Reducibility of the Quantum Harmonic Oscillator in d-dimensions with Polynomial Time Dependent Perturbation

Dario Bambusi, Benoît Grébert, Alberto Maspero, Didier Robert

- To cite this version:

Dario Bambusi, Benoît Grébert, Alberto Maspero, Didier Robert. Reducibility of the Quantum Harmonic Oscillator in d-dimensions with Polynomial Time Dependent Perturbation. 2017. hal-01471363

HAL Id: hal-01471363

https://hal.science/hal-01471363

Preprint submitted on 20 Feb 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Reducibility of the Quantum Harmonic Oscillator in d-dimensions with Polynomial Time Dependent Perturbation

D. Bambusi ${ }^{*}$ B. Grébert \dagger A. Maspero ${ }_{\ddagger}^{\ddagger}$ D. Robert ${ }^{\S}$

February 20, 2017

Abstract

We prove a reducibility result for a quantum harmonic oscillator in arbitrary dimensions with arbitrary frequencies perturbed by a linear operator which is a polynomial of degree two in $x_{j},-\mathrm{i} \partial_{j}$ with coefficients which depend quasiperiodically on time.

1 Introduction and statement

The aim of this paper is to present a reducibility result for the time dependent Schrödinger equation

$$
\begin{array}{r}
\mathrm{i} \dot{\psi}=H_{\epsilon}(\omega t) \psi, x \in \mathbb{R}^{d} \\
H_{\epsilon}(\omega t):=H_{0}+\epsilon W(\omega t, x,-\mathrm{i} \nabla) \tag{1.2}
\end{array}
$$

where

$$
\begin{equation*}
H_{0}:=-\Delta+V(x), \quad V(x):=\sum_{j=1}^{d} \nu_{j}^{2} x_{j}^{2}, \quad \nu_{j}>0 \tag{1.3}
\end{equation*}
$$

and $W(\theta, x, \xi)$ is a real polynomial in (x, ξ) of degree at most two, with coefficients being real analytic functions of $\theta \in \mathbb{T}^{n}$. Here ω are parameters which are assumed to belong to the set $\mathcal{D}=(0,2 \pi)^{n}$.

For $\epsilon=0$ the spectrum of (1.2) is given by

$$
\begin{equation*}
\sigma\left(H_{0}\right)=\left\{\lambda_{k}\right\}_{k \in \mathbb{N}^{d}}, \quad \lambda_{k} \equiv \lambda_{\left(k_{1}, \ldots, k_{d}\right)}:=\sum_{j=1}^{d}\left(2 k_{j}+1\right) \nu_{j} \tag{1.4}
\end{equation*}
$$

[^0]with $k_{j} \geq 0$ integers. In particular if the frequencies ν_{j} are nonresonant, then the differences between couples of eigenvalues are dense on the real axis. As a consequence, in the case $\epsilon=0$ most of the solutions of (1.1) are almost periodic with an infinite number of rationally independent frequencies.

Here we will prove that for any choice of the mechanical frequencies ν_{j} and for ω belonging to a set of large measure in \mathcal{D} the system (1.1) is reducible: precisely there exists a time quasiperiodic unitary transformation of $L^{2}\left(\mathbb{R}^{d}\right)$ which conjugates (1.2) to a time independent operator; we also deduce boudedness of the Sobolev norms of the solution.

The proof exploits the fact that for polynomial Hamiltonians of degree at most 2 the correspondance between classical and quantum mechanics is exact (i.e without error term), so that the result can be proves by exact quantization of the classical KAM theory which ensures reducibility of the classical Hamiltonian system

$$
\begin{equation*}
h_{\epsilon}:=h_{0}+\epsilon W(\omega t, x, \xi), \quad h_{0}:=\sum_{j=1}^{d} \xi_{j}^{2}+\nu_{j}^{2} x_{j}^{2} . \tag{1.5}
\end{equation*}
$$

We will use (in the appendix) the exact correspondence between classical and quantum dynamics of quadratic Hamiltonians also to prove a complementary result. Precisely we will present a class of examples (following GY00) in which one generically has growth of Sobolev norms. This happens when the frequencies ω of the external forcing are resonant with some of the ν_{j} 's.

We recall that the exact correspondence between classical and quantum dynamics of quadratic Hamiltonians was already exploited in the paper HLS86 to prove stability/instability results for one degree of freedom time dependent quadratic Hamiltonians.

Notwithstanding the simplicity of the proof, we think that the present result could have some interest, since this is the first example of a reducibility result for a system in which the gaps of the unperturbed spectrum are dense in \mathbb{R}. Furthermore it is one of the few cases in which reducibility is obtained for systems in more than one space dimension.

Indeed, most of the results on the reducibility problem for (1.1) have been obtained in the one dimensional case, and also the results in higher dimensions obtained up to now deal only with cases in which the spectrum of the unperturbed system has gaps whose size is bounded from below, like in the Harmonic oscillator (or in the Schrödinger equation on \mathbb{T}^{d}). On the other hand we restrict here to perturbations, which althought unbounded, must belong to the very special class of polynomials in x_{j} and $-\mathrm{i} \partial_{j}$. We remark that in order to deal with more general perturbations one needs further ideas and techniques.

Before closing this introduction we recall some previous works on the reducibility problem for (1.1) and more generally for perturbations of the Schrödinger equation with a potential $V(x)$. As we already anticipated, most of the works deal with the one dimensional case. The first one is Com87 in which pure point nature of the Floquet operator is obtained in case of a smoothing perturbation of the Harmonic oscillator in dimension 1 (see also Kuk93). The techniques of this paper were extended in DS96, DLSV02], in order to deal with potentials growing superquadratically (still in dimension 1) but with perturbations which were only required to be bounded.

A slightely different approach originates from the so called KAM theory for PDEs Kuk87, Way90, Kuk93. In particular the methods developed in that context in order to deal with unbounded perturbations (see Kuk97, Kuk98) where exploited in BG01] in order to deal with the reducibility problem of (1.1) with superquadratic potential in dimension 1 (see [Y10 for a further improvement). The case of bounded perturbations of the Harmonic oscillator in dimension 1 was treated in Wan08, GT11.

The only works dealing with the higher dimensional case are EK09 actually dealing with bounded perturbations of the Schrödinger equation on \mathbb{T}^{d} and GP16 dealing with bounded perturbations of the completely resonant Harmonic oscillator in \mathbb{R}^{d}.

All these papers deal with cases where the spectrum of the unperturbed operator is formed by well separated eigenvalues. In the higher dimensional cases they are allowed to have high multiplicity, but then the perturbation must have special properties ensuring that the clusters are essentially not destroyed under the iteration needed in order to develop KAM theory.

Finally we recall the works Bam16, Bam17 in which pseudodifferential calculus was used toghether with KAM theory in order to prove reducibility results for (1.1) (in dimension 1) with unbounded perturbations. The ideas of the present paper are a direct development of the ideas of Bam16, Bam17. We also recall that the idea of using pseudodifferential calculus toghether with KAM theory in order to deal with problems involving unbounded perturbations originates from the work PT01 and has been developed in order to give a quite general theory in BBM14, BM16, Mon14.

In order to state our main result, we need some preparations. It is well known that the equation (1.1) is well posed (see for example MR16) in the scale $\mathcal{H}^{s}, s \in \mathbb{R}$ of the weighted Sobolev spaces defined as follows. For $s \geq 0$ let

$$
\mathcal{H}^{s}:=\left\{\psi \in L^{2}\left(\mathbb{R}^{d}\right): \quad H_{0}^{s / 2} \psi \in L^{2}\left(\mathbb{R}^{d}\right)\right\}
$$

equipped with the natural Hilbert space norm $\|\psi\|_{s}:=\left\|H_{0}^{s / 2} \psi\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}$. For $s<0, \mathcal{H}^{s}$ is defined by duality. Such spaces are not dependent on ν for $\nu_{j}>0,1 \leq j \leq d$. We also have $\mathcal{H}^{s} \equiv \operatorname{Dom}\left(-\Delta+|x|^{2}\right)^{s / 2}$ 。

We will prove the following reducibility theorem:
Theorem 1.1. Let ψ be a solution of (1.1). There exist $\epsilon_{*}>0, C>0$ and $\forall|\epsilon|<\epsilon_{*}$ a closed set $\mathcal{E}_{\epsilon} \subset(0,2 \pi)^{n}$ with meas $\left((0,2 \pi)^{n} \backslash \mathcal{E}_{\epsilon}\right) \leq C \epsilon^{\frac{1}{9}}$ and, $\forall \omega \in \mathcal{E}_{\epsilon}$ there exists a unitary (in L^{2}) time quasiperiodic map $U_{\omega}(\omega t)$ s.t. defining φ by $U_{\omega}(\omega t) \varphi=\psi$, it satisfies the equation

$$
\begin{equation*}
\mathrm{i} \dot{\varphi}=H_{\infty} \varphi, \tag{1.6}
\end{equation*}
$$

with H_{∞} a positive definite operator which is unitarily equivalent to a diagonal operator

$$
\sum_{j=1}^{d} \nu_{j}^{\infty}\left(x_{j}^{2}-\partial_{x_{j}}^{2}\right)
$$

where $\nu_{j}^{\infty}=\nu_{j}^{\infty}(\omega)$ are defined for $\omega \in \mathcal{E}_{\epsilon}$ and fulfill the estimates

$$
\left|\nu_{j}-\nu_{j}^{\infty}\right| \leq C \epsilon, \quad j=1, \ldots, d
$$

Finally the following properties hold

- $\forall s \geq 0, \forall \psi \in \mathcal{H}^{s}, \theta \mapsto U_{\omega}(\theta) \psi \in C^{0}\left(\mathbb{T}^{n} ; \mathcal{H}^{s}\right)$.
- $\forall s \geq 0, \exists C_{S}>0$ such that

$$
\begin{equation*}
\left\|\mathbf{1}-U_{\omega}(\omega t)\right\|_{\mathcal{L}\left(\mathcal{H}^{s+2} ; \mathcal{H}^{s}\right)} \leq C_{s} \epsilon \tag{1.7}
\end{equation*}
$$

- $\forall s, r \geq 0, \exists \epsilon_{s, r}>0$ s.t., if $|\epsilon|<\epsilon_{s, r}$ then the $\operatorname{map} \theta \mapsto U_{\omega}(\theta)$ is of class $C^{r}\left(\mathbb{T}^{n} ; \mathcal{L}\left(\mathcal{H}^{s+4 r+2} ; \mathcal{H}^{s}\right)\right)$.

Let us denote by $\mathcal{U}_{\epsilon, \omega}(t, \tau)$ the propagator generated by (1.1) such that $\mathcal{U}_{\epsilon, \omega}(\tau, \tau)=\mathbf{1}, \forall \tau \in \mathbb{R}$. An immediate consequence of Theorem 1.1 is that we have a Floquet decomposition:

$$
\begin{equation*}
\mathcal{U}_{\epsilon, \omega}(t, \tau)=U_{\omega}^{*}(\omega t) \mathrm{e}^{-i(t-\tau) H_{\infty}} U_{\omega}(\omega \tau) \tag{1.8}
\end{equation*}
$$

An other consequence of (1.8) is that for any $s>0$ the norm $\left\|\mathcal{U}_{\epsilon, \omega}(t, 0) \psi_{0}\right\|_{s}$ is bounded uniformly in time:

Corollary 1.2. Let $\omega \in \mathcal{E}_{\epsilon}$. Then for every $s>0$ there exists $\epsilon_{s}>0$ s.t. for $|\epsilon|<\epsilon_{s}$ one has

$$
\begin{equation*}
c_{s}\left\|\psi_{0}\right\|_{s} \leq\left\|\mathcal{U}_{\epsilon, \omega}(t, 0) \psi_{0}\right\|_{s} \leq C_{s}\left\|\psi_{0}\right\|_{s}, \quad \forall t \in \mathbb{R}, \forall \psi_{0} \in \mathcal{H}^{s} \tag{1.9}
\end{equation*}
$$

for some $c_{s}>0, C_{s}>0$.
Moreover there exists a constant c_{s} s.t. if the initial data $\psi_{0} \in \mathcal{H}^{s+2}$

$$
\begin{equation*}
\left\|\psi_{0}\right\|_{s}-\epsilon c_{s}\left\|\psi_{0}\right\|_{s+2} \leq\left\|\mathcal{U}_{\epsilon, \omega}(t, 0) \psi_{0}\right\|_{s} \leq\left\|\psi_{0}\right\|_{s}+\epsilon c_{s}\left\|\psi_{0}\right\|_{s+2}, \quad \forall t \in \mathbb{R} \tag{1.10}
\end{equation*}
$$

It is interesting to compare estimate (1.9) with the corresponding estimate which can be obtained for more general perturbations $W(t, x, D)$. So denote by $\mathcal{U}(t, \tau)$ the propagator of $H_{0}+W(t, x, D)$ with $\mathcal{U}(\tau, \tau)=1$. Then in MR16 it is proved that if $W(t, x, \xi)$ is a real polynomial in (x, ξ) of degree at most 2 , the propagator $\mathcal{U}(t, s)$ exists, belongs to $\mathcal{L}\left(\mathcal{H}^{s}\right) \forall s \geq 0$ and fulfills

$$
\left\|\mathcal{U}(t, 0) \psi_{0}\right\|_{s} \leq e^{C_{s}|t|}\left\|\psi_{0}\right\|_{s}, \quad \forall t \in \mathbb{R}
$$

(the estimate is sharp!). If $W(t, x, \xi)$ is a polynomial of degree at most 1 one has

$$
\left\|\mathcal{U}(t, 0) \psi_{0}\right\|_{s} \leq C_{s}(1+|t|)^{s}\left\|\psi_{0}\right\|_{s}, \quad \forall t \in \mathbb{R}
$$

Thus estimate (1.9) improves dramatically the upper bounds proved in MR16 when the perturbation is small and depends quasiperiodically in time with "good" frequencies.

