
HAL Id: hal-01471286
https://hal.science/hal-01471286

Submitted on 19 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Berezin-Toeplitz quantization and complex Weyl
quantization of the torus t2

Ophélie Rouby

To cite this version:
Ophélie Rouby. Berezin-Toeplitz quantization and complex Weyl quantization of the torus t2. Por-
tugaliae Mathematica, 2017, 74 (4), pp.315-354. �10.4171/PM/2008�. �hal-01471286�

https://hal.science/hal-01471286
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


BEREZIN-TOEPLITZ QUANTIZATION AND COMPLEX WEYL

QUANTIZATION OF THE TORUS T2.

OPHÉLIE ROUBY

Abstract. In this paper, we give a correspondence between the Berezin-
Toeplitz and the complex Weyl quantizations of the torus T2. To achieve this,
we use the correspondence between the Berezin-Toeplitz and the complex Weyl
quantizations of the complex plane and a relation between the Berezin-Toeplitz
quantization of a periodic symbol on the real phase space R2 and the Berezin-
Toeplitz quantization of a symbol on the torus T2.

Introduction

The object of this paper is to construct a new semi-classical quantization of the
torus T2 by adapting Sjöstrand’s complex Weyl quantization of R2 and to give
the correspondence between this quantization and the well-known Berezin-Toeplitz
quantization of T2. When the phase space is R2n, the pseudo-differential Weyl
quantization allows us to relate a classical system to a quantum one through the
symbol map; thus pseudo-differential operators have become an important tool in
quantum mechanics. On the mathematical side, these operators have been intro-
duced in the mid-sixties by André Unterberger and Juliane Bokobza [UB64] and in
parallel by Joseph Kohn and Louis Nirenberg [KN65] and have been investigated by
Lars Hörmander [Hör65, Hör66, Hör67]. They allow to study physical systems in
positions and momenta. On the other hand, Berezin-Toeplitz operators have been
introduced by Feliks Berezin [Ber75] and investigated by Louis Boutet de Mon-
vel and Victor Guillemin [BdMG81] as a generalization of Toeplitz matrices. The
study of these operators has been motivated by the fact that pseudo-differential
operators take into account only phases spaces that can be written as cotangent
spaces, whereas in mechanics, there are physical observables like spin that naturally
lives on other types of phases spaces, like compact Kähler manifolds, which can be
quantized in the Berezin-Toeplitz way. In fact, it was realized recently that the
Berezin-Toeplitz quantization applies to even more general symplectic manifolds,
and thus has become a tool of choice for applications of symplectic geometry and
topology, see [CP16].

In this paper, we give a relation between the Berezin-Toeplitz quantization of the
torus, studied for instance by David Borthwick and Alejandro Uribe in [BU03] and
the complex Weyl quantization of the torus, which we introduce as a variation of
Sjöstrand’s quantization of R2. The complex Weyl quantization of R2 has been
investigated by Johannes Sjöstrand in [Sjö02], then by Anders Melin and Johannes
Sjöstrand in [MS02, MS03], also by Michael Hitrik and Johannes Sjöstrand in [HS04]
and in their mini-courses [HS15] and by Michael Hitrik, Johannes Sjöstrand and San
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2 OPHÉLIE ROUBY

Vũ Ngo.c in [HSN07]. This quantization of the real plane R2 allows to study pseudo-
differential operators with complex symbols, and therefore is particularly useful for
problems involving non self-adjoint operators or quantum resonances. It is defined
by a contour integral over an IR-manifold (I-Lagrangian and R-symplectic) which
plays the role of the phase space. Here, we define an analogue of this notion in the
torus case.
If we consider the complex plane as a phase space, there exists a correspondence
between the complex Weyl and the Berezin-Toeplitz quantizations (this correspon-
dence uses a variant of Bargmann’s transform and can be found, for instance, in
the book [Zwo12, chapter 13] of Maciej Zworski); using this result, we are able to
obtain Bohr-Sommerfeld quantization conditions for non-selfadjoint perturbations
of self-adjoint Berezin-Toeplitz operators of the complex plane C by first proving
the result in the case of pseudo-differential operators (see [Rou17]). Therefore, we
expect that this new complex quantization of T2, together with its relationship to
the Berezin-Toeplitz quantization, will be crucial in obtaining precise eigenvalue
asymptotics of non-selfadjoint Berezin-Toeplitz operators on the torus.

