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Abstract: This paper deals with the nonlinear dynamics of a mechanical system which consists of an orchard
tower sprayer, coupled with a vehicle suspension that is subject to random excitations due to soil irregularities.
A deterministic mathematical model, where tower is considered as an inverted double pendulum over an vehicle
suspension, with three degrees of freedom (one translation and two rotations) is constructed. To take into
account the random loadings due to soil variabilities, a parametric probabilistic approach is employed, where
the external force is assumed to be a harmonic random process. This stochastic process has random amplitude
and frequency, which are modeled as random variables, and a sinusoidal shape in time. The distribution of
these random parameters is consistently specified using the maximum entropy principle. The propagation of
uncertainties through the stochastic model is computed using the Monte Carlo method. Numerical simulations
show large discrepancies in the system response, when compared with nominal (deterministic) model, for the
cases studied where the forcing frequency is random. Also, the results shown that the steady state probability
distributions are completely different in all the case studied.

Keywords: nonlinear dynamics; orchard tower sprayer; double inverted pendulum; uncertainty
quantification; parametric probabilistic approach

1 INTRODUCTION

The process of spray orchards is of extreme importance in fruit growing, not only to prevent the economic
damages associated with the loss of a production, but also to ensure the quality of the fruit that will arrive the
final consumer. This process uses an equipment, called tower sprayer, which is illustrated in Figure 1. This
equipment is composed by two main devices, a vehicle suspension and a support tower equipped with several
fans, and in a typical operating condition, it vibrates nonlinearly (Sartori Junior et al., 2009).
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a)      b) 

Figura 2.1. a) vista lateral e b) vista posterior do pulverizador de pomares (cortesia de 

Máquinas Agrícolas Jacto S/A) 

  

A figura 2.2 ilustra a seqüência de simplificações para gerar o modelo de estudo. 

As figuras 2.2.a e 2.2.b ilustram uma representação em elevação traseira do pulverizador 

destacando os principais elementos como carreta, pneus, eixo, articulação “P”, e a torre 

com seus oito ventiladores, com suas massas mv1, mv2,... mv8 concentradas em seus 

centros de gravidade. As estruturas suportes dos ventiladores são consideradas rígidas e 

sem massa. Entende-se que este modelo (figura 2.2.b) poderia representar mais 

precisamente o movimento individual de cada um dos ventiladores, contudo neste 

momento, o interesse está em reconhecer o movimento global da torre, cujo excessivo 

movimento lateral influencia na qualidade da aplicação da pulverização.  

Assim é proposta uma segunda simplificação do modelo, como apresentada na 

figura 2.2c. Nesta simplificação as massas dos ventiladores inferiores (mv1, mv2, mv3 e 

mv4) são concentradas na massa mc1. As massas dos ventiladores superiores (mv5, mv6, 

Figure 1 – Schematic representation of the tower sprayer. Adapted from Sartori Junior (2008), and courtesy of
Máquinas Agŕıcolas Jacto S/A.

This nonlinear dynamical system has been studied before in Sartori Junior et al. (2007), Sartori Junior
(2008) and Sartori Junior et al. (2009), using a model that considers an inverted double pendulum mounted on
a vehicular suspension to emulate the equipment. These works perform parametric analyzes to investigate the
influence of certain quantities in the model, for instance, stiffness, torsional damping, etc., and conclude that
the developed model respond consistently in all cases it was tested.
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However, all the previous studies were performed from a deterministic point of view, which is not the most
realistic perspective to deal with a complex physical system like this, once it is subject to a series of uncertainties
Soize (2012, 2013). These uncertainties are translated as variabilities in the model parameters and in epistemic
uncertainties, that are intrinsically associated with the analyst ignorance on the physics of the problem. Take
into account these uncertainties is already a common task in engineering, and can be seen, for instance, in the
dynamics analysis of drillings (Cunha Jr et al., 2015), bars (Cunha Jr and Sampaio, 2015), and (Perrin et al.,
2015) rails, to identify models of materials (Ritto and Nunes, 2015), to perform robust optimization (Beck et al.,
2015), etc.

In a first analysis, taking into account only the model parameters uncertainties, the source of randomness
in the tower sprayer dynamics that seems most notoriously is the one associated with tires excitation. This
because, during its operation, the structure typically move in extremely rough terrains. Therefore, it is more
realistic consider a stochastic model to describe the dynamic behavior of this physical system when subject to
a random excitation in the tires. A first initiative in this direction was made in Cunha Jr et al. (2015), which
presents the construction of a consistent stochastic model to describe the tower sprayer nonlinear dynamics.
This work aims to continue this study, investigating in depth the effects induced by the tires random excitation
in the tower sprayer response.