As a final remark we recall that growth of Sobolev norms can indeed happen if the frequencies ω are not well chosen. In Appendix A we show that the Schrödinger equation (which was already studied by Graffi and Yajima in GY00)

$$
\mathrm{i} \dot{\psi}=\left[-\frac{1}{2} \partial_{x x}+\frac{x^{2}}{2}+a x \sin \omega t\right] \psi, \quad x \in \mathbb{R}
$$

exhibits growth of Sobolev norms if and only if $\omega= \pm 1$, which are clearly resonant frequencies. We also slightely generalize the example.

An other example of growth of Sobolev norms for the perturbed harmonic oscillator is given by Delort Del14. There the perturbation is a pseudodifferential operator of order 0 , periodic in time with resonant frequency $\omega=1$.

Remark 1.3. The uniform time estimate given in (1.9) is similar to the main result obtained in [EK09] for small perturbation of the Laplace operator on the torus \mathbb{T}^{d}. Concerning perturbations of harmonic oscillators in \mathbb{R}^{d} most reducibility known results are obtained for $d=1$ excepted in GP16].
Actually in these papers (1.10) is proved without loss of regularity; this is due to the fact that the perturbations treated in [EK09, GP16] are bounded operators.

Remark 1.4. Denote by $\left\{\psi_{k}\right\}_{k \in \mathbb{N}^{d}}$ the set of Hermite functions, namely the eigenvectors of $H_{0}: H_{0} \psi_{k}=\lambda_{k} \psi_{k}$. They form an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$, and writing $\psi=\sum_{k} c_{k} \psi_{k}$ one has $\|\psi\|_{s}^{2} \simeq \sum_{k}(1+|k|)^{2 s}\left|c_{k}\right|^{2}$. Denote $\psi(t)=\sum_{k \in \mathbb{N}^{d}} c_{k}(t) \psi_{k}$ the solution of (1.1) written on the

Hermite basis. Then (1.9) implies the following dynamical localization for the energy of the solution: $\forall s \geq 0, \exists C_{s} \equiv C_{s}\left(\psi_{0}\right)>0$:

$$
\begin{equation*}
\sup _{t \in \mathbb{R}}\left|c_{k}(t)\right| \leq C_{s}(1+|k|)^{-s}, \quad \forall k \in \mathbb{N}^{d} \tag{1.11}
\end{equation*}
$$

From the dynamical property (1.11) one obtains easily that every state $\psi \in L^{2}\left(\mathbb{R}^{d}\right)$ is a bounded state for the time evolution $\mathcal{U}_{\epsilon, \omega}(t, 0) \psi$ under the conditions of Theorem 1.1 on (ϵ, ω). The corresponding definitions are given in [EV83]:

Definition 1.5 (See EV83). A function $\psi \in L^{2}\left(\mathbb{R}^{d}\right)$ is a bounded state (or belongs to the point spectral subspace of $\left.\left\{\mathcal{U}_{\epsilon, \omega}(t, 0)\right\}_{t \in \mathbb{R}}\right)$ if the quantum trajectory $\left\{\mathcal{U}_{\epsilon, \omega}(t, 0) \psi: \quad t \in \mathbb{R}\right\}$ is a precompact subset of $L^{2}\left(\mathbb{R}^{d}\right)$.
Corollary 1.6. Under the conditions of Theorem 1.1 on (ϵ, ω), every state $\psi \in L^{2}\left(\mathbb{R}^{d}\right)$ is a bounded state of $\left\{\mathcal{U}_{\epsilon, \omega}(t, 0)\right\}_{t \in \mathbb{R}}$.

Proof. To prove that every state $\psi \in L^{2}\left(\mathbb{R}^{d}\right)$ is a bounded state for the time evolution $\mathcal{U}_{\epsilon, \omega}(t, 0) \psi$, using that \mathcal{H}^{s} is dense in $L^{2}\left(\mathbb{R}^{d}\right)$, it is enough to assume that $\psi \in \mathcal{H}^{s}$, with $s>\frac{d}{2}$. With the notations of Remark 1.4. we write

$$
\psi(t)=\psi^{(N)}(t)+R^{(N)}(t)
$$

where $\psi^{(N)}(t)=\sum_{|k| \leq N} c_{k}(t) \psi_{k}$ and $R^{(N)}(t)=\sum_{|k|>N} c_{k}(t) \psi_{k}$.
Let be $\delta>0$. Applying (1.4), taking N large enough, we get that for all $t \in \mathbb{R},\left\|R^{(N)}(t)\right\|_{0} \leq \frac{\delta}{2}$. But $\left\{\psi^{(N)}(t), t \in \mathbb{R}\right\}$ is a subset of a finite dimensional linear space. So we get that $\left\{\mathcal{U}_{\epsilon, \omega}(t, 0) \psi\right.$: $t \in \mathbb{R}\}$ is a precompact subset of $L^{2}\left(\mathbb{R}^{d}\right)$.

This last dynamical result is deeply connected with the spectrum of the Floquet operator. First remark that Theorem 1.1 implies the following

Corollary 1.7. The operator U_{ω} induces a unitary transformation $L^{2}\left(\mathbb{T}^{n}\right) \otimes L^{2}\left(\mathbb{R}^{d}\right)$ which transforms the Floquet operator K, namely

$$
K:=-\mathrm{i} \omega \cdot \frac{\partial}{\partial \theta}+H_{0}+\epsilon W(\theta)
$$

into

$$
-\mathrm{i} \omega \cdot \frac{\partial}{\partial \theta}+H_{\infty}
$$

Thus one has that the spectrum of K is pure point and its eigenvalues are $\lambda_{j}^{\infty}+\omega \cdot k$.
Notice that Enss and Veselic proved that the spectrum of the Floquet operator is pure point if and only if every state is a bounded state EV83, Theorems 2.3 and Theorem 3.2]. So Corollary 1.7 gives another proof of Corollary 1.6 .

Acknowledgements. The last three authors are supported by ANR -15-CE40-0001-02"BEKAM" of the Agence Nationale de la Recherche.

2 Proof

To start with we scale the variables x_{j} by defining $x_{j}^{\prime}=\sqrt{\nu_{j}} x_{j}$ so that, defining

$$
h_{j}\left(x_{j}, \xi_{j}\right):=\xi_{j}^{2}+x_{j}^{2}, \quad H_{j}:=-\partial_{x_{j}}^{2}+x_{j}^{2},
$$

one has

$$
\begin{equation*}
h_{0}=\sum_{j=1}^{d} \nu_{j} h_{j}, \quad H_{0}=\sum_{j=1}^{d} \nu_{j} H_{j} . \tag{2.1}
\end{equation*}
$$

Remark 2.1. Notice that for any positive definite quadratic Hamiltonian h on $\mathbb{R}^{2 d}$ there exists a symplectic basis such that $h=\sum_{j=1}^{d} \nu_{j} h_{j}$, with $\nu_{j}>0$ for $1 \leq j \leq d$ (see [Hör85]).

For convenience in this paper we shall consider the Weyl quantization. The Weyl quantization of a symbol f is the operator $\mathrm{Op}^{w}(f)$, defined as usual as

$$
\mathrm{Op}^{w}(f) u(x)=\frac{1}{(2 \pi)^{d}} \int_{y, \xi \in \mathbb{R}^{d}} e^{\mathrm{i}(x-y) \xi} f\left(\frac{x+y}{2}, \xi\right) u(y) d y d \xi
$$

Correspondingly we will say that an operator $T=\mathrm{Op}^{w}(f)$ is the Weyl operator with Weyl symbol f. Notice that for polynomials f of degree at most 2 in $(x, \xi), \mathrm{Op}^{w}(f)=f(x, D)+$ const, where $D=\mathrm{i}^{-1} \nabla_{x}$.

Most of the times we also use the notation $f^{w}(x, D):=\mathrm{Op}^{w}(f)$. In particular, in equation (1.2) $W\left(\omega t, x,-\mathrm{i} \partial_{x}\right)$ denotes the Weyl operator $W^{w}(\omega t, x, D)$.

Given a hamiltonian $\chi=\chi(x, \xi)$, we will denote by ϕ_{χ}^{t} the flow of the corresponding classical Hamilton equations.

It is well known that, if f and g are symbols, then the operator $-\mathrm{i}\left[f^{w}(x, D) ; g^{w}(x, D)\right]$ admits a symbol denoted by $\{f ; g\}_{M}$ (Moyal bracket). Two fundamental properties of quadratic polynomial symbols are the following well known remarks.

Remark 2.2. If f or g is a polynomial of degree at most 2, then $\{f ; g\}_{M}=\{f ; g\}$, where

$$
\{f ; g\}:=\sum_{j=1}^{d} \frac{\partial f}{\partial x_{j}} \frac{\partial g}{\partial \xi_{j}}-\frac{\partial g}{\partial x_{j}} \frac{\partial f}{\partial \xi_{j}}
$$

is the Poisson Bracket of f and g.
Remark 2.3. Let χ be a polynomial of degree at most 2, then it follows from the previous remark that, for any Weyl operator $f^{w}(x, D)$, the symbol of $e^{-\mathrm{i} t \chi^{w}(x, D)} f^{w}(x, D) e^{\mathrm{i} t \chi^{w}(x, D)}$ is $f \circ \phi_{\chi}^{t}$.

Next we need to know how a time dependent transformation transforms a classical and a quantum Hamiltonian. Precisely, consider a 1-parameter family of (hamiltonian) functions $\chi(t, x, \xi)$ and denote by $\phi^{\tau}(x, \xi, t)$ the time τ flow it generates, precisely the solution of

$$
\begin{equation*}
\frac{d x}{d \tau}=\frac{\partial \chi}{\partial \xi}(t, x, \xi), \quad \frac{d \xi}{d \tau}=-\frac{\partial \chi}{\partial x}(t, x, \xi) \tag{2.2}
\end{equation*}
$$

Consider the time dependent coordinate transformation

$$
\begin{equation*}
(x, \xi)=\phi^{1}\left(t, x^{\prime}, \xi^{\prime}\right):=\left.\phi^{1}\left(t, x^{\prime}, \xi^{\prime}\right)\right|_{s=1} \tag{2.3}
\end{equation*}
$$

Remark 2.4. Working in the extended phase space in which time and a new momentum conjugated to it are added, it is easy to see that the coordinate transformation (2.3) transforms a hamiltonian system with Hamiltonian h into a hamiltonian system with Hamiltonian h^{\prime} given by

$$
\begin{equation*}
h^{\prime}\left(t, x^{\prime}, \xi^{\prime}\right)=h\left(\phi^{1}\left(t, x^{\prime}, \xi^{\prime}, t\right)\right)-\int_{0}^{1} d s \frac{\partial \chi}{\partial t}\left(t, \phi^{s}\left(x^{\prime}, \xi^{\prime}, t\right)\right) \tag{2.4}
\end{equation*}
$$

Remark 2.5. If the operator $\chi^{w}(t, x, D)$ is selfadjoint for any fixed t, then the transformation

$$
\begin{equation*}
\psi=e^{-\mathrm{i} \chi^{w}(t, x, D)} \psi^{\prime} \tag{2.5}
\end{equation*}
$$

transform $\mathrm{i} \dot{\psi}=H \psi$ into $\mathrm{i} \dot{\psi}^{\prime}=H^{\prime} \psi^{\prime}$ with

$$
\begin{equation*}
H^{\prime}=e^{\mathrm{i} \chi^{w}(t, x, D)} H e^{-\mathrm{i} \chi^{w}(t, x, D)}-\int_{0}^{1} e^{\mathrm{i} s \chi^{w}(t, x, D)}\left(\partial_{t} \chi^{w}(t, x, \xi)\right) e^{-\mathrm{i} s \chi^{w}(t, x, D)} d s \tag{2.6}
\end{equation*}
$$

This is seen by an explicit computation. For example see Lemma 3.2 of [Bam16].
So in view of Remark 2.3 provided that transformation (2.5) is well defined the quantum transformed Hamiltonian (2.6) is the exact quantization of the transformed classical Hamiltonian (2.4).

