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Abstract

This work deals with the calibration of SEIR epidemic model for
Zika virus outbreak, in Rio de Janeiro, occurred in 2016, based on sim-
ilar numerical analysis applied for disease’s evolution in French Polyne-
sia islands. Demographical increasing or decreasing is not considered.
Vector is assumed to be infected for it’s all lifespan. Model parameters
fitting follows an empirical process, by comparison of obtained results
with that in Polynesia case study, featuring as satisfactory the values
that best reproduce model evolution in Rio de Janeiro scenario.
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1 Introduction

Zika virus was first isolated in primates from Zika forest at Uganda about
1947 [1]. Evidences of the virus in humans were reported in Nigeria at
1968 [2]. It’s first observation in south America occurred in Easter island,
about 2014 [3]. First cases in Rio de Janeiro, Brazil, were reported in 2015
[4], quickly evolving to an outbreak in 2016. This scenario caused concern
in medical community, health authorities and local population, specially
due to a probable relation among Zika virus and other diseases, such as
microcephaly [5, 6] and Guillain-Barré syndrome [7], and the realization of
the 2016 Summer Olympics at Rio de Janeiro, which, in reason of the large
flux of people, could spread Zika virus to several parts of the world.
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In this (near) epidemic scenario, developing strategies of control and pre-
vention of the disease is a critical issue. In this sense, a mathematical model
able to predict the number of infected people, during the virus outbreak, is
an useful tool, that can be used to identify vulnerable aspects of the disease
control strategies.

This paper deals with the study of Zika virus outbreak at Rio de Janeiro
in 2016. For this purpose, a mathematical model that was used to describe
the outbreak in French Polynesia [8] is adapted to Rio de Janeiro scenario.
The nominal value of model parameters are estimated based on real data
about the outbreak. Numerical simulation results are compared to the out-
break official numbers, in order to calibrate and validate the adapted model.

The rest of this paper is organized as follows. In section 2, the math-
ematical model is described, as well as its parameters. In section 3, the
process of estimation of model parameters is discussed and numerical sim-
ulation results are reported, being followed by the comparison of numerical
predictions and experimental data in section 4. Finally, in section 5, the
main contributions of this work are emphasized and paths for future works
are suggested.

2 Mathematical model

The transmission of Zika virus occurs, mainly, by Aedes genus of mosquitoes,
but recently researches indicates that Culex genus is able to act as vector
too [9]. Medical literature also relates sexual contact and blood transfusions
as potential ways of transmission [10]. But, for purposes of modelling, in
this work only the transmission by Aedes mosquitoes is considered.

To describe the Zika virus outbreak in Rio de Janeiro, this work employs
an epidemic model of SEIR (susceptible, exposed, infected and recovered)
type [11], adapted from the one used in French Polynesia [8]. In this model,
the total population is distributed in four groups (susceptible, exposed, in-
fected and recovered) according to the health condition of the individual at
time t. The number of susceptible individuals at time t is denoted by S(t),
and comprehends healthy individuals which does not have any immunologi-
cal resistance against Zika virus. The label of exposed individuals, denoted
by E(t), applies to the cases which are in an incubation period (latent pe-
riod), i.e. a time gap while, despite of pathogen exposure, individuals are
not infectious (asymptomatic period). The number of infected individuals,
dubbed I(t), means affected but not latent anymore. This group is, how-
ever, capable of transmitting the disease. The recovered or immune group,
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Figure 1: Schematic representation of SEIR epidemic model used to describe
Zika virus outbreak.

represented by R(t), contains the individuals that were exposed and are
recovered.

The evolution of the diseased vector population obeys almost the same
rules, in exception that there is no recovered group and it’s lifetime is consid-
ered, since it is small compared to human lifetime. The individuals stream
trough the model groups is depicted in Figure 2, both for affected and vector
populations.

The stream (evolution) of individuals trough the groups follows the rules
defined by the following set of differential equations

dSh
dt

= −βh Sh Iv, (1)

dEh

dt
= βh Sh Iv − αhEh, (2)

dIh
dt

= αhEh − γ Ih, (3)

dRh

dt
= γ Ih, (4)

dC

dt
= αhEh, (5)
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dSv
dt

= δ − βv Sv
Ih
N

− δ Sv, (6)

dEv

dt
= βv Sv

Ih
N

− (δ + αv)Ev, (7)

dIv
dt

= αv Ev − δ Iv, (8)

where β represents the transmission rates and γ, the recovery rate, defined
as the inverse of infection period; α means disease’s incubation ratio, calcu-
lated as the inverse of incubation period and δ, the vector lifespan, and N
represents human total population. The h subscripts refers to the human
parameters, while v, the mosquitoes (vector).

