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Nonsmooth modal analysis of an elastic bar subject
to a unilateral contact constraint

Carlos Yoong, Anders Thorin, Mathias Legrand

McGill University, 845 Sherbrooke West Street, Montréal, Québec, Canada

Abstract
This contribution proposes a numerical procedure capable of performing nonsmooth modal analysis (mode
shapes and corresponding frequencies) of the autonomous wave equation defined on a finite one-dimensional
domain with one end subject to a Dirichlet condition and the other end subject to a frictionless time-
independent unilateral contact condition. Nonsmooth modes of vibration are defined as one-parameter
continuous families of nonsmooth periodic orbits satisfying the equation of the dynamics together with
the unilateral contact condition. The analysis is achieved using the Wave Finite Element Method, which
is a shock-capturing Finite Volume method. As opposed to the traditional Finite Element Method with
time-stepping schemes, potentially discontinuous deformation, stress and velocity wave fronts induced by
the contact condition are here accurately described, which is critical for seeking periodic orbits. Additionally,
the proposed strategy neither introduces numerical dispersion nor artificial dissipation of energy, as required
for modal analysis. As a consequence of the mixed time–space discretization, no impact law is required for
the well-posedness of the problem in line with the continuous framework.

The frequency–energy dependency—shown as backbone curves—provides valuable insight of the system
where intricate dynamics such as internal resonance or subharmonic vibration emerges. In contrast to the
linear system (without the unilateral contact condition) whose modes are standing harmonic waves, the found
autonomous periodic solutions are traveling waves induced by the contact constraints. It is also shown that
the periodically-forced vibratory resonances of the system with light structural damping are well predicted by
nonsmooth modal analysis. As expected, the open-gap and prestressed configurations at rest show stiffening
and softening behaviors respectively.

Keywords: wave propagation, nonsmooth dynamics, unilateral contact, modal analysis, nonlinear vibration,
internal resonance

1. Introduction
Exploring the dynamics of colliding elastic bodies has been a topic of research for many years. Many
industrial applications require the prediction of such dynamical responses in their design process [1].
Through unilateral contact forces preventing inter-penetration of matter, a collision initiates a disturbance
in the form of a stress wave. Analytical solutions are only known for simple cases such as longitudinal
collision of simple rods or transverse contact of beams [2]. For more general configurations, the solution
should be approximated numerically. However, common numerical methods, such as finite element methods
combined with time-stepping schemes, exhibit limitations that might be unacceptable [3, 4]. Indeed, the
obtained approximations may feature spurious oscillations (commonly known as Gibb’s phenomenon)
and the associated wave propagation velocity may be different from its exact counterpart due to period
lengthening and amplitude decreasing, resulting in dispersion and dissipation errors. Most energy-preserving
numerical schemes dedicated to contact dynamics feature numerical dispersion issues [4].

In the framework of undamped linear continuous systems, natural modes of vibration are characterized by
their natural frequencies (eigenvalues) and normalized shapes (eigenfunctions) [5]. In the phase space, linear
modes can be seen as continuous families of periodic orbits describing planes. For nonlinear systems with
smooth nonlinearities, the natural modes of vibration are regarded as extensions of their linear counterparts
and are usually defined as two-dimensional manifolds in the phase space tangent to a linear mode at the
equilibrium point [6]. These manifolds are invariant, i.e. for any initial condition on the manifold the solution
will remain on it as time advances [7]. Additionally, nonlinear natural frequencies depend on the total energy
of the system.

1



Most investigations and developments on nonlinear modal analysis have dealt with smooth nonlineari-
ties [6], i.e. nonlinear terms differentiable with respect to the unknown of the problem, mostly polynomial
functions of the displacement and velocity. The mechanical system investigated in this contribution involves
unilateral contact conditions stricto sensus. As a consequence, neither displacements, neither velocities
nor accelerations are differentiable in the usual sense with respect to time and space. These systems are
known as nonsmooth systems [8] and the modes of these systems will be referred to as nonsmooth modes
(NSM) in the following sections. Modes of vibration in nonsmooth systems have already been explored
after a certain degree of regularization where the solution methods rely on the smoothness of the governing
equations [9, 10, 11]. Likewise, they have been investigated in the framework of discrete systems [12, 13, 14].

Finding periodic solutions requires numerical methods which preserve total energy and are not prone
to numerical dispersion. A considerable amount of research has been devoted to this topic with limited
success [15, 16, 17]. In the present work, the Wave Finite Element Method (WFEM) initially developed
in [18] is implemented in order to numerically approximate the modes of vibration of the one-dimensional
finite elastic bar subject to frictionless unilateral contact constraints. Three different configurations are
inspected: unstressed (positive gap at rest), prestressed (“negative” gap at rest) and initially grazing (zero
gap at rest). The WFEM is a shock-capturing method—similar to the Godunov method [19] commonly used
in computation fluid dynamics—which consists in finding and tracking waves propagating in a mechanical
system. Such shock waves are expected in this work because of the presence of the unilateral contact
condition. The proposed method does neither introduce artificial dissipation of energy nor numerical
dispersion and it has successfully been used for the simulation of shock wave propagation in elastic solids,
yet in the restricted context of one-dimensional domains [20, 18]. Multidimensional problems incorporating
contact conditions are not targeted in this work due to the expected intricate interaction of compressional and
shear waves with the boundaries and the possibility of a complicated contact interface.

The paper is organized as follows. The considered one-dimensional system is detailed in section 2. The
capability of the WFEM to solve contact dynamics problems is illustrated, in section 3, using a benchmark
problem with a known exact solution. The chosen approach for the search of periodic solutions is described
in section 4. A method to numerically approximate the nonsmooth modes of the investigated system is
presented in section 5. The approximate nonsmooth modes are then analyzed and characterized in section 6
(no formal proofs are given).

Lastly, nonsmooth modes of the considered system are compared to its forced response in section 7.
Details about WFEM and its implementation are thoroughly described in Appendix A for a one-dimensional
problem. The enforcement of contact constraints within the WFEM is detailed in Appendix B.

2. System of interest

The system of interest is a homogeneous elastic bar of length L and constant cross-sectional area S rigidly
fixed to the ground at its left end and whose right end is subject to a conservative unilateral constraint
as shown in Fig. 1. Its initial deformation at time t0 D 0 is "0.x/ and its initial velocity is v0.x/ where

x
u.x; t/

L

g.u.L; t//

Figure 1: 1-D finite elastic bar subject to unilateral contact constraints

x 2 Œ0 IL� is the coordinate of a point of the bar along its longitudinal axis in the initial configuration.
Its mass per unit volume is denoted by � > 0 and E > 0 stands for Young’s modulus which are both,
by assumption, space and time independent. Any elastic wave traveling within the bar thus propagates
at constant velocity c D p

E=�. The signed distance between the right end of the bar and the obstacle,
or gap function, is defined as g

�
u.L; t/

� D g0 � u.L; t/, where g0 is the signed distance between the
unconstrained resting position and the obstacle. The unknown displacement, velocity and stress fields
are denoted by u.x; t/, v.x; t/, and �.x; t/ respectively; the quantity r.t/ is the unilateral contact force
emerging at x D L during gap closure. In linear elasticity, the stresses read � D E" where the axial strains
" D u;x should be physically admissible, that is u;x > �1. Stresses are related to the contact force r by
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�.L; t/ D Eu;x.L; t/ D r.t/=S . There is no other external force acting on the system, either per unit length
or pointwise at the boundary. The full formulation reads:
� Local equation:

�u;t t �Eu;xx D 0; 8x 2 �0 ILŒ; 8t > 0 (1)

where .�/;t t denotes the second derivative in time and .�/;xx , the second derivative in space.
� Boundary condition at x D 0:

u.0; t/ D 0; 8t > 0 (2)

� Complementarity conditions at x D L:

g.u.L; t// � 0; r.t/ � 0; r.t/g.u.L; t// D 0; 8t > 0 (3)

� Initial conditions:

u.x; 0/ D u0.x/; v.x; 0/ D v0.x/; 8x 2 �0 ILŒ (4)

This problem has a unique solution which conserves the total energy [21]. The local equation is also known
as the wave equation defined on a finite domain and the exact solution to this problem, known in the literature
as D’Alembert’s solution, can be written as a sum of backward and forward travelling waves propagating
with velocity c [2]. For given initial conditions u.x; 0/ D u0.x/ and v.x; 0/ D v0.x/, the displacement
reads:

u.x; t/ D 1

2

�
u?0.x C ct/C u?0.x � ct/

�C 1

2c

Z xCct

x�ct
v?0 .s/ ds; 8x 2 Œ0 IL�; 8t > 0 (5)

where, depending on the considered boundary conditions (BC), u?0 and v?0 are periodic extensions on the
real axis of u0 and v0, defined on Œ0 IL� only.

