz(ω, θ)‖+ sup
|Imθ|<σ

ω∈D, j=0,1

‖∂jωQzz̄(ω, θ)‖+ sup
|Imθ|<σ

ω∈D, j=0,1

|∂jωQz(ω, θ)|

and we denote by Q(σ) the class of Hamiltonians of the form (3.2) whose norm [·]σ is finite.
Let us assume that [q]σ = O(ǫ). We search for χ ≡ χω ∈ Q(σ) with [χ]σ = O(ǫ) such that its
time-one flow φχ ≡ φt=1

χ (in the extended phase space, of course) transforms the Hamiltonian
h+ q into

(h+ q(θ)) ◦ φχ = h+ + q+(θ), ω ∈ D+ (3.3)
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where h+ = ω · I + 〈z,N+z̄〉 is a new normal form, ǫ-close to h, the new perturbation q+ ∈ Q(σ)
is of size2 O(ǫ

3
2 ) and D+ ⊂ D is ǫα-close to D for some α > 0. Notice that all the functions are

defined on the whole open set D but the equalities (3.3) holds only on D+ a subset of D from
which we excised the "resonant parts".
As a consequence of the Hamiltonian structure we have that

(h+ q(θ)) ◦ φχ = h+ {h, χ}+ q(θ) +O(ǫ
3
2 ), ω ∈ D+ .

So to achieve the goal above we should solve the homological equation:

{h, χ} = h+ − h− q(θ) +O(ǫ
3
2 ), ω ∈ D+. (3.4)

Repeating iteratively the same procedure with h+ instead of h, we will construct a change of
variable φ such that

(h+ q(θ)) ◦ φ = ω · I + h∞, ω ∈ D∞ ,

with h∞ = 〈z,N∞(ω)z̄〉 in normal form and D∞ a ǫα-close subset of D. Note that we will be
forced to solve the homological equation not only for the diagonal normal form N0, but for more
general normal form Hamiltonians (3.1) with N close to N0 .

3.2 Homological equation

Proposition 3.1. Let D = (0, 2π)n and D ∋ ω 7→ N(ω) ∈ MH be a C1 mapping that verifies

∥∥∂jω(N(ω)−N0)
∥∥ ≤ min(1, ν0)

max(4, d)
(3.5)

for j = 0, 1 and ω ∈ D. Let h = ω · I + 〈z,Nz̄〉, q ∈ Q(σ) , κ > 0 and K ≥ 1.
Then there exists a closed subset D′ = D′(κ,K) ⊂ D, satisfying

meas(D \ D′) ≤ CKnκ, (3.6)

and there exist χ, r ∈ ∩0≤σ′<σQ(σ′) and D ∋ ω 7→ Ñ(ω) ∈ MH a C1 mapping such that for all
ω ∈ D′

{h, χ}+ q = 〈z, Ñ z̄〉+ r . (3.7)

Furthermore for all ω ∈ D ∥∥∥∂jωÑ(ω)
∥∥∥ ≤ [q]σ , j = 0, 1 (3.8)

and for all 0 ≤ σ′ < σ

[r]σ′ ≤ C
e−

1
2
(σ−σ′)K

(σ − σ′)n
[q]σ , (3.9)

[χ]σ′ ≤ CK

κ2(σ − σ′)n
[q]σ| . (3.10)

Proof. Writing the Hamiltonians h, q and χ as in (3.2), the homological equation (3.7) is equiv-
alent to the three following equations (we use that N is hermitian, thus N̄ = tN):

ω · ∇θXzz̄ − i[N,Xzz̄ ] = Ñ −Qzz̄ +Rzz̄, (3.11)

2Formally we could expect q+ to be of size O(ǫ2) but the small divisors and the reduction of the analyticity

domain will lead to an estimate of the type O(ǫ
3
2 ).
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ω · ∇θXzz − i(NXzz +XzzN̄) = −Qzz +Rzz, (3.12)

ω · ∇θXz + iNXz = −Qz +Rz . (3.13)

First we solve (3.11). To simplify notations we drop the indices zz̄. Written in Fourier variables
(w.r.t. θ), (3.11) reads

iω · k X̂k − i[N, X̂k] = δk,0Ñ − Q̂k + R̂k, k ∈ Z
n (3.14)

where δk,j denotes the Kronecker symbol.
When k = 0 we solve this equation by defining

X̂0 = 0, R̂0 = 0 and Ñ = Q̂0.