3 Numerical experiments

3.1 Model parameters

The following values are used, at first, for the model parameters: N =
16.5 × 106 humans, a recent estimation for Rio de Janeiro population [12];
extrinsic incubation ratio αv = 1/14 days−1 [13]; intrinsic incubation ra-
tio αh = 1/7.5 days−1 [14]; human infectious ratio γh = 1/7 days−1 [15];
mosquito lifespan ratio δv = 1/25 days−1 [16]; while the vector-to-human
transmission rate βh = 400 days−1, and human-to-vector transmission rate
βv = 40 days−1 were arbitrarily chosen through model experimentation,
starting from the Tahiti values proposed for the French Polynesia out-
break [8].

Regarding the initial conditions, a fully susceptible population is con-
sidered, meaning Sh(0) = N for humans and Sv(0) = 1 for the proportion
of mosquitoes. The hypothesis made for the French-Polynesian model, that
initial number of infected (humans or vector) was equal to their respective
incubating group is adopted: Ih(0) = Eh(0) and Iv(0) = Ev(0) [8]. As such,
the value of Iv(0) = 0.014 from the Tahiti outbreak is also used [8]. The
initial number of infected humans considered is Ih(0) = 412, such number is
a sum of sparse reported cases of Zika infection through some Rio de Janeiro
cities in 2015 [17]. Of course, their sum is not a accurately representation
of the quantity Ih at such time (beginning of 2016), but a arbitrary choice
to condensate the 2015 information due to the lack of more precise data.
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Lastly, R(0) is arbitrarily chosen to be zero, signifying no recovered indi-
vidual at the beginning of the outbreak, and C(0) = Ih(0) because of the
system dynamics implications.

3.2 Model predictions

In order to verify the representativeness of the proposed model, it is nec-
essary to compare its predictions with field data. In this sense, real data
about Zika outbreak, extracted from the epidemiological reports of Brazil’s
Ministry of Health [18] is used as reference. The report catalog data about
the zika infection in the form of suspected accumulated cases since the thir-
teenth epidemiological week (03/27/2016 until 04/02/2016). The precise
number of confirmed cases is actually unknown by the health authorities.
Thus, this work took this value as 35%, as a first estimate.

Unfortunately, only six points of significant data are available through
these reports so far (depicted on Table 1), and Zika cases along with the
associated neurological and congenital syndrome related were not given no-
tifiable conditions by the Brazil Ministry of Health until February 17th of
2016 [19], thus leaving 2015 data unreliable.

week number of cases

13 25930
16 32312
18 38196
20 43516
21 46027
32 60176

Table 1: Number of suspected cases of infected humans in 2016 [18].

The comparison between the number of new infected humans per week,
predicted by the model, and the real data is shown in Figure 2. Clearly, the
reader can see that model response (blue curve) is not in good agreement
with the real data (red circles).

Being 2015 the year of the official first confirmed case of Zika in Brazil
and the probable epidemic peek that happened in mid-July of the same year
[17], the lack of information about the spread of the disease during that year
proposed a major difficulty on judging the consistency of the model. The
choosing of parameters by ways of physical and biological context was not
enough to establish the system on a basis of reasonable comparison with
empirical data, and the lack of such data also hindered proper selection of
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Figure 2: Comparison between the model prediction for the number of new
infected humans per week (blue curve), and real data (red circles) obtained
from [18].

parameters as βh, βv and initial conditions as IV (0). Therefore, a calibration
process is required to analyze the necessary parameters to fit the system.

4 Model calibration

To calibrate the model, a non-linear curve fitting procedure, based on a
trust-region-reflective algorithm [20], is employed. The algorithm is per-
formed first varying a single parameter, while the others remained fixed.
This procedure allows to identify the parameters that most affect the model
response. The parameters αh and αv show up to be unreliable, since they
required very high initial guesses and usually would deform the quality of
the fitting curve. Besides that, the model is very sensible to variations on
βh and βv, being more affected by the values of βh. The other parameters
do not bring remarkable conclusions.

Next, a two varying parameters attempt is conducted through the method.
Most combinations do not bring satisfactory results, to the extent that some
pairs of parameters could not even be computed in the adopted tolerance
levels, e.g (αh, αv), probably because of inefficient initial guesses or the low
number of data points available. Furthermore, it sounds that some parame-
ters control the quality of the fitting curve. Such control parameters are βh
and βv and, unsurprisingly, the pair (βh, βv) proved to be the best one for
fitting purposes. Hence, the pair (βh, βv) is chosen to be focus of the process
of model calibration.

