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Nonsmooth modal analysis of an elastic bar subject to a unilateral contact
constraint

Carlos Yoong — Anders Thorin — Mathias Legrand

Abstract This contribution proposes a numerical procedure
capable of performing nonsmooth modal analysis (mode shapes
and corresponding frequencies) of the autonomous wave equa-
tion defined on a finite one-dimensional domain with one end
subject to a Dirichlet condition and the other end subject to
a frictionless time-independent unilateral contact condition.
Nonsmooth modes of vibration are defined as one-parameter
continuous families of nonsmooth periodic orbits satisfying
the local equation together with the linear and nonlinear bound-
ary conditions. The analysis is performed using the Wave
Finite Element Method, which is a shock-capturing Finite
Volume Method. As opposed to the traditional Finite Element
Method with time-stepping schemes, potentially discontinu-
ous deformation, stress and velocity wave fronts induced by
the unilateral contact condition are here accurately described,
which is critical for seeking periodic orbits. Additionally, the
proposed strategy introduces neither numerical dispersion nor
artificial dissipation of energy, as required for modal analysis.
As a consequence of the mixed time–space discretization, no
impact law is needed for the well-posedness of the problem in
line with the continuous framework.

The frequency–energy dependency nonlinear spectrum of
vibration, shown in the form of backbone curves, provides
valuable insight on the dynamics. In contrast to the linear sys-
tem (without the unilateral contact condition) whose modes of
vibration are standing harmonic waves, the nonsmooth modes
of vibrations are traveling waves stemming from the unilateral
contact condition. It is also shown that the vibratory reso-
nances of the periodically-driven system with light structural
damping are well predicted by nonsmooth modal analysis.
Furthermore, the initially unstressed and prestressed configu-
rations exhibit stiffening and softening behaviors respectively,
as expected.

Keywords wave propagation � nonsmooth dynamics �
unilateral contact � modal analysis � nonlinear vibration �
internal resonance

1 Introduction

Many industrial applications require the appropriate prediction
of the dynamics of colliding elastic bodies in their design pro-
cess [40]. Through unilateral contact forces preventing inter-
penetration of matter, a collision initiates a disturbance in the
form of a stress wave. Analytical solutions to the initial value
problem are only known for simple cases such as longitudinal
collision of rods or transverse contact of beams [17]. For more
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general configurations, the solution should be approximated
numerically. However, common numerical methods, such as
Finite Element Methods (FEMs) combined with time-stepping
schemes, exhibit limitations that might be unacceptable [15,
1, 31]: spurious oscillations commonly known as Gibb’s phe-
nomenon, dispersion and dissipation errors or chattering when
constitutive impact laws are implemented. Also, most energy-
preserving numerical schemes dedicated to contact dynamics
feature numerical dispersion issues [23].

In the framework of undamped linear continuous systems,
natural modes of vibration are characterized by their natural
frequencies (eigenvalues) and normalized shapes (eigenfunc-
tions) [30]. In the phase space, linear modes can be seen as con-
tinuous families of periodic orbits describing two-dimensional
planes. For nonlinear dynamical systems, the natural modes
of vibration are known to form two-dimensional manifolds in
the phase space tangent to the previously mentioned planes at
equilibrium points [19]. These manifolds are invariant, i.e. for
any initial condition on the manifold, the solution will remain
on it as time advances [33]. Additionally, the nonlinear natural
frequency of an orbit depends on the total energy of the latter.

Most investigations and developments on nonlinear modal
analysis, conventionally within a finite dimensional framework
or equivalent, have dealt with smooth nonlinearities [19], i.e.
nonlinear terms differentiable with respect to the unknown of
the problem, mostly polynomial functions of the displacement
and velocity. The continuous mechanical system investigated
in this contribution involves a unilateral contact condition
stricto sensu. As a consequence, displacements, velocities and
accelerations are not differentiable with respect to time and
space in the usual sense. Such systems are named nonsmooth
systems [2]. Classical tools of nonlinear modal analysis rely on
smoothness and thus no longer apply. Accordingly, “nonlinear
normal modes” (NNMs) of vibration for nonsmooth systems
will be referred to as nonsmooth modes (NSMs), defined as
one-parameter continuous families of periodic nonsmooth
orbits.

The common method to approximate solutions of contin-
uous systems described by partial differential equations is to
first obtain, through a semi-discretization in space, a finite-
dimensional nonlinear Ordinary Differential Equation solely
depending on time. Unilateral constraints can then be incorpo-
rated via regularization to enable the use of classical nonlinear
modal analysis [7, 29, 6, 35, 9, 18, 21]; the main issue lies in
the high computational effort induced by the contact stiffness.
Another strategy consists in preserving the nonsmooth nature
of the system. It can be handled via appropriate time-stepping
nonsmooth numerical schemes [24] or semi-analytic deriva-
tions [25, 37] involving energy-preserving impact laws. A few
closed-form solutions in the form of periodic shock-waves
of an elastic string vibrating against a point obstacle are re-
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ported using the method of characteristic lines [11, 12]. This
string system shares similarities with the bar considered in the
present work for which a single continuous family of periodic
solutions was exhibited through analytical considerations [5].
In the remainder, this family will be shown to form the first
NSM of the system. The current work proposes an approach
to numerically approximate any NSM.

By definition of NSMs, their computation relies on pe-
riodicity: the state of the system at time t0 must be recov-
ered at some t0 C T where T is the period, requiring nu-
merical methods that preserve total energy and are not prone
to numerical dispersion. A considerable amount of research
has been devoted to this topic with limited success [23, 20,
3]. In the present work, the Wave Finite Element Method
(WFEM) [34] is implemented in order to numerically approxi-
mate the modes of vibration of a one-dimensional finite elastic
bar subject to frictionless unilateral contact constraints. The
WFEM is a shock-capturing method—similar to the Godunov
method [16] commonly used in computation fluid dynamics—
which consists in finding and tracking waves propagating in a
mechanical system. Such shock waves are expected because
of the unilateral contact condition. The proposed method does
not introduce artificial dissipation of energy nor numerical
dispersion [41, 34]. Multidimensional problems incorporat-
ing contact conditions are not targeted in this work due to
the expected intricate interaction of compressional and shear
waves.

The paper is organized as follows. The one-dimensional
system of interest is outlined in section 2, where three different
configurations are detailed: unstressed, prestressed and stati-
cally grazing. The capability of the WFEM to handle unilateral
contact dynamics is illustrated in section 3 through a bench-
mark problem offering an exact solution. The overall strategy
capable of performing nonsmooth modal analysis is described
in sections 4 and 5. The approximate nonsmooth modes are
then characterized in section 6. Comparison with periodically
forced responses is undertaken in section 7. The implemen-
tation of WFEM is thoroughly detailed in Appendix A for a
one-dimensional problem. The enforcement of contact con-
straints within WFEM is explained in Appendix B.

2 System of interest

The system of interest is a homogeneous elastic bar of lengthL
and constant cross-sectional area S rigidly fixed to the ground
at its left end and whose right end is subject to a conservative
unilateral constraint as shown in Fig. 1. Within the framework

L

x
u.x; t/

g.u.L; t//

Fig. 1: One-dimensional finite elastic bar subject to unilateral
contact constraints.

of infinitely small transformations, the unknown displacement,

velocity, strain and stress fields are denoted by u.x; t/, v.x; t/,
".x; t/ and �.x; t/ respectively where x 2 Œ0 IL� is the co-
ordinate of a point of the bar along its longitudinal axis in
the initial configuration and t denotes time. The quantity r.t/
is the unilateral contact force emerging at x D L. The mass
per unit volume is denoted by � > 0 and E > 0 stands for
Young’s modulus which are both, by assumption, space and
time independent. Any elastic wave traveling within the bar
thus propagates at constant velocity c DpE=�. The signed
distance between the right end of the bar and the obstacle, or
gap function, is defined as g.u.L; t// D g0 � u.L; t/, where
g0 is the signed distance between the unconstrained resting
position and the obstacle. In linear elasticity, the stresses read
� D E" where the axial strains " D u;x should be physically
admissible, that is u;x > �1. Stresses are related to the con-
tact force by �.L; t/ D Eu;x.L; t/ D r.t/=S . Unless stated
otherwise, there is no other external force acting on the system,
either per unit length or pointwise at the boundary. The full
formulation reads:
– Local equation:

�u;t t �Eu;xx D 0; 8x 2 �0 ILŒ; 8t > 0 (1)

where .�/;t t stands for the second derivative in time and
.�/;xx , for the second derivative in space.