The properties of χ^{w} in the case of quadratic polynomials are specified in the following lemma.
Lemma 2.6. Let $\chi(t, x, \xi)$ be a polynomial in (x, ξ) of degree at most 2 with real coefficients depending in a C^{1} way on $t \in \mathbb{R}$. Then $\forall t \in \mathbb{R}$, the operator $\chi^{w}(t, x, D)$ is selfadjoint in $L^{2}\left(\mathbb{R}^{d}\right)$. Furthermore $\forall s \geq 0, \forall \tau \in \mathbb{R}$ the following holds true:
(i) the map $t \mapsto e^{-\mathrm{i} \tau \chi^{w}(t, x, D)} \in C^{0}\left(\mathbb{R}, \mathcal{L}\left(\mathcal{H}^{s+2}, \mathcal{H}^{s}\right)\right)$.
(ii) $\forall \psi \in \mathcal{H}^{s}$, the map $t \mapsto e^{-\mathrm{i} \tau \chi^{w}(t, x, D)} \psi \in C^{0}\left(\mathbb{R}, \mathcal{H}^{s}\right)$.
(iii) $\forall r \in \mathbb{N}$ the map $t \mapsto e^{-\mathrm{i} \tau \chi^{w}(t, x, D)} \in C^{r}\left(\mathbb{R}, \mathcal{L}\left(\mathcal{H}^{s+4 r+2}, \mathcal{H}^{s}\right)\right)$.
(iv) If the coefficients of $\chi(t, x, \xi)$ are uniformly bounded in $t \in \mathbb{R}$ then for any $s>0$ there exist $c_{s}>0, C_{s}>0$ such that we have

$$
c_{s}\|\psi\|_{s} \leq\left\|e^{-\mathrm{i} \tau \chi^{w}(t, x, D)} \psi\right\|_{s} \leq C_{s}\|\psi\|_{s}, \quad \forall t \in \mathbb{R}, \forall \tau \in[0,1] .
$$

Proof. Since $\chi(t, x, \xi)$ is a real valued polynomial in (x, ξ) of degree at most 2 , the operator $\chi^{w}(t, x, D)$ is selfadjoint in $L^{2}\left(\mathbb{R}^{d}\right)$, so $\forall t \in \mathbb{R}$ the propagator $e^{-\mathrm{i} \tau \chi^{w}(t, x, D)}$ is unitary on $L^{2}\left(\mathbb{R}^{d}\right)$. We show now that $e^{-\mathrm{i} \tau \chi^{w}(t, x, D)}$ maps \mathcal{H}^{s} to itself, $\forall s>0$. This follows from a general result proved in MR16. More precisely Theorem 1.2 of MR16] guarantees that $e^{-\mathrm{i} \tau \chi^{w}(t, x, D)} \in \mathcal{L}\left(\mathcal{H}^{s}\right)$ provided the operator $\chi^{w}(t, x, D) H_{0}^{-1}$ and the commutator $\left[H_{0}, \chi^{w}(t, x, D)\right] H_{0}^{-1}$ (where H_{0} is the harmonic oscillator of (1.3)) belong to $\mathcal{L}\left(\mathcal{H}^{s}\right), \forall s \geq 0$. But this follows easily by using that $\left[H_{0}, \chi^{w}(t, x, D)\right]$ has a polynomial symbol of degree at most 2 , so $\left[H_{0}, \chi^{w}(t, x, D)\right] H_{0}^{-1} \in \mathcal{L}\left(\mathcal{H}^{s}\right)$, $\forall s \geq 0$.
Now item (i) follows from MR16, Theorem 2.6] with $m=2$. Continuity in item (ii) is deduced by (i) with a density argument.
Item (iii) is easily proved by induction on r starting with the Duhamel formula

$$
\begin{equation*}
e^{-\mathrm{i} \tau B}-e^{-\mathrm{i} \tau A}=\int_{0}^{\tau} e^{-\mathrm{i}(t-s) A}(B-A) e^{-\mathrm{i} s B} d s \tag{2.7}
\end{equation*}
$$

Then choosing $B=\chi^{w}\left(t+t^{\prime}, x, D\right), A=\chi^{w}(t, x, D)$ and taking the difference quotient one gets

$$
\partial_{t} e^{-\mathrm{i} \tau \chi^{w}(t, x, D)}=\int_{0}^{\tau} e^{-\mathrm{i}(\tau-s) \chi^{w}(t, x, D)}\left(\partial_{t} \chi^{w}(t, x, D)\right) e^{-\mathrm{i} s \chi^{w}(t, x, D)} d s
$$

from which the result for $r=1$ follows using $r=0$ (from item (i)). By a recursive argument one proves the general case.
The upper-bound in item (iv) follows from [MR16] where it is proved that the operator norm in \mathcal{H}^{s} of the propagator depends only by $\left\|\left[H_{0}, \chi^{w}(t, x, D)\right] H_{0}^{-1}\right\|_{\mathcal{L}\left(\mathcal{H}^{s}\right)}$ which by assumption is uniformly bounded in $t \in \mathbb{R}$. The lower-bound follows by applying the upper-bound to the identity $\psi=U(t)^{*} U(t) \psi$, where $U(t)=e^{-\mathrm{i} \tau \chi^{w}(t, x, D)}$.

Remark 2.4. Remark 2.5 and Lemma 2.6 imply the following important proposition.
Proposition 2.7. Let $\chi(t, x, \xi)$ be a polynomial of degree at most 2 in x and ξ with smooth time dependent coefficients. If the transformation (2.3) transforms a classical system with Hamiltonian h into a Hamiltonian system with Hamiltonian h^{\prime}, then the transformation (2.5) transform the quantum system with Hamiltonian h^{w} into the quantum system with Hamiltonian $\left(h^{\prime}\right)^{w}$.

As a consequence, for quadratic Hamiltonians, the quantum KAM theorem will follow from the corresponding classical KAM theorem.

To give the needed result, consider the classical time dependent hamiltonian

$$
\begin{equation*}
h_{\epsilon}(\omega t, x, \xi):=\sum_{1 \leq j \leq d} \nu_{j} \frac{x_{j}^{2}+\xi_{j}^{2}}{2}+\epsilon W(\omega t, x, \xi) \tag{2.8}
\end{equation*}
$$

with W as in the introduction. The following KAM theorem holds.
Theorem 2.8. Assume that $\nu_{j} \geq \nu_{0}>0$ for $j=1, \cdots, d$ and that $\mathbb{T}^{n} \times \mathbb{R}^{d} \times \mathbb{R}^{d} \ni(\theta, x, \xi) \mapsto$ $W(\theta, x, \xi) \in \mathbb{R}$ is a polynomial in (x, ξ) of degree at most 2 with coefficients which are real analytic functions of $\theta \in \mathbb{T}^{n}$.
Then there exists $\epsilon_{*}>0$ and $C>0$, such that for $|\epsilon|<\epsilon_{*}$ the following holds true:
(i) there exists a closed set $\mathcal{E}_{\epsilon} \subset(0,2 \pi)^{n}$ with $\operatorname{meas}\left((0,2 \pi)^{n} \backslash \mathcal{E}_{\epsilon}\right) \leq C \epsilon^{\frac{1}{9}}$;
(ii) for any $\omega \in \mathcal{E}_{\epsilon}$, there exists an analytic map $\theta \mapsto A_{\omega}(\theta) \in \operatorname{sp}(2 d)$ (symplectic algebra1 of dimension $2 d$) and an analytic map $\theta \mapsto V_{\omega}(\theta) \in \mathbb{R}^{2 d}$, such that the change of coordinates

$$
\begin{equation*}
\left(x^{\prime}, \xi^{\prime}\right)=e^{A_{\omega}(\omega t)}(x, \xi)+V_{\omega}(\omega t) \tag{2.9}
\end{equation*}
$$

conjugates the Hamiltonian equations of (2.8) to the Hamiltonian equations of a homogeneous polynomial $h_{\infty}(x, \xi)$ of degree 2 which is positive definite. Finally both A_{ω} and V_{ω} are ϵ close to zero.

Furthermore h_{∞} can be diagonalized: there exists a matrix $\mathcal{P} \in \operatorname{Sp}(2 d)$ (symplectic group of dimension $2 d$) such that, denoting $(y, \eta)=\mathcal{P}(x, \xi)$ we have

$$
\begin{equation*}
h_{\infty} \circ \mathcal{P}^{-1}(y, \eta)=\sum_{j=1}^{d} \nu_{j}^{\infty}\left(y_{j}^{2}+\eta_{j}^{2}\right) \tag{2.10}
\end{equation*}
$$

where $\nu_{j}^{\infty}=\nu_{j}^{\infty}(\omega)$ are defined on \mathcal{E}_{ϵ} and fulfill the estimates

$$
\begin{equation*}
\left|\nu_{j}^{\infty}-\nu_{j}\right| \leq C \epsilon, \quad j=1, \cdots, d \tag{2.11}
\end{equation*}
$$

[^1]Remark 2.9. In general, the matrix \mathcal{P} is not close to identity. However, in case the frequencies ν_{j} are non resonant, then $\mathcal{P}=1$.

KAM theory in finite dimensions is nowadays standard. In particular we believe that Theorem 2.8 can be obtained combining the results of Eli88, You99. However, for the reader convenience and the sake of being self-contained, we add in Section 3 its proof.