The parameter N is held fixed in all attempts. A change in the initial



7

conditions is also performed, considering in particular Ih and Iv. The ini-
tial number of infected humans proved unresponsive, threatening significant
changes on the curve only when varying his order of magnitude, what is
beyond of our assumptions. But Iv is noteworthy. The value of Iv = 0.008
is chosen when testing the (βh, βv) pair due to compatible general results.

Some considerations on this process of investigation to find a good fitting
curve regard the model curve peak position (local maxima). Brazil’s 2016
Zika peak infection happened on February [19], but precise data for the
state of Rio de Janeiro can only be estimated thus far, as discussed. This
implicates that the six data points of Table 1 give very few information on
the general shape the curve should have around the peek, because of their
distance from such event. Additionally, the lack of reliable data about the
infection in the beginning of year 2016 and end of 2015 allows a multitude of
different shape-wise curves to fit the midyear data provided by the Ministry
of Health. These problems manifested themselves while trying the parameter
testing method, as a great number of low peak or wrong peak-positioned
curves would fit the precise empirical numbers for the region (Table 1) but,
of course, contradict the other information about the general distribution of
the infection along the year.

The adopted solution for this lack of information is to perform (educated)
guesses for the the peak region values, around the month of February. An
imprecise number of 3500 new cases per week on February for Rio de Janeiro
that circulated around brazilian media [21] is used on the iterative algorithm
in search of a βh and βv that would better represent a peak like curve
around such month. Figure 3.a summarizes the result of only using the
data from Table 1, where the results of the estimation algorithm are βh =
0.0017 days−1 and βv = 4.0599 days−1. Figure 3.b represents the curve when
a single unofficial data point (marked by a asterisk) of 3500 new cases per
week is assumed on the epidemiological week 7. For this case the fitting
algorithm returned in βh = 0.0055 days−1 and βv = 0.6479 days−1. Finally,
Figure 3.c depicts the best fitted curved with respect to the empirical data
at disposal, considering three extra unofficial data points: in addition to the
3500 new cases per week on the seventh week, a 2000 new cases/week on the
second and 1300 weekly new cases on the third are included. The resulting
estimated parameters are βh = 0.0045 days−1 and βv = 0.8296 days−1.

Figure 3.a indicates a general shape of the curve by only considering
the data of Table 1: a early peak on the year 2016 and a decay like ap-
pearance around the data points. The introduction of an arbitrary point in
Figure 3.b moved the peak closer to the desired week and defined better the
shape. However, without comparison data around the maximum region, the
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algorithm could not direct the parameters to values that would make 3500
be about the highest new infected per week around the seventh week. Using
three arbitrary points as disposed on Figure 3.c, intentionally chosen to do
the shape of the peak, the curve better distributed itself through the data
and the magnitude stayed closer to the expected maximum value.
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Figure 3: Camparision between the model prediction (blue curve) and data
from epidemiological bulletin (red circles). In the top only bulletin data is
presented, while in the bottom ’ghost data’ (black stars) are also used.

Although graphical results above are satisfactory, the estimated param-
eters are not good representations of reality. A βh = 0.0039 translates to a
vector only contacting a human being in a period of 256 days, which sur-
pass extensively the lifespan of the mosquito. This may indicate this SEIR
model is unrealistic to represent Rio de Janeiro outbreak, once it fits the
observation data only when unreal parameters are used.
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5 Final remarks

This work adapted a SEIR epidemic model, used to predict French Polyne-
sia Zika spread, to describe the 2016 Zika virus outbreak in Rio de Janeiro,
Brazil. Nominal quantities for the parameters were select through available
experimental data in conjunction with arbitrary adopted values. A model
calibration procedure, that uses a nonlinear curve fitting method, was em-
ployed to pick the best parameter values that would fit the model response
into the empirical data regarding the evolution of the infection. Due to the
low number of real data about the Zika outbreak, the curve fitting proce-
dure was not effective at first. The effects of the lack of information have
been solved by incorporating the reference data ansatz for the outbreak
peak values. In this second step, the calibration procedure could get a good
fit to describe the outbreak. Nevertheless, the adjust parameters obtained
this way are unrealistic, which may suggest that this SEIR model is not a
realistic representation of the Rio de Janeiro outbreak scenario. In future
work the authors intend to construct a probabilistic model of uncertainties,
to better describe the model parameters variability, and employ a Bayesian
procedure for model calibration, in order to to verify if the model calibration
can only be done via unrealistic data.
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