– Homogeneous fixed (Dirichlet) boundary condition (BC)
at x D 0 and 8t > 0:

u.0; t/ D 0 (2)

– Signorini complementarity condition at xDL and 8t >0:

g.u.L; t//�0; r.t/�0; r.t/g.u.L; t//D0 (3)

– Initial conditions 8x 2 �0 ILŒ:
u.x; 0/Du0.x/; v.x; 0/Dv0.x/ (4)

where u0 and v0 are prescribed functions.
This problem has a unique solution which conserves the total
energy [32]. The local equation is the wave equation defined
on a finite domain. D’Alembert’s exact solution is the sum
of backward and forward travelling waves propagating with
velocity c and reads 8x 2 Œ0 IL� and 8t > 0 [17]:

2u.x; t/ D u?0.xCct/C u?0.x�ct/C
1

c

Z xCct

x�ct
v?0 .s/ ds (5)

where u?0 and v?0 are periodic extensions on the real axis of
u0 and v0 defined on Œ0 IL� only. The period of u?0 and v?0
depends on the boundary conditions considered.

Non-trivial periodic solutions of the contact problem de-
scribed by Eqs. (1) to (4) are successions of free phases (open
gap) and contact phases (closed gap). They can therefore be
understood as the combination of solutions to an hyperbolic
Partial Differential Equation with a switching boundary con-
dition at x D L between vanishing stress when the gap is
open to prescribed displacement when the gap is closed. The
nonlinearity in the formulation comes from the fact that the
time of switch depends on the solution. There is also a subtlety
in the BC switch at x D L: an open gap implies u;x.L; �/ D 0
while a closed gap implies a non-homogeneous prescribed
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displacement of the form u.L; �/ D g0. Accordingly, when
the gap is open, BCs at x D 0 and x D L are homogeneous
and will be referred to as fixed–free BCs in the remainder.
For a closed gap, the BC at x D 0 is homogeneous while the
BC at x D L is non-homogeneous: they will be referred as
fixed–fixed BCs.

The question is now to find the two functions u0 and v0
generating a time-periodic state of the system which satisfies
the local equation (1) and properly switches between fixed–
free and fixed–fixed BCs to comply with the unilateral contact
conditions (3). This is achieved using the Wave Finite Element
Method.

3 Illustration of the capabilities of WFEM

The WFEM is detailed, including a readily-implementable
algorithm, in Appendices A (the WFEM method itself) and B
(unilateral contact conditions in WFEM). In the sequel, the
governing Eqs. (1) to (4) are equivalently recast in terms of
stresses and velocities stacked in a state vector q. The system
is discretized simultaneously in space and time with mesh
sizes �x D L=N and �t D �x=c respectively, where N is
the number of cells used for space discretization. The overall
dynamics is approximated by Q.n/ D AQ.n�1/ where Q.n/ D
ŒQ.n/
1 : : :Q.n/

N � and Q.n/
i stands for the averaged state q in cell

Ci at time tn D n�t . The matrix A encompasses stiffness and
inertial terms as well as the appropriate boundary conditions.
Two matrices are constructed: A D Af for free–free BCs (open
gap) and A D Ac for fixed–free BCs (closed gap).

In this section, the capabilities of the WFEM are succinctly
illustrated on a unilaterally constrained linearly elastic finite
bar benchmark, for which analytical solutions are known [15].
It can be compared to other time-integration schemes based
on a semi-discretization in space through the commonly used
FEM [41]. The problem consists in an unclamped homoge-
neous elastic rod of length L and constant cross-sectional
area S bouncing against an obstacle due to a distributed inter-
nal force, as shown in Fig. 2. Parameters reported in [15] are

F.x; t/ D F0

x
u.x; t/

L

g.u.L; t//

Fig. 2: Benchmark bouncing homogeneous elastic bar (used
in section 3).

considered and listed in Tab. 1. The displacement (retrieved
from stress via an integration in space), velocity, contact force
an total energy is depicted for an isolated periodic solution
in Fig. 3, for N D 100 cells. Total energy and periodicity
are accurately preserved and the nonsmooth behaviour is well
recovered. Curves in Fig. 3 and the exact curves are undis-
tinguishable [41]. In contrast, traditional numerical schemes
dedicated to contact dynamics and commonly based on the
standard FEM show spurious oscillations on the contact dis-
placement and stress [31]. Moreover, these oscillations do not

Table 1: Simulation parameters for the considered benchmark,
from [15]

Parameter Value

Young’s Modulus,E 900 Pa
Density, � 1 kg m�2

Rod Length, L 10 m
Initial Gap, g0 5 m

External Body Force, F0 10 N m�1

Wave Velocity, c DpE=� 30 m s�1
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Fig. 3: Periodic motion of the bouncing bar obtained by
WFEM.

disappear when the time step decreases and might increase in-
stead. Various solutions have been proposed to alleviate these
difficulties, mainly by adapting the time-domain discretiza-
tion. They all fail by either adding non-physical damping, or
not strictly respecting the contact constraint. This is partly ex-
plained by the inability of standard finite elements to properly
propagate information. Also, the implementation of an impact
law yields unavoidable drawbacks, such as chattering if energy
conservation is targeted [1]. None of these issues are present
with WFEM that produces accurate approximations with a
reasonable number of cells. This can be partly explained by
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the fact that shock wave propagation is accurately captured by
this scheme.

4 Periodic solutions

NSMs are regarded as continuous families of periodic solu-
tions satisfying the local equations and the boundary con-
ditions including the unilateral contact conditions. Finding
a periodic solution translates into finding initial conditions
u0.x/ and v0.x/ and a period T which generate a solution
satisfying Eqs. (1) to (4) in conjunction with the periodicity
conditions(
u.x; t C T / D u.x; t/
v.x; t C T / D v.x; t/ ; 8x 2 Œ0 IL�; 8t > 0: (6)

Without loss of generality, it is assumed that a period starts
with a free phase at t D 0 and ends with a contact phase at t D
T . In the general case, a pattern of free and contact phases will
arise within one period. The k successive transition instants
between free and contact phases are denoted by Ti with 0 <
T1 < : : : < Tk�1 < Tk D T and are unknown. The sought
solution is then an unknown combination of functions of the
form (5) where u?0 and v?0 switch between fixed–free BCs
over Œ0 IT1�, ŒT2 IT3�, etc. and fixed–fixed BCs over ŒT1 IT2�,
ŒT3 IT4�, etc., which must be periodic in time. Connecting
these portions of D’Alembert solutions in order to form a
periodic solution is quite a formidable task.

The WFEM approximately solves the above problem by
building two matrices, Af for the fixed–free BC and Ac for
the fixed–fixed BC, so that mapping an initial state to the
current state after a succession of free and contact phases is
straightforward via Eq. (40). In contrast to more commonly-
used time-integration schemes based on FEM, the WFEM
perfectly preserves energy (in this one-dimensional configura-
tion at least), which is crucial for the computation of periodic
solutions. Additionally, for the problem at hand, this scheme
is not prone to numerical dispersion and does not suffer from
the well-known Gibb’s phenomenon commonly observed in
unilateral contact dynamics [15].

The FEM framework without regularization of the com-
plementarity conditions in continuous time is used for the
calculation of nonsmooth modes in [25, 37, 38]. However, the
formulation relies on a space-discretization and hence requires
the incorporation of an impact law—for instance Newton’s im-
pact law—to ensure the well-posedness of the problem. Since
energy conservation is necessary to find nonsmooth modes, a
perfectly elastic impact law should be considered, from which
would emanate impulsive dynamics and chattering. This ex-
cludes periodic motions with “lasting” non-impulsive contact
phases similar to those of the periodically bouncing elastic bar
exposed earlier. “Lasting” contact phases can only be obtained
with a dissipative inelastic impact law. By simultaneously
discretizing the governing equations in space and time in ac-
cordance with the characteristic lines, the WFEM accurately
propagates shock waves. This probably explains why no im-
pact law is needed in this framework; however, the authors are
not aware of a formal proof of this assertion.

5 Nonsmooth modal analysis

Nonsmooth modal analysis characterizes vibratory mechan-
ical systems with nonsmooth nonlinearities [24, 25, 38] by
searching for one-parameter continuous families of periodic
trajectories forming manifolds in the phase space. In this work,
the targeted solutions are assumed to comprise free phases
(open gap) as well as contact phases (closed gap), as described
in section 4. An example of an admissible periodic solution
with two free phases and two contact phases is depicted in
Fig. 4.

u.L; t/

g0

closedopen closed open

TT1 T2 T30

t

Fig. 4: Admissible periodic bar end displacement with closed
and open gap switches.