Theorem 1.1 follows immediately combining the results of Theorem 2.8 and Proposition 2.7.
Proof of Theorem [1.1. We see easily that the change of coordinates (2.9) has the form (2.3) with an Hamiltonian $\chi_{\omega}(\omega t, x, \xi)$ which is a polynomial in (x, ξ) of degree at most 2 with real, smooth and uniformly bounded coefficients in $t \in \mathbb{R}$.
Define $U_{\omega}(\omega t)=e^{-\mathrm{i}} \chi_{\omega}^{\omega}(\omega t, x, D)$. It fulfills $(i)-(i v)$ of Lemma 2.6 and by Proposition 2.7 it conjugates the original equation (1.1) to (1.6) where $H_{\infty}:=\mathrm{Op}^{w}\left(h_{\infty}\right)$.
Then using the metaplectic representation (see [CR12) and (2.10), there exists a unitary transformation in $L^{2}, \mathcal{R}\left(\mathcal{P}^{-1}\right)$, such that

$$
\mathcal{R}\left(\mathcal{P}^{-1}\right)^{*} H_{\infty} \mathcal{R}\left(\mathcal{P}^{-1}\right)=\sum_{j=1}^{d} \nu_{j}^{\infty}\left(x_{j}^{2}+\partial_{x_{j}}^{2}\right) .
$$

We prove now Corollary 1.2 .
Proof of Corollary 1.2. Consider first the propagator $e^{-\mathrm{i} t H_{\infty}}$. We claim that

$$
\begin{equation*}
\sup _{t \in \mathbb{R}}\left\|e^{-\mathrm{i} t H_{\infty}}\right\|_{\mathcal{L}\left(\mathcal{H}^{s}\right)}<\infty, \quad \forall t \in \mathbb{R} \tag{2.12}
\end{equation*}
$$

Recall that $H_{\infty}=h_{\infty}^{w}(x, D)$ where $h_{\infty}(x, \xi)$ is a positive definite symmetric form which can be diagonalized by a symplectic matrix \mathcal{P}. Since h_{∞} is positive definite, there exist $c_{0}, c_{1}, c_{2}>0$ s.t.

$$
c_{1} h_{0}(x, \xi) \leq c_{0}+h_{\infty}(x, \xi) \leq c_{2}\left(1+h_{0}(x, \xi)\right)
$$

which implies that $C_{1} H_{0} \leq C_{0}+H_{\infty} \leq C_{2}\left(1+H_{0}\right)$ as bilinear form. Thus one has the equivalence of norms

$$
C_{s}^{-1}\|\psi\|_{\mathcal{H}^{s}} \leq\left\|\left(H_{\infty}\right)^{s / 2} \psi\right\|_{L^{2}} \leq C_{s}\|\psi\|_{\mathcal{H}^{s}} .
$$

Then

$$
\left\|e^{-\mathrm{i} t H_{\infty}} \psi_{0}\right\|_{\mathcal{H}^{s}} \leq C_{s}\left\|\left(H_{\infty}\right)^{s / 2} e^{-\mathrm{i} t H_{\infty}} \psi_{0}\right\|_{L^{2}}=C_{s}\left\|\left(H_{\infty}\right)^{s / 2} \psi_{0}\right\|_{L^{2}} \leq C_{s}^{\prime}\left\|\psi_{0}\right\|_{\mathcal{H}^{s}}
$$

which implies (2.12).
Now let $\psi(t)$ be a solution of (1.1). By formula (1.8), $\psi(t)=U_{\omega}^{*}(\omega t) e^{-\mathrm{i} t H_{\infty}} U_{\omega}(0) \psi_{0}$. Then the upperbound in (1.9) follows easily from (2.12) and $\sup _{t}\left\|U_{\omega}(\omega t)\right\|_{\mathcal{L}\left(\mathcal{H}^{s}\right)}<\infty$, which is a consequence of Lemma [2.6. The lower-bound follows by applying Lemma 2.6 (iv).

Finally estimate (1.10) follows from (1.7).

3 A classical KAM result.

In this section we prove Theorem 2.8. We prefer to work in the extended phase space in which we add the angles $\theta \in \mathbb{T}^{n}$ as new variables and their conjugated momenta $I \in \mathbb{R}^{n}$. Furthermore we will use complex variables defined by

$$
z_{j}=\frac{\xi_{j}-\mathrm{i} x_{j}}{\sqrt{2}}
$$

so that our phase space will be $\mathbb{T}^{n} \times \mathbb{R}^{n} \times \mathbb{C}^{d}$, with \mathbb{C}^{d} considered as a real vector space. The symplectic form is $d I \wedge d \theta+\mathrm{i} d z \wedge d \bar{z}$ and the Hamilton equations of a Hamiltonian function $h(\theta, I, z, \bar{z})$ are

$$
\dot{I}=-\frac{\partial h}{\partial \theta}, \quad \dot{\theta}=\frac{\partial h}{\partial I}, \quad \dot{z}=-\mathrm{i} \frac{\partial h}{\partial \bar{z}} .
$$

In this framework h_{0} takes the form $h_{0}=\sum_{j=1}^{d} \nu_{j} z_{j} \bar{z}_{j}$ and W takes the form of polynomial in z, \bar{z} of degree two $W(\theta, x, \xi)=q(\theta, z, \bar{z})$. The Hamiltonian system associated with the time dependent Hamiltonian h_{ϵ} (see (2.8)) is then equivalent to the Hamiltonian system associated with the time independent hamiltonian $\omega \cdot I+h_{\epsilon}$ (written in complex variables) in the extended phase space.

3.1 General strategy

Let h be a Hamiltonian in normal form:

$$
\begin{equation*}
h(I, \theta, z, \bar{z})=\omega \cdot I+\langle z, N(\omega) \bar{z}\rangle \tag{3.1}
\end{equation*}
$$

with $N \in \mathcal{M}_{H}$ the set of Hermitian matrix. Notice that at the beginning of the procedure N is diagonal,

$$
N=N_{0}=\operatorname{diag}\left(\nu_{j}, j=1, \cdots, d\right)
$$

and is independent of ω. Let $q \equiv q_{\omega}$ be a polynomial Hamiltonian which takes real values: $q(\theta, z, \bar{z}) \in \mathbb{R}$ for $\theta \in \mathbb{T}^{n}$ and $z \in \mathbb{C}^{d}$. We write

$$
\begin{equation*}
q(\theta, z, \bar{z})=\left\langle z, Q_{z z}(\theta) z\right\rangle+\left\langle z, Q_{z \bar{z}}(\theta) \bar{z}\right\rangle+\left\langle\bar{z}, \bar{Q}_{z z}(\theta) \bar{z}\right\rangle+\left\langle Q_{z}(\theta), z\right\rangle+\left\langle\bar{Q}_{\bar{z}}(\theta), \bar{z}\right\rangle \tag{3.2}
\end{equation*}
$$

where $Q_{z z}(\theta) \equiv Q_{z z}(\omega, \theta)$ and $Q_{z \bar{z}}(\theta) \equiv Q_{z \bar{z}}(\omega, \theta)$ are $d \times d$ complex matrices and $Q_{z}(\theta) \equiv$ $Q_{z}(\theta, \omega)$ is a vector in \mathbb{C}^{d}. They all depend analytically on the angle $\theta \in \mathbb{T}_{\sigma}^{n}:=\{x+i y \mid x \in$ $\left.\mathbb{T}^{n}, y \in \mathbb{R}^{n},|y|<\sigma\right\}$. We notice that $Q_{z \bar{z}}$ is Hermitian while $Q_{z z}$ is symmetric. The size of such polynomial function depending analytically on $\theta \in \mathbb{T}_{\sigma}^{n}$ and C^{1} on $\omega \in \mathcal{D}=(0,2 \pi)^{n}$ will be controlled by the norm

$$
[q]_{\sigma}:=\sup _{\substack{|\operatorname{Im} \theta|<\sigma \\ \omega \in \mathcal{D}, j=0,1}}\left\|\partial_{\omega}^{j} Q_{z z}(\omega, \theta)\right\|+\sup _{\substack{|\operatorname{Im} \theta|<\sigma \\ \omega \in \mathcal{D}, j=0,1}}\left\|\partial_{\omega}^{j} Q_{z \bar{z}}(\omega, \theta)\right\|+\sup _{\substack{|\operatorname{Im} \theta|<\sigma \\ \omega \in \mathcal{D}, j=0,1}}\left|\partial_{\omega}^{j} Q_{z}(\omega, \theta)\right|
$$

and we denote by $\mathcal{Q}(\sigma)$ the class of Hamiltonians of the form (3.2) whose norm $[\cdot]_{\sigma}$ is finite.
Let us assume that $[q]_{\sigma}=\mathcal{O}(\epsilon)$. We search for $\chi \equiv \chi_{\omega} \in \mathcal{Q}(\sigma)$ with $[\chi]_{\sigma}=\mathcal{O}(\epsilon)$ such that its time-one flow $\phi_{\chi} \equiv \phi_{\chi}^{t=1}$ (in the extended phase space, of course) transforms the Hamiltonian $h+q$ into

$$
\begin{equation*}
(h+q(\theta)) \circ \phi_{\chi}=h_{+}+q_{+}(\theta), \quad \omega \in \mathcal{D}_{+} \tag{3.3}
\end{equation*}
$$

where $h_{+}=\omega \cdot I+\left\langle z, N_{+} \bar{z}\right\rangle$ is a new normal form, ϵ-close to h, the new perturbation $q_{+} \in \mathcal{Q}(\sigma)$ is of $\operatorname{siz} \epsilon^{2} \mathcal{O}\left(\epsilon^{\frac{3}{2}}\right)$ and $\mathcal{D}_{+} \subset \mathcal{D}$ is ϵ^{α}-close to \mathcal{D} for some $\alpha>0$. Notice that all the functions are defined on the whole open set \mathcal{D} but the equalities (3.3) holds only on \mathcal{D}_{+}a subset of \mathcal{D} from which we excised the "resonant parts".
As a consequence of the Hamiltonian structure we have that

$$
(h+q(\theta)) \circ \phi_{\chi}=h+\{h, \chi\}+q(\theta)+\mathcal{O}\left(\epsilon^{\frac{3}{2}}\right), \quad \omega \in \mathcal{D}_{+} .
$$

So to achieve the goal above we should solve the homological equation:

$$
\begin{equation*}
\{h, \chi\}=h_{+}-h-q(\theta)+\mathcal{O}\left(\epsilon^{\frac{3}{2}}\right), \quad \omega \in \mathcal{D}_{+} \tag{3.4}
\end{equation*}
$$

Repeating iteratively the same procedure with h_{+}instead of h, we will construct a change of variable ϕ such that

$$
(h+q(\theta)) \circ \phi=\omega \cdot I+h_{\infty}, \quad \omega \in \mathcal{D}_{\infty}
$$

with $h_{\infty}=\left\langle z, N_{\infty}(\omega) \bar{z}\right\rangle$ in normal form and \mathcal{D}_{∞} a ϵ^{α}-close subset of \mathcal{D}. Note that we will be forced to solve the homological equation not only for the diagonal normal form N_{0}, but for more general normal form Hamiltonians (3.1) with N close to N_{0}.

3.2 Homological equation

Proposition 3.1. Let $\mathcal{D}=(0,2 \pi)^{n}$ and $\mathcal{D} \ni \omega \mapsto N(\omega) \in \mathcal{M}_{H}$ be a C^{1} mapping that verifies

$$
\begin{equation*}
\left\|\partial_{\omega}^{j}\left(N(\omega)-N_{0}\right)\right\| \leq \frac{\min \left(1, \nu_{0}\right)}{\max (4, d)} \tag{3.5}
\end{equation*}
$$

for $j=0,1$ and $\omega \in \mathcal{D}$. Let $h=\omega \cdot I+\langle z, N \bar{z}\rangle, q \in \mathcal{Q}(\sigma), \kappa>0$ and $K \geq 1$.
Then there exists a closed subset $\mathcal{D}^{\prime}=\mathcal{D}^{\prime}(\kappa, K) \subset \mathcal{D}$, satisfying

$$
\begin{equation*}
\operatorname{meas}\left(\mathcal{D} \backslash \mathcal{D}^{\prime}\right) \leq C K^{n} \kappa \tag{3.6}
\end{equation*}
$$

and there exist $\chi, r \in \cap_{0 \leq \sigma^{\prime}<\sigma} \mathcal{Q}\left(\sigma^{\prime}\right)$ and $\mathcal{D} \ni \omega \mapsto \tilde{N}(\omega) \in \mathcal{M}_{H}$ a C^{1} mapping such that for all $\omega \in \mathcal{D}^{\prime}$

$$
\begin{equation*}
\{h, \chi\}+q=\langle z, \tilde{N} \bar{z}\rangle+r . \tag{3.7}
\end{equation*}
$$

Furthermore for all $\omega \in \mathcal{D}$

$$
\begin{equation*}
\left\|\partial_{\omega}^{j} \tilde{N}(\omega)\right\| \leq[q]_{\sigma}, \quad j=0,1 \tag{3.8}
\end{equation*}
$$

and for all $0 \leq \sigma^{\prime}<\sigma$

$$
\begin{align*}
{[r]_{\sigma^{\prime}} } & \leq C \frac{e^{-\frac{1}{2}\left(\sigma-\sigma^{\prime}\right) K}}{\left(\sigma-\sigma^{\prime}\right)^{n}}[q]_{\sigma} \tag{3.9}\\
{[\chi]_{\sigma^{\prime}} } & \left.\leq \frac{C K}{\kappa^{2}\left(\sigma-\sigma^{\prime}\right)^{n}}[q]_{\sigma} \right\rvert\, \tag{3.10}
\end{align*}
$$

Proof. Writing the Hamiltonians h, q and χ as in (3.2), the homological equation (3.7) is equivalent to the three following equations (we use that N is hermitian, thus $\bar{N}={ }^{t} N$):

$$
\begin{equation*}
\omega \cdot \nabla_{\theta} X_{z \bar{z}}-\mathrm{i}\left[N, X_{z \bar{z}}\right]=\tilde{N}-Q_{z \bar{z}}+R_{z \bar{z}} \tag{3.11}
\end{equation*}
$$