Structure of the paper:

• in Section 1, we state our result;
• in Section 2, we give the proof of our result which is divided into three

parts, the first one consists in recalling the Berezin-Toeplitz quantization
of the torus, the second one in introducing the complex Weyl quantization
of the torus and the last one in relating these two quantizations.

Acknowledgements. The author would like to thank both San Vũ Ngo.c and
Laurent Charles for their support and guidance. Funding was provided by the
Université de Rennes 1 and the Centre Henri Lebesgue.

1. Result

1.1. Context. In this section, we recall the definition of the Berezin-Toeplitz quan-
tization of a symbol on the torus T2 (see for example [CM15]) and we give a defi-
nition of the complex Weyl quantization of a symbol on the torus. Let 0 < ~ ≤ 1
be the semi-classical parameter. By convention the Weyl quantization involves the
semi-classical parameter ~, contrary to the Berezin-Toeplitz quantization which in-
volves the inverse of this parameter, denoted by k. In the whole paper, we will use
these two parameters.

Notation: let k be an integer greater than 1. Let u and v be complex numbers of
modulus 1.

• If z ∈ C, we denote by z = (p, q) ∈ R2 or z = p+ iq via the identification
of C with R2.

• T
2 denotes the torus (R/2πZ)× (R/Z).

• Gk is the space of measurable functions g such that:

∫ 2π

0

∫ 1

0

|g(p, q)|2 e−kq2dpdq < +∞,
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which are invariant under the action of the Heisenberg group (for more
details, see Subsection 2.1), i.e. for all (p, q) ∈ R2, we have:

g(p+ 2π, q) = ukg(p, q) and g(p, q + 1) = vke−i(p+iq)k+k/2g(p, q).

• Hk is the space of holomorphic functions in Gk, i.e.:

Hk =
{

g ∈ Hol(C); g(p+ 2π, q) = ukg(p, q), g(p, q + 1) = vke−i(p+iq)k+k/2g(p, q)
}

.

• Πk is the orthogonal projection of the space Gk (equipped with the weighted
L2-scalar product on [0, 2π]× [0, 1]) on the space Hk.

Remark 1.1.1.

• The spaces Gk and Hk depend on the complex numbers u and v.
• In [BU03], they consider the torus T2 = R2/Z2 and they choose an other

quantization which leads to an other space of holomorphic functions, also
called Hk, defined as follows:

Hk =
{

g ∈ Hol(C); ∀(m,n) ∈ Z
2, g(z +m+ in) = (−1)kmnekπ(z(m−in)+(1/2)(m2+n2))g(z)

}

.

Definition 1.1.2 (Asymptotic expansion). Let fk ∈ C∞(R2). We say that fk ad-
mits an asymptotic expansion in powers of 1/k for the C∞-topology of the following
form:

fk(x, y) ∼
∑

l≥0

k−lfl(x, y),

if:

(1) ∀l ∈ N, fl ∈ C∞(R2);
(2) ∀L ∈ N

∗, ∀(x, y) ∈ R
2, ∃C > 0 such that:

∣

∣

∣

∣

∣

fk(x, y)−
L−1
∑

l=0

k−lfl(x, y)

∣

∣

∣

∣

∣

≤ Ck−L for large enough k.

We denote by C∞
k (R2) the space of such functions.

Definition 1.1.3 (Berezin-Toeplitz quantization of the torus). Let fk ∈ C∞
k (R2)

be a function such that, for (x, y) ∈ R2, we have:

fk(x+ 2π, y) = fk(x, y) = fk(x, y + 1).