5.1 Problem formulation

As stated previously, the motion is uniquely determined by
the initial conditions. The aim is to find such initial conditions
which generate a periodic motion in the spirit of shooting
methods [4]. If such periodic solutions exist, the formulation
reduces to finding their period T and the appropriate initial
conditions satisfying

q.x; T / D q.x; 0/; 8x 2 Œ0 IL�: (7)

In the discrete setting of the WFEM, this reduces to finding
nT and the vector of initial conditions Q.0/ such that Q.nT / D
Q.0/ where nT is the number of steps required to cover the
period T . In their simplest incarnation, the sought periodic
solutions are only composed of one free phase and one contact
phase per period1 even though more complicated patterns
are expected to exist. Accordingly, the solution is assumed
to be in open contact (free phase) for m consecutive steps
and in closed contact (contact phase) for p consecutive steps.
Invoking Eq. (40), the state of the system after nT D mC p
time steps emanating from initial state Q.0/ reads

Q.nT / D Apc Amf Q.0/; (8)

with the origin of time taken at the beginning of the free
phase. Both matrices Ac and Af are known, see Appendix A.
The duration of free and contact phases corresponding to
periodic motions are not known a priori, so the integers m and

1 With this assumption, the solution features one gap closure and one
gap opening per period.
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p leading to acceptable solutions are unknowns of the problem.
By enforcing the periodicity conditions, Eq. (8) simplifies to

.Apc Amf � I/Q.0/ D 0: (9)

An initial condition Q.0/ satisfying Eq. (9) is called a potential
solution for given p and m. Indeed, potential solutions may
not be actual solutions of the initial problem: nothing prevents
them from penetrating the rigid foundation during free phase
and/or the corresponding contact force could be non-negative:
these conditions cannot be enforced in Eq. (9). Consequently,
potential solutions are called admissible solutions if they sat-
isfy the following additional conditions:

COND1 Free phase: u.n/
NC1=2 6 g0 and r .n/ D 0

for n D 0; 1; : : : ; m.
COND2 Contact phase: u.n/

NC1=2 D g0 and r .n/ 6 0

for n D mC 1;mC 2; : : : ; mC p.
COND3 Material impenetrability: ".n/i > �1

for n D 0; 1; : : : ; mC p and i D 1; : : : ; N .

where u.n/
NC1=2 � u.L; T / and ".n/i is the discretized strain

field, both retrieved from discretized stresses. To summarize,
periodic solutions satisfying contact conditions are obtained
by solving the problem: Findm 2 N�, p 2 N�, and initial con-
dition Q.0/ 2 R2N such that Eq. (9) together with COND1,
COND2 and COND3 are simultaneously satisfied.

5.2 Solution procedure

For specified m and p, a periodic motion necessarily corre-
sponds to an initial condition which is in the kernel of the
operator ST D Apc Amf � I as highlighted in Eq. (9), that
is Q.0/ 2 ker ST . The dimension h of ker ST depends on
the doublet .m; p/. A non-trivial solution may exist only if
h > 0. If h > 0 and fe1; e2; : : : ; ehg is a basis of ker ST , then
Q.0/ D ˛1e1 C ˛2e2 C : : :C ˛heh for some ˛1; ˛2; : : : ; ˛h.
The state Q.n/ is completely determined by Q.0/ via Eq. (46).
Accordingly, Q.n/ can be expressed in terms of the coefficients
˛1; ˛2; : : : ; ˛h only and it suffices to find appropriate values
such that COND1, COND2 and COND3 are satisfied.

Findingm, p such that h > 0 is achieved by systematically
computing h for every combination of m and p within a given
range. Once an admissible solution is known, other admissible
solutions can be straightforwardly found in its vicinity. As
soon as a family of periodic orbits—involving one contact
phase and one free phase—emerges, it defines a nonsmooth
mode of vibration.

6 Results and discussion

Nonsmooth modes of vibration of the system described in
section 2 are now constructed. The parameters E, � and L
are arbitrarily chosen to be unity and units are discarded. The
results are obtained for 1000 cells and time step is calculated
accordingly, i.e. �t D �x=c D 1=1000.

In the linear framework (that is without the contact con-
ditions), linear natural frequencies of vibration denoted !k

for fixed–free boundary conditions and �k for fixed–fixed
boundary conditions are

!k D
.2k � 1/�c

2L
D .2k � 1/!1; k 2 N�

�k D
k�c

L
D k�1; k 2 N�:

(10)

It is expected that the slightly damped linear system under
consideration periodically forced in a neighborhood of these
frequencies will resonate. Conversely, in the nonlinear frame-
work (that is with contact conditions), such frequencies do
not have the same physical interpretation anymore: the nonlin-
ear system will resonate close to other unknown frequencies
which are calculated by the nonsmooth modal analysis, for a
given level of energy. The nonlinear system can also feature
internal resonances where two or more NSMs interact [22];
for instance, driving the system in the neighborhood of a high-
frequency NSM may activate a large amplitude low-frequency
NSM [19]. Note that the system of interest satisfies a com-
plete internal resonance condition in the sense that !k and�k ,
k D 2; : : : ;1 are all multiples of !1 and �1, respectively.
Moreover, a nonlinear system may exhibit subharmonic and
superharmonic resonances in the vicinity of .p!k/=q, for p,
q positive integers such that 0 < p=q < 1 and 1 < p=q,
respectively [19].

In this work, Frequency–Energy plots are preferably used,
quoting [19]: “a nonlinear modal motion is represented by
a point in such plots, which are drawn at a frequency corre-
sponding to the minimal period of the periodic motion and
at an energy equal to the conserved total energy during the
periodic motion. A branch, represented by a solid line, is a
family of nonlinear modal motions possessing the same qual-
itative features”. The terminology “branch” and “backbone
curve” is used interchangeably in the remainder. The reported
frequencies are normalized with respect to !1 and the energy
is normalized with respect to the energy of the first linear
mode grazing orbit satisfying

max
t2R u.L; t/ D g0: (11)

When the calculated periodic solutions have one free phase
and one contact phase, admissible solutions are only found
when h D 1 for various .m; p/. For h > 2, potential solu-
tions failed to satisfy COND1 and COND2 simultaneously,
hence the distinction between potential and admissible. Ad-
missible solutions were found only when h equals the number
of contact phases. Additionally, recent developments, out of
the scope of the present paper, have shown that if a periodic
trajectory belongs to a continuum parameterized by T , then
the displacement must be piecewise-linear with respect to time
and space. Thus, if a periodic solution does not satisfy this
property, it is either isolated or part of a continuum of orbits
sharing the same period.

A previous investigation on the first main NSM [5] showed
that the duration of the contact phase p�t is related linearly
to the duration of free phase m�t when a solution belongs
to a family of periodic orbits. Numerical experiments suggest
that other branches could present similar relations, which are
employed to bound the range where m and p are iterated
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Fig. 5: Frequency–Energy plot in the range Œ!1; �1� for
g0 > 0 [ ], g0 D 0 [ ] and g0 < 0 [ ] with a few
subharmonics of linear modes [ ].

for each potential backbone curve. Once a solution is found,
a point in a NSM branch is defined by the total energy of
the admissible periodic motion and the respective frequency
! D 2�=T , see Fig. 5.

If the initial gap is positive g0 > 0 (unstressed bar at
rest), NSM branches arise in the vicinity of the linear natural
frequencies !k and subharmonics p!k=q for p; q 2 N�, and
present a hardening behavior. For a “negative” gap g0 < 0

(prestressed bar at rest), the NSM branches start in the vicinity
of the linear natural frequencies �k and display a softening
behavior. Finally, if the bar is statically grazing with the rigid
foundation (grazing bar at rest, that is g0 D 0), then the NSM
branches are the vertical asymptotes common to the previous
backbone curves, as shown in Figs. 5 and 6 for the first and sec-
ond NSM, respectively. Internal resonance branches, explored
in subsection 6.3, are omitted in these figures. Identical results
were already computed for the first main NSM only [5]. Also,
a similar behavior has been observed in the frequency–energy
plot of simplified discrete models for the unstressed case with
penalized contact constraints [7, 29] and with a nonsmooth
formulation [24].

The frequency–energy dependence exhibited by NSM is a
typical feature of nonlinear systems [19]. Interestingly, when
g0 D 0 the system mimics a linear behavior where the fre-
quency and the shape of the orbits do not depend on their
energy. However, the behaviour remains globally nonlinear
because of the BC switches.