We notice that Ñ ∈ MH and satisfies (3.8).
When |k| ≥ K equation (3.14) is solved by defining

R̂k = Q̂k, X̂k = 0 for |k| ≥ K. (3.15)

Then we set
R̂k = 0 for |k| ≤ K

in such a way that r ∈ ∩0≤σ′<σQ(σ′) and by a standard argument r satisfies (3.9). Now it
remains to solve the equations for X̂k, 0 < |k| ≤ K which we rewrite as

Lk(ω)X̂k = iQ̂k (3.16)

where Lk(ω) is the linear operator from MS , the space of symmetric matrices, into itself defined
by

Lk(ω) :M 7→ k · ω − [N(ω),M ] .

We notice that MS can be endowed with the hermitian product: (A,B) = Tr(ĀB) associated
with the Hilbert Schmidt norm. Since N is hermitian, Lk(ω) is self adjoint for this structure.
As a first consequence we get

‖(Lk(ω))
−1‖ ≤ 1

min{|λ|, λ ∈ Σ(Lk(ω))}
=

1

min{|k · ω − α(ω) + β(ω)| | α, β ∈ Σ(N(ω))}

where for any matrix A, we denote its spectrum by Σ(A).
As a second consequence, if λk(ω) = k·ω−α(ω)+β(ω) is an eigenvalue of Lk(ω) which is assumed
to be C1 in a fixed direction z ∈ R

n (which is always possible if Lk(ω) depends analytically of
ω) and whose associated unitary eigenvector is denoted by v(ω) then

∂ωλ(ω) · z = 〈v(ω), ∂ωLk(ω) · z v(ω)〉.

Therefore, if N depends analytically of ω, we deduce using (3.5)
∣∣∣∣∂ωλ(ω) ·

k

|k|

∣∣∣∣ ≥
1

2
for k 6= 0. (3.17)

Given a matrix L depending on the parameter ω ∈ D, we define

D(L, κ) = {ω ∈ D | ‖L(ω)−1‖ ≤ κ−1}.

Let us recall the following classical lemma:
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Lemma 3.2. Let f : [0, 1] 7→ R a C1-map satisfying |f ′(x)| ≥ δ for all x ∈ [0, 1] and let κ > 0.
Then

meas{x ∈ [0, 1] | |f(x)| ≤ κ} ≤ κ

δ
.

Combining this Lemma and (3.17) we deduce for k 6= 0

meas(D \D(Lk, κ)) ≤ Cκ (3.18)

and this estimate remains valid (with a larger constant C) for N ∈ C1 by a density argument.
In particular defining

D′ =
⋂

0<|k|≤K

D(Lk, κ)

D′ is closed and satisfies (3.6).
By construction, X̂k(ω) := iLk(ω)

−1Q̂k satisfies (3.16) for 0 < |k| ≤ K and ω ∈ D(Lk, κ) and

‖X̂k(ω)‖ ≤ κ−1‖Q̂k(ω)‖, ω ∈ D(Lk, κ). (3.19)

Now we extend X̂k(·) to D. Using again (3.5) we have for any |k| ≤ K and any unit vector z,
|∂ωλ(ω) · z| ≤ CK. Therefore

dist(D \ D(Lk, κ),D(Lk, κ/2)) ≥
κ

CK

and we can construct (by a convolution argument) for each k, 0 < |k| ≤ K, a C1 function gk on
D with

|gk|C0(D) ≤ C, |gk|C1(D) ≤ CKκ−1 (3.20)