Define the Berezin-Toeplitz quantization of the function fk by the sequence of op-
erators Tfk := (Tk)k≥1 where, for k ≥ 1, the operator Tk is given by:

Tk = ΠkMfkΠk : Hk −→ Hk,

where Mfk : Gk −→ Gk is the multiplication operator by the function fk.
We call fk the symbol of the Berezin-Toeplitz operator Tfk .

Now, we define the complex Weyl quantization of a symbol on the torus. We
will explain in details in Subsection 2.2 why we consider such a notion. First, we
introduce some notations.

Notation: let Φ1 be the strictly subharmonic quadratic form defined by the fol-
lowing formula for z ∈ C:

Φ1(z) =
1

2
ℑ(z)2.
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• ΛΦ1
denotes the following set:

ΛΦ1
=

{(

z,
2

i

∂Φ1

∂z
(z)

)

; z ∈ C

}

= {(z,−ℑ(z)); z ∈ C} ≃ C.

• L(dz) denotes the Lebesgue measure on C, i.e. L(dz) =
i

2
dz ∧ dz.

• L2
~
(C,Φ1) := L2(C, e−2Φ1(z)/~L(dz)) is the set of measurable functions f

such that:
∫

C

|f(z)|2e−2Φ1(z)/~L(dz) < +∞.

• H~(C,Φ1) := Hol(C)∩L2
~
(C,Φ1) is the set of holomorphic functions in the

space L2
~
(C,Φ1).

• C∞
~
(ΛΦ1

) denotes the set of smooth functions on ΛΦ1
admitting an asymp-

totic expansion in powers of ~ for the C∞-topology in the sense of Definition
1.1.2 (by replacing 1/k by ~ and R2 by ΛΦ1

).

Remark 1.1.4. There are several definitions of the Bargmann transform. Here we

chose the weight function Φ1(z) =
1

2
ℑ(z)2 instead of |z|2 because it is well-adapted

to the analysis of the torus.

Definition 1.1.5 (Complex Weyl quantization of the torus T2 (see Definitions
2.2.22 and 2.2.24)). Let b~ ∈ C∞

~
(ΛΦ1

) be a function such that, for (z, w) ∈ ΛΦ1
,

we have:

b~(z + 2π,w) = b~(z, w) = b~(z + i, w − 1).

Define the complex Weyl quantization of the function b~, denoted by OpwΦ1
(b~), by

the following formula, for u ∈ H~(C,Φ1):

OpwΦ1
(b~)u(z) =

1

2π~

∫∫

Γ(z)

e(i/~)(z−w)ζb~

(

z + w

2
, ζ

)

u(w)dwdζ,

where the contour integral is the following:

Γ(z) =

{

(w, ζ) ∈ C
2; ζ =

2

i

∂Φ1

∂z

(

z + w

2

)

= −ℑ
(

z + w

2

)}

.

We call b~ the symbol of the pseudo-differential operator OpwΦ1
(b~).

We will show that for b~ ∈ C∞
~
(ΛΦ1

) satisfying the hypotheses of Definition
1.1.5, the complex Weyl quantization defines an operator OpwΦ1

(b~) which sends
the space of holomorphic functions Hk on itself (see Proposition 2.2.25). Therefore,
the Berezin-Toeplitz and the complex Weyl quantizations give rise to operators
acting on the space of holomorphic functions Hk.

1.2. Main result.

Theorem A. Let fk ∈ C∞
k (R2) be a function such that, for (x, y) ∈ R2, we have:

fk(x+ 2π, y) = fk(x, y) = fk(x, y + 1).

Let Tfk = (Tk)k≥1 be the Berezin-Toeplitz operator of symbol fk. Then, for k ≥ 1,
we have:

Tk = OpwΦ1
(b~) +O(k−∞) on Hk,



QUANTIZATIONS OF THE TORUS 5

where b~ ∈ C∞
~
(ΛΦ1

) is given by the following formula, for z ∈ ΛΦ1
≃ C:

b~(z) = exp

(

1

k
∂z∂z

)

(fk(z)).