Though the behavior and ranges of frequencies of the
NSM branches depend on the sign of g0, they “converge” to
the branches of g0 D 0 when g0 ! 0, as seen in Fig. 7 for
the main NSM branch in Œ!1; �1�. In other words, there is no
difference between NSMs with very small positive initial gap,
zero initial gap or very small initial negative gap. Moreover,
the normalized shape of the backbone curves depend only on
the sign of g0. Without loss of generality and for illustration
purposes, g0 D ˙10�3 or g0 D 0 in the remainder.

In the following sections, a detailed study of the NSM
branches is presented. It should be noted that all the results
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Fig. 6: Frequency–Energy plot in the range Œ!2; �2� for
g0 > 0 [ ], g0 D 0 [ ] and g0 < 0 [ ] with a few
subharmonics of linear modes [ ].

were obtained numerically. The proposed results have to be
understood as conjectures.
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Fig. 7: First NSM branch as a function of g0. Energy is not
normalized. The backbone curves for g0 > 0 [ ] and
g0 < 0 [ ] slowly “approach” the backbone curve for
g0 D 0 [ ] when g0 ! 0.

6.1 Main backbone curves

The main backbone curves are defined as the NSM branches,
in the Frequency–Energy plot, starting in the vicinity of:
– !k , the k-th linear natural frequency for fixed–free BC,

for positive initial gap g0 > 0,
– �k , the k-th linear natural frequency for fixed–fixed BC,

for negative initial gap g0 < 0.
– For g0 D 0, the main backbone curve is a vertical line

asymptotic to its two above counterparts. Such asymptotes
are located at !1.!k=!1 C 1/2=.!k=!1 C 2/.

Periodic motions corresponding to the main backbone curves
in the range Œ!1; �1� are depicted in Fig. 8. Such piecewise-
linear displacements were already observed as isolated pe-
riodic solutions, without describing a continuum [11, 12].
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Fig. 8: Periodic motions on the main NSM in the range
Œ!1 I�1� for one contact phase per period, corresponding to
points “a” [ ], “b” [ ] and “c” [ ] in Fig 5: unstressed
(top), initially grazing (center) and prestressed (bottom).

However, previous numerical investigations to locate fami-
lies of periodic orbits were inaccurate because of numerical
dispersion stemming from the space semi-discretization [29,
24].

A generic space-time plot of the displacement of the bar
is provided in Fig. 9. The solution is the combination of
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Fig. 9: Generic space-time displacement field of the main
NSM in the range Œ!1 I�1� for g0 > 0.

interacting forward and backward traveling waves which prop-
agate along the characteristic lines (t D ˙x=c), as opposed
to the linear counterpart modal motions which are sinusoidal
standing waves as seen in Fig. 10 [17].

Space x Time t

D
is

pl
ac

em
en

tu
.x
;t
/

g0

L 0

0 T

Fig. 10: Generic space-time displacement field of the first
linear mode (linear fixed–free bar without contact constraints)
at !1.

Every periodic solution corresponding to the main back-
bone curve comprises exactly one free phase and one contact
phase. For a positive as well as negative initial gap, the con-
tact phase duration increases while the free phase duration
decreases as the frequency of vibration increases. When the
initial gap is zero, periodic motions have constant period equal
to T D 3L=c and the duration of contact closure is L=c while
the free phase time is 2L=c. It should also be noted that the
contact force associated to all the depicted motions is piece-
wise constant on a period.

The invariant manifold in the unstressed case is plotted
in the cross-section .uNC1=2; vNC1=2; u3=2/—i.e. (displace-
ment of the contacting end, velocity of the contacting end,
displacement of the right-hand side interface of cell C1)—of
the state-space in Fig. 11. The linear portion of the first mode

u3=2
u3=2

u3=2uNC1=2
u3=2vNC1=2

Fig. 11: Invariant manifold corresponding the main back-
bone curve in the vicinity of !1 plotted in the cross-
section .uNC1=2; vNC1=2; u3=2/. Gray surface: Poincaré
cross-section uNC1=2 D g0. Periodic orbit [ ]. Intersec-
tions between NSM and the Poincaré cross-section [ ].

corresponds to an ellipse (like essentially all linear modes).
The linear and nonlinear portions of the manifold are not con-
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tinuously connected because of the internal resonance property.
This is visualized in Fig. 12 which shows the grazing periodic
displacements for the first linear mode and first main NSM,
both having frequency !1. It should be understood that any
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Fig. 12: Grazing displacement of the contacting end at !1.
First linear mode [ ] and first main NSM [ ].

autonomous solution of frequency !1 shall be expressed as an
infinite Fourier sequence separated in space and time of the
form

u.x; t/ D
1X
kD1

sin.!kx=c/.ak cos.!kt /C bk sin.!kt // (12)

where !k D .2k � 1/�c=.2L/ D .2k � 1/!1, k 2 N�, are
the linear natural frequencies; the coefficients ak and bk are
computed from the initial conditions [17] and are not of inter-
est here. In other words, the full internal resonance condition
enjoyed by the system is such that the latter exhibits infinitely
many solutions of frequency !1, the piecewise-linear grazing
solution being one of them. Accordingly, a discontinuity in
the manifold is made possible.

The above internal resonance condition can be annihilated
by changing the BC at x D 0 from Dirichlet type to Robin
type saying that the bar is attached to a spring of stiffness ı at
x D 0: ESu;x.0; t/ � ıu.0; t/ D 0. The solution can still be
expressed as an infinite Fourier sequence

u.x; t/ D
1X
kD1

�k.x/.ak cos.!kt /C bk sin.!kt // (13)

similar to Eq. (12) with �k.x/ D pk cos.!kx=c/Csin.!kx=c/
where pk D cot.!kL=c/. The !k are now solutions to the
transcendental equation ES! D cı cot.!L=c/ and are no
longer commensurate [30]. Assuming that the grazing solution
of the first NSM has frequency !1 (this should be proven!),
it will necessarily see the sole contribution of the first lin-
ear mode, which is the only motion of frequency !1 in se-
quence (13), that is:

u.x; t/ D �1.x/.a1 cos.!1t /C b1 sin.!1t //: (14)

This necessarily induces a continuous connection between
linear and nonlinear grazing trajectories. To summarize, the
above argument stipulates that the internal resonance condition
is necessary to see a discontinuity in the modal manifold
between the linear and the nonlinear portions. However, this
is not a sufficient condition.

Figure 13 depicts the generic space-time plot (irrespec-
tive of g0) of the second main backbone curve in the range
Œ!2; �2� showing that the periodic solutions have one “node
of vibration” along x—similar to the second linear mode of
the fixed–free bar [17], depicted in Fig. 14. The displace-
ment u.L; �/ also features one contact phase per period, by
assumption. Furthermore, for g0 D 0, the period is 5L=.4c/
comprising one contact phase of duration L=.4c/ and one
free phase of duration L=c, irrespective of the energy of the
system.

For illustration purposes, only the first two main NSMs
are shown in this section. However, the presented approach
can be also used to find higher frequency NSM which requires
a smaller time-step �t and therefore, higher computational
effort. Periodic solutions corresponding to the main backbone
curves for higher frequencies display a similar structure: one
free phase, one contact phase, and nodes of vibration along x.
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Fig. 13: Generic space-time displacement field of the main
NSM in the range Œ!2 I�2�. Node of vibration [ ].
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Fig. 14: Generic space-time displacement field of the second
linear mode (linear fixed–free bar without contact constraints)
at !2. Node of vibration [ ].

6.2 Subharmonic backbone curves

For g0 > 0, it was observed empirically that a subharmonic
backbone curve emanates in the right vicinity of a fixed–free
BCs linear subharmonic resonance frequency (vertical dashed
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lines in Figs. 5 and 6):

! D 2k.nC 1/ � 1
nC 1 !1; n; k 2 N�: (15)

For g0 < 0, a subharmonic backbone curve starts in the left
vicinity of �k and shares an asymptote with the subharmonic
backbone curve for positive initial gap. Furthermore, for g0 D
0, a subharmonic backbone curve is asymptotic to its above
counterparts. Several numerical experiments suggest that the
asymptotes (vertical brown lines in Figs. 5 and 6) are located
at

! D !1.nC 1/.!k=!1 C 1/2
!k=!1.nC 1/C nC 2

; n; k 2 N�: (16)

The number of computable subharmonics is determined by
the discretization time-step; for example, Figs. 5 and 6 display
only six branches while the time step was �t D 10�3. Four
periodic solutions corresponding to subharmonic backbone
curves are depicted in Fig. 15 for g0 > 0.