(the constant C is independent of k) and such that gk(ω) = 1 for ω /∈ D(Lk, κ) and gk(ω) = 0 for
ω ∈ D(Lk, κ/2). Then X̃k = gkX̂k is a C1 extension of X̂k to D. Similarly we define Q̃k,= gkQ̂k

in such a way that X̃k satisfies

Lk(ω)X̃k(ω) = iQ̃k(ω), 0 < |k| ≤ K, ω ∈ D.

Differentiating with respect to ω leads to

Lk(ω)∂ωj
X̂(k) = i∂ωj

Q̂(k)− kjX̂(k) + [∂ωj
N, X̂(k)], 1 ≤ j ≤ n .

Denoting Bk(ω) = i∂ωj
Q̃k(ω)− kjX̃k(ω) + [∂ωj

N(ω), X̃k(ω)] we have
∥∥∥∂ωj

X̃k(ω)
∥∥∥ ≤ κ−1‖Bk(ω)‖, ω ∈ D .

Using (3.5), (3.19) and (3.20) we get for |k| ≤ K and ω ∈ D

‖Bk(ω)‖ ≤ ‖∂ωj
Q̃k(ω)‖+K‖X̃k(ω)‖+ 2‖∂ωj

N(ω)‖‖X̃k(ω)‖
≤ CKκ−1(‖∂ωj

Q̂(k, ω)‖+ ‖Q̂(k, ω)‖).

Combining the last two estimates we get

sup
ω∈D, j=0,1

∥∥∥∂jωX̃k(ω)
∥∥∥ ≤ CKκ−2 sup

ω∈D, j=0,1

∥∥∥∂jωQ̂k(ω)
∥∥∥ .

Thus defining
Xzz̄(ω, θ) =

∑

0<|k|≤K

X̃k(ω)e
ik·θ
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Xzz̄(ω, ·) satisfies (3.11) for ω ∈ D′ and leads to (3.10) for χzz̄(ω, θ, z, z̄) = 〈z,Xzz̄(ω, ·)z̄〉 .

We solve (3.13) in a similar way. We notice that in this case we face the small divisors
|ω · k − α(ω)|, k ∈ Zn where α ∈ Σ(N(ω)). In particular for k = 0 these quantities are ≥ ν0

2
since |α− νj | ≤ ν0

4 for some 1 ≤ j ≤ d by (3.5).
Written in Fourier and dropping indices zz (3.12) reads

iω · k X̂(k)− i(NX̂(k) + X̂(k)N̄) = −Q̂(k) + R̂(k) . (3.21)

So to mimic the resolution of (3.14) we have to replace the operator Lk(ω) by the operator
Mk(ω) defined on MS by

Mk(ω)X := ω · k +NX +XN̄.

This operator is still self adjoint for the hermitian product (A,B) = Tr(ĀB) so the same strategy
apply. Nevertheless we have to consider differently the case k = 0. In that case we use that the
eigenvalues of M0(ω) are close to eigenvalues of the operator M0 defined by

M0 : X 7→ N0X +XN̄0 = N0X +XN0

with N0 = diag(νj , j = 1, · · · , d) a real and diagonal matrix. Actually in view of (3.5)

‖(L− L0)M‖HS ≤ ‖N −N0‖HS ‖M‖HS ≤ d‖N −N0‖ ‖M‖HS ≤ ν0.

The eigenvalues of L0 are {νj+νℓ | j, ℓ = 1, · · · , d} and they are all larger than 2ν0. We conclude
that all the eigenvalues of M0(ω) satisfy |α(ω)| ≥ ν0. The end of the proof follow as before.

