WSNs deployment framework based on the theory of belief functions
Résumé
Deployment is a fundamental issue in Wireless Sensor Networks (WSNs). Indeed, the number and locations of sensors determine the topology of the WSN, which will further influence its performance. Usually, the sensor locations are precomputed based on a 'perfect' sensor coverage model. However, in reality, there is an inherent uncertainty and imprecision associated with sensor readings. This issue impinges upon the success of any WSN deployment, and it is therefore important to consider it at the design stage. In contrast to existing work, this paper investigates the belief functions theory to design a unified approach for robust uncertainty-aware WSNs deployment. Specifically, we address the issue of handling uncertainty and information fusion for an efficient WSNs deployment by exploiting the belief functions reasoning framework. We present a flexible framework for target/event detection within the transferable belief model. Using this framework, we propose uncertainty-aware deployment algorithms that are able to determine the minimum number of sensors as well as their locations in such a way that full area coverage is provided. Related issues, such as connectivity, preferential coverage, challenging environments and sensor reliability, are also discussed. Simulation results, based on both synthetic data set and data traces collected in a real deployment for vehicle detection, are provided to demonstrate the ability of our approach to achieve an efficient WSNs deployment by exploiting a collaborative target/event detection scheme. Using the devised approach, we successfully deploy an experimental testbed for motion detection. The obtained results are reported, supported by comparison with other works.