These plots suggests that the periodic motions present n
grazing instants together with one contact phase, when the
NSM branch starts in the vicinity of the n-th subharmonic
of !k , as inferred from Eq. (15). The displacement of the
contacting end for points “d” and “g” (see Fig. 6) are similar,
however the latter has higher frequency. Such feature is also
expected in periodic motions around subharmonics of higher
NSM.

Moreover, periodic solutions belonging to distinct NSM
branches coexist when the bar is prestressed (g0 < 0), see
point “h” in Fig. 6. The corresponding periodic displacements
of the contacting end are plotted in Fig. 16 where the period
of vibration is the same. Here, the solutions have longer free
phases and increasing number of grazing instants with higher
energy. These grazing instants coincide with the BC switching
time of lower energy solutions.

Interestingly, extensive numerical experiments show that
NSM branches do not appear in the range of frequencies
Œ�k ; !kC1�, k 2 N�; the reason for this is unknown.

6.3 Internal resonance branches

The intrinsic discrete nature of the employed numerical algo-
rithm is such that WFEM cannot capture an actual continuum
of solutions (see section 5). However, the periodic solutions
previously presented all belong to numerically “apparent” con-
tinua parametrized by the energy where the solutions possess
similar qualitative and quantitative features. The proposed ap-
proach also leads to sparse periodic solutions, see clouds of
points in Fig. 17. Presumably, these points are also part of a
complicated network of backbone curves stemming from main
and subharmonic branches, however they are much more chal-
lenging to capture numerically because of the high-frequency
content in the corresponding mode shapes, see Fig. 18. These
points seem to be organized on internal resonances backbone
curves [19] emanating from the main one in the vicinity of the
frequencies

! D 2k!1=.2k � 1/; k D 2; 3; : : : (17)
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Fig. 15: Periodic motions in the vicinity of !2=2 D 3!1=2

(top), !3=3 D 5!1=3 (top-center), !4=4 D 7!1=4 (bottom-
center) and !4=2 D 7!1=2 (bottom) corresponding respec-
tively to points “d”, “e”, “f ” and “g” in Figs. 5 and 6.

Moreover, it is observed in Fig. 17 that there are no internal
resonance branches in the frequency ranges Œ.2k�1/!1=.2k�
2/I 2k!1=.2k � 1/�, k D 3; 4; : : : This is not further explored
in this work. Periodic motions featuring an internal resonance
in the vicinity of .!3 C !1/=5 D 6!1=5 are displayed in
Fig. 18. These solutions present two grazing instants and ap-
pear to correspond to a modal interaction between the first and
third NSM. In contrast to solutions on the main and subhar-
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Fig. 16: Periodic motions with same frequency for g0 < 0

corresponding to points “h” in Fig. 6: low energy (top) to high
energy (bottom).
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Fig. 17: Main NSM branch around !1 with additional internal
resonance branches.

monic backbone curves for g0 > 0, the contact duration of
internally resonant periodic motions decreases with increasing
frequency: they exhibit a softening behavior.
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Fig. 18: Internal resonances for g0 > 0 in the vicinity of
.!3 C !1/=5 D 6!1=5: points “a” (top) and “b” (bottom) in
Fig. 17.

It is difficult to compute the occurrence of internal reso-
nances in systems involving unilateral contact. However, the
data obtained by WFEM give suggestions about the existence
of these NSM branches. The characterization of the periodic
motions associated to internal resonances is helpful to predict
the possible sudden resonance of real life applications, when
vibrating around frequencies defined in Eq. (17).

6.4 Periodic solutions with two contact phases per period

The previous sections were devoted to solutions with one
contact phase and one free phase per period, as expressed
in Eq. (8). In this section, solutions with more than one con-
tact phase per period are explored. The methodology is un-
changed, but two additional unknowns (duration of second
contact phase `�t and duration of second free phase m�t , `
and m 2 N�) arise in the new equation

.Apc Akf A`cAmf � I/Q.0/ D 0; (18)

to be compared with Eq. (9). It appears that non trivial solu-
tions Q.0/ can be found only if the contact phases have the
same duration, that is p D `. This might be the consequence
of the symmetry with respect to time and space of the wave
equation. For the matrix ST D Apc Akf Apc Amf � I, families of
periodic solutions satisfying contact conditions were found
only when h D dim.ker ST / D 2 suggesting that dim.ker ST /
should equal the number of contact phases for periodic solu-
tions to exist.

The solution procedure explained in subsection 5.2 leads
to a one-dimensional continuum of periodic orbits emerging
in the vicinity of !2=5 D 3!1=5, where !2 D 3!1, defining
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a subharmonic backbone curve with two contact phases, as
illustrated in Fig. 19. This family of periodic orbits appears
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Fig. 19: NSM branch with two closed contacts per period in
the vicinity of !2=5 D 3!1=5 [ ]. First main NSM with
one closed contact per period [ ]; g0 > 0.

only for g0 > 0 and presents hardening behavior. The corre-
sponding space–time displacement field is shown in Fig. 20
for an arbitrary frequency. The asymptote of this NSM branch
appears to be located at 2!1=3.

The contacting end, shown in Fig. 20 features one free
phase with two grazing instants similar to the first subhar-
monic of the third NSM at !3=3. Also, as in the case with
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Fig. 20: Generic space-time displacement field with two con-
tact phases per period of the NSM branch around !2=5.

one contact phase per period, the amplitude of the displace-
ments and the duration of the contact phases get larger with
the frequency of vibration. Interestingly, it resembles the two
impact-per-period trajectories of a serial spring–mass sys-
tem constrained by an obstacle with a purely elastic contact
law [37]. In particular, the solutions have two axes of symme-
try per period along the time axis, which are located in the
middle of each free phase.

A finer discretization is required to obtain additional NSM
branches with higher number of contact phases. These branches
might be of interest for the prediction of vibratory responses
where the elastic bar resonates for excitation frequencies much
lower than the first linear natural frequency !1.

6.5 Stability analysis of periodic solutions

Due to the space–time coupled discretization and the condi-
tional switching of boundary conditions, a rigorous stability
analysis of the periodic orbits is a challenging task and re-
mains an open problem left to future investigations. However,
as a preliminary insight, the effects of a small sinusoidal per-
turbation on the initial conditions corresponding to the first
main NSM were investigated by comparing the unperturbed
and perturbed solutions time-integrated via WFEM over 1000
periods of the unperturbed solution. We found that the per-
turbed motion remains in the vicinity of the periodic motion,
thus suggesting that a fraction of first main NSM motions are
orbitally stable. This is illustrated in Fig. 21 which compares
the unperturbed and perturbed motions, over the last period of
integration t 2 Œ999TaI 1000Ta�, corresponding to point “a”
and g0 > 0 in Fig. 5.
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Fig. 21: Displacement of the contacting end after 1000Ta for
point “a” in Fig. 5: unperturbed [ ] and perturbed [ ].

7 Forced response of a mechanical system subject to
contact constraints

One important purpose of performing nonsmooth modal anal-
ysis of a mechanical system is to predict its behavior when
periodically forced [38, 29]. Accordingly, the frequency re-
sponse of the previously-investigated elastic bar with peri-
odic external excitation is now compared to the NSM spec-
trum. The excitation consists in an external distributed har-
monic force or a harmonically moving rigid wall that com-
presses the bar, see Fig 22. The force acting on the bar is
f .x; t/ D f0.x/ sin.!t/ and the displacement of the mov-
ing wall is w.t/ D w0 sin.!t/ where ! is the frequency of
excitation and w0 > g0. The gap function is now defined
as g.u.L; t/; w.t// D g0 C w.t/ � u.L; t/. The system has
been slightly damped by adding a velocity-dependent term
with a small viscous damping coefficient in the left-hand side
of Eq. (1). The forced response of this system is obtained
for various amounts of damping and was computed using the
WFEM version detailed in Algorithm 2 using a time-stepping
approach not specifically targeting periodic motions.
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Fig. 22: Elastic bar excited by a distributed harmonic force
and/or a moving rigid wall.

Periodically moving wall

The first tested configuration is f0 D 0 and w0 ¤ 0. The total
energy of the steady-state solution averaged over one forcing
period for increasing frequencies of excitation and various
amounts of damping is shown in Figs. 23, 24 and 25 (top) for
a positive, zero and negative initial gap, respectively.