3.3 The KAM step.

Theorem 2.8 is proved by an iterative KAM procedure. We begin with the initial Hamiltonian
h0 + q0 where

h0(I, θ, z, z̄) = ω · I + 〈z,N0z̄〉 , (3.22)

N0 = diag(νj , j = 1, · · · , d), ω ∈ D ≡ [1, 2]n and the quadratic perturbation q0 = ǫW ∈ Q(σ,D)
for some σ > 0. Then we construct iteratively the change of variables φm, the normal form
hm = ω · I + 〈z,Nmz̄〉 and the perturbation qm ∈ Q(σm,Dm) as follows: assume that the
construction is done up to step m ≥ 0 then

(i) Using Proposition 3.1 we construct χm+1, rm+1 and Ñm the solution of the homological
equation:

{h, χm+1} = 〈z, Ñmz̄〉 − qm(θ) + rm+1, ω ∈ Dm+1, θ ∈ T
n
σm+1

. (3.23)

(ii) We define hm+1 := ω · I + 〈z,Nm+1z̄〉 by

Nm+1 = Nm + Ñm , (3.24)

and

qm+1 := rm +

∫ 1

0

{(1− t)(hm+1 − hm + rm+1) + tqm, χm+1} ◦ φtχm+1
dt . (3.25)
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By construction, if Qm and Nm are hermitian, so are Rm and Sm+1 by the resolution of the
homological equation, and also Nm+1 and Qm+1.
For any regular Hamiltonian f we have, using the Taylor expansion of f ◦ φtχm+1

between t = 0
and t = 1

f ◦ φ1χm+1
= f + {f, χm+1}+

∫ 1

0

(1− t){{f, χm+1}, χm+1} ◦ φtχm+1
dt .

Therefore we get for ω ∈ Dm+1

(hm + qm) ◦ φ1χm+1
= hm+1 + qm+1.

3.4 Iterative lemma

Following the general scheme above we have

(h0 + q0) ◦ φ1χ1
◦ · · · ◦ φ1χm

= hm + qm

where qm is a polynomial of degree two and hm = ω · I + 〈z,Nmz̄〉 with Nm a hermitian matrix.
At step m the Fourier series are truncated at order Km and the small divisors are controlled by
κm. Now we specify the choice of all the parameters for m ≥ 0 in term of ǫm which will control
[qm]Dm,σm

.
First we define ǫ0 = ǫ, σ0 = σ, D0 = D and for m ≥ 1 we choose

σm−1 − σm =C∗σ0m
−2, Km = 2(σm−1 − σm)−1 ln ǫ−1

m−1, κm = ǫ
1
8

m−1

where (C∗)
−1 = 2

∑
j≥1

1
j2 .

Lemma 3.3. There exists ǫ∗ > 0 depending on d, n such that, for |ǫ| ≤ ǫ∗ and

ǫm = ǫ(3/2)
m

, m ≥ 0 ,

we have the following:
For all m ≥ 1 there exist closed subsets Dm ⊂ Dm−1, hm = ω · I + 〈z,Nmz̄〉 in normal form
where Dm ∋ ω 7→ Nm(ω) ∈ MH ∈ C1 and there exist χm, qm ∈ Q(Dm, σm) such that for m ≥ 1

(i) The symplectomorphism

φm ≡ φχm
(ω) : R

n × T
n × C

2d → R
n × T

n × C
2d, ω ∈ Dm (3.26)

is an affine transformation in (z, z̄), analytic in θ ∈ Tn
σm

and C1 in ω ∈ Dm of the form

φm(I, θ, z, z̄) = (gm(I, θ, z, z̄), θ,Ψm(θ, z, z̄)) , (3.27)

where, for each θ ∈ Tn, (z, z̄) 7→ Ψm(θ, z, z̄) is a symplectic change of variable on C2n.
The map φm links the Hamiltonian at step m− 1 and the Hamiltonian at step m, i.e.

(hm−1 + qm−1) ◦ φm = hm + qm, ∀ω ∈ Dm .