This formula means that b~ is the solution at time 1 of the following ordinary
differential equation:







∂tb~(t, z) =
1

k
∂z∂z (b~(t, z)) ,

b~(0, z) = fk(z).

Besides, b~ satisfies the following periodicity conditions, for (z, w) ∈ ΛΦ1
:

b~(z + 2π,w) = b~(z, w) = b~(z + i, w − 1).

Remark 1.2.1. This result is analogous to Proposition 2.3.3 (see for example
[Zwo12, Chapter 13]) which relates the Berezin-Toeplitz and the complex Weyl quan-
tizations of the complex plane. The important difference here is that the phase space
is the torus.

Remark 1.2.2. As a corollary of this result, we can establish a connection between
the Berezin-Toeplitz and the classical Weyl quantizations of the torus (see Corollary
A.1).

2. Proof

The structure of the proof is organized as follows:

• in Subsection 2.1, we recall the Berezin-Toeplitz quantization of the torus;
• in Subsection 2.2, we introduce the complex Weyl quantization of the torus;
• in Subsection 2.3, we relate the Berezin-Toeplitz quantization of the torus

to the complex Weyl quantization of the torus.

2.1. Berezin-Toeplitz quantization of the torus T
2. In this paragraph, we

recall the geometric quantization of the torus (see for example the article [CM15]
of Laurent Charles and Julien Marché).

Consider the real plane R2 endowed with the euclidean metric, its canonical
complex structure and with the symplectic form ω = dp∧ dq. Let LR2 = R2 ×C be
the trivial complex line bundle endowed with the constant metric and the connection

∇ = d+
1

i
α where α is the 1-form given by:

α =
1

2
(pdq − qdp) .

The holomorphic sections of LR2 are the sections f satisfying the following condi-
tion:

∇zf =
∂

∂z
f +

1

4
zf = 0.

We are interested in the holomorphic sections of the torus T2 = (R/2πZ)×(R/Z).

Let x = 2π
∂

∂p
, i.e. if we denote by tx the translation of vector x, it is defined by

the following formula:

tx : R2 −→ R
2

(p, q) −→ (p+ 2π, q).
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And let y =
∂

∂q
which corresponds to the translation ty given by:

ty : R2 −→ R
2

(p, q) 7−→ (p, q + 1).

Note that the ω volume of the fundamental domain of the lattice is 2π.
Let k ≥ 1, the Heisenberg group at level k is R2 × U(1) with the product:

(x, u) · (y, v) =
(

y + x, uve(ik/2)ω(x,y)
)

,

for (x, u), (y, v) ∈ R2 × U(1) (where U(1) denotes the set of complex numbers of
modulus one). This formula defines an action of the Heisenberg group on the bundle

L⊗k
T2 endowed with the product measure. We identify the space of square integrable

sections of L⊗k
T2 which are invariant under the action of the Heisenberg group with

the space Gk (defined in Subsection 1.1). In fact, if ψ denotes such a section, we
associate to it a function g ∈ Gk using the following application:

L2(T2, L⊗k
T2 ) −→ Gk
ψ 7−→ g(x̃),

where x̃ ∈ R2 and x̃ = x0 + (n1, n2) with x0 ∈ [0, 2π] × [0, 1], (n1, n2) ∈ Z2 and
where:

(x̃, g(x̃)) = ((n1, n2), 1) · (x0, ψ(x0)).
Similarly, we identify the space of holomorphic sections of L⊗k

T2 with the following
Hilbert space:

Hk =
{

g ∈ Hol(C); g(p+ 2π, q) = ukg(p, q), g(p, q + 1) = vke−i(p+iq)k+k/2g(p, q)
}

,

endowed with the L2-weighted scalar product on [0, 2π]× [0, 1]. The complex num-
bers u and v are called Floquet indices. The Hilbert space Hk admits an orthogonal
basis, given for l ∈ {0, . . . , k − 1}, by the functions el which are defined, for z ∈ C,
as follows:

(1) el(z) = ukz/(2π)
∑

j∈Z

(

v−ke−l−kj/2uik/(2π)
)j

ei(l+jk)z .