The rest of this paper is organized as follows. In section 2 it is presented the definition of the mechanical
system and a deterministic model to describe its nonlinear dynamics. A stochastic model to to take into
account the uncertainties associated to the model parameters is shown in section 3. The results of the numerical
experiments conducted in this work are presented and discussed in section 4. Finally, in section 5, the main
conclusions are highlighted.

2 DETERMINISTIC MODEL

This paper uses the model developed by Sartori Junior (2008); Sartori Junior et al. (2009), where the
mechanical system is considered an inverted double pendulum, mounted on a vehicular suspension, as shown in
Figure 2. The masses of the chassis and the tank are assumed to be concentrated at the bottom of the double
pendulum, as a point mass denoted by m1. On the other hand, the point mass m2, at the top of the double
pendulum, take into account the masses of the fans. The point of articulation between the moving suspension
and the tower is denoted by P and its distance to the suspension center of gravity is L1. The junction P
has torsional stiffness kT , and damping torsional coefficient cT . The tower has length L2, and is considered
to be massless. The left wheel of the vehicle suspension is represented by a pair spring/damper with constant
respectively given by k1 and c1, it is located at a distance B1 from suspension center line, and it is subject to a
vertical displacement ye1. Similarly, the right wheel is represented by a pair spring/damper characterized by k2
and c2, it is B2 away from suspension center line, and and displaces vertically ye2. The moments of inertia of
the suspension and of the tower, with respect to their centers of gravity, are respectively denoted by I1 and I2.
Finally, introducing the inertial frame of reference XY , the vertical displacement of the suspension is measured
by y1, while its rotation is computed by φ1, and the rotation of the tower is denoted by φ2.
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4 ANÁLISE PARAMÉTRICA 

 

Esse capítulo dedica-se à realização de análises paramétricas do modelo proposto 

no capítulo 2 para representar um pulverizador agrícola de pomar do tipo torre. 

Para esta análise será adotado o modelo de equações não lineares, que fora 

programado no Matlab© Simulink© conforme apresentado no apêndice A. 

Como explanado no capítulo 1 a manutenção da distância entre as saídas de ar e os 

alvos (copas das plantas) é de grande importância na qualidade de aplicação de 

pulverização com assistência de ar. Assim, a resposta que norteará as análises a seguir será 

o deslocamento horizontal do CG da torre, 2x , conforme ilustrado no modelo simplificado 

ilustrado na figura 4.1. 

CT, KT

y2

y1

x2

m2

P

L
1

L
2

y

xye1 ye2

 

Figura 4.1 Modelo simplificado com três graus de liberdade: deslocamento vertical do CG 

da carreta 1y , deslocamento angular do CG da carreta 1φ e deslocamento angular do CG da 

torre 2φ .  

Figure 2 – Schematic representation of the mechanical-mathematical model: an inverted double pendulum, mounted
on a moving suspension. Adapted from Sartori Junior (2008).
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The left and right tires displacements are respectively assumed to be periodic functions in time, out of phase,
with the same amplitude, and a single frequencial component,

ye1(t) = A sin (ω t) , and ye2(t) = A sin (ω t+ ρ) , (1)

where A and ω respectively denote the amplitude and frequency of the tires displacements, and ρ is the phase
shift between the two tires.

The following ODE system describes the nonlinear dynamics of interest (Sartori Junior et al., 2009)

[M ]

 ÿ1(t)

φ̈1(t)

φ̈2(t)

+ [N ]

 ẏ21(t)

φ̇21(t)

φ̇22(t)

+ [C]

 ẏ1(t)

φ̇1(t)

φ̇2(t)

+ [K]

 y1(t)
φ1(t)
φ2(t)

 = g − h, (2)

where [M ], [N ], [C] and [N ] are 3× 3 (configuration dependent) real matrices, respectively, defined by

[M ] =

 m1 +m2 −m2 L1 sinφ1 −m2 L2 sinφ1
−m2 L1 sinφ1 I1 +m2 L

2
1 m2 L1 L2 cos (φ2 − φ1)

−m2 L2 sinφ1 m2 L1 L2 cos (φ2 − φ1) I2 +m2 L
2
2

 , (3)

[N ] =

 0 −m2 L1 cosφ1 −m2 L2 cosφ2
0 0 −m2 L1 L2 sin (φ2 − φ1)
0 −m2 L1 L2 sin (φ2 − φ1) 0

 , (4)

[C] =

 c1 + c2 (c2B2 − c1B1) cosφ1 0
(c2B2 − c1B1) cosφ1 cT + (c1B

2
1 + c2B

2
2) cos2 φ1 −cT

0 −cT cT

 , (5)

and

[K] =

 k1 + k2 0 0
(k2B2 − k1B1) cosφ1 kT −kT

0 −kT kT

 , (6)

and let g, and h be (configuration dependent) vectors in R3, respectively, defined by

g =

 (k2B2 − k1B1) sinφ1 + (m1 +m2)g
(k1B

2
1 + k2B

2
2) sinφ1 cosφ1 −m2 g L1 sinφ1
−m2 g L2 sinφ2

 , (7)

and

h =

 k1 ye1 + k2 ye2 + c1 ẏe1 + c2 ẏe2
−k1B1 cosφ1 ye1 + k2B2 cosφ1 ye2 − c1B2 cosφ1 ẏe1 + c2B2 cosφ1 ẏe2