Non-trivial periodic solutions of the contact problem described by Eqs. (1) to (4) are successions of free
phases (open gap) and contact phases (closed gap). They can therefore be understood as the combination
of solutions to an hyperbolic Partial Differential Equation with a switching boundary condition at x D L
between vanishing stress when the gap is open to prescribed displacement when the gap is closed. The
nonlinearity in the formulation comes from the fact that the switching time in not known in advance. There
is also a subtlety due to the change of length of the resting bar from one BC to another: while the fixed–free
bar has a length L at rest, the latter becomes LC g0 for the fixed–fixed bar. Then

� odd and even periodic extensions of period 4L are used for the free–fixed case:

�.y/ D

8̂̂̂<̂
ˆ̂:
��.2LC y/ �2L < y < �L
��.�y/ �L < y < 0

�.y/ 0 < y < L

�.2L � y/ L < y < 2L

and �.y C 4L/ D �.y/ (6)

� odd periodic extensions of period 2L are used for the fixed–fixed case:

�.y/ D
(

�.y/ 0 < y < L

��.�y/ �L < y < 0 and �.y C 2L/ D �.y/ (7)

where � is a generic function displaying the properties to be satisfied by u?0 and v?0 [22]. The question is now
to find the two functions u?0 and v?0 generating a state of the system which satisfies the local equation (1) and
properly switches between fixed-free and fixed-fixed BC to comply with the unilateral contact conditions (3).
This is achieved using the Wave Finite Element Method.

3



3. Illustration of the capabilities of WFEM

The WFEM is completely described, including a readily-implementable algorithm, in Appendix A (the
WFEM method) and Appendix B (treatment of unilateral contact conditions in WFEM). In short, the unknown
stresses and velocities are stacked into a state vector q. Then, the system is discretized simultaneously
in space and time with mesh sizes �x D L=N and �t D �x=c respectively, where N is the number of
cells used for discretization in space. The overall dynamics is approximated by Q.n/ D AQ.n�1/ where
Q.n/ D ŒQ.n/1 : : :Q.n/N � and Q.n/i is the average of state q over cell Ci for i D 1; : : : ; N at time tn D n�t .
The matrix A encompasses stiffness and inertial terms as well as the boundary conditions (fixed-fixed or
fixed-free here).

In this section, the capabilities of the WFEM are succinctly illustrated on a unilaterally constrained
one-dimensional bar benchmark [3]. It can be compared to other time-integration schemes based on a semi-
discretization in space through the Finite Element Method [20]. The problem consists of a homogeneous
elastic rod of length L and constant cross-sectional area S and bouncing against an obstacle as shown in
Fig. 2. Parameters reported in [3] are considered and listed in Tab. 1. A periodic solution is expected for well

F.x; t/ D F0

x
u.x; t/

L

g.u.L; t//

Figure 2: Benchmark bouncing homogeneous elastic bar (used in section 3).

chosen initial conditions. The displacement, velocity, contact force and total energy of the periodic motion
of the contacting end are displayed in Fig. 3. These results where obtained using N D 100 cells and and it
matches the exact solution with a maximum relative error of 10�6 %.

Table 1: Simulation parameters for the considered benchmark, from [3]

Parameter Value

Young’s Modulus, E 900 Pa
Density, � 1 kg m�2

Rod Length, L 10 m
Initial Gap, g0 5 m

External Body Force, F0 10 N m�1

Wave Velocity, c DpE=� 30 m s�1

As opposed to the FEM exhibiting Gibb’s phenomenon or energy dissipation [3], the WFEM is capable
of retrieving accurately the solution with a reasonable number of cells. Moreover, conventional FEM requires
the use of an impact law leading to unavoidable drawbacks, such as the incompatibility between a contact
phase of finite duration and energy conservation [4]. None of these issues are present with the WFEM
approach. This is partly due to the fact that shock wave propagation is accurately captured in WFEM for our
example.

As stated in [23], traditional numerical schemes commonly based on the standard Finite Element
Method and dedicated to contact dynamics show spurious oscillations on the contact displacement and
stress. Moreover, these oscillations do not disappear when the time step decreases and might increase
instead. Various solutions have been proposed to alleviate these difficulties, mainly by adapting the time-
domain discretization. They all fail by either adding non-physical damping, or not strictly respecting the
contact constraint. This is partly explained by the inability of standard finite elements to properly propagate
information.

4. Periodic solutions

Nonsmooth modes (NSM) are regarded as continuous families of periodic solutions satisfying the unilateral
contact conditions. Accordingly, this research targets periodic solutions to problem Eqs. (1) to (4). Finding a
periodic solution translates to finding initial conditions u0.x/ and v0.x/ and a period T which generate a
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(a) Displacement of the contacting end, uNC1=2
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(b) Velocity of the contacting end, vNC1=2
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Figure 3: Periodic motion of the bouncing bar obtained by WFEM.

solution satisfying Eqs. (1) to (4) and the periodicity conditions(
u.x; t C T / D u.x; t/
v.x; t C T / D v.x; t/ ; 8x 2 Œ0 IL�; 8t > 0: (8)

Without loss of generality, it is assumed that a period starts with a free phase at t D 0 and ends with
a contact phase at t D T . In the general case, a pattern of free and contact phases will arise within
one period. The k successive transition instants between free and contact phases are denoted by Ti with
0 < T1 < � � � < Tk�1 < Tk and Tk D T and are unknown. The sought solution is then a combination to be
found of functions of the form (5) where u?0 and v?0 alternate between form (6) over Œ0 IT1�, ŒT2 IT3�, etc.
and form (7) over ŒT1 IT2�, ŒT3 IT4�, etc., such combination being finally periodic in time. Combining these
portions of D’Alembert solutions in order to form a periodic solution is a formidable task.

The WFEM approximately solves the above problem by building two matrices, Af for the free–fixed BC
and Ac for the fixed–fixed BC, so that mapping an initial state to the current state after a succession of free
and contact phases is straightforward via Eq. (A.22). In contrast to more commonly-used time-integration
schemes based on FEM, the WFEM perfectly preserves energy (in this one-dimensional configuration at
least), which is crucial for the computation of periodic solutions. Additionally, this scheme, for the problem
at hand at least, is not prone to numerical dispersion and does not suffer from the well-known Gibb’s
phenomenon commonly observed in unilateral contact dynamics [3].

The FEM framework without regularization of the complementarity conditions in continuous time is
used for the calculation of nonsmooth modes in [13, 24, 14]. However, the formulation relies on a space-
discretization and hence requires the incorporation of an impact law—for instance Newton’s impact law—to
ensure the well-posedness of the problem. Since energy conservation is necessary to find nonsmooth modes,
a perfectly elastic impact law should be considered, from which would emanate impulsive dynamics. This
excludes periodic motions with “lasting” non-impulsive contact phases similar to those of the periodically
bouncing elastic bar exposed earlier. By simultaneously discretizing the governing equations in space and
time in accordance with the characteristic lines, the WFEM accurately propagates shock waves: this is
probably why no impact law is needed in this framework.

5. Nonsmooth modal analysis
Nonsmooth modal analysis consists in the characterization of the vibratory properties of autonomous
mechanical systems with nonsmooth nonlinearities [12, 13, 24] such as those induced by as unilateral contact
conditions. This is achieved by finding one-parameter continuous families of periodic trajectories forming
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manifolds in the phase space. In this work, the targeted solutions are assumed to comprise free phases (open
gap) as well as contact phases (closed gap), as described in section 4. An example of an admissible periodic
displacement with two free phases and two contact phases is depicted in Fig. 4.

u.L; t/

g0

closedopen closed open

TT1 T2 T30
t

Figure 4: Admissible periodic displacement of the contacting bar end with closed and open gap switches.

5.1. Problem formulation
As seen in Eq. (A.28), the motion of the system is uniquely determined by the initial conditions, as in any
deterministic system. The aim is to find such initial conditions which generate a periodic motion in the spirit
of shooting methods [25]. If such periodic solutions exist, the formulation reduces to finding their period T
and the appropriate initial conditions satisfying

q.x; T / D q.x; 0/; 8x 2 Œ0 IL�: (9)

In the discrete setting of the WFEM, this translates to finding nT and the initial conditions Q.0/ such that

Q.nT / D Q.0/ (10)

where nT is the number of steps required to cover the period T . In the simplest case, the sought periodic
solutions are only composed of one fixed–free phase and one fixed–fixed phase per period1 even though more
complicated patterns are expected to exist. Then, the solution is assumed to be composed by m consecutive
steps in open contact (free phase) and p consecutive steps in closed contact (contact phase).

Invoking Eq. (A.22), the state of the system after nT D mC p time steps emanating from initial state
Q.0/ reads

Q.nT / D Apc Amf Q.0/; (11)

with the origin of time taken at the beginning of the free phase. Both matrices Ac and Af are known, see
Appendix A. The duration of free and contact phases corresponding to periodic motions are not known a
priori, so the integers m and p leading to acceptable solutions are unknowns of the problem. By enforcing
the periodicity conditions, Eq. (11) simplifies to

.Apc Amf � I/Q.0/ D 0: (12)

An initial condition Q.0/ satisfying Eq. (12) is called a “potential solution” for given p and m. Indeed,
potential solutions may not be actual solutions of the initial problem: nothing prevents them from penetrating
the rigid foundation during free phase and/or the corresponding contact force could be non-negative: these
conditions cannot be enforced in Eq. (12). Consequently, potential solutions are called admissible solutions
if they satisfy the following additional conditions:

COND1 Free phase: u.n/
NC1=2 6 g0 and r.n/ D 0 for n D 0; 1; : : : ; m.