[^2]\[

$$
\begin{gather*}
\omega \cdot \nabla_{\theta} X_{z z}-\mathrm{i}\left(N X_{z z}+X_{z z} \bar{N}\right)=-Q_{z z}+R_{z z} \tag{3.12}\\
\omega \cdot \nabla_{\theta} X_{z}+\mathrm{i} N X_{z}=-Q_{z}+R_{z} \tag{3.13}
\end{gather*}
$$
\]

First we solve (3.11). To simplify notations we drop the indices $z \bar{z}$. Written in Fourier variables (w.r.t. θ), (3.11) reads

$$
\begin{equation*}
\mathrm{i} \omega \cdot k \hat{X}_{k}-\mathrm{i}\left[N, \hat{X}_{k}\right]=\delta_{k, 0} \tilde{N}-\hat{Q}_{k}+\hat{R}_{k}, \quad k \in \mathbb{Z}^{n} \tag{3.14}
\end{equation*}
$$

where $\delta_{k, j}$ denotes the Kronecker symbol.
When $k=0$ we solve this equation by defining

$$
\hat{X}_{0}=0, \quad \hat{R}_{0}=0 \quad \text { and } \quad \tilde{N}=\hat{Q}_{0}
$$

We notice that $\tilde{N} \in \mathcal{M}_{H}$ and satisfies (3.8).
When $|k| \geq K$ equation (3.14) is solved by defining

$$
\begin{equation*}
\hat{R}_{k}=\hat{Q}_{k}, \quad \hat{X}_{k}=0 \text { for }|k| \geq K \tag{3.15}
\end{equation*}
$$

Then we set

$$
\hat{R}_{k}=0 \quad \text { for } \quad|k| \leq K
$$

in such a way that $r \in \cap_{0 \leq \sigma^{\prime}<\sigma \mathcal{Q}}\left(\sigma^{\prime}\right)$ and by a standard argument r satisfies (3.9). Now it remains to solve the equations for $\hat{X}_{k}, 0<|k| \leq K$ which we rewrite as

$$
\begin{equation*}
L_{k}(\omega) \hat{X}_{k}=i \hat{Q}_{k} \tag{3.16}
\end{equation*}
$$

where $L_{k}(\omega)$ is the linear operator from \mathcal{M}_{S}, the space of symmetric matrices, into itself defined by

$$
L_{k}(\omega): M \mapsto k \cdot \omega-[N(\omega), M] .
$$

We notice that \mathcal{M}_{S} can be endowed with the hermitian product: $(A, B)=\operatorname{Tr}(\bar{A} B)$ associated with the Hilbert Schmidt norm. Since N is hermitian, $L_{k}(\omega)$ is self adjoint for this structure. As a first consequence we get

$$
\left\|\left(L_{k}(\omega)\right)^{-1}\right\| \leq \frac{1}{\min \left\{|\lambda|, \lambda \in \Sigma\left(L_{k}(\omega)\right)\right\}}=\frac{1}{\min \{|k \cdot \omega-\alpha(\omega)+\beta(\omega)| \mid \alpha, \beta \in \Sigma(N(\omega))\}}
$$

where for any matrix A, we denote its spectrum by $\Sigma(A)$.
As a second consequence, if $\lambda_{k}(\omega)=k \cdot \omega-\alpha(\omega)+\beta(\omega)$ is an eigenvalue of $L_{k}(\omega)$ which is assumed to be C^{1} in a fixed direction $z \in \mathbb{R}^{n}$ (which is always possible if $L_{k}(\omega)$ depends analytically of $\omega)$ and whose associated unitary eigenvector is denoted by $v(\omega)$ then

$$
\partial_{\omega} \lambda(\omega) \cdot z=\left\langle v(\omega), \partial_{\omega} L_{k}(\omega) \cdot z v(\omega)\right\rangle .
$$

Therefore, if N depends analytically of ω, we deduce using (3.5)

$$
\begin{equation*}
\left|\partial_{\omega} \lambda(\omega) \cdot \frac{k}{|k|}\right| \geq \frac{1}{2} \quad \text { for } k \neq 0 \tag{3.17}
\end{equation*}
$$

Given a matrix L depending on the parameter $\omega \in \mathcal{D}$, we define

$$
\mathcal{D}(L, \kappa)=\left\{\omega \in \mathcal{D} \mid\left\|L(\omega)^{-1}\right\| \leq \kappa^{-1}\right\}
$$

Let us recall the following classical lemma:

Lemma 3.2. Let $f:[0,1] \mapsto \mathbb{R}$ a C^{1}-map satisfying $\left|f^{\prime}(x)\right| \geq \delta$ for all $x \in[0,1]$ and let $\kappa>0$. Then

$$
\operatorname{meas}\left\{x \in[0,1]||f(x)| \leq \kappa\} \leq \frac{\kappa}{\delta}\right.
$$

Combining this Lemma and (3.17) we deduce for $k \neq 0$

$$
\begin{equation*}
\operatorname{meas}\left(\mathcal{D} \backslash \mathcal{D}\left(L_{k}, \kappa\right)\right) \leq C \kappa \tag{3.18}
\end{equation*}
$$

and this estimate remains valid (with a larger constant C) for $N \in C^{1}$ by a density argument. In particular defining

$$
\mathcal{D}^{\prime}=\bigcap_{0<|k| \leq K} \mathcal{D}\left(L_{k}, \kappa\right)
$$

\mathcal{D}^{\prime} is closed and satisfies (3.6).
By construction, $\hat{X}_{k}(\omega):=i L_{k}(\omega)^{-1} \hat{Q}_{k}$ satisfies (3.16) for $0<|k| \leq K$ and $\omega \in \mathcal{D}\left(L_{k}, \kappa\right)$ and

$$
\begin{equation*}
\left\|\hat{X}_{k}(\omega)\right\| \leq \kappa^{-1}\left\|\hat{Q}_{k}(\omega)\right\|, \quad \omega \in \mathcal{D}\left(L_{k}, \kappa\right) \tag{3.19}
\end{equation*}
$$

Now we extend $\hat{X}_{k}(\cdot)$ to \mathcal{D}. Using again (3.5) we have for any $|k| \leq K$ and any unit vector z, $\left|\partial_{\omega} \lambda(\omega) \cdot z\right| \leq C K$. Therefore

$$
\operatorname{dist}\left(\mathcal{D} \backslash \mathcal{D}\left(L_{k}, \kappa\right), \mathcal{D}\left(L_{k}, \kappa / 2\right)\right) \geq \frac{\kappa}{C K}
$$

and we can construct (by a convolution argument) for each $k, 0<|k| \leq K$, a C^{1} function g_{k} on \mathcal{D} with

$$
\begin{equation*}
\left|g_{k}\right|_{C^{0}(\mathcal{D})} \leq C, \quad\left|g_{k}\right|_{C^{1}(\mathcal{D})} \leq C K \kappa^{-1} \tag{3.20}
\end{equation*}
$$

(the constant C is independent of k) and such that $g_{k}(\omega)=1$ for $\omega \notin \mathcal{D}\left(L_{k}, \kappa\right)$ and $g_{k}(\omega)=0$ for $\omega \in \mathcal{D}\left(L_{k}, \kappa / 2\right)$. Then $\tilde{X}_{k}=g_{k} \hat{X}_{k}$ is a C^{1} extension of \hat{X}_{k} to \mathcal{D}. Similarly we define $\tilde{Q}_{k},=g_{k} \hat{Q}_{k}$ in such a way that \tilde{X}_{k} satisfies

$$
L_{k}(\omega) \tilde{X}_{k}(\omega)=i \tilde{Q}_{k}(\omega), \quad 0<|k| \leq K, \omega \in \mathcal{D}
$$

Differentiating with respect to ω leads to

$$
L_{k}(\omega) \partial_{\omega_{j}} \hat{X}(k)=\mathrm{i} \partial_{\omega_{j}} \hat{Q}(k)-k_{j} \hat{X}(k)+\left[\partial_{\omega_{j}} N, \hat{X}(k)\right], \quad 1 \leq j \leq n
$$

Denoting $B_{k}(\omega)=\mathrm{i} \partial_{\omega_{j}} \tilde{Q}_{k}(\omega)-k_{j} \tilde{X}_{k}(\omega)+\left[\partial_{\omega_{j}} N(\omega), \tilde{X}_{k}(\omega)\right]$ we have

$$
\left\|\partial_{\omega_{j}} \tilde{X}_{k}(\omega)\right\| \leq \kappa^{-1}\left\|B_{k}(\omega)\right\|, \quad \omega \in \mathcal{D}
$$

Using (3.5), (3.19) and (3.20) we get for $|k| \leq K$ and $\omega \in \mathcal{D}$

$$
\begin{aligned}
\left\|B_{k}(\omega)\right\| & \leq\left\|\partial_{\omega_{j}} \tilde{Q}_{k}(\omega)\right\|+K\left\|\tilde{X}_{k}(\omega)\right\|+2\left\|\partial_{\omega_{j}} N(\omega)\right\|\left\|\tilde{X}_{k}(\omega)\right\| \\
& \leq C K \kappa^{-1}\left(\left\|\partial_{\omega_{j}} \hat{Q}(k, \omega)\right\|+\|\hat{Q}(k, \omega)\|\right)
\end{aligned}
$$

Combining the last two estimates we get

$$
\sup _{\omega \in \mathcal{D}, j=0,1}\left\|\partial_{\omega}^{j} \tilde{X}_{k}(\omega)\right\| \leq C K \kappa^{-2} \sup _{\omega \in \mathcal{D}, j=0,1}\left\|\partial_{\omega}^{j} \hat{Q}_{k}(\omega)\right\|
$$

Thus defining

$$
X_{z \bar{z}}(\omega, \theta)=\sum_{0<|k| \leq K} \tilde{X}_{k}(\omega) e^{i k \cdot \theta}
$$

$X_{z \bar{z}}(\omega, \cdot)$ satisfies (3.11) for $\omega \in \mathcal{D}^{\prime}$ and leads to (3.10) for $\chi_{z \bar{z}}(\omega, \theta, z, \bar{z})=\left\langle z, X_{z \bar{z}}(\omega, \cdot) \bar{z}\right\rangle$.
We solve (3.13) in a similar way. We notice that in this case we face the small divisors $|\omega \cdot k-\alpha(\omega)|, k \in \mathbb{Z}^{n}$ where $\alpha \in \Sigma(N(\omega))$. In particular for $k=0$ these quantities are $\geq \frac{\nu_{0}}{2}$ since $\left|\alpha-\nu_{j}\right| \leq \frac{\nu_{0}}{4}$ for some $1 \leq j \leq d$ by (3.5).

Written in Fourier and dropping indices $z z$ (3.12) reads

$$
\begin{equation*}
\mathrm{i} \omega \cdot k \hat{X}(k)-\mathrm{i}(N \hat{X}(k)+\hat{X}(k) \bar{N})=-\hat{Q}(k)+\hat{R}(k) \tag{3.21}
\end{equation*}
$$

So to mimic the resolution of (3.14) we have to replace the operator $L_{k}(\omega)$ by the operator $M_{k}(\omega)$ defined on \mathcal{M}_{S} by

$$
M_{k}(\omega) X:=\omega \cdot k+N X+X \bar{N}
$$

This operator is still self adjoint for the hermitian product $(A, B)=\operatorname{Tr}(\bar{A} B)$ so the same strategy apply. Nevertheless we have to consider differently the case $k=0$. In that case we use that the eigenvalues of $M_{0}(\omega)$ are close to eigenvalues of the operator M_{0} defined by

$$
M_{0}: X \mapsto N_{0} X+X \bar{N}_{0}=N_{0} X+X N_{0}
$$

with $N_{0}=\operatorname{diag}\left(\nu_{j}, j=1, \cdots, d\right)$ a real and diagonal matrix. Actually in view of (3.5)

$$
\left\|\left(L-L_{0}\right) M\right\|_{H S} \leq\left\|N-N_{0}\right\|_{H S}\|M\|_{H S} \leq d\left\|N-N_{0}\right\|\|M\|_{H S} \leq \nu_{0}
$$

The eigenvalues of L_{0} are $\left\{\nu_{j}+\nu_{\ell} \mid j, \ell=1, \cdots, d\right\}$ and they are all larger than $2 \nu_{0}$. We conclude that all the eigenvalues of $M_{0}(\omega)$ satisfy $|\alpha(\omega)| \geq \nu_{0}$. The end of the proof follow as before.