0

 . (8)

The nonlinear initial value problem, which is obtained when appropriate initial conditions are associated to
the ODE system, is integrated using ode45 routine from MATLAB (Shampine and Reichelt, 1997).
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3 STOCHASTIC MODEL

The stochastic model is constructed in a probability space (Θ,�,P), being Θ the sample space, � a σ-
field over Θ, and P : � → [0, 1] the probability measure. In this stochastic framework, the amplitude A, and
the frequency ω are assumed as random parameters, being modeled by the random variables A : � → R and
� : �→ R.

To specify the distribution of these random parameters, based only on theoretical information known about
them, the maximum entropy principle is employed (Jaynes, 1957; Soize, 2013). For A, that is a positive param-
eter, it is assumed that: (i) the support of the probability density function (PDF) is the positive real line, i.e.,
Supp pA = (0,+∞); and (ii) the mean value is known, i.e. E [A] = µA ∈ (0,+∞). Besides that, for �, that is also
a positive parameter, the only known information is assumed to be the support Supp p� = [ω1, ω2] ⊂ (0,+∞).

Consequently, the distributions which maximize the entropy have the following PDFs

pA(a) = 1(0,+∞)(a)
1

µA
exp

(
− a

µA

)
, (9)

and

p�(ω) = 1[ω1,ω2](ω)
1

ω2 − ω1
, (10)

which correspond, respectively, to the exponential and uniform distributions. In the above equations 1X(x)
denotes the indicator function of the set X. Note that in Cunha Jr et al. (2015), the information that has been
assumed about A and ω lead, respectively, to the gamma and beta distributions. A reflection, a posteriori, led
the authors to conclude that the above choices are more consistent (as they are made based on less theoretical
assumptions).

Due to the randomness of A and �, the tire displacements are now described by the following random
processes

ye1(t, θ) = A sin (� t) , and ye2(t, θ) = A sin (� t+ ρ) . (11)

Therefore, the dynamics of the mechanical system evolves (almost sure) according to the following system
of stochastic differential equations

[M ]

 ÿ1(t, θ)

�̈1(t, θ)

�̈2(t, θ)

+ [N ]

 ẏ21(t, θ)

�̇21(t, θ)

�̇22(t, θ)

+ [C]

 ẏ1(t, θ)

�̇1(t, θ)

�̇2(t, θ)

+ [K]

 y1(t, θ)
�1(t, θ)
�2(t, θ)

 = g − h. a.s. (12)

To compute the propagation of uncertainties of the random parameters through the nonlinear dynamics, it
is employed the Monte Carlo (MC) method (Kroese et al., 2011; Cunha Jr et al., 2014).

4 NUMERICAL EXPERIMENTS

The nominal (deterministic) parameters presented in Table 1 are adopted to simulate the nonlinear dynamics
of the mechanical system. For simplicity, all the initial conditions are assumed to be zero. The evolution of this
nonlinear dynamic system is investigated for a “temporal window” defined by the interval [t0, tf ] = [0, 3]×102 s,
using an adaptive time step, which is refined whenever necessary to capture the nonlinear effects.

Three stochastic experiments are considered. The first (case 1) considers only A as the random parameter.
In the second (case 2), the random parameter is ω. In the final experiment (case 3), both A and ω are random.
For the random variables A and �, the parameters which define these random objects are µA = 100× 10−3 m,
and [ω1, ω2] = [1, 10] rad/s.
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Table 1 – Nominal (deterministic) parameters for the mechanical system that are used in the simulations.

parameter value unit

m1 6500 kg
m2 800 kg
L1 200× 10−3 m
L2 2400× 10−3 m
I1 6850 kgm2

I2 6250 kgm2

k1 465× 103 N/m
k2 465× 103 N/m
c1 5.6× 103 N/m/s
c2 5.6× 103 N/m/s
B1 850× 10−3 m
B2 850× 10−3 m
kT 45× 103 N/rad
cT 50× 103 Nm/rad/s
ρ π/9 rad
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(c) case 3: A and ω are random

Figure 3 – Illustration of MC convergence metric as function of the number of realizations.