(ii) We have the estimates

meas(Dm−1 \ Dm) ≤ ǫ
1
9

m−1, (3.28)

[Ñm−1]
Dm

s,β ≤ ǫm−1, (3.29)

[qm]Dm,σm

s,β ≤ ǫm, (3.30)

‖φm(ω)− 1‖L(Rn×Tn×C2d) ≤ Cǫ
1
2

m−1, ∀ω ∈ Dm. (3.31)
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Proof. At step 1, h0 = ω · I + 〈z,N0z̄〉 and thus hypothesis (3.5) is trivially satisfied and we can
apply Proposition 3.1 to construct χ1, N1, r1 and D1 such that for ω ∈ D1

{h0, χ1} = 〈z, (N1 −N0)z̄〉 − q0 + r1.

Then, using (3.6), we have

meas(D \ D1) ≤ CKn
1 κ1 ≤ ǫ

1
9

0

for ǫ = ǫ0 small enough. Using (3.10) we have for ǫ0 small enough

[χ1]D1,σ1
≤ C

K1

κ21(σ0 − σ1)n
ǫ0 ≤ ǫ

1
2

0 .

Similarly using (3.9), (3.8) we have

‖N1 −N0‖ ≤ ǫ0,

and

[r1]D1,σ1
≤ C

ǫ
15
8

0

(σ1 − σ0)n
≤ ǫ

7
4

0

for ǫ = ǫ0 small enough. In particular we deduce ‖φ1 − 1‖L(Rn×Tn×C2d) ≤ ǫ
1
2

0 . Thus using (3.25)
we get for ǫ0 small enough

[q1]D1,σ1
≤ ǫ

3/2
0 = ǫ1.

The form of the flow (3.27) follows since χ1 is a hamiltonian of the form (3.2).

Now assume that we have verified Lemma 3.3 up to step m. We want to perform the step
m+ 1. We have hm = ω · I + 〈z,Nmz̄〉 and since

‖Nm −N0‖ ≤ ‖Nm −N0‖+ · · ·+ ‖N1 −N0‖ ≤
m−1∑

j=0

ǫj ≤ 2ǫ0,

hypothesis (3.5) is satisfied and we can apply Proposition 3.1 to construct Dm+1, χm+1 and
qm+1. Estimates (3.28)-(3.31) at step m + 1 are proved as we have proved the corresponding
estimates at step 1.

3.5 Transition to the limit and proof of Theorem 2.8

Let Eǫ = ∩m≥0Dm. In view of (3.28), this is a closed set satisfying

meas(D \ Eǫ) ≤
∑

m≥0

ǫ
1
9
m ≤ 2ǫ

1
9

0 .

Let us denote φ̃N = φ1 ◦ · · · ◦ φN . Due to (3.31) it satisfies for M ≤ N and for ω ∈ E − ǫ

‖φ̃N − φ̃M‖L(Rn×Tn×C2d) ≤
N∑

m=M

ǫ
1
2
m ≤ 2ǫ

1
2

M .

Therefore (φ̃N )N is a Cauchy sequence in L(Rn × Tn ×C2d). Thus when N → ∞ the mappings
φ̃N converge to a limit mapping φ∞ ∈ L(Rn × T

n × C
2d). Furthermore since the convergence is

uniform on ω ∈ Eǫ and θ ∈ Tσ/2, φ1∞ depends analytically on θ and C1 in ω. Moreover,

‖φ∞ − 1‖L(Rn×Tn×C2d) ≤ ǫ
1
2

0 . (3.32)
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By construction, the map φ̃m transforms the original Hamiltonian h0 + q0 into hm + qm. When
m→ ∞, by (3.30) we get qm → 0 and by (3.29) we get Nm → N where

N ≡ N(ω) = N0 +

+∞∑

k=1

Ñk (3.33)

is a Hermitian matrix which is C1 with respect to ω ∈ Eǫ. Denoting h∞(z, z̄) = ω · I+ 〈z,N(ω)z̄〉
we have proved