2.2. Complex Weyl quantization of the torus T2. In this paragraph, we intro-
duce the notion of complex Weyl quantization of the torus which, to our knowledge,
is new. To do so, we follow these three steps:

1. we recall the definition of the classical Weyl quantization of the torus;
2. we recall the definition of the semi-classical Bargmann transform and we

look at some of its properties;
3. we introduce the complex Weyl quantization as the range of the classical

Weyl quantization by the Bargmann transform.

2.2.1. Classical Weyl quantization of the torus. The classical Weyl quantization of
a symbol on the torus has been studied, for example, by Monique Combescure and
Didier Robert in the book [CR12, Chapter 6]. We need to introduce the following
notation.

Notation:
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• S(R) denotes the Schwartz space, i.e.:

S(R) =
{

φ ∈ C∞(R); ‖φ‖α,β := sup
x∈R

|xα∂βxφ(x)| < +∞, ∀α, β ∈ N

}

;

• for φ ∈ S(R), F~φ denotes the semi-classical Fourier transform of the func-
tion φ and it is defined by the following equality:

F~φ(ξ) =

∫

R

e−(i/~)xξφ(x)dx

this transform is an isomorphism of the Schwartz space and its inverse is
given by:

F−1
~
φ(x) =

1

2π~

∫

R

e(i/~)xξφ(ξ)dξ;

• S ′(R) denotes the space of tempered distributions, it is the dual of the
Schwartz space S(R), i.e. it is the space of continuous linear functionals on
S(R);

• 〈·, ·〉S′,S denotes the duality bracket between S ′(R) and S(R);
• for ψ ∈ S ′(R), F~ψ denotes the semi-classical Fourier transform of a tem-

pered distribution and it is defined by the following equality, for φ ∈ S(R):
〈F~ψ, φ〉S′,S = 〈ψ,F~φ〉S′,S ;

• for a ∈ R, we denote by τa the translation of vector a defined as follows:

τa : R −→ R

x 7−→ x+ a,

recall that the translation of a tempered distribution ψ ∈ S ′(R) is defined
as follows, for φ ∈ S(R):

〈τaψ, φ〉S′,S = 〈ψ, τ−aφ〉=R/Z∈S′,S

the distribution ψ is called a-periodic if τaψ = ψ, in this case, ψ can be
written as a convergent Fourier series in D′(R) (see for example the book
of Jean-Michel Bony [Bon11]):

ψ =
∑

l∈Z

ψle
ilt2π/a,

where the sequence (ψl)l∈Z is such that, there exists an integer N ≥ 0 such
that:

|ψl| ≤ C(1 + |l|)N ∀l ∈ Z.

Recall now the definition of the subspace of tempered distributions that corre-
sponds to the natural space on which pseudo-differential operators of the torus act
(see [CR12, Chapter 6]). For k ≥ 1 and for u, v ∈ U(1), we consider the following
space:

Lk =
{

ψ ∈ S ′(R); τ2πψ = ukψ, τ1F~(ψ) = v−kF~(ψ)
}

.

Remark 2.2.1.

• The definition of the space Lk involves two complex numbers u and v. We
will see that they correspond to the Floquet indices seen in the definition of
the space Hk.
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• In [CZ10], they consider the torus T2 = R2/Z2 and they choose u = v = 1.

This space admits a basis (see for example [CR12, Chapter 6]), given for l ∈ {0, . . . , k−1},
by the distributions ǫl which are defined as follows:

(2) ǫl = ukt/(2π)
∑

j∈Z

(

v−k
)j
ei(l+jk)t.

We consider the structure of Hilbert space such that the family (ǫl)l∈Z is an or-
thonormal basis of the space Lk. Recall now two different definitions of the Weyl
quantization of a symbol on the torus T2. In the whole paper S(R2) denotes the
following