COND2 Contact phase: u.n/
NC1=2 D g0 and r.n/ 6 0 for n D mC 1;mC 2; : : : ; mC p.

COND3 Material impenetrability: ".n/i > �1 for n D 0; 1; : : : ; mC p and i D 1; : : : ; N .

where u.n/
NC1=2 � u.L; T / and ".n/i is the discretized strain field. To summarize, periodic solutions satisfying

contact conditions are obtained by solving the problem: Find m 2 N�, p 2 N�, and initial condition
Q.0/ 2 R2N such that Eq. (12) together with COND1, COND2 and COND3 are simultaneously satisfied.

1With this assumption, the solution features one gap closure and one gap opening per period.
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5.2. Solution procedure
For specified m and p, a periodic motion necessarily corresponds to an initial condition which is in the
kernel of the operator ST D Apc Amf � I as highlighted in Eq. (12), that is Q.0/ 2 ker ST . The dimension
h of ker ST depends on the doublet .m; p/. A non-trivial solution may exist only if h > 0. If h > 0 and
fe1; e2; : : : ; ehg is a basis of ker ST , then Q.0/ D ˛1e1 C ˛2e2 C : : :C ˛heh for some ˛1; ˛2; : : : ; ˛h. The
state Q.n/ is completely determined by Q.0/ via Eq. (A.28). Accordingly, Q.n/ can be expressed in terms of
the coefficients ˛1; ˛2; : : : ; ˛h only and it suffices to find appropriate values such that COND1, COND2
and COND3 are satisfied.

Finding m, p such that h > 0 is achieved by systematically computing h for every combination of
m and p within a given range. Once an admissible solution is known, other admissible solutions can be
straightforwardly found in its vicinity. As soon as a continuum of periodic orbits—involving one contact
phase and one free phase—emerges, it defines a nonsmooth mode of vibration.

6. Results and discussion
In this section, the approach described in section 5 is implemented to construct nonsmooth modes of vibration
of the system described in section 2. The parameters E, � and L are arbitrarily chosen to be unity and
units are discarded. The results are obtained for 1000 cells. The time step is calculated accordingly, i.e.
�t D �x=c D 1=1000.

In the linear framework (that is without the contact conditions), linear natural frequencies of vibration
denoted !k for free–fixed boundary conditions and �k for fixed–fixed boundary conditions are

!k D
.2k � 1/�c

2L
D .2k � 1/!1 and �k D

k�c

L
D k�1; k 2 N�: (13)

It is expected that the slightly damped linear system under consideration periodically forced in a neighborhood
of these frequencies will resonate. Conversely, in the nonlinear framework (that is with contact conditions),
such frequencies do not have the same physical interpretation anymore: the nonlinear system will resonate
close to other unknown frequencies which are calculated by the nonsmooth modal analysis, for a given level
of energy. The nonlinear system can also feature internal resonances where two or more NSM interact [26];
for instance, exciting the system in the neighborhood of a high-frequency NSM may generate a large
amplitude low-frequency NSM [6]. Note that the system of interest satisfies a complete internal resonance
condition in the sense that !k and �k , k D 2; : : : ;1 are multiples of !1 and �1, respectively. Moreover, a
nonlinear system may exhibit subharmonic and superharmonic resonances in the vicinity of .p!k/=q, for p,
q positive integers such that 0 < p=q < 1 and 1 < p=q, respectively [6].

In this contribution, Frequency–Energy plots are preferably used, quoting [6]: “a nonlinear modal motion
is represented by a point in such plots, which are drawn at a frequency corresponding to the minimal period
of the periodic motion and at an energy equal to the conserved total energy during the periodic motion. A
branch, represented by a solid line, is a family of nonlinear modal motions possessing the same qualitative
features.” The reported frequencies are normalized with respect to !1 and the energy is normalized with
respect to the energy of the first linear mode grazing orbit satisfying

max
t2R u.L; t/ D g0: (14)

When the calculated periodic solutions have one free phase and one contact phase, admissible solutions are
only found when h D 1 for various .m; p/. For h > 2, there exists an infinite of set of potential solutions,
but none satisfy COND1 and COND2. After many numerical experiments, admissible solutions could be
found only when h equals the number of contact phases.

Once a solution is found, a point in the NSM branch is defined by the total energy of the admissible
periodic motion and the respective frequency ! D 2�=T , see Fig. 5.

If the initial gap is positive g0 > 0 (unstressed bar at rest), NSM branches arise in the vicinity of the
linear natural frequencies !k and subharmonics .p!k/=q, and present hardening behavior. For a “negative”
gap g0 < 0 (initially prestressed bar), the NSM branches start in the vicinity of linear natural frequencies
�k and present softening behavior. The frequency–energy dependence—i.e. hardening and softening
behavior—exhibited by NSM is a typical feature of nonlinear systems [6]. Similar results were already
obtained for simplified discrete models for the unstressed case with penalized contact constraints [9, 10] and
with a non-smooth formulation [12].
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Figure 5: Frequency–Energy plot in the range Œ!1; �1� for g0 > 0 [ ], g0 D 0 [ ] and g0 < 0 [ ] with a few subharmonics
of linear modes [ ].

On the other hand, if the bar is initially grazing with the rigid foundation, that is g0 D 0, then the NSM
branches are the common vertical asymptotes to the previous backbone curves, as shown in Figs. 5 and 6
for the first and second NSM, respectively. Internal resonance branches, explored in subsection 6.3, have
been omitted in these figures. Interestingly, when g0 D 0 the system mimics a linear behavior where the
frequency of the orbits does not depend on their energy.
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Figure 6: Frequency–Energy plot in the range Œ!2; �2�

Though the behavior and ranges of frequencies of the NSM branches depend on the sign of g0, they
“converge” to the branches of g0 D 0 when g0 ! 0, as seen in Fig. 7 for the main NSM branch in the range
Œ!1; �1�. In other words, there is no significant difference between NSM with very small positive initial
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Figure 7: Sensitivity of the first NSM branch to g0. Energy is not normalized. The backbone curves for g0 ¤ 0 and g0 ! 0 slowly
“approach” the backbone curve for g0 D 0.

gap, zero initial gap or very small initial negative gap. Moreover, the normalized shape of the backbone
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curves depend only on the sign of g0. Without loss of generality and for illustration purposes, g0 D ˙10�3
or g0 D 0 in the remainder.

In the following sections, a detailed study of the NSM branches is presented. It should be noted that all
the results were obtained numerically. The proposed results have to be read as conjectures.

6.1. Main backbone curves
The main backbone curves are defined as the NSM branches, in the Frequency–Energy plot, starting in the
vicinity of:
� !k , the k-th linear natural frequency for free–fixed BC, for positive initial gap g0 > 0,
� �k , the k-th linear natural frequency for fixed–fixed BC, for negative initial gap g0 < 0.
� For zero initial gap g0 D 0, the main backbone curve is a vertical line asymptotic to its two above

counterparts. Such asymptotes are located at !1.!k=!1 C 1/2=.!k=!1 C 2/.
Periodic motions corresponding to the main backbone curves in the range Œ!1; �1� are depicted in Fig. 8.
A generic space-time plot of the displacement of the bar is provided in Fig. 8(a). The solution is the
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Time t

(e) Contacting end disp., g0 D 0
Figure 8: Periodic motions on the main backbone curve in the range Œ!1 I�1� for one contact phase per period. Positive
displacement corresponds to dark green and negative displacement, to white. Black dashed characteristic lines (t D ˙x=c). White
dashed line indicates when contact closes.

combination of interacting forward and backward traveling waves which propagate along the characteristic
lines (t D ˙x=c), as opposed to the linear counterpart modal motions which are standing waves [2]. The
corresponding periodic displacements of the contacting end are shown in Figs. 8(c), 8(d), and 8(e) with
corresponding backbone curve states in Fig. 8(b). All the periodic solutions living in the main backbone
curve comprise one free phase and one contact phase. For a positive as well as negative initial gap, the time
of contact phase is increasing and the time of free phase decreases as the frequency of vibration increases.
When the initial gap is zero, NSM have constant period equal to T D 3L=c and the duration of contact
closure is L=c while the free phase time is 2L=c. It should also be noted that the contact force associated to
all the depicted motions is piecewise constant on a period.

The invariant manifolds are plotted in the cross-section .uNC1=2; vNC1=2; u3=2/—i.e. (displacement
of the contacting end of the bar, velocity of the contacting end of the bar, displacement of the right-hand
side interface of cell C1)—of the state-space in Fig. 9. The invariant manifold for g0 D 0 is identical to the
manifold for g0 < 0. All computed manifolds are unions of flat planes and present a discontinuity along
the velocity direction, as expected. When g0 > 0, the linear portion of the first mode corresponds to an
elliptical disk in the chosen frame as shown in Fig. 9. The linear and nonlinear portions of the manifold are
not continuously connected because of the internal resonance property.
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(a) Vicinity of !1, g0 > 0. Ellipse: linear portion of the manifold (b) Vicinity of �1, g0 < 0

Figure 9: Invariant manifold of the main backbone curve in the vicinity of !1 plotted in the cross-section .uNC1=2; vNC1=2; u3=2/.
Gray surface: Poincaré cross-section uNC1=2 D g0. Yellow line shows a periodic orbit. Red lines are intersections between NSM
and the hyperplane.