(h+ q(θ)) ◦ φ∞ = h∞ . (3.34)

Furthermore ∀ω ∈ Eǫ we have, using (3.29),

‖N(ω)−N0‖ ≤
∞∑

m=0

ǫm ≤ 2ǫ

and thus the eigenvalues of N(ω), denoted ν∞j (ω) satisfy (2.11).
It remains to explicit the affine symplectomorphism φ∞. At each step of the KAM procedure

we have by Lemma 3.3

φm(I, θ, z, z̄) = (gm(I, θ, z, z̄), θ,Ψm(θ, z, z̄))

and therefore
φ∞(I, θ, z, z̄) = (g(I, θ, z, z̄), θ,Ψ(θ, z, z̄))

where Ψ(θ, z, z̄) = limm→∞ Ψ1 ◦Ψ2 ◦ · · · ◦Ψm.
It is useful to go back to real variables (x, ξ). More precisely write each hamiltonian χm

constructed in the KAM iteration in the variables (x, ξ):

χm(θ, x, ξ) =
1

2

(
x
ξ

)
·E Bm(θ)

(
x
ξ

)
+ Um(θ) , E :=

[
0 −1

1 0

]
, (3.35)

where Bm(θ) is a skewsymmetric matrix of dimension 2d × 2d and Um(θ) ∈ R2d, and they are
both of size ǫm. Then Ψm written in the real variables has the form

Ψm(θ, x, ξ) = eBm(θ)(x, ξ) + Tm(θ) , where Tm(θ) :=

∫ 1

0

e(1−s)JBm(θ)Um(θ)ds . (3.36)

Lemma 3.4. There exists a sequence of Hamiltonian matrices Al(θ) and vectors Vl(θ) ∈ R2d

such that
Ψ1 ◦ ... ◦Ψl(x, ξ) = eAl(θ)(x, ξ) + Vl(θ) ∀(x, ξ) ∈ R

2d . (3.37)

Furthermore, there exist an Hamiltonian matrix Aω(θ) and a vector Vω(θ) ∈ R2d such that

lim
l→+∞

eAl(θ) = eA∞(θ) , lim
l→+∞

Vl(θ) = V∞(θ)

sup
|Imθ|≤σ/2

‖Aω(θ)‖ ≤ Cǫ , sup
|Imθ|≤σ/2

|Vω(θ)| ≤ Cǫ (3.38)

and for each θ ∈ Tn,

Ψ(θ, x, ξ) = eAω(θ)(x, ξ) + Vω(θ) ∀(x, ξ) ∈ R
2d .
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Proof. Recall that φj = eBj + Tj where Tj is a translation by the vector Tj with the estimates
‖Bj‖ ≤ Cǫj , ‖Tj‖ ≤ Cǫj . So we have eBj = I+ Sj with ‖Sj‖ ≤ Cǫj . Then the infinite product∏

1≤j<+∞ eBj is convergent. Moreover we have
∏

1≤j≤l e
Bj = I+Ml with ‖Ml‖ ≤ Cǫ so we have∏

1≤j<+∞ eBj = I+M with ‖M‖ ≤ Cǫ. This is proved by using

∏

1≤j≤l

(I+ Sj) = I+ Sl + Sl−1Sl + · · ·S1S2 · · ·Sl

and estimates on ‖Sj‖.
So, Ml has a small norm and therefore Al := log(I + Ml) is well defined. Furthermore, by
construction I + Ml ∈ Sp(2d) and therefore its logarithm is a Hamiltonian matrix, namely
Al ∈ sp(2d) for 1 ≤ l ≤ +∞.
Now we have to include the translations. By induction on l we have

φ1 ◦ ... ◦ φl(x, ξ) = eAl(x, ξ) + Vl ,

with Vl+1 = eAlTl+1 + Vl and V1 = T1. Using the previous estimates we have

‖Vl+1 − Vl‖ ≤ C‖Tl+1‖ ≤ Cǫl.