3.3 The KAM step.

Theorem 2.8 is proved by an iterative KAM procedure. We begin with the initial Hamiltonian $h_{0}+q_{0}$ where

$$
\begin{equation*}
h_{0}(I, \theta, z, \bar{z})=\omega \cdot I+\left\langle z, N_{0} \bar{z}\right\rangle \tag{3.22}
\end{equation*}
$$

$N_{0}=\operatorname{diag}\left(\nu_{j}, j=1, \cdots, d\right), \omega \in \mathcal{D} \equiv[1,2]^{n}$ and the quadratic perturbation $q_{0}=\epsilon W \in \mathcal{Q}(\sigma, \mathcal{D})$ for some $\sigma>0$. Then we construct iteratively the change of variables ϕ_{m}, the normal form $h_{m}=\omega \cdot I+\left\langle z, N_{m} \bar{z}\right\rangle$ and the perturbation $q_{m} \in \mathcal{Q}\left(\sigma_{m}, \mathcal{D}_{m}\right)$ as follows: assume that the construction is done up to step $m \geq 0$ then
(i) Using Proposition 3.1 we construct χ_{m+1}, r_{m+1} and \tilde{N}_{m} the solution of the homological equation:

$$
\begin{equation*}
\left\{h, \chi_{m+1}\right\}=\left\langle z, \tilde{N}_{m} \bar{z}\right\rangle-q_{m}(\theta)+r_{m+1}, \quad \omega \in \mathcal{D}_{m+1}, \theta \in \mathbb{T}_{\sigma_{m+1}}^{n} \tag{3.23}
\end{equation*}
$$

(ii) We define $h_{m+1}:=\omega \cdot I+\left\langle z, N_{m+1} \bar{z}\right\rangle$ by

$$
\begin{equation*}
N_{m+1}=N_{m}+\tilde{N}_{m} \tag{3.24}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{m+1}:=r_{m}+\int_{0}^{1}\left\{(1-t)\left(h_{m+1}-h_{m}+r_{m+1}\right)+t q_{m}, \chi_{m+1}\right\} \circ \phi_{\chi_{m+1}}^{t} \mathrm{~d} t \tag{3.25}
\end{equation*}
$$

By construction, if Q_{m} and N_{m} are hermitian, so are R_{m} and S_{m+1} by the resolution of the homological equation, and also N_{m+1} and Q_{m+1}.
For any regular Hamiltonian f we have, using the Taylor expansion of $f \circ \phi_{\chi_{m+1}}^{t}$ between $t=0$ and $t=1$

$$
f \circ \phi_{\chi_{m+1}}^{1}=f+\left\{f, \chi_{m+1}\right\}+\int_{0}^{1}(1-t)\left\{\left\{f, \chi_{m+1}\right\}, \chi_{m+1}\right\} \circ \phi_{\chi_{m+1}}^{t} \mathrm{~d} t
$$

Therefore we get for $\omega \in \mathcal{D}_{m+1}$

$$
\left(h_{m}+q_{m}\right) \circ \phi_{\chi_{m+1}}^{1}=h_{m+1}+q_{m+1} .
$$

3.4 Iterative lemma

Following the general scheme above we have

$$
\left(h_{0}+q_{0}\right) \circ \phi_{\chi_{1}}^{1} \circ \cdots \circ \phi_{\chi_{m}}^{1}=h_{m}+q_{m}
$$

where q_{m} is a polynomial of degree two and $h_{m}=\omega \cdot I+\left\langle z, N_{m} \bar{z}\right\rangle$ with N_{m} a hermitian matrix. At step m the Fourier series are truncated at order K_{m} and the small divisors are controlled by κ_{m}. Now we specify the choice of all the parameters for $m \geq 0$ in term of ϵ_{m} which will control $\left[q_{m}\right]_{\mathcal{D}_{m}, \sigma_{m}}$.
First we define $\epsilon_{0}=\epsilon, \sigma_{0}=\sigma, \mathcal{D}_{0}=\mathcal{D}$ and for $m \geq 1$ we choose

$$
\sigma_{m-1}-\sigma_{m}=C_{*} \sigma_{0} m^{-2}, \quad K_{m}=2\left(\sigma_{m-1}-\sigma_{m}\right)^{-1} \ln \epsilon_{m-1}^{-1}, \quad \kappa_{m}=\epsilon_{m-1}^{\frac{1}{8}}
$$

where $\left(C_{*}\right)^{-1}=2 \sum_{j \geq 1} \frac{1}{j^{2}}$.
Lemma 3.3. There exists $\epsilon_{*}>0$ depending on d, n such that, for $|\epsilon| \leq \epsilon_{*}$ and

$$
\epsilon_{m}=\epsilon^{(3 / 2)^{m}}, \quad m \geq 0
$$

we have the following:
For all $m \geq 1$ there exist closed subsets $\mathcal{D}_{m} \subset \mathcal{D}_{m-1}, h_{m}=\omega \cdot I+\left\langle z, N_{m} \bar{z}\right\rangle$ in normal form where $\mathcal{D}_{m} \ni \omega \mapsto N_{m}(\omega) \in \mathcal{M}_{H} \in C^{1}$ and there exist $\chi_{m}, q_{m} \in \mathcal{Q}\left(\mathcal{D}_{m}, \sigma_{m}\right)$ such that for $m \geq 1$
(i) The symplectomorphism

$$
\begin{equation*}
\phi_{m} \equiv \phi_{\chi_{m}}(\omega): \mathbb{R}^{n} \times \mathbb{T}^{n} \times \mathbb{C}^{2 d} \rightarrow \mathbb{R}^{n} \times \mathbb{T}^{n} \times \mathbb{C}^{2 d}, \quad \omega \in \mathcal{D}_{m} \tag{3.26}
\end{equation*}
$$

is an affine transformation in (z, \bar{z}), analytic in $\theta \in \mathbb{T}_{\sigma_{m}}^{n}$ and C^{1} in $\omega \in \mathcal{D}_{m}$ of the form

$$
\begin{equation*}
\phi_{m}(I, \theta, z, \bar{z})=\left(g_{m}(I, \theta, z, \bar{z}), \theta, \Psi_{m}(\theta, z, \bar{z})\right), \tag{3.27}
\end{equation*}
$$

where, for each $\theta \in \mathbb{T}^{n},(z, \bar{z}) \mapsto \Psi_{m}(\theta, z, \bar{z})$ is a symplectic change of variable on $\mathbb{C}^{2 n}$. The map ϕ_{m} links the Hamiltonian at step $m-1$ and the Hamiltonian at step m, i.e.

$$
\left(h_{m-1}+q_{m-1}\right) \circ \phi_{m}=h_{m}+q_{m}, \quad \forall \omega \in \mathcal{D}_{m} .
$$

(ii) We have the estimates

$$
\begin{align*}
& \operatorname{meas}\left(\mathcal{D}_{m-1} \backslash \mathcal{D}_{m}\right) \leq \epsilon_{m-1}^{\frac{1}{9}}, \tag{3.28}\\
& {\left[\tilde{N}_{m-1}\right]_{s, \beta}^{\mathcal{D}_{m}} } \leq \epsilon_{m-1}, \tag{3.29}\\
& {\left[q_{m}\right]_{S, \beta}^{\mathcal{D}_{m}, \sigma_{m}} } \leq \epsilon_{m}, \tag{3.30}\\
&\left\|\phi_{m}(\omega)-\mathbf{1}\right\|_{\mathcal{L}\left(\mathbb{R}^{n} \times \mathbb{T}^{n} \times \mathbb{C}^{2 d}\right)} \leq C \epsilon_{m-1}^{\frac{1}{2}}, \quad \forall \omega \in \mathcal{D}_{m} \tag{3.31}
\end{align*}
$$

Proof. At step $1, h_{0}=\omega \cdot I+\left\langle z, N_{0} \bar{z}\right\rangle$ and thus hypothesis (3.5) is trivially satisfied and we can apply Proposition 3.1 to construct χ_{1}, N_{1}, r_{1} and \mathcal{D}_{1} such that for $\omega \in \mathcal{D}_{1}$

$$
\left\{h_{0}, \chi_{1}\right\}=\left\langle z,\left(N_{1}-N_{0}\right) \bar{z}\right\rangle-q_{0}+r_{1} .
$$

Then, using (3.6), we have

$$
\operatorname{meas}\left(\mathcal{D} \backslash \mathcal{D}_{1}\right) \leq C K_{1}^{n} \kappa_{1} \leq \epsilon_{0}^{\frac{1}{9}}
$$

for $\epsilon=\epsilon_{0}$ small enough. Using (3.10) we have for ϵ_{0} small enough

$$
\left[\chi_{1}\right]_{\mathcal{D}_{1}, \sigma_{1}} \leq C \frac{K_{1}}{\kappa_{1}^{2}\left(\sigma_{0}-\sigma_{1}\right)^{n}} \epsilon_{0} \leq \epsilon_{0}^{\frac{1}{2}}
$$

Similarly using (3.9), (3.8) we have

$$
\left\|N_{1}-N_{0}\right\| \leq \epsilon_{0}
$$

and

$$
\left[r_{1}\right]_{\mathcal{D}_{1}, \sigma_{1}} \leq C \frac{\epsilon_{0}^{\frac{15}{8}}}{\left(\sigma_{1}-\sigma_{0}\right)^{n}} \leq \epsilon_{0}^{\frac{7}{4}}
$$

for $\epsilon=\epsilon_{0}$ small enough. In particular we deduce $\left\|\phi_{1}-1\right\|_{\mathcal{L}\left(\mathbb{R}^{n} \times \mathbb{T}^{n} \times \mathbb{C}^{2 d}\right)} \leq \epsilon_{0}^{\frac{1}{2}}$. Thus using (3.25) we get for ϵ_{0} small enough

$$
\left[q_{1}\right]_{\mathcal{D}_{1}, \sigma_{1}} \leq \epsilon_{0}^{3 / 2}=\epsilon_{1}
$$

The form of the flow (3.27) follows since χ_{1} is a hamiltonian of the form (3.2).
Now assume that we have verified Lemma 3.3 up to step m. We want to perform the step $m+1$. We have $h_{m}=\omega \cdot I+\left\langle z, N_{m} \bar{z}\right\rangle$ and since

$$
\left\|N_{m}-N_{0}\right\| \leq\left\|N_{m}-N_{0}\right\|+\cdots+\left\|N_{1}-N_{0}\right\| \leq \sum_{j=0}^{m-1} \epsilon_{j} \leq 2 \epsilon_{0}
$$

hypothesis (3.5) is satisfied and we can apply Proposition 3.1 to construct $\mathcal{D}_{m+1}, \chi_{m+1}$ and q_{m+1}. Estimates (3.28)-(3.31) at step $m+1$ are proved as we have proved the corresponding estimates at step 1.