The periodic motions corresponding to the main backbone curves in the range Œ!2; �2� are depicted in
Fig. 10. The periodic displacements of the contacting interface have, as for the first NSM, one free phase and
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(a) Generic space-time displacement field, irrespective of g0
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(b) Frequency–Energy plot

Figure 10: Periodic motions corresponding to the main backbone curve in the range Œ!2 I�2� with one contact phase per period.
Positive displacement corresponds to dark green and negative displacement, to white. End bar displacements are similar to the ones
reported in Figures 8(c), 8(d) and 8(e).

one contact phase, see Figs. 8(c), 8(d), and 8(e). Figure 10(a) depicts the generic space-time plot (irrespective
of g0), showing that the periodic solutions have one “node of vibration” along x—similar to the second
linear mode of the clamped-free bar [2]. Furthermore, for g0 D 0, the periodic displacements have a period
of 5L=.4c/ comprising one contact phase of duration L=.4c/ and one free phase of duration L=c.

The second NSM invariant manifolds are plotted in the cross-section .uNC1=2; vNC1=2; u3=2/, see
Fig. 11. Similar to the first NSM, these projections present discontinuity in velocity due to the unilateral

(a) Vicinity of !2, g0 > 0. Ellipse: linear portion of the manifold (b) Vicinity of �2, g0 < 0

Figure 11: Invariant manifold of the second main backbone curve in the cross-section .uNC1=2; vNC1=2; u3=2/.

contact constraints and are unions of flat portions. For illustration purposes, only the first two NSM are
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shown in this section. However, the presented approach can be also used to find higher frequency NSM which
requires a smaller time-step �t and therefore, greater computational time. By construction, the periodic
solutions corresponding to the main backbone curves for higher NSM display a similar structure: one free
phase and one contact phase. All computed NSM feature an increasing number of nodes of vibration along
space for higher frequencies. For instance, the third NSM has two nodes of vibration.

6.2. Subharmonic backbone curves
For g0 > 0, a subharmonic backbone curve emanates in the vicinity of a free–fixed BC linear subharmonic
resonance frequency:

!k.nC 1/C n!1
nC 1 D 2k.nC 1/ � 1

nC 1 !1; n; k 2 N�: (15)

For g0 < 0, a subharmonic backbone curve starts in the vicinity of �k and shares an asymptote with the
subharmonic backbone curve for positive initial gap. Furthermore, for g0 D 0, a subharmonic backbone
curve is asymptotic to the above counterparts. Several numerical experiments suggest that the asymptotes
are located at

!1.nC 1/.!k=!1 C 1/2
!k=!1.nC 1/C nC 2

; n; k 2 N�: (16)

The number of computable subharmonics is determined by the discretization time-step; for example, Fig. 12
displays only six branches while the time step was �t D 10�3. The displacements of the contacting end of
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Figure 12: Main and subharmonic NSM branches within Œ!1; �2�.

the bar of four periodic solutions, for g0 > 0, lying in subharmonic backbone curves are depicted in Fig. 13.
Their locations in the Frequency–Energy plot are indicated in Fig. 12. Figure 13 suggests that the periodic
motions present n grazing instants and k � 1 nodes of vibration along x, when the NSM branch starts in
the vicinity of the n-th subharmonic of !k , as inferred from Eq. (15). Interestingly, the periodic motions of
the contacting end for points “a” and “d” are similar, however the latter has more nodes of vibration, as
expected. Higher frequency content is also expected in periodic motions around subharmonics of higher
NSM.

Figure 14 shows the invariant manifold corresponding to a subharmonic vibration in the vicinity of
!2=2 D 3!1=2, noting from Eq. (13) that !2 D 3!1. This invariant manifold resembles the manifold of the
second main NSM branch, depicted in Fig. 11, but with additional planes, corresponding to the free phase
portion after the grazing instant, shown in red and overlapping with a portion of the green surface in Fig. 14.
The periodic solutions living in this manifold jump from one surface to the other at contact times and at
grazing times.

Additionally, when g0 < 0, periodic solutions belonging to distinct NSM branches coexist when g0 < 0,
see “e” in Fig. 12. The corresponding periodic displacements of the contacting end are plotted in Fig. 15
where the period of vibration is the same. Here, the solutions have longer free phases and increasing number
of grazing instants with higher energy. The grazing instants coincide with the switching BC time of lower
energy solutions. The number of nodes is larger for high energy solutions, as already detailed above.
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(a) Periodic displacements of the contacting end
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(b) Space-time plot of the displacement field

Figure 13: Periodic motions in the vicinity of !2=2 D 3!1=2 (top), !3=3 D 5!1=3 (top-center), !4=4 D 7!1=4 (bottom-center)
and !4=2 D 7!1=2 (bottom) corresponding respectively to points “a”, “b”, “c” and “d” in Fig. 12. Positive displacement
corresponds to dark green and negative displacement, to white. Black dotted lines correspond to the grazing instants.

Interestingly, extensive numerical experiments show that NSM branches do not appear in the range
of frequencies Œ�k; !kC1�, k D 1; 2; 3; : : : as observed in Fig. 12. This could be due to the fact that
linear modes of the fixed–fixed case embed higher energy in these frequency interval causing chaotic or
quasiperiodic motions.

6.3. Internal resonance branches
By the nature of the employed numerical algorithm, WFEM cannot yield an actual continuum of solutions
(see section 5). However, the periodic solutions previously presented are all part of an apparent continua. The
proposed approach also leads to sparse periodic solutions, see clouds of points in Fig. 16. Presumably, these
points are also part of continua stemming from main and subharmonic backbone curves, however much more
challenging to capture numerically because of the high-frequency content in the corresponding mode shapes,
see Fig. 17. These points seem to be organized in internal resonances backbone curves [6], which are ignored
in the preceding sections. The data points depicted in Fig. 16 correspond to admissible periodic motions.
They are organized on backbone branches emanating from the main one in the vicinity of the frequencies

2k

2k � 1!1; k D 2; 3; : : : (17)
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Figure 14: Invariant manifold in the vicinity of !2=2 for g0 > 0 in cross-section .uNC1=2; vNC1=2; u3=2/. Red planes generated
after grazing instant.
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Figure 15: Periodic motions of the contacting end for coexisting solutions corresponding to points “e” in Fig. 12. Zero displacement
corresponds to dark green and negative displacement, to white.
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Figure 16: Main NSM branch around !1 with additional internal resonance branches.

Moreover, it is observed in Fig. 16 that there are no internal resonance branches in the frequency range
Œ.2k� 1/!1=.2k� 2/I 2k!1=.2k� 1/�, k D 3; 4; : : : , presumably because the solutions are quasiperiodic or
chaotic in this range. Also, for a given frequency, multiple solutions might coexist, mimicking the behavior
of the NSM branches of the initially grazing bar. This is not further explored in this work.
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Periodic solutions featuring an internal resonance in the vicinity of .!3C !1/=5 D 6!1=5 are displayed
in Fig. 17. These periodic motions present two grazing instants and appear to correspond to a modal
interaction between the first NSM and the first subharmonic of the third NSM, as observed from Figs. 8(c)
and 13. The corresponding intricate interaction of traveling waves is depicted in the space-time plot of the
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(b) Space-time plot of the displacement field

Figure 17: Internal resonances for g0 > 0 in the vicinity of .!3 C !1/=5 D 6!1=5: points “a” (top) and “b” (bottom) in Fig. 16.
Positive displacement corresponds to dark green and negative displacement, to white.

displacement field in Fig. 17(b). Contrary to solutions of the main and subharmonic backbone curves for
g0 > 0, the contact duration of internally resonant periodic motions decreases with increasing frequency:
they exhibit a softening behavior. Being a combination of low and high frequency modes, they present nodes
of vibration along space as well as grazing instants, which are distinctive features of subharmonics and
higher NSM.

It is difficult to compute the occurrence of internal resonances in systems involving unilateral contact.
However, the data obtained by WFEM give suggestions about the existence of these NSM branches. The
characterization of the periodic motions associated to internal resonances is helpful to predict the possible
sudden resonance of real life applications, when vibrating around frequencies defined in Eq. (17).

6.4. Periodic solutions with two contact phases per period
The previous sections were devoted to solutions with one contact phase and one free phase per period, as
expressed in Eq. (11). In this section, solutions with more than one contact phase per period are explored.
The methodology is exactly the same, but there are two additional unknowns (duration of second contact
phase `�t and duration of second free phase m�t , ` and m 2 N�) in the new equation

.Apc Akf A`cAmf � I/Q.0/ D 0; (18)

to be compared with Eq. (12). It appears that non trivial solutions Q.0/ can be found only if the contact
phases have same duration, that is p D `. This might be the consequence of the symmetry with respect to
time and space of the wave equation.

For the matrix ST D Apc Akf Apc Amf � I, families of periodic solutions satisfying contact conditions were
found only when h D dim.ker ST / D 2 and dim.ker ST / should equal the number of contact phases.