In the frequency ranges where NSM branches do not exist,
WFEM could not find externally forced periodic steady-states.
Instead, quasiperiodic or chaotic forced responses were de-
tected. Calculating steady-state for each frequency requires
long computational times which complicates the construction
of a detailed forced response.

Periodic distributed force

The second tested configuration is f0 ¤ 0 and w0 D 0,
corresponding to the elastic bar excited by a distributed force.
The results for a positive, zero and negative initial gap are
depicted in Figs. 23, 24 and 25 (bottom) respectively.

For a positive gap and high frequencies, large damping
confines the system to linear operating conditions. This is
one of the reasons why the corresponding plots differ greatly.
Moreover, similarly to the first configuration, quasiperiodic
and chaotic solutions are observed in the frequency inter-
vals where NSM branches do not exist. Presumably, there
exist infinitely many backbones curves and corresponding “in-
between” regions with no periodic solutions; only a few are
plotted in Figs. 23 to 25.

More importantly, the backbone curves obtained with the
nonsmooth modal analysis provide an excellent approxima-
tion of the response resonances. In addition, the internal res-
onances of the system produce small protuberances in the
forced response that coincide with the main resonance and
subharmonic backbone curves.

The main advantage of the nonsmooth modal analysis is
the characterization of the vibratory response without rely-
ing on very expensive numerical time-integration procedures:
via NSM as presented, the prediction of frequencies of exci-
tation at which the system will vibrate with high energy is
straightforward.

8 Conclusions

Families of periodic orbits (known as nonsmooth modes of
vibration) of an autonomous finite elastic bar subject to fric-
tionless unilateral contact are investigated in this work. Three
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Fig. 23: Periodically forced responses of the bar for various
damping coefficients and g0 > 0: harmonically moving wall
(top) and harmonic distributed force (bottom).

cases were explored: unstressed (g0 > 0), prestressed (g0 <
0) and zero initial gap (g0 D 0). The computation of peri-
odic solutions was achieved using the Wave Finite Element
Method (WFEM), chosen because it preserves energy and
avoids numerical dispersion. This method consists in discretiz-
ing simultaneously in time and space the governing dynamic
equations, resulting in a simple matrix form. Then, the prob-
lem of finding periodic solutions was formulated as finding a
vector in the kernel of a matrix supplemented by complemen-
tarity conditions enforcing unilateral contact constraints. The
presented methodology can be adapted to multiple contact
phases per period or to systems coupled by unilateral contact
conditions. However, it is presently limited to simplified one-
dimensional problems with a single point of contact on the
contact boundary.

It is shown that the elastic bar with unilateral contact has
a rich dynamical behavior involving subharmonic resonances
and internal resonances. Similar results are already reported
in the literature [7, 29]. However, the proposed methodology
does not necessitate regularized contact conditions. In this
work, the unilateral contact conditions are treated as a switch
between Dirichlet and Neumann-type boundary conditions
when the gap opens or closes: from fixed–free BCs (no con-
tact) to fixed–fixed BCs (contact) and vice-versa. The found
nonlinear periodic solutions lying on a NSM are combinations
of travelling waves with discontinuous wave fronts, as op-
posed to their linear counterpart (without contact conditions)
which are standing harmonic waves. Also, the behavior of
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Fig. 24: Periodically forced responses of the bar for various
damping coefficients and g0 D 0: harmonically moving wall
(top) and harmonic distributed force (bottom).

the NSMs depends on the gap at rest: hardening branches for
g0 > 0, softening branches for g0 < 0 and discrete spectrum
for g0 D 0. Such behavior was already observed only for the
first NSM [5]. Moreover, the frequency ranges at which NSM
branches exist are conjectured.

Quasi-closed form solutions can be extracted from the
provided results. They could act as benchmark solutions for
researchers designing advanced numerical schemes in unilat-
eral contact dynamics. NSMs stability and the role of coexist-
ing periodic solutions (same energy and frequency) needs be
further explored. The relevance of nonsmooth modal analy-
sis was illustrated by the accurate prediction of periodically
forced responses, irrespective of the way the external force is
applied.

Extension of the proposed approach to multidimensional
settings with several points of contact is a remarkable chal-
lenge as the non-dispersive and energy-preserving properties
of the WFEM in the one-dimensional context will then be lost.
However, such extension seems feasible with Godunov-type
discretization and shooting techniques by slightly relaxing the
imposed periodicity conditions.
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Fig. 25: Periodically forced responses of the bar for various
damping coefficients and g0 < 0: harmonically moving wall
(top) and harmonic distributed force (bottom).

A Description of the Wave Finite Element Method

In this section, the WFEM, introduced by Shorr for the simulation of
shock wave propagation in solids [34], is thoroughly described.

A.1 Hyperbolic system of conservation laws

The local equation (1) can be equivalently written as a system of two
first order partial differential equations in terms of velocities v.x; t/ and
stresses �.x; t/

�;t �Ev;x D 0
�v;t � �;x D 0

)
; 8x 2 �0 ILŒ; 8t > 0 (19)

where .�/;t is the derivation in time and .�/;x is the derivation in space
of quantity .�/ [10]. Recall that axial strains " D u;x are bounded by
non physical inter-penetration, which translates into u;x > �1, see
section 2. Displacements can be straightforwardly recovered by space-
integration of the strains u.x; � / D R x

0 u;s.s; � / ds � u.0; � /, where
u.0; � / D 0. By posing q D Œ� v�>, Eq. (19) can be recast as

q;t C Bq;x D 0 where B D
�
0 �E
�1=� 0

�
: (20)

The eigenvalues of matrix B are �1 D �
p
E=� and �2 D

p
E=�,

coinciding with the algebraic propagation velocity of the elastic wave:
positive and negative for the two waves propagating in opposite directions.
Since both eigenvalues are distinct and real, Eq. (20) is also referred to
as a hyperbolic system of conservation laws [10].

Equation (20) involves time and space derivatives of q. However,
observing that q;t C Bq;x D 0 is a local form of the conservation law
of q (implying q. � ; t/ can only change due to fluxes at the boundaries)
corresponding to the following integral form

d
dt

�Z x2
x1

q.x; t/ dx
�
D B

�
q.x1; t/� q.x2; t/

�
; (21)
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it appears that the condition on the smoothness of q is no longer required.
Therefore, q is allowed to exhibit discontinuities in time and space [14].

A.2 Discretization

The WFEM consists in dividing the spatial and temporal domain into
grid cells of equal size and keeping track of an approximation to the
integral of q within every single cell. As depicted in Fig. 26, the bar
is discretized using a uniform grid of N cells. Each i th cell, denoted

xi�1=2 xiC1=2
CiCi�1 CiC1

Q.n/
i�1 Q.n/

i
Q.n/

iC1

F.n/

i�1=2
F.n/

iC1=2

Fig. 26: Discretization of the spatial domain in grid cells at time tn.

by Ci , is delimited by the interval .xi�1=2; xiC1=2/. Similarly, time is
discretized into intervals of equal length�t D tnC1 � tn. The average
of q. � ; t/, over the i th cell at time tn is

Q.n/
i
D 1

�x

Z xiC1=2
xi�1=2

q.x; tn/ dx D 1

�x

Z
Ci

q.x; tn/ dx (22)

where�x D xiC1=2�xi�1=2 is the length of cell i . The integral form
of conservation law (21) applied to cell Ci reads

d
dt

Z
Ci

q.x; t/ dx D B
�
q.xi�1=2; t/� q.xiC1=2; t/

�
: (23)

This expression is now employed to develop an explicit time-stepping
algorithm where Q.nC1/

i
is approximated by a function of Q.n/

i
. Equa-

tion (23) is integrated between tn and tnC1 yieldingZ
Ci

�
q.x; tnC1/� q.x; tn/

�
dx DZ tnC1

tn

�
B
�
q.xi�1=2; t/� q.xiC1=2; t/

��
dt:

(24)

Rearranging and dividing by�x leads to

1

�x

Z
Ci

q.x; tnC1/ dx D 1

�x

�Z
Ci

q.x; tn/ dx

�
Z tnC1
tn

Bq.xiC1=2; t/ dt C
Z tnC1
tn

Bq.xi�1=2; t/ dt
�
:

(25)

This equation describes how the cell average should be updated within
a time step in order to satisfy the conservation of q. In general, the two
integrals involving Bq on the right-hand side of the equation cannot be
evaluated exactly. Following [26], we pose

F.n/
i˙1=2 �

1

�t

Z tnC1
tn

Bq.xi˙1=2; t/ dt (26)

and Eq. (25) simply becomes

Q.nC1/
i

D Q.n/
i
� �t
�x

�
F.n/
iC1=2 � F.n/

i�1=2
�
: (27)

The next subsection is dedicated to the computation of F.n/
i˙1=2, which

are the time-averaged fluxes at x D xi˙1=2.

q.x; tn/

x

xi�1=2 xiC1=2 xiC3=2 xiC5=2 xiC7=2

Q.n/
i

Q.n/
iC1

Q.n/
iC2

Q.n/
iC3

Fig. 27: Reconstruction of q.x; tn/ from the average fluxes Q.n/
i

.