3.5 Transition to the limit and proof of Theorem 2.8

Let $\mathcal{E}_{\epsilon}=\cap_{m \geq 0} \mathcal{D}_{m}$. In view of (3.28), this is a closed set satisfying

$$
\operatorname{meas}\left(\mathcal{D} \backslash \mathcal{E}_{\epsilon}\right) \leq \sum_{m \geq 0} \epsilon_{m}^{\frac{1}{9}} \leq 2 \epsilon_{0}^{\frac{1}{9}}
$$

Let us denote $\widetilde{\phi}_{N}=\phi_{1} \circ \cdots \circ \phi_{N}$. Due to (3.31) it satisfies for $M \leq N$ and for $\omega \in \mathcal{E}-\epsilon$

$$
\left\|\tilde{\phi}_{N}-\widetilde{\phi}_{M}\right\|_{\mathcal{L}\left(\mathbb{R}^{n} \times \mathbb{T}^{n} \times \mathbb{C}^{2 d}\right)} \leq \sum_{m=M}^{N} \epsilon_{m}^{\frac{1}{2}} \leq 2 \epsilon_{M}^{\frac{1}{2}}
$$

Therefore $\left(\widetilde{\phi}_{N}\right)_{N}$ is a Cauchy sequence in $\mathcal{L}\left(\mathbb{R}^{n} \times \mathbb{T}^{n} \times \mathbb{C}^{2 d}\right)$. Thus when $N \rightarrow \infty$ the mappings $\widetilde{\phi}_{N}$ converge to a limit mapping $\phi_{\infty} \in \mathcal{L}\left(\mathbb{R}^{n} \times \mathbb{T}^{n} \times \mathbb{C}^{2 d}\right)$. Furthermore since the convergence is uniform on $\omega \in \mathcal{E}_{\epsilon}$ and $\theta \in \mathbb{T}_{\sigma / 2}, \phi_{\infty}^{1}$ depends analytically on θ and C^{1} in ω. Moreover,

$$
\begin{equation*}
\left\|\phi_{\infty}-1\right\|_{\mathcal{L}\left(\mathbb{R}^{n} \times \mathbb{T}^{n} \times \mathbb{C}^{2 d}\right)} \leq \epsilon_{0}^{\frac{1}{2}} \tag{3.32}
\end{equation*}
$$

By construction, the map $\widetilde{\phi}_{m}$ transforms the original Hamiltonian $h_{0}+q_{0}$ into $h_{m}+q_{m}$. When $m \rightarrow \infty$, by (3.30) we get $q_{m} \rightarrow 0$ and by (3.29) we get $N_{m} \rightarrow N$ where

$$
\begin{equation*}
N \equiv N(\omega)=N_{0}+\sum_{k=1}^{+\infty} \tilde{N}_{k} \tag{3.33}
\end{equation*}
$$

is a Hermitian matrix which is C^{1} with respect to $\omega \in \mathcal{E}_{\epsilon}$. Denoting $h_{\infty}(z, \bar{z})=\omega \cdot I+\langle z, N(\omega) \bar{z}\rangle$ we have proved

$$
\begin{equation*}
(h+q(\theta)) \circ \phi_{\infty}=h_{\infty} . \tag{3.34}
\end{equation*}
$$

Furthermore $\forall \omega \in \mathcal{E}_{\epsilon}$ we have, using (3.29),

$$
\left\|N(\omega)-N_{0}\right\| \leq \sum_{m=0}^{\infty} \epsilon_{m} \leq 2 \epsilon
$$

and thus the eigenvalues of $N(\omega)$, denoted $\nu_{j}^{\infty}(\omega)$ satisfy (2.11).
It remains to explicit the affine symplectomorphism ϕ_{∞}. At each step of the KAM procedure we have by Lemma 3.3

$$
\phi_{m}(I, \theta, z, \bar{z})=\left(g_{m}(I, \theta, z, \bar{z}), \theta, \Psi_{m}(\theta, z, \bar{z})\right)
$$

and therefore

$$
\phi_{\infty}(I, \theta, z, \bar{z})=(g(I, \theta, z, \bar{z}), \theta, \Psi(\theta, z, \bar{z}))
$$

where $\Psi(\theta, z, \bar{z})=\lim _{m \rightarrow \infty} \Psi_{1} \circ \Psi_{2} \circ \cdots \circ \Psi_{m}$.
It is useful to go back to real variables (x, ξ). More precisely write each hamiltonian χ_{m} constructed in the KAM iteration in the variables (x, ξ) :

$$
\chi_{m}(\theta, x, \xi)=\frac{1}{2}\binom{x}{\xi} \cdot E B_{m}(\theta)\binom{x}{\xi}+U_{m}(\theta), \quad E:=\left[\begin{array}{cc}
0 & -\mathbf{1} \tag{3.35}\\
\mathbf{1} & 0
\end{array}\right]
$$

where $B_{m}(\theta)$ is a skewsymmetric matrix of dimension $2 d \times 2 d$ and $U_{m}(\theta) \in \mathbb{R}^{2 d}$, and they are both of size ϵ_{m}. Then Ψ_{m} written in the real variables has the form

$$
\begin{equation*}
\Psi_{m}(\theta, x, \xi)=e^{B_{m}(\theta)}(x, \xi)+T_{m}(\theta), \quad \text { where } \quad T_{m}(\theta):=\int_{0}^{1} e^{(1-s) J B_{m}(\theta)} U_{m}(\theta) d s \tag{3.36}
\end{equation*}
$$

Lemma 3.4. There exists a sequence of Hamiltonian matrices $A_{l}(\theta)$ and vectors $V_{l}(\theta) \in \mathbb{R}^{2 d}$ such that

$$
\begin{equation*}
\Psi_{1} \circ \ldots \circ \Psi_{l}(x, \xi)=e^{A_{l}(\theta)}(x, \xi)+V_{l}(\theta) \quad \forall(x, \xi) \in \mathbb{R}^{2 d} \tag{3.37}
\end{equation*}
$$

Furthermore, there exist an Hamiltonian matrix $A_{\omega}(\theta)$ and a vector $V_{\omega}(\theta) \in \mathbb{R}^{2 d}$ such that

$$
\begin{array}{r}
\lim _{l \rightarrow+\infty} e^{A_{l}(\theta)}=e^{A_{\infty}(\theta)}, \quad \lim _{l \rightarrow+\infty} V_{l}(\theta)=V_{\infty}(\theta) \\
\sup _{|\operatorname{Im} \theta| \leq \sigma / 2}\left\|A_{\omega}(\theta)\right\| \leq C \epsilon, \tag{3.38}\\
\sup _{|\operatorname{Im} \theta| \leq \sigma / 2}\left|V_{\omega}(\theta)\right| \leq C \epsilon
\end{array}
$$

and for each $\theta \in \mathbb{T}^{n}$,

$$
\Psi(\theta, x, \xi)=e^{A_{\omega}(\theta)}(x, \xi)+V_{\omega}(\theta) \quad \forall(x, \xi) \in \mathbb{R}^{2 d}
$$

Proof. Recall that $\phi_{j}=e^{B_{j}}+T_{j}$ where T_{j} is a translation by the vector T_{j} with the estimates $\left\|B_{j}\right\| \leq C \epsilon_{j},\left\|T_{j}\right\| \leq C \epsilon_{j}$. So we have $e^{B_{j}}=\mathbb{I}+S_{j}$ with $\left\|S_{j}\right\| \leq C \epsilon_{j}$. Then the infinite product $\prod_{1 \leq j<+\infty} e^{B_{j}}$ is convergent. Moreover we have $\prod_{1 \leq j \leq l} e^{B_{j}}=\mathbb{I}+M_{l}$ with $\left\|M_{l}\right\| \leq C \epsilon$ so we have $\prod_{1 \leq j<+\infty} e^{B_{j}}=\mathbb{I}+M$ with $\|M\| \leq C \epsilon$. This is proved by using

$$
\prod_{1 \leq j \leq l}\left(\mathbb{I}+S_{j}\right)=\mathbb{I}+S_{l}+S_{l-1} S_{l}+\cdots S_{1} S_{2} \cdots S_{l}
$$

and estimates on $\left\|S_{j}\right\|$.
So, M_{l} has a small norm and therefore $A_{l}:=\log \left(\mathbb{I}+M_{l}\right)$ is well defined. Furthermore, by construction $\mathbb{I}+M_{l} \in \mathrm{Sp}(2 d)$ and therefore its logarithm is a Hamiltonian matrix, namely $A_{l} \in \operatorname{sp}(2 d)$ for $1 \leq l \leq+\infty$.
Now we have to include the translations. By induction on l we have

$$
\phi_{1} \circ \ldots \circ \phi_{l}(x, \xi)=\mathrm{e}^{A_{l}}(x, \xi)+V_{l}
$$

with $V_{l+1}=\mathrm{e}^{A_{l}} T_{l+1}+V_{l}$ and $V_{1}=T_{1}$. Using the previous estimates we have

$$
\left\|V_{l+1}-V_{l}\right\| \leq C\left\|T_{l+1}\right\| \leq C \epsilon_{l}
$$

Then we get that $\lim _{l \rightarrow+\infty} V_{l}=V_{\infty}$ exists.

A An example of growth of Sobolev norms (following Graffi and Yajima)

In this appendix we are going to study the Hamiltonian

$$
\begin{equation*}
H:=-\frac{1}{2} \partial_{x x}+\frac{x^{2}}{2}+a x \sin \omega t \tag{A.1}
\end{equation*}
$$

and prove that it is reducible to the Harmonic oscillator if $\omega \neq \pm 1$, while the system exhibits growth of Sobolev norms in the case $\omega= \pm 1$. Actually the result holds in a quite more general situation, but we think that the present example (that was studied in GY00) can give a full understanding of the situation with as little techniques as possible. We also remark that in this case it is not necessary to assume that the time dependent part is small.

As we already pointed out, in order to get reducibility of the Hamiltonian (A.1), it is enough to study the corresponding classical Hamiltonian, in particular proving its reducibility; this is what we will do. It also turns out that all the procedure is clearer working as much as possible at the level of the equations.

So, consider the classical Hamiltonian system

$$
\begin{equation*}
h:=\frac{x^{2}+\xi^{2}}{2}+a x \sin (\omega t) \tag{A.2}
\end{equation*}
$$

whose equations of motion are

$$
\left\{\begin{array}{c}
\dot{x}=\xi \tag{A.3}\\
\dot{\xi}=-x-a \sin (\omega t)
\end{array} \Longleftrightarrow \quad \ddot{x}+x+a \sin (\omega t)=0 .\right.
$$

Proposition A.1. Assume that $\omega \neq \pm 1$. Then there exists a time periodic canonical transformation conjugating (A.2) to

$$
\begin{equation*}
h^{\prime}:=\frac{x^{2}+\xi^{2}}{2} . \tag{A.4}
\end{equation*}
$$

If $\omega= \pm 1$ then the system is canonically conjugated to

$$
\begin{equation*}
h^{\prime}:= \pm \frac{a}{2} \xi \tag{A.5}
\end{equation*}
$$

In both cases the transformation has the form (2.9) .
Corollary A.2. In the case $\omega= \pm 1$, for any $s>0$ and $\psi_{0} \in \mathcal{H}^{s}$, there exists a constant $0<C_{s}=C_{s}\left(\left\|\psi_{0}\right\|_{\mathcal{H}^{s}}\right)$ s.t. the solution of the Schrödinger equation with Hamiltonian (A.1) and initial datum ψ_{0} fulfills

$$
\begin{equation*}
\|\psi(t)\|_{\mathcal{H}^{s}} \geq C_{s}\langle t\rangle^{s}, \quad \forall t \in \mathbb{R} \tag{A.6}
\end{equation*}
$$

Before proving the theorem, recall that by the general result of MR16, Theorem 1.5], any solution of the Schrödinger equation with Hamiltonian (A.1) fulfills the a priori bound

$$
\begin{equation*}
\|\psi(t)\|_{\mathcal{H}^{s}} \leq C_{s}^{\prime}\left(\left\|\psi_{0}\right\|_{\mathcal{H}^{s}}+|t|^{s}\left\|\psi_{0}\right\|_{\mathcal{H}^{0}}\right), \forall t \in \mathbb{R} \tag{A.7}
\end{equation*}
$$

which is therefore sharp.
Proof of Proposition A.1. We look for a translation

$$
\begin{equation*}
x=x^{\prime}-f(t), \quad \xi=\xi^{\prime}-g(t) \tag{A.8}
\end{equation*}
$$

with f and g time periodic functions to be determined in such a way to eliminate time from (A.3). Writing the equations for $\left(x^{\prime}, \xi^{\prime}\right)$, one gets

$$
\dot{x}^{\prime}=\xi^{\prime}-g+\dot{f}, \quad \dot{\xi}^{\prime}=-x^{\prime}-a \sin (\omega t)+\dot{g}+f
$$

which reduces to the harmonic oscillator by choosing

$$
\left\{\begin{array}{c}
-a \sin (\omega t)+\dot{g}+f=0 \tag{A.9}\\
-g+\dot{f}=0
\end{array} \Longleftrightarrow \ddot{f}+f=a \sin (\omega t)\right.
$$

which has a solution of period $2 \pi / \omega$ only if $\omega \neq \pm 1$. In such a case the only solution having the correct period is

$$
f=\frac{a}{1-\omega^{2}} \sin (\omega t), \quad g=\frac{a \omega}{1-\omega^{2}} \cos (\omega t)
$$

Then the transformation ($\mathbf{A} .8$ is a canonical transformation generated as the time one flow of the auxiliary Hamiltonian

$$
\chi:=-\xi \frac{a}{1-\omega^{2}} \sin (\omega t)+x \frac{a \omega}{1-\omega^{2}} \cos (\omega t)
$$

which thus conjugates the classical hamiltonian (A.2) to the Harmonic oscillator; of course the quantization of χ conjugates the quantum system to the quantum Harmonic oscillator, as follows by Proposition 2.7

We come to the resonant case, and, in order to fix ideas, we take $\omega=1$. In such a case the flow of the Harmonic oscillator is periodic of the same period of the forcing, and thus its flow
can be used to reduce the system. The procedure that we are going to describe could be called Hamiltonian Duhamel formula.