The solution procedure explained in subsection 5.2 leads to a one-dimensional continuum of periodic
orbits emerging in the vicinity of !2=5 D 3!1=5, where !2 D 3!1, defining a subharmonic backbone curve
with two contact phases. The corresponding NSM branch and the periodic displacement of the contacting
end are depicted in Fig. 18, for g0 > 0. Interestingly, it resembles the two impact-per-period trajectories of a
serial spring–mass system constrained by an obstacle with a purely elastic contact law [14]. In particular, the
solutions have two axes of symmetry per period along the time axis, which are located in the middle of each
free phase.
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Figure 18: NSM branch in the vicinity of !2=5 D 3!1=5 for g0 > 0.

The asymptote of this NSM branch appears to be located at 2!1=3. The displacements of the contacting
end, shown in Fig. 18(a), have one free phase with two grazing instants. As in the case with one contact
phase per period, the amplitude of the displacements and the duration of the contact phases gets larger with
the frequency of vibration. A finer discretization is required to obtain additional NSM branches with higher
number of contact phases. Presumably, these branches are highly important for the prediction of vibratory
responses, where the elastic bar could resonate even if it is excited at a frequency lower than the first linear
natural frequency !1.

7. Forced response of a mechanical system subject to contact constraints
One important purpose of performing nonsmooth modal analysis of a mechanical system is to predict
its behavior when periodically forced [24, 10]. Accordingly, the frequency response of the previously-
investigated elastic bar with small damping and periodic external excitation is now compared to the NSM.
The excitation consists in an external distributed harmonic force and/or a harmonically moving rigid wall that
compresses the bar, see Fig 19. The force acting on the bar is f .x; t/ D f0.x/ sin.!t/ and the displacement
of the moving wall is w.t/ D w0 sin.!t/ where ! is the frequency of excitation and w0 > g0. The gap
function is now defined as g.u.L; t/; w.t// D g0 C w.t/ � u.L; t/. The system has been slightly damped
by adding a velocity-dependent term with a small viscous damping coefficient in the left-hand side of Eq. (1).
The forced response of this system is obtained for various amounts of damping and was computed using the
a WFEM version detailed in Algorithm 2 using a time-stepping approach not specifically targeting periodic
motions.

x
u.x; t/

L

f .x; t/ D f0.x/ sin.!t/ g.u.L; t/; w.t//

w.t/

Figure 19: Elastic bar excited by a distributed harmonic force and/or a moving rigid wall.

The first tested configuration is f0 D 0 and w0 ¤ 0. The total energy of the steady-state solution
averaged over one forcing period for increasing frequencies of excitation and various dampings is shown in
Figs. 20(a), 21(a) and 22(a) for a positive, zero and negative initial gap respectively.

In the frequency ranges where NSM branches do not exist, the WFEM could not find periodic steady-
states. At these ranges, quasiperiodic or chaotic forced responses were observed. The calculation of
steady-state for each frequency requires large computational times which complicates the construction of a
detailed forced response.

The second tested configuration is f0 ¤ 0 and w0 D 0, corresponding to the elastic bar excited by a
distributed force. The results for a positive, zero and negative initial gap are depicted in Figs. 20(b), 21(b)
and 22(b) respectively.

For a positive gap and high frequencies, large damping causes the bar not to close contact with the wall.
This is why the forced response for large damping correspond to the linear case. Also, this is the reason
why the figures for both cases differ greatly. Similarly to the first configuration, quasiperiodic and chaotic
solutions are observed in the frequency intervals where NSM branches do not exist.

15



1 2

1
0

�1
1

0
1

1
0

3
1

0
5

Normalized frequency of vibration !=!1

N
or

m
al

iz
ed

en
er

gy

(a) Harmonically moving wall

1 2

Normalized frequency of vibration !=!1

(b) Harmonic distributed force

Figure 20: Periodically forced responses of the bar for various damping coefficients and g0 > 0.
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Figure 21: Periodically forced responses of the bar for various damping coefficients and g0 D 0.
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Figure 22: Periodically forced responses of the bar for various damping coefficients and g0 < 0.

Most importantly, the backbone curves obtained with the nonsmooth modal analysis provide an excellent
approximation of the response resonances. The internal resonances of the system cause small protuberances
in the forced response that coincides with the main resonance and subharmonic backbone curves. The
main advantage of the nonsmooth modal analysis is the characterization of the vibratory response without
relying on very expensive numerical time-integration: via NSM as presented, the prediction of frequencies
of excitation at which the system will vibrate with high energy is straightforward.
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8. Conclusions
Families of periodic orbits (known as nonsmooth modes of vibration) of a finite elastic bar subject to
frictionless unilateral contact are investigated in this work. Three cases were explored: unstressed (g0 > 0),
prestressed (g0 < 0) and zero initial gap (g0 D 0). The computation of periodic solutions was achieved
using the Wave Finite Element Method (WFEM), chosen because it preserves energy and does not present
numerical dispersion. This method consists in discretizing simultaneously in time and space the governing
dynamic equations, resulting in a simple matrix form. The problem of finding periodic solutions was
formulated as finding a vector in the kernel of a matrix supplemented by complementarity condition. The
presented methodology can be adapted to multiple contact phases per period or to systems coupled by
unilateral contact conditions. However, it is limited for one-dimensional problems with a single point of
contact on the contact boundary.

It is shown that the elastic bar with unilateral contact has a rich dynamical behavior leading to sub-
harmonic resonances and internal resonances. Similar results are already reported in the literature [10, 9].
However, the proposed methodology does not regularize the contact conditions. In this work, the unilateral
contact conditions are treated as a switch between Dirichlet and Neumann-type boundary conditions when
contact is activated: free–fixed BC (no contact) to fixed–fixed BC (contact). The found nonlinear periodic
solutions lying on a NSM are combinations of traveling waves with discontinuous wave fronts, as opposed to
their linear counterpart (without contact conditions) which are standing harmonic waves. Also, the behavior
of the NSM depends on the gap: hardening branches for g0 > 0, softening branches for g0 < 0 and discrete
spectrum for g0 D 0. The frequency ranges at which NSM branches exist are conjectured.

Forced responses are also accurately predicted by the nonsmooth modal analysis using WFEM. The
proposed approach is potentially useful for performing fatigue analyses in experimental investigations and
mechanical design.

Quasi-closed form solutions can also be extracted from the provided results. They could act as benchmark
solutions for researchers designing advanced numerical schemes in unilateral contact dynamics. NSM
stability and the role of coexisting periodic solutions (same energy and frequency) needs to be further
explored. Extension of the proposed approach to multidimensional settings with several points of contact
is a remarkable challenge as the non-dispersive and energy-preserving properties of the WFEM in the
one-dimensional context will then be lost.

Acknowledgments
CY gratefully acknowledges the financial support of SENESCYT (Government of Ecuador) and MEDA
(McGill University) Fellowships. AT and ML acknowledge the financial support of the NSERC Discovery
and FQRNT Nouveaux Chercheurs programs.

References
[1] Peter Wriggers, Computational Contact Mechanics, Springer, 2006, [doi:10.1007/978-3-540-32609-0].

[2] Karl Graff, Wave Motion in Elastic Solids, Dover, 1975.

[3] David Doyen, Alexandre Ern and Serge Piperno, Time-integration schemes for the finite element dynamic
Signorini problem, SIAM Journal of Scientific Computing 33 (1) (2011) 223–249, [hal-00440128].

[4] Vincent Acary, Energy conservation and dissipation properties of time-integration methods for nonsmooth
elastodynamics with contact, ZAMM-Journal of Applied Mathematics and Mechanics 96 (5) (2016) 585–603,
[hal-01235240].

[5] Singiresu Rao, Vibration of Continuous Systems, Wiley, 2007, [doi:10.1002/9780470117866].

[6] Gaëtan Kerschen, Maxime Peeters, Jean-Claude Golinval and Alexander Vakakis, Nonlinear normal modes,
Part I: A useful framework for the structural dynamicist, Mechanical Systems and Signal Processing 23 (1) (2009)
170–194, [hal-01357931].

[7] Steven Shaw and Christophe Pierre, Normal modes of vibration for non-linear continuous systems, Journal of
Sound and Vibration 169 (3) (1994) 319–347, [hal-01471098].

[8] Vincent Acary and Bernard Brogliato, Numerical Methods for Nonsmooth Dynamical Systems, Springer, 2008,
[inria-00423530].

[9] Vladimir Babitsky, Theory of Vibro-Impact Systems and Applications, Springer, 2013, [doi:10.1007/978-3-540-
69635-3].

17

http://dx.doi.org/10.1007/978-3-540-32609-0
https://hal.archives-ouvertes.fr/hal-00440128
https://hal.archives-ouvertes.fr/hal-01235240
http://dx.doi.org/10.1002/9780470117866
https://hal.archives-ouvertes.fr/hal-01357931
https://hal.archives-ouvertes.fr/hal-01471098
https://hal.archives-ouvertes.fr/inria-00423530
http://dx.doi.org/10.1007/978-3-540-69635-3
http://dx.doi.org/10.1007/978-3-540-69635-3


[10] El Hadi Moussi, Sergio Bellizzi, Bruno Cochelin and Ionel Nistor, Nonlinear normal modes of a two degrees-
of-freedom piecewise linear system, Mechanical Systems and Signal Processing 64-65 (2015) 266–281, [hal-
01160325].