Then we get that lim
l→+∞

Vl = V∞ exists.

A An example of growth of Sobolev norms (following Graffi
and Yajima)

In this appendix we are going to study the Hamiltonian

H := −1

2
∂xx +

x2

2
+ ax sinωt (A.1)

and prove that it is reducible to the Harmonic oscillator if ω 6= ±1, while the system exhibits
growth of Sobolev norms in the case ω = ±1. Actually the result holds in a quite more general
situation, but we think that the present example (that was studied in [GY00]) can give a full
understanding of the situation with as little techniques as possible. We also remark that in this
case it is not necessary to assume that the time dependent part is small.

As we already pointed out, in order to get reducibility of the Hamiltonian (A.1), it is enough
to study the corresponding classical Hamiltonian, in particular proving its reducibility; this is
what we will do. It also turns out that all the procedure is clearer working as much as possible
at the level of the equations.

So, consider the classical Hamiltonian system

h :=
x2 + ξ2

2
+ ax sin(ωt) , (A.2)

whose equations of motion are
{

ẋ = ξ

ξ̇ = −x− a sin(ωt)
⇐⇒ ẍ+ x+ a sin(ωt) = 0 . (A.3)
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Proposition A.1. Assume that ω 6= ±1. Then there exists a time periodic canonical transfor-
mation conjugating (A.2) to

h′ :=
x2 + ξ2

2
. (A.4)

If ω = ±1 then the system is canonically conjugated to

h′ := ±a
2
ξ . (A.5)

In both cases the transformation has the form (2.9) .

Corollary A.2. In the case ω = ±1, for any s > 0 and ψ0 ∈ Hs, there exists a constant
0 < Cs = Cs(‖ψ0‖Hs) s.t. the solution of the Schrödinger equation with Hamiltonian (A.1) and
initial datum ψ0 fulfills

‖ψ(t)‖Hs ≥ Cs〈t〉s, ∀t ∈ R. (A.6)

Before proving the theorem, recall that by the general result of [MR16, Theorem 1.5], any
solution of the Schrödinger equation with Hamiltonian (A.1) fulfills the a priori bound

‖ψ(t)‖Hs ≤ C′
s (‖ψ0‖Hs + |t|s‖ψ0‖H0) , ∀t ∈ R, (A.7)

which is therefore sharp.

Proof of Proposition A.1. We look for a translation

x = x′ − f(t) , ξ = ξ′ − g(t) , (A.8)

with f and g time periodic functions to be determined in such a way to eliminate time from
(A.3). Writing the equations for (x′, ξ′), one gets

ẋ′ = ξ′ − g + ḟ , ξ̇′ = −x′ − a sin(ωt) + ġ + f ,

which reduces to the harmonic oscillator by choosing
{
−a sin(ωt) + ġ + f = 0

−g + ḟ = 0
⇐⇒ f̈ + f = a sin(ωt) (A.9)

which has a solution of period 2π/ω only if ω 6= ±1. In such a case the only solution having the
correct period is

f =
a

1− ω2
sin(ωt) , g =

aω

1− ω2
cos(ωt) .

Then the transformation (A.8) is a canonical transformation generated as the time one flow of
the auxiliary Hamiltonian

χ := −ξ a

1− ω2
sin(ωt) + x

aω

1− ω2
cos(ωt)

which thus conjugates the classical hamiltonian (A.2) to the Harmonic oscillator; of course the
quantization of χ conjugates the quantum system to the quantum Harmonic oscillator, as follows
by Proposition 2.7.

We come to the resonant case, and, in order to fix ideas, we take ω = 1. In such a case the
flow of the Harmonic oscillator is periodic of the same period of the forcing, and thus its flow
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can be used to reduce the system. The procedure that we are going to describe could be called
Hamiltonian Duhamel formula.