A.3 Approximation of the time–averaged fluxes

To approximate the fluxes at the interfaces defined by Eq. (26), the
state q.x; tn/ at time tn is assumed to be a piecewise constant function
defined for all x, constructed from the cell averages Q.n/

i
as depicted

in Fig. 27. This piecewise reconstruction of the function q.x; tn/ is
identical to the Godunov’s approach widely employed in computational
fluid dynamics [27]. A suitable approximation of the flux F.n/

iC1=2 can
be obtained by solving the problem, either numerically or exactly, of
the conservation law Eq. (20) together with the following discontinuous
conditions at time tn [27]:

�.x; tn/ D
(
�
.n/

i
if x 6 xiC1=2

�
.n/

iC1 if x > xiC1=2

v.x; tn/ D
(
v
.n/

i
if x 6 xiC1=2

v
.n/

iC1 if x > xiC1=2

(28)

which constitutes a Riemann problem centered at xiC1=2 between cells
Ci and CiC1 [27]. The solution to this Riemann problem consists of two
shock waves propagating along the characteristic lines x D ˙ct , one
moving to the left into cell Ci and one moving to the right into cell CiC1
as depicted in a space-time plot in Fig. 28. The shock wave traveling
to the left, indicated by W1, propagates at velocity s1 and connects
the state Q.n/

i
and the interior state Q�

i
generated by such shock wave.

Moreover, the solution t 7! q.xiC1=2; t/ is constant over the time
interval Œtn; tnC1�.

t

.xiC1=2; tn/

x

Q.n/
iC1Q.n/

i

Q�iC1Q�i

W1 W2

tnC1

Fig. 28: Structure of the solution to the Riemann problem depicted in a
space-time plot.

The Rankine-Hugoniot jump condition is proven to hold across any
propagating discontinuity [36] which can be written for the left wave
W1 propagating at velocity s1 and the right wave W2 propagating at
velocity s2:

W1!
(
s1
�
��
i
� � .n/

i

� D �E�v�
i
� v.n/

i

�
;

�s1
�
v�
i
� v.n/

i

� D ����
i
� � .n/

i

�
W2!

(
s2
�
�
.n/

iC1 � ��iC1
� D �E�v.n/

iC1 � v�iC1
�
;

�s2
�
v
.n/

iC1 � v�iC1
� D ��� .n/

iC1 � ��iC1
�
:

(29)
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Because of material continuity, cells Ci and CiC1 cannot separate. This
requires that the interior states must be equal across the material in-
terface, Q�

iC1=2 D Q�
iC1 D Q�

i
. By knowing that the shock speeds

s1 D �s2 D �
p
E=� D �c are known and constants, the interme-

diate state is approximated with q.xiC1=2; t/ � Q�
iC1=2 such that

tn 6 t 6 tnC1 and can be calculated from Eq. (29):

Q�iC1=2D
�
��
iC1=2
v�
iC1=2

�
D 1
2

"
�
.n/

iC1C� .n/i C �c
�
v
.n/

iC1 � v.n/i
�

v
.n/

iC1Cv.n/i C 1
�c

�
�
.n/

iC1 � � .n/i
�#: (30)

Equation (30) is regarded as the exact solution of the Riemann prob-
lem involving linear elastodynamics [26, 8]. The flux approximation in
Eq. (26) can be calculated with the solution of a Riemann problem at the
cell interface as

F.n/
iC1=2 �

B
�t

Z tnC1
tn

Q�iC1=2 dt � BQ�iC1=2: (31)

In a nonlinear framework for the local equation, a solution to the Rie-
mann problem should be approximated numerically using Riemann
solvers [39].

A.4 Formulation for inner grid cells

Inserting Eq. (31) into Eq. (27) produces the iterative scheme

Q.nC1/
i

D Q.n/
i
� �t
�x

�
BQ�iC1=2 � BQ�i�1=2

�
: (32)

Equation (32) describes the evolution in time of the states of the grid
cells Ci . This subsection provides the formulation for the inner cells,
where i D 2; : : : ;N � 1. The boundary cells C1 and CN require a
different treatment explained in the next subsection. Expressing the flux
approximation, employing Eq. (31) on the right side of an inner cell
yields

BQ�iC1=2 D
1

2

"
�E�v.n/

iC1 C v.n/i C 1
�c

�
�
.n/

iC1 � � .n/i
��

� 1
�

�
�
.n/

iC1 C � .n/i C �c
�
v
.n/

iC1 � v.n/i
��# : (33)

Performing the same operation on the left side of the cell reads

BQ�i�1=2 D
1

2

"
�E�v.n/

i
C v.n/

i�1 C 1
�c

�
�
.n/

i
� � .n/

i�1
��

� 1
�

�
�
.n/

i
C � .n/

i�1 C �c
�
v
.n/

i
� v.n/

i�1
��# : (34)

Accordingly, the total flux within an inner cell is the quantity BQ�
iC1=2�

BQ�
i�1=2 which, when substituted into Eq. (32) yields"

�
.nC1/
i

v
.nC1/
i

#
D
"
�
.n/

i

v
.n/

i

#
C

�t

2�x

"
E
�
v
.n/

iC1 � v.n/i�1
�C c�� .n/

iC1 � 2� .n/i C � .n/i�1
�

1
�c

�
�
.n/

iC1 � � .n/i�1
�C c�v.n/

iC1 � 2v.n/i C v.n/i�1
�# : (35)

Since the exact solution of a Riemann problem is being used, WFEM
incorporates an appropriate time-step�t D �x=c. Then, the stress and
velocity of a grid cell Ci at time tnC1 are calculated as"
�
.nC1/
i

v
.nC1/
i

#
D 1

2

"
�
.n/

iC1 C � .n/i�1 C �c
�
v
.n/

iC1 � v.n/i�1
�

v
.n/

iC1 C v.n/i�1 C 1
�c

�
�
.n/

iC1 � � .n/i�1
�# : (36)

The above strong assumption is suitable only for 1D elastodynamics
problems, since the wave velocity and the direction of the propagation is
known. Also, such assumption enforces energy conservation and elim-
inates numerical dissipation [34]. In the multidimensional framework,
even though the waves velocities are known, the waves could propagate
in various direction throughout the physical domain.

Equation (36) provides the main equation of the WFEM and charac-
terizes how the average value Q.n/

i
of q in an inner cell Ci is updated at

each time step. As required by the local conservation law (21) resulting
from the absence of body forces, the evolution of the state of the inner
cells depends only on the values of the adjacent cells. WFEM can be
seen as the transference of the whole information embedded in cell Ci
to its adjacent cells at each time step. Employing the latter approach to
obtain the evolution of cell states, involving discontinuities such as shock
and rarefaction waves, is well known by the Fluid Mechanics community
employing Finite Volume Methods [27].

A.5 Formulation for boundary grid cells

To compute the state of the boundary grid cells, the computational do-
main is extended by including additional cells on both boundaries, known
as ghost cells [26], whose average values depend on the boundary condi-
tions. This concept is taken from the Finite Volume Methods. Figure 29
depicts ghost cells for a system discretized usingN cells.

CN CN C1

Ghost cellC1C0

Ghost cell

Fig. 29: Computational space domain with ghost cells.