[11] Mostafa Attar, Ali Karrech and Klaus Regenauer-Lieb, Non-linear modal analysis of structural com-
ponents subjected to unilateral constraints, Journal of Sound and Vibration 389 (2017) 380–410,
[doi:10.1016/j.jsv.2016.11.012].

[12] Denis Laxalde and Mathias Legrand, Nonlinear modal analysis of mechanical systems with frictionless contact
interfaces, Computational Mechanics 47 (4) (2011) 469–478, [hal-00492775].

[13] Mathias Legrand, Stéphane Junca and Sokly Heng, Nonsmooth modal analysis of a N-degree-of-freedom system
undergoing a purely elastic impact law, Communications in Nonlinear Science and Numerical Simulation 45
(2017) 190–219, [hal-01185980].

[14] Anders Thorin, Pierre Delezoide and Mathias Legrand, Non-smooth modal analysis of piecewise-linear impact
oscillators, Preprint (2016) [hal-01298983].

[15] Houari Khenous, Patrick Laborde and Yves Renard, Mass redistribution method for finite element contact
problems in elastodynamics, European Journal of Mechanics-A/Solids 27 (5) (2009) 918, [hal-00582045].

[16] Tod Laursen and Vikas Chawla, Design of energy conserving algorithms for frictionless dynamics contact
problems, International Journal for Numerical Methods in Engineering 40 (5) (1997) 863–886, [hal-01435617].

[17] Francisco Armero and Eva Petocz, Formulation and analysis of conserving algorithms for frictionless dynamic
contact/impact problems, Computer Methods in Applied Mechanics and Engineering 158 (3–4) (1998) 269–300,
[hal-01435615].

[18] Boris Shorr, The Wave Finite Element Method, Springer, 2004, [doi:10.1007/978-3-540-44579-1].

[19] Sergei Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of
hydrodynamics, Matematicheskii Sbornik 47(89) (3) (1959) 271–306.

[20] Carlos Yoong, Anders Thorin and Mathias Legrand, The Wave Finite Element Method applied to a one-
dimensional linear elastodynamic problem with unilateral constraints, in: Proceedings of the 11th International
Conference on Multibody Systems, Nonlinear Dynamics, and Control. International Design Engineering Techni-
cal Conferences & Computers and Information in Engineering Conference, no. DETC2015-46919, Boston, USA,
2015, [hal-01194922].

[21] Michelle Schatzman and Michel Bercovier, Numerical approximation of a wave equation with unilateral con-
straints, Mathematics of Computation 53 (187) (1989) 55–79, [hal-01295436].

[22] Julian Davis, Mathematics of Wave Propagation, Princeton University Press, 2000.

[23] Yves Renard, The singular dynamic method for constrained second order hyperbolic equations: Application
to dynamic contact problems, Journal of Computational and Applied Mathematics 234 (3) (2010) 906–923,
[hal-01461799].

[24] Anders Thorin, Mathias Legrand and Stéphane Junca, Nonsmooth modal analysis: Investigation of a 2-dof
spring-mass system subject to an elastic impact law, in: Proceedings of the 11th International Conference on
Multibody Systems, Nonlinear Dynamics, and Control. International Design Engineering Technical Conferences
& Computers and Information in Engineering Conference, no. DETC2015-46796, Boston, USA, 2015, [hal-
01185973].

[25] Uri Ascher, Robert Mattheij and Robert Russell, Numerical solution of boundary value problems for ordinary
differential equations, SIAM, 1994, [doi:10.1137/1.9781611971231].

[26] Walter Lacarbonara, Giuseppe Rega and Ali Nayfeh, Resonant non-linear normal modes. Part I: Analytical
treatment for structural one-dimensional systems, International Journal of Non-Linear Mechanics 38 (6) (2003)
851–872, [hal-01403851].

[27] Alberto Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, Oxford
University Press, 2000.

[28] Constantine Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, 2010, [doi:10.1007/978-
3-642-04048-1].

[29] Randall LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002,
[doi:10.1017/CBO9780511791253].

[30] Randall LeVeque, Finite-volume methods for non-linear elasticity in heterogeneous media, International Journal
for Numerical Methods in Fluids 40 (1-2) (2002) 93–104, [hal-01471101].

[31] Joel Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, 1994, [doi:10.1007/978-1-4612-0873-0].

18

https://hal.archives-ouvertes.fr/hal-01160325
https://hal.archives-ouvertes.fr/hal-01160325
http://dx.doi.org/10.1016/j.jsv.2016.11.012
https://hal.archives-ouvertes.fr/hal-00492775
https://hal.archives-ouvertes.fr/hal-01185980
https://hal.archives-ouvertes.fr/hal-01298983
https://hal.archives-ouvertes.fr/hal-00582045
https://hal.archives-ouvertes.fr/hal-01435617
https://hal.archives-ouvertes.fr/hal-01435615
http://dx.doi.org/10.1007/978-3-540-44579-1
https://hal.archives-ouvertes.fr/hal-01194922
https://hal.archives-ouvertes.fr/hal-01295436
https://hal.archives-ouvertes.fr/hal-01461799
https://hal.archives-ouvertes.fr/hal-01185973
https://hal.archives-ouvertes.fr/hal-01185973
http://dx.doi.org/10.1137/1.9781611971231
https://hal.archives-ouvertes.fr/hal-01403851
http://dx.doi.org/10.1007/978-3-642-04048-1
http://dx.doi.org/10.1007/978-3-642-04048-1
http://dx.doi.org/10.1017/CBO9780511791253
https://hal.archives-ouvertes.fr/hal-01471101
http://dx.doi.org/10.1007/978-1-4612-0873-0


[32] Eleuterio Toro, Godunov Methods: Theory and Application, Springer, 2001, [doi:10.1007/978-1-4615-0663-8].

[33] Bradley Lucier, Error bounds for the methods of Glimm, Godunov and LeVeque, SIAM Journal on Numerical
Analysis 22 (6) (1985) 1074–1081, [hal-01435616].

[34] Christian Claudel and Alexandre Bayen, Solutions to switched hamilton-jacobi equations and conservation laws
using hybrid components, in: Proceedings of 11th International Workshop on Hybrid Systems: Computation
and Control, Vol. 4981 of Lecture Notes in Computer Science, Springer, St Louis, USA, 2008, pp. 101–115,
[hal-01471102].

Appendix A. Description of the Wave Finite Element Method

In this section, the Wave Finite Element Method (WFEM) [18], introduced by Shorr for the simulation of
shock wave propagation in solids, is thoroughly described.

Appendix A.1. Hyperbolic system of conservation laws
The local equation Eq. (1) can be written as a system of two first order partial differential equations in terms
of the velocities v.x; t/ and stresses �.x; t/

�;t �Ev;x D 0
�v;t � �;x D 0

)
; 8x 2 �0 ILŒ; 8t > 0 (A.1)

where .�/;t is the derivation in time and .�/;x is the derivation in space of quantity .�/ [27]. Recall that
axial strains " D u;x must not correspond to material inter-penetration, which translates into u;x > �1, see
section 2. By posing2 q D Œ� v�>, Eq. (A.1) can be recast as

q;t C Bq;x D 0 where B D
�

0 �E
�1=� 0

�
: (A.2)

The eigenvalues of matrix B are �1 D �
p
E=� and �2 D

p
E=�, coinciding with the algebraic propagation

velocity of the elastic wave: positive and negative for the two waves propagating in opposite directions. Since
both eigenvalues are distinct and real, Eq. (A.2) is also referred to as a hyperbolic system of conservation
laws [27].

Equation (A.2) involves time and space derivatives of q. However, observing that q;t C Bq;x D 0 is a
local form of the conservation law of q (implying q. � ; t / can only change due to fluxes at the boundaries)
corresponding to the following integral form

d
dt

�Z x2

x1

q.x; t/ dx
�
D B

�
q.x1; t / � q.x2; t /

�
; (A.3)

it appears that the condition on the smoothness of q is no longer required. Therefore, q is allowed to exhibit
discontinuities in time and space [28].

Appendix A.2. Discretization
The WFEM consists in dividing the spatial and temporal domain into grid cells of equal size and keeping
track of an approximation to the integral of q within every single cell. As depicted in Fig. A.23, the bar
is discretized using a uniform grid of N cells. Each i th cell, denoted by Ci , is delimited by the interval

xi�1=2 xiC1=2

CiCi�1 CiC1

Q.n/
i�1 Q.n/

i
Q.n/

iC1

F.n/

i�1=2
F.n/

iC1=2

Figure A.23: Discretization of the spatial domain in grid cells at time tn.