In a slight more abstract way, consider a Hamiltonian system with Hamiltonian

H :=
1

2
〈z;Bz〉+ 〈z; b(t)〉

with z := (x, ξ), B a symmetric matrix, and b(t) a vector valued time periodic function. Then,
using the formula (2.4), it is easy to see that the auxiliary time dependent Hamiltonian

χ1 :=
t

2
〈z;Bz〉 (A.10)

generates a time periodic transformation which conjugates the system to

h′ := 〈z; e−JBtb(t)〉

(J being the standard symplectic matrix). An explicit computation shows that in our case

h′ =
a

2
x sin(2t)− a

2
ξ cos(2t) +

a

2
ξ . (A.11)

Then in order to eliminate the two time periodic terms in (A.11) is it sufficient to use the
canonical transformation generated by the hamiltonian

χ2 := −ξ a
4
sin(2t)− x

a

4
cos(2t) , (A.12)

which reduce to (A.5).

Proof of Corollary A.2. To fix ideas we take ω = 1. Let χw
1 ≡ t

2 (−∂xx+x2) and χw
2 be the Weyl

quantization of the hamiltonians (A.10) respectively (A.12). By the proof of Proposition A.1,
the changes of coordinates

ψ = e−itH0ψ1 , ψ1 = e−iχw
2 (t,x,D)ϕ , H0 :=

1

2
(−∂xx + x2) (A.13)

conjugate the Schrödinger equation with Hamiltonian (A.1) to the Schrödinger equation with
hamiltonian (A.2), namely the transport equation

∂tϕ = −a
2
∂xϕ .

The solution of this transport equation is given clearly by

ϕ(t, x) = ϕ0(x − a

2
t)

where ϕ0 is the initial datum. Now a simple computation shows that

lim inf
|t|→+∞

|t|−s‖ϕ(t)‖Hs ≥
( |a|

2

)s

‖ϕ0‖.

In particular there exists a constant 0 < Cs = Cs(‖ϕ0‖Hs) s.t.

‖ϕ(t)‖Hs ≥ Cs〈t〉s . (A.14)

Since the transformation (A.13) maps Hs to Hs uniformly in time (see also Lemma 2.6) estimate
(A.14) holds also for the original variables.
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We remak that by a similar procedure one can also prove the following slightely more general
result.

Theorem A.3. Consider the classical Hamiltonian system

h =
d∑

j=1

νj
x2j + ξ2j

2
+

d∑

j=1

(gj(ωt)xj + fj(ωt)ξj) , (A.15)

with fj , gj ∈ Cr(Tn).

(1) If there exist γ > 0 and τ > n+ 1 s.t.

|ω · k ± νj | ≥
γ

1 + |k|τ , ∀k ∈ Z
n , j = 1, ..., d (A.16)

and r > τ + 1+ n/2, then there exists a time quasiperodic canonical transformation of the
form (2.9) conjugating the system to3

h =
d∑

j=1

νj
x2j + ξ2j

2
.

(2) If there exist 0 6= k̄ ∈ Zn and j̄, s.t.

ω · k̄ − νj̄ = 0 , (A.17)

and there exist γ > 0 and τ s.t.

|ω · k ± νj | ≥
γ

1 + |k|τ , ∀(k, j) 6= (k̄, j̄) (A.18)

and r > τ + 1 + n
2 , then there exists a time quasiperodic canonical transformation of the

form (2.9) conjugating the system to

h =
∑

j 6=j̄

νj
x2j + ξ2j

2
+ c1xj̄ + c2ξj̄ ,

with c1, c2 ∈ R.

Remark A.4. The constants c1, c2 can be easily computed. If at least one of them is different
form zero then the solution of the corresponding quantum system exhibits growth of Sobolev norms
as in the special model (A.1). Of course the result extends in a trivial way to the case in which
more resonances are present.
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