4.1 Study of convergence for MC simulation

To evaluate the convergence of MC simulations, this work uses the map ns ∈ N 7→ conv(ns) ∈ R, defined by

conv(ns) =

 1

ns

ns∑
n=1

∫ tf

t=t0

(
y1(t, θn)2 + �1(t, θn)2 + �2(t, θn)2

)
dt

1/2

, (13)

where ns is the number of MC realizations. As shown in Soize (2005), this map allows one to evaluate the
convergence of the approximation

(
y1(t, θn), �1(t, θn), �2(t, θn)

)T
in the mean-square sense.

The evolution of conv(ns) as a function of ns can be seen in Figure 3. Note that for ns = 4096 the metric
value has reached a steady value in all cases 1 and 2. On the other hand, in case 3, which has two random
parameters, ns = 65536 realizations were required to achieve statistical convergence.

4.2 Propagation of uncertainties through the nonlinear dynamics

In Figure 4 it is presented the evolution of suspension stochastic displacement for all cases analyzed. At this
Figure, on the left, are represented the mean value (blue line), the nominal value (red line), and an envelope
of reliability (grey shadow), wherein a realization of the stochastic system has 90% of probability of being
contained. On the right the reader can see, on an enlarged scale, the mean and nominal values. Similar graphs
can be seen in Figures 5 and 6, which respectively show, for all cases analyzed, the evolution of suspension
stochastic rotation, and of the tower stochastic rotation.
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Figure 4 – This figure illustrates evolution of suspension translational dynamics. It can be seen the mean value (blue
line), the nominal value (red line), and a 90% of probability confidence band (grey shadow).

Observing Figures 4 to 6 it can be noted that, in case 1 (uncertainty in A), the nominal model and the mean
value of the system response are very close, and the band of reliability has a sinusoidal shape in phase with the
response, with amplitude much larger than the nominal model amplitude. Beyond that, in Figure 6 one can
observe a major tendency to have negative values in tower rotation, which, in principle, leads the structure to
a stable configuration. Among the cases analyzed, this is the one with the lowest level of uncertainty.

In contrast, in case 2 (uncertainty in ω), the level of uncertainty observed is much more pronounced. Not only
the mean value of the system response is completely different from the nominal model, as the band of reliability
has larger area, with amplitude of comparable size or slightly bigger than the nominal model amplitude. Also,
in this case, the system response mean value (at steady state) has not a purely sinusoidal appearance, because
the system is forced at various frequencies.

The case 3 (uncertainty in A and ω) is the one with the highest level of uncertainty, which is not surprising,
since it has two random parameters. Such as in case 2, there is great discrepancy between the mean value of
the system response and the nominal model. But now the band of reliability amplitude is always much higher
than the amplitude of the nominal model.

4.3 Probability distribution of the system response

The three degrees of freedom of the system response are the random processes y1(t, θ), �1(t, θ), and �2(t, θ).
Computing the time average of these random processes, at the steady state, one obtains the random variables
< y1 >, < �1 >, and < �2 >, each one with an underlying probability distribution. Accordingly, in what
follows it is presented an analysis of the (normalized) probability density functions (PDFs) associated with the
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Figure 5 – This figure illustrates evolution of suspension rotational dynamics. It can be seen the mean value (blue
line), the nominal value (red line), and a 90% of probability confidence band (grey shadow).
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Figure 6 – This figure illustrates evolution of tower rotational dynamics. It can be seen the mean value (blue line),
the nominal value (red line), and a 90% of probability confidence band (grey shadow).
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(c) case 3: A and ω are random

Figure 7 – This figure presents estimations to the (normalized) PDFs of time averaged suspension displacement
(left), suspension rotation (middle), and tower rotation (right).

mechanical system response. In this context normalized means a random variable with zero mean and unit
standard deviation.

In Figure 7, one can observe estimations for the (normalized) PDFs of the time average: (i) suspension
displacement, (ii) suspension rotation, and (iii) tower rotation. Completely different behaviors are observed in
the different cases analyzed. In the first case it is possible to observe large asymmetries with respect to the
mean value, while in the second case the PDFs are almost symmetrical, except by the tower rotation, which, in
addition to an asymmetry, presents bimodal behavior. In case 3 who presents a different behavior is, again, the
tower rotation. Comparing also the PDF shape of a same random variable, among the different cases studied,
one can also observe different behaviors.

5 FINAL REMARKS

This work presented the study of the nonlinear dynamics of an orchard tower sprayer, coupled with a
vehicle suspension, that is subject to random excitations due to soil irregularities, modeled as an inverted
double pendulum over a moving suspension, with three degrees of freedom (one translation and two rotations).
The random loadings are take into account through a parametric probabilistic approach, where the external
force was assumed to be a harmonic random process with random amplitude and frequency. The probability
distribution of these random parameters was constructed using the maximum entropy principle. For the cases
studied where the forcing frequency is random, the results of numerical simulation show large discrepancies in
the stochastic system response compared nominal (deterministic) model. Furthermore, an analysis of the steady
state probability distributions shows different behaviors in all the case studied.
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