2For readability purposes, the transpose signs within brackets are dropped in the definitions of vectors and q D Œ�> v>�> is
replaced by q D Œ� v�>, for instance.
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.xi�1=2; xiC1=2/. Similarly, time is discretized into intervals of equal length �t D tnC1 � tn. The average
of q. � ; t /, over the i th cell at time tn is

Q.n/i D
1

�x

Z xiC1=2

xi�1=2

q.x; tn/ dx D 1

�x

Z
Ci

q.x; tn/ dx (A.4)

where �x D xiC1=2 � xi�1=2 is the length of cell i . The integral form of conservation law (A.3) applied to
cell Ci reads

d
dt

Z
Ci

q.x; t/ dx D B
�
q.xi�1=2; t / � q.xiC1=2; t /

�
: (A.5)

This expression is now employed to develop an explicit time-stepping algorithm where Q.nC1/i is approxi-
mated by a function of Q.n/i . Equation (A.5) is integrated between tn and tnC1 yieldingZ

Ci

�
q.x; tnC1/ � q.x; tn/

�
dx D

Z tnC1

tn

�
B
�
q.xi�1=2; t / � q.xiC1=2; t /

��
dt: (A.6)

Rearranging and dividing by �x leads to

1

�x

Z
Ci

q.x; tnC1/ dx D 1

�x

�Z
Ci

q.x; tn/ dx�
Z tnC1

tn

Bq.xiC1=2; t / dtC
Z tnC1

tn

Bq.xi�1=2; t / dt
�
: (A.7)

This equation describes how the cell average should be updated within a time step in order to satisfy the
conservation of q. In general, the two integrals involving Bq on the right-hand side of the equation cannot be
evaluated exactly. Following [29], we pose

F.n/
i˙1=2 �

1

�t

Z tnC1

tn

Bq.xi˙1=2; t / dt (A.8)

and Eq. (A.7) simply becomes

Q.nC1/i D Q.n/i �
�t

�x

�
F.n/
iC1=2 � F.n/

i�1=2
�
: (A.9)

The next subsection is dedicated to the computation of F.n/
i˙1=2, which are the time-averaged fluxes at

x D xi˙1=2.

Appendix A.3. Approximation of the time–averaged fluxes
To approximate the fluxes in the interfaces defined by Eq. (A.8), the state q.x; tn/ at time tn is assumed to
be a piecewise constant function defined for all x, constructed from the cell averages Q.n/i as depicted in
Fig. A.24. This piecewise reconstruction of the function q.x; tn/ is identical to the Godunov’s approach
widely employed in computational fluid dynamics [30]. A suitable approximation of the flux F.n/

iC1=2 can be

q.x; tn/

x
xi�1=2 xiC1=2 xiC3=2 xiC5=2 xiC7=2

Q.n/
i

Q.n/
iC1

Q.n/
iC2

Q.n/
iC3

Figure A.24: Reconstruction of function q.x; tn/ from the average fluxes Q.n/i .

obtained by solving the problem, either numerically or exactly, of the conservation law Eq. (A.2) together
with the following discontinuous conditions at time tn [30]:

�.x; tn/ D
(
�
.n/
i if x 6 xiC1=2
�
.n/
iC1 if x > xiC1=2

and v.x; tn/ D
(
v
.n/
i if x 6 xiC1=2
v
.n/
iC1 if x > xiC1=2

(A.10)
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which constitutes a Riemann problem centered at xiC1=2 between cells Ci and CiC1 [30]. The solution to
this Riemann problem consists of two shock waves propagating along the characteristic lines x D ˙ct , one
moving to the left into cell Ci and one moving to the right into cell CiC1 as depicted in a space-time plot in
Fig. A.25. The shock wave traveling to the left, indicated by W1, propagates at velocity s1 and connects the
state Q.n/i and the interior state Q�i generated by such shock wave. Moreover, the solution t 7! q.xiC1=2; t /
is constant over the time interval Œtn; tnC1�.

t

.xiC1=2; tn/
x

Q.n/
iC1Q.n/

i

Q�iC1Q�i

W1 W2

tnC1

Figure A.25: Structure of the solution to the Riemann problem depicted in a space-time plot.

The Rankine-Hugoniot jump condition is proven to hold across any propagating discontinuity [31]
which can be written for the left wave W1 propagating at velocity s1 and the right wave W2 propagating at
velocity s2:

W1 !
(
s1
�
��i � � .n/i

� D �E�v�i � v.n/i �
;

�s1
�
v�i � v.n/i

� D ����i � � .n/i �
W2 !

(
s2
�
�
.n/
iC1 � ��iC1

� D �E�v.n/iC1 � v�iC1�;
�s2

�
v
.n/
iC1 � v�iC1

� D ��� .n/iC1 � ��iC1�:
(A.11)

Because of material continuity, cells Ci and CiC1 cannot separate. This requires that the interior states
must be equal across the material interface, Q�

iC1=2 D Q�iC1 D Q�i . By knowing that the shock
speeds s1 D �s2 D �

p
E=� D �c are known and constants, the intermediate state is approximated with

q.xiC1=2; t / � Q�
iC1=2 such that tn 6 t 6 tnC1 and can be calculated from Eq. (A.11):

Q�iC1=2 D
"
��
iC1=2
v�
iC1=2

#
D 1

2

"
�
.n/
iC1 C � .n/i C �c

�
v
.n/
iC1 � v.n/i

�
v
.n/
iC1 C v.n/i C 1

�c

�
�
.n/
iC1 � � .n/i

�# : (A.12)

Equation (A.12) is regarded as the exact solution of the Riemann problem involving linear elastodynam-
ics [29]. The flux approximation in Eq. (A.8) can be calculated with the solution of a Riemann problem at
the cell interface as follows:

F.n/
iC1=2 �

B
�t

Z tnC1

tn

Q�iC1=2 dt � BQ�iC1=2 (A.13)

In a nonlinear framework, the Riemann problem should be approximated numerically by the so-called
Riemann solvers [32]. The linearity of the problem of interest simplifies the approximation of the fluxes
between cell interfaces.

Appendix A.4. Formulation for inner grid cells

Introducing the approximation of the flux (Eq. (A.13)) in Eq. (A.9), the following numerical scheme comes:

Q.nC1/i D Q.n/i �
�t

�x

�
Bq�iC1=2 � Bq�i�1=2

�
: (A.14)

Equation (A.14) describes the evolution in time of the states of the grid cells Ci . This subsection provides the
formulation for the inner cells, where i D 2; : : : ; N � 1. The boundary cells C1 and CN require a different
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treatment provided in the next subsection. Expressing the flux approximation, employing Eq. (A.13) on the
right side of an inner cell yields

Bq�iC1=2 D
1

2

"
�E�v.n/iC1 C v.n/i C 1

�c

�
�
.n/
iC1 � � .n/i

��
�1
�

�
�
.n/
iC1 C � .n/i C �c

�
v
.n/
iC1 � v.n/i

��# : (A.15)

Performing the same operation on the left side of the cell reads

Bq�i�1=2 D
1

2

"
�E�v.n/i C v.n/i�1 C 1

�c

�
�
.n/
i � � .n/i�1

��
�1
�

�
�
.n/
i C � .n/i�1 C �c

�
v
.n/
i � v.n/i�1

��# : (A.16)

Accordingly, the total flux within an inner cell is the quantity Bq�
iC1=2 � Bq�

i�1=2 which, when substituted
into Eq. (A.14) yields"

�
.nC1/
i

v
.nC1/
i

#
D
"
�
.n/
i

v
.n/
i

#
C �t

2�x

"
E
�
v
.n/
iC1 � v.n/i�1

�C c�� .n/iC1 � 2� .n/i C � .n/i�1�
1
�c

�
�
.n/
iC1 � � .n/i�1

�C c�v.n/iC1 � 2v.n/i C v.n/i�1�
#
: (A.17)

Since the exact solution of a Riemann problem is being used, WFEM incorporates an appropriate time-step
�t D �x=c. Then, the values of the stress and velocity of inner grid cell Ci at time tnC1 are calculated as"

�
.nC1/
i

v
.nC1/
i

#
D 1

2

"
�
.n/
iC1 C � .n/i�1 C �c

�
v
.n/
iC1 � v.n/i�1

�
v
.n/
iC1 C v.n/i�1 C 1

�c

�
�
.n/
iC1 � � .n/i�1

�# : (A.18)

The latter strong assumption is suitable only for 1D elastodynamics problems, since the wave velocity and the
direction of the propagation is known. Also, such assumption enforces energy conservation and eliminates
numerical dissipation [18]. In the multidimensional framework, even though the waves velocities are known,
the waves could propagate in various direction throughout the physical domain.

Equation (A.18) provides the main equation of the WFEM and characterizes how the average value
Q.n/i of q in an inner cell Ci is updated at each time step. As required by the local conservation law (A.3)
resulting from the absence of body forces, the evolution of the state of the inner cells depends only on the
values of the adjacent cells. WFEM can be seen as the transference of the whole information embedded in
cell Ci to its adjacent cells at each time step. Employing the latter approach to obtain the evolution of cell
states, involving discontinuities such as shock and rarefaction waves, is well known by the Fluid Mechanics
community employing Finite Volume Methods [30].

Appendix A.5. Formulation for boundary grid cells
To compute the state of the boundary grid cells, the computational domain is extended by including
additional cells on both boundaries, known as ghost cells [29], whose average values depend on the boundary
conditions. This concept is taken from the Finite Volume Methods. Figure A.26 depicts ghost cells for a
system discretized using N cells.

CN CN C1

Ghost cellC1C0

Ghost cell

Figure A.26: Computational space domain with ghost cells.