Equation (36) can then be used to update the average value on the
boundary cells, which have now become inner cells. Only a single ghost
cell is required at each boundary because the computation of the average
value depends only on the states of the adjacent cells. For instance,
the fixed–free elastic bar without the complementarity conditions of
contact satisfies the two boundary conditions u.0; t/ D v.0; t/ D 0
and Eu;x.L; t/ D �.L; t/ D 0. These conditions are used to define
the average values within the ghost cells as follows:

at ghost cell C0:

(
�0 D �1
v0 D �v1;

at ghost cell CNC1:

(
�NC1 D ��N
vNC1 D vN :

(37)

Such average values coincide with the theory of reflection of elastic waves
from fixed and free boundaries [17], which states that stress waves reflect
from a fixed boundary with the same sign and from a free boundary with
the changed sign; similarly, velocity waves reflect from a fixed boundary
with an opposite sign and from a free boundary with the same sign. The
evolution of the average values of the boundary cells, C1 and CN , can be
calculated by introducing the average values of Eq. (37) into Eq. (36),
yielding for C1:

Q.nC1/1 D 1

2

"
�
.n/

2 C � .n/1 C �c
�
v
.n/

2 C v.n/1
�

v
.n/

2 � v.n/1 C 1
�c

�
�
.n/

2 � � .n/1
�# (38)

and for CN :

Q.nC1/N D 1

2

"
�
.n/

N�1 � � .n/N C �c
�
v
.n/

N C v.n/N�1
�

v
.n/

N C v.n/N�1 � 1
�c

�
�
.n/

N C � .n/N�1
�# : (39)

A.6 WFEM generic algorithm

Altogether, the previous derivations lead to a set of equations that de-
scribe how q is updated in time for every cell. The different steps are
summarized in Algorithm 1. Using �t D �x=c it computes, in the

Algorithm 1: WFEM Computation procedure

Input: number of elementsN , total number of steps nT , boundary
conditions, initial conditions, density �, wave velocity c

for n D 0 to nT [Time Loop] do
Update time instant: tn D n�t
Compute stress and velocity at cell C1 via Eq. (38)
for i D 2 toN � 1 [Cell Loop] do

Compute stress and velocity in cell Ci via Eq. (36)
end
Compute stress and velocity in cell CN via Eq. (39)

end
Output: stresses, velocities at instants t0; : : : ; tnT
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framework of linear elastodynamics, the propagation at finite speed c of
a wave and accounts for the reflection conditions at the boundaries. By
definition of�t , the CFL condition�t � �x=c is always satisfied, so
the method is always stable [26, 28]. Additionally, because the global
error is proportional to the discretization steps, the WFEM is first-order
accurate both in space and time [34].

A.7 Matrix formulation

Similar to other numerical methods applied on linear systems, the WFEM
can be rewritten in a convenient matrix form which facilitates the process
of finding nonsmooth modes of vibration. More specifically, the state vec-
tor of the system Q.n/ D �

Q.n/1 : : :Q.n/N
�> 2 R2N at time tn satisfies

the identity2

Q.n/ D AQ.n�1/; 8n � 1 (40)

and Q.0/ is the initial state. The matrix A gathers stiffness and inertial
terms as well as the type of boundary conditions. It is now derived for the
fixed–free BC. In a matrix form, Eq. (36), which governs the evolution
of inner cells, reads

"
�
.nC1/
i

v
.nC1/
i

#
D 1

2

�
1 0 1 ��c 0 �c
� 1
�c
0 1
�c

1 0 1

�
2666666664

�
.n/

i�1
�
.n/

i

�
.n/

iC1
v
.n/

i�1
v
.n/

i

v
.n/

iC1

3777777775
: (41)

For the boundary cells in Eqs (38) and (39), the matrix form follows as

"
�
.nC1/
1

v
.nC1/
1

#
D 1

2

�
1 1 �c �c

� 1
�c

1
�c
�1 1

�26664
�
.n/

1

�
.n/

2

v
.n/

1

v
.n/

2

37775 (42)

and

"
�
.nC1/
N

v
.nC1/
N

#
D 1

2

�
1 �1 �c �c

� 1
�c
� 1
�c

1 1

�26664
�
.n/

N�1
�
.n/

N

v
.n/

N�1
v
.n/

N

37775 : (43)

Then the block matrix A 2 R2N�2N can be constructed using four
N �N matrices A1;A2;A3;A4 whose expression can be derived from

AG.a; b; c; d/ D 1

2

26666666664

a b 0 : : : 0 0 0
c 0 b 0 0 0
0 c 0 0 0 0
:::

: : :
: : :

: : :
:::

0 0 0 0 b 0
0 0 0 c 0 b
0 0 0 : : : 0 c d

37777777775
(44)

with A1 D AG.�1; 1; 1; 1/, A2 D �cAG.�1; 1;�1;�1/, A3 D
AG.1; 1;�1; 1/=�c, and A4 D AG.1; 1; 1;�1/. Then, block matrix
A is written as

A D
�

A1 A2
A3 A4

�
: (45)

Another matrix A can be constructed in the same way for the fixed–fixed
BC. Finally, the unknown Q.n/ can be directly expressed in terms of the
initial conditions Q.0/ from Eq. (40) by

Q.n/ D AnQ.0/ (46)

where An is known for each type of BC.

2 For readability purposes, the transpose signs within brackets are
dropped in the definitions of vectors and Q.n/ D �

Q.n/>1 : : :Q.n/>N

�>
is replaced by Q.n/ D �

Q.n/1 : : :Q.n/N
�>, for instance.

B Treatment of unilateral contact in WFEM

The unilateral contact constraints involved in the formulation are enforced
using the concept of floating boundary conditions [34] which can be
regarded as a conditional switch between fixed–free and fixed–fixed
boundary conditions [13] when a penetration is detected during a time
iteration, as illustrated in Fig. 30. In the continuous framework, these
two boundary conditions are

– fixed–free BC (inactive contact)

u.0; t/ D v.0; t/ D 0; Eu;x.L; t/ D �.L; t/ D 0 (47)

– fixed–fixed BC (active contact)

u.0; t/ D v.0; t/ D 0; u.L; t/ D g0! v.L; t/ D 0: (48)

The gap function g.u.L; t//, which is a function of the displacement
u.L; t/ but not an explicit function of t , is discretized in time to calculate
a possible penetration of the bar as

g.n/ D g0 � u.n/NC1=2 (49)

where u.n/
NC1=2 is the displacement of the contacting interface which can

be calculated by numerically integrating strains of the bar u.n/;x at time
tn. This equality is used at each time step to check whether contact is
active during the next iteration: if g.n/ > 0, a free boundary condition
is enforced while if g.n/ 6 0, a fixed boundary condition is considered
via the change of matrix A.

g.n/ > 0

CN

(a) Inactive contact

CN

g.n/ D 0

(b) Active contact

Fig. 30: Conditional switch for contact treatment in WFEM

Based on the theory of reflection of elastic waves from bound-
aries [17], the state of the ghost cell CNC1 is updated as follows

– Active contact [g.n/ 6 0](
�NC1 D �N
vNC1 D �vN (50)

– Inactive contact [g.n/ > 0](
�NC1 D ��N
vNC1 D vN (51)

Equation (36) is subsequently used to calculate the evolution of the
average values inside the boundary cell CN , as detailed in section A.5.
Additionally, the contact force r.n/ is calculated by employing Eq. (30):

r.n/ D S
�
�
.n/

N � �cv.n/N
�
: (52)

The sign of this quantity is tracked to locate the time of release, when
the bar returns to free condition at x D L. Algorithm 1 is modified to
include the floating boundary conditions as described in Algorithm 2.
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Algorithm 2: Procedure with unilateral contact conditions

Input: number of elementsN , number of steps nT , boundary and
initial conditions, density �, wave velocity c

for n D 0 to nT [Time Loop] do
Discrete time instant, tn D n�t
Compute stress and velocity at cell C1 via Eq. (38)
for i D 2 toN � 1 [Element Loop] do

Compute stress and velocity at cell Ci via Eq. (36)
end
— floating boundary conditions —
if g.n/ D 0 then

Switch to fixed boundary condition at xNC1=2
Compute contact stress r.n/ via Eq. (52)
if r.n/ > 0 then

Switch to free boundary condition at xNC1=2
Compute gap g.nC1/
Compute stress and velocity in cell CN via Eq. (39)

else
Keep fixed boundary condition at xNC1=2
Compute stress and velocity in cell CN via Eq. (39)

end
else

Keep free boundary condition at xNC1=2
Compute gap g.nC1/ and stress and velocity at cell CN via

Eq. (39)
end
— end of floating boundary conditions —

end
Output: stresses, velocities, contact force at instants t0; : : : ; tnT

From the matrix formulation of the WFEM in Eq. (40), two matrices
A shall then be distinguished: Af for the fixed–free condition (no contact)
and Ac for the fixed–fixed condition (contact). Both matrices embed
the same stiffness and inertial terms of the system of interest; the only
unshared information are the boundary conditions. To summarize, the
developed WFEM with floating boundary conditions is a numerically
conservative and stable scheme able to properly propagate shock waves
induced by a switch in the boundary conditions, the latter being governed
by complementarity constraints.
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