In a slight more abstract way, consider a Hamiltonian system with Hamiltonian

$$
H:=\frac{1}{2}\langle z ; B z\rangle+\langle z ; b(t)\rangle
$$

with $z:=(x, \xi), B$ a symmetric matrix, and $b(t)$ a vector valued time periodic function. Then, using the formula (2.4), it is easy to see that the auxiliary time dependent Hamiltonian

$$
\begin{equation*}
\chi_{1}:=\frac{t}{2}\langle z ; B z\rangle \tag{A.10}
\end{equation*}
$$

generates a time periodic transformation which conjugates the system to

$$
h^{\prime}:=\left\langle z ; e^{-J B t} b(t)\right\rangle
$$

(J being the standard symplectic matrix). An explicit computation shows that in our case

$$
\begin{equation*}
h^{\prime}=\frac{a}{2} x \sin (2 t)-\frac{a}{2} \xi \cos (2 t)+\frac{a}{2} \xi \tag{A.11}
\end{equation*}
$$

Then in order to eliminate the two time periodic terms in (A.11) is it sufficient to use the canonical transformation generated by the hamiltonian

$$
\begin{equation*}
\chi_{2}:=-\xi \frac{a}{4} \sin (2 t)-x \frac{a}{4} \cos (2 t) \tag{A.12}
\end{equation*}
$$

which reduce to (A.5).
Proof of Corollary A.2. To fix ideas we take $\omega=1$. Let $\chi_{1}^{w} \equiv \frac{t}{2}\left(-\partial_{x x}+x^{2}\right)$ and χ_{2}^{w} be the Weyl quantization of the hamiltonians (A.10) respectively (A.12). By the proof of Proposition A. 1 , the changes of coordinates

$$
\begin{equation*}
\psi=e^{-\mathrm{i} t H_{0}} \psi_{1}, \quad \psi_{1}=e^{-\mathrm{i} \chi_{2}^{w}(t, x, D)} \varphi, \quad H_{0}:=\frac{1}{2}\left(-\partial_{x x}+x^{2}\right) \tag{A.13}
\end{equation*}
$$

conjugate the Schrödinger equation with Hamiltonian (A.1) to the Schrödinger equation with hamiltonian (A.2), namely the transport equation

$$
\partial_{t} \varphi=-\frac{a}{2} \partial_{x} \varphi
$$

The solution of this transport equation is given clearly by

$$
\varphi(t, x)=\varphi_{0}\left(x-\frac{a}{2} t\right)
$$

where φ_{0} is the initial datum. Now a simple computation shows that

$$
\liminf _{|t| \rightarrow+\infty}|t|^{-s}\|\varphi(t)\|_{\mathcal{H}^{s}} \geq\left(\frac{|a|}{2}\right)^{s}\left\|\varphi_{0}\right\|
$$

In particular there exists a constant $0<C_{s}=C_{s}\left(\left\|\varphi_{0}\right\|_{\mathcal{H}^{s}}\right)$ s.t.

$$
\begin{equation*}
\|\varphi(t)\|_{\mathcal{H}^{s}} \geq C_{s}\langle t\rangle^{s} \tag{A.14}
\end{equation*}
$$

Since the transformation (A.13) maps \mathcal{H}^{s} to \mathcal{H}^{s} uniformly in time (see also Lemma 2.6) estimate (A.14) holds also for the original variables.

We remak that by a similar procedure one can also prove the following slightely more general result.

Theorem A.3. Consider the classical Hamiltonian system

$$
\begin{equation*}
h=\sum_{j=1}^{d} \nu_{j} \frac{x_{j}^{2}+\xi_{j}^{2}}{2}+\sum_{j=1}^{d}\left(g_{j}(\omega t) x_{j}+f_{j}(\omega t) \xi_{j}\right) \tag{A.15}
\end{equation*}
$$

with $f_{j}, g_{j} \in C^{r}\left(\mathbb{T}^{n}\right)$.
(1) If there exist $\gamma>0$ and $\tau>n+1$ s.t.

$$
\begin{equation*}
\left|\omega \cdot k \pm \nu_{j}\right| \geq \frac{\gamma}{1+|k|^{\tau}}, \quad \forall k \in \mathbb{Z}^{n}, \quad j=1, \ldots, d \tag{A.16}
\end{equation*}
$$

and $r>\tau+1+n / 2$, then there exists a time quasiperodic canonical transformation of the form (2.9) conjugating the system t 4^{3}

$$
h=\sum_{j=1}^{d} \nu_{j} \frac{x_{j}^{2}+\xi_{j}^{2}}{2}
$$

(2) If there exist $0 \neq \bar{k} \in \mathbb{Z}^{n}$ and \bar{j}, s.t.

$$
\begin{equation*}
\omega \cdot \bar{k}-\nu_{\bar{j}}=0 \tag{A.17}
\end{equation*}
$$

and there exist $\gamma>0$ and τ s.t.

$$
\begin{equation*}
\left|\omega \cdot k \pm \nu_{j}\right| \geq \frac{\gamma}{1+|k|^{\tau}}, \quad \forall(k, j) \neq(\bar{k}, \bar{j}) \tag{A.18}
\end{equation*}
$$

and $r>\tau+1+\frac{n}{2}$, then there exists a time quasiperodic canonical transformation of the form (2.9) conjugating the system to

$$
h=\sum_{j \neq \bar{j}} \nu_{j} \frac{x_{j}^{2}+\xi_{j}^{2}}{2}+c_{1} x_{\bar{j}}+c_{2} \xi_{\bar{j}}
$$

with $c_{1}, c_{2} \in \mathbb{R}$.
Remark A.4. The constants c_{1}, c_{2} can be easily computed. If at least one of them is different form zero then the solution of the corresponding quantum system exhibits growth of Sobolev norms as in the special model A.1. Of course the result extends in a trivial way to the case in which more resonances are present.

References

[Bam16] D. Bambusi. Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations, I. TAMS, To Appear; ArXiv e-prints, June 2016.
[Bam17] D. Bambusi. Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations, II. Commun. Math. Phys, doi:10.1007/s00220-016-2825-2, 2017.

[^3][BBM14] P. Baldi, M. Berti, and R. Montalto. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Ann., 359(1-2):471-536, 2014.
[BG01] D. Bambusi and S. Graffi. Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods. Comm. Math. Phys., 219(2):465-480, 2001.
[BM16] M. Berti and R. Montalto. Quasi-periodic standing wave solutions of gravity-capillary water waves. arXiv:1602.02411 [math.AP], 2016.
[Com87] M. Combescure. The quantum stability problem for time-periodic perturbations of the harmonic oscillator. Ann. Inst. H. Poincaré Phys. Théor., 47(1):63-83, 1987.
[CR12] Monique Combescure and Didier Robert. Coherent states and applications in mathematical physics. Theoretical and Mathematical Physics. Springer, Dordrecht, 2012.
[Del14] J.-M. Delort. Growth of sobolev norms for solutions of time dependent Schrödinger operators with harmonic oscillator potential. Comm. In P.D.E, 39:1-33, 2014.
[DLŠV02] P. Duclos, O. Lev, P. Štovíček, and M. Vittot. Weakly regular Floquet Hamiltonians with pure point spectrum. Rev. Math. Phys., 14(6):531-568, 2002.
[DŠ96] P. Duclos and P. Štovíček. Floquet Hamiltonians with pure point spectrum. Comm. Math. Phys., 177(2):327-347, 1996.
[EK09] H. Eliasson and S. Kuksin. On reducibility of Schrödinger equations with quasiperiodic in time potentials. Comm. Math. Phys., 286(1):125-135, 2009.
[Eli88] L. H. Eliasson. Perturbations of stable invariant tori for Hamiltonian systems. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15(1):115-147 (1989), 1988.
[EV83] V. Enss and K. Veselic. Bound states and propagating states for time-dependent hamiltonians. Ann. Inst. henri Poincaré, 39(2):159-191, 1983.
[GP16] B. Grébert and E. Paturel. On reducibility of quantum harmonic oscillator on \mathbb{R}^{d} with quasiperiodic in time potential. arXiv:1603.07455 (math.AP/, 2016.
[GT11] B. Grébert and L. Thomann. KAM for the quantum harmonic oscillator. Comm. Math. Phys., 307(2):383-427, 2011.
[GY00] S. Graffi and K. Yajima. Absolute continuity of the Floquet spectrum for a nonlinearly forced harmonic oscillator. Comm. Math. Phys., 215(2):245-250, 2000.
[HLS86] G. Hagedorn, M. Loss, and J. Slawny. Nonstochasticity of time-dependent quadratic Hamiltonians and the spectra of canonical transformations. J. Phys. A, 19(4):521-531, 1986.
[Hör85] L. Hörmander. The Analysis of Linear Partial Differential Operators I-III. Grundlehren der mathematischen Wissenschaften 256. Springer-Verlag, 1985.
[Kuk87] S. B. Kuksin. Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i Prilozhen., 21(3):22-37, 95, 1987.
[Kuk93] S. B. Kuksin. Nearly integrable infinite-dimensional Hamiltonian systems, volume 1556 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993.
[Kuk97] S. B. Kuksin. On small-denominators equations with large variable coefficients. Z. Angew. Math. Phys., 48(2):262-271, 1997.
[Kuk98] S. Kuksin. A KAM-theorem for equations of the Korteweg-de Vries type. Rev. Math. Math. Phys., 10(3):ii+64, 1998.
[LY10] J. Liu and X. Yuan. Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient. Comm. Pure Appl. Math., 63(9):1145-1172, 2010.
[Mon14] R. Montalto. KAM for quasi-linear and fully nonlinear perturbations of Airy and KdV equations. Phd Thesis, SISSA - ISAS, 2014.
[MR16] A. Maspero and D. Robert. On time dependent Schrödinger equations: global wellposedness and growth of Sobolev norms. ArXiv e-prints, October 2016.
[PT01] P. I. Plotnikov and J. F. Toland. Nash-Moser theory for standing water waves. Arch. Ration. Mech. Anal., 159(1):1-83, 2001.
[Wan08] W.-M. Wang. Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations. Comm. Math. Phys., 277(2):459-496, 2008.
[Way90] C. E. Wayne. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm. Math. Phys., 127(3):479-528, 1990.
[You99] J. You. Perturbations of lower-dimensional tori for Hamiltonian systems. J. Differential Equations, 152(1):1-29, 1999.

[^0]: *Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, I-20133 Milano. Email: dario.bambusi@unimi.it
 ${ }^{\dagger}$ Laboratoire de Mathématiques Jean Leray, Université de Nantes, 2 rue de la Houssinière BP 92208, 44322 Nantes.
 Email: benoit.grebert@univ-nantes.fr
 ${ }^{\ddagger}$ Laboratoire de Mathématiques Jean Leray, Université de Nantes, 2 rue de la Houssinière BP 92208, 44322 Nantes.
 Email: alberto.maspero@univ-nantes.fr
 §Laboratoire de Mathématiques Jean Leray, Université de Nantes, 2 rue de la Houssinière BP 92208, 44322 Nantes.
 Email: didier.robert@univ-nantes.fr

[^1]: ${ }^{1}$ recall that a real $2 d \times 2 d$ matrix A belongs to $\operatorname{sp}(2 d)$ iff $J A$ is symmetric

[^2]: ${ }^{2}$ Formally we could expect q_{+}to be of size $O\left(\epsilon^{2}\right)$ but the small divisors and the reduction of the analyticity domain will lead to an estimate of the type $\mathcal{O}\left(\epsilon^{\frac{3}{2}}\right)$.

[^3]: ${ }^{3}$ Actually the transformation is just a translation, so in this case one has $A \equiv 0$.