Equation (A.18) can then be used to update the average value on the boundary cells, which have now
become inner cells. Only a single ghost cell is required at each boundary because the computation of the
average value depends only on the states of the adjacent cells. For instance, the fixed–free elastic bar without
the complementarity conditions of contact satisfies the two boundary conditions u.0; t/ D v.0; t/ D 0 and
Eu;x.L; t/ D �.L; t/ D 0. These conditions are used to define the average values within the ghost cells as
follows:

at ghost cell C0:

(
�0 D �1
v0 D �v1;

and at ghost cell CNC1:

(
�NC1 D ��N
vNC1 D vN :

(A.19)
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Such average values coincide with the theory of reflection of elastic waves from fixed and free boundaries [2],
which states that stress waves reflect from a fixed boundary with the same sign and from a free boundary
with the changed sign; similarly, velocity waves reflect from a fixed boundary with an opposite sign and
from a free boundary with the same sign. The evolution of the average values of the boundary cells, C1 and
CN , can be calculated by introducing the average values of Eq. (A.19) into Eq. (A.18), yielding for C1

Q.nC1/1 D
"
�
.nC1/
1

v
.nC1/
1

#
D 1

2

"
�
.n/
2 C � .n/1 C �c

�
v
.n/
2 C v.n/1

�
v
.n/
2 � v.n/1 C 1

�c

�
�
.n/
2 � � .n/1

�# (A.20)

and for CN

Q.nC1/N D
"
�
.nC1/
N

v
.nC1/
N

#
D 1

2

"
�
.n/
N�1 � � .n/N C �c

�
v
.n/
N C v.n/N�1

�
v
.n/
N C v.n/N�1 � 1

�c

�
�
.n/
N C � .n/N�1

�# : (A.21)

Appendix A.6. WFEM generic algorithm

Altogether, the previous derivations lead to a set of discrete equations that describe how the average values
of stress and velocity stacked in q is updated in time for each cell. The different steps are summarized in
Algorithm 1. Using �t D �x=c it computes, in the framework of linear elastodynamics, the propagation at

Algorithm 1: WFEM Computation procedure

Input: number of elements N , total number of steps nT , boundary conditions, initial conditions, density �,
wave velocity c

for n D 0 to nT [Time Loop] do
Update time instant: tn D n�t ;
Compute stress and velocity at cell C1 using Eq. (A.20);
for i D 2 to N � 1 [Cell Loop] do

Compute stress and velocity at cell Ci using Eq. (A.18);
end
Compute stress and velocity at cell CN using Eq. (A.21);

end
Output: stresses, velocities at instants t0; : : : ; tnT

finite speed c of a wave and accounts for the reflection conditions at the boundaries. By definition of �t ,
the CFL condition �t � �x=c is always satisfied, so the method is always stable [29, 33]. Additionally,
because the global error is proportional to the discretization steps, the WFEM is first-order accurate both in
space and time [18].

Appendix A.7. Matrix formulation

Similar to other numerical methods applied on linear systems, the WFEM can be rewritten in a convenient
matrix form which facilitates the process of finding nonsmooth modes of vibration. More specifically, the
state vector of the system Q.n/ D �Q.n/1 : : :Q.n/N

�> 2 R2N at time tn satisfies the identity

Q.n/ D AQ.n�1/; 8n � 1 (A.22)

and Q.0/ is the initial state. The matrix A gathers stiffness and inertial terms as well as the type of boundary
conditions. It is now derived for the fixed–free BC. In a matrix form, Eq. (A.18), which governs the evolution
of inner cells, reads"

�
.nC1/
i

v
.nC1/
i

#
D 1

2

�
1 0 1 ��c 0 �c

� 1
�c

0 1
�c

1 0 1

� h
�
.n/
i�1 �

.n/
i �

.n/
iC1 v

.n/
i�1 v

.n/
i v

.n/
iC1

i>
: (A.23)

For the boundary cells in Eqs (A.20) and (A.21), the matrix form follows as"
�
.nC1/
1

v
.nC1/
1

#
D 1

2

�
1 1 �c �c

� 1
�c

1
�c
�1 1

� h
�
.n/
1 �

.n/
2 v

.n/
1 v

.n/
2

i>
(A.24)
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and "
�
.nC1/
N

v
.nC1/
N

#
D 1

2

�
1 �1 �c �c

� 1
�c
� 1
�c

1 1

� h
�
.n/
N�1 �

.n/
N v

.n/
N�1 v

.n/
N

i>
: (A.25)

Then the block matrix A 2 R2N�2N can be constructed using four N �N matrices A1;A2;A3;A4 whose
expression can be derived from

Ag.a; b; c; d/ D 1

2

26666666664

a b 0 : : : 0 0 0

c 0 b 0 0 0

0 c 0 0 0 0
:::

: : :
: : :

: : :
:::

0 0 0 0 b 0

0 0 0 c 0 b

0 0 0 : : : 0 c d

37777777775
(A.26)

using the identities A1 D Ag.�1; 1; 1; 1/, A2 D �cAg.�1; 1;�1;�1/, A3 D Ag.1; 1;�1; 1/=�c, and
A4 D Ag.1; 1; 1;�1/. Then, block matrix A is written as

A D
�

A1 A2
A3 A4

�
: (A.27)

Another matrix A can be constructed in the same way for the fixed–fixed BC. Finally, the unknown Q.n/ can
be directly expressed in terms of the initial conditions Q.0/ from Eq. (A.22) by

Q.n/ D AnQ.0/ (A.28)

where An is known for each type of BC.

Appendix B. Treatment of unilateral contact in WFEM

The unilateral contact constraints involved in the formulation are enforced using the concept of floating
boundary conditions [18] which can be regarded as a conditional switch between fixed–free and fixed–fixed
boundary conditions [34] when a penetration is detected during a time iteration, as illustrated in Fig. B.27.
In the continuous framework, these two boundary conditions are

free–fixed BC (inactive contact) u.0; t/ D v.0; t/ D 0; Eu;x.L; t/ D �.L; t/ D 0
fixed–fixed BC (active contact) u.0; t/ D v.0; t/ D 0; u.L; t/ D g0 ! v.L; t/ D 0: (B.1)

The gap function g.u.L; t//, which is a function of the displacement u.L; t/ but not an explicit function
of t , is discretized in time to calculate a possible penetration of the bar as

g.n/ D g0 � u.n/NC1=2 (B.2)

where u.n/
NC1=2 is the displacement of the contacting interface which can be calculated by numerically

integrating the velocity vNC1=2 of the bar at xNC1=2. This equality is used at each time step to check
whether contact is active during the next iteration: if g.n/ > 0, a free boundary condition is enforced while if
g.n/ 6 0, a fixed boundary condition is considered via the change of matrix A.

Based on the theory of reflection of elastic waves from boundaries [2], the state of the ghost cell CNC1 is
updated as follows

� Active contact [g.n/ 6 0](
�NC1 D �N
vNC1 D �vN

(B.3)
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g.n/ > 0

CN

(a) Inactive contact

CN

g.n/ D 0

(b) Active contact

Figure B.27: Conditional switch for contact treatment in WFEM

� Inactive contact [g.n/ > 0](
�NC1 D ��N
vNC1 D vN

(B.4)

Equation (A.18) is subsequently used to calculate the evolution of the average values inside the boundary
cell CN , as detailed in section Appendix A.5. Additionally, the contact force r.n/ is calculated by employing
Eq. (A.12):

r.n/ D S
�
�
.n/
N � �cv.n/N

�
: (B.5)

The sign of this quantity is tracked to locate the time of release, when the bar returns to free condition at
x D L. Algorithm 1 is modified to include the floating boundary conditions as described in Algorithm 2.

Algorithm 2: Computation procedure with unilateral contact conditions

Input: number of elements N , number of steps nT , boundary and initial conditions, density �, wave velocity c
for n D 0 to nT [Time Loop] do

Discrete time instant, tn D n�t ;
Compute stress and velocity at cell C1 using Eq. (A.20);
for i D 2 to N � 1 [Element Loop] do

Compute stress and velocity at cell Ci using Eq. (A.18);
end
— floating boundary conditions —
if g.n/ D 0 then

Switch to fixed boundary condition at xNC1=2;
Compute contact stress r .n/ using Eq. (B.5);
if r .n/ > 0 then

Switch to free boundary condition at xNC1=2;
Compute gap g.nC1/;
Compute stress and velocity at cell CN using Eq. (A.21);

else
Keep fixed boundary condition at xNC1=2;
Compute stress and velocity at cell CN using Eq. (A.21);

end
else

Keep free boundary condition at xNC1=2;
Compute gap g.nC1/ and stress and velocity at cell CN using Eq. (A.21);

end
— end of floating boundary conditions —

end
Output: stresses, velocities, contact force at instants t0; : : : ; tnT

From the matrix formulation of the WFEM in Eq. (A.22), two matrices A shall then be distinguished:
Af for the fixed–free condition (no contact) and Ac for fixed–fixed condition (contact). Both matrices
embed the same stiffness and inertial terms of the system of interest; the only unshared information are
the boundary conditions. To summarize, the developed WFEM with floating boundary conditions is a
numerically conservative and stable scheme able to properly propagate shock waves induced by a switch in
the boundary conditions, the latter being governed by complementarity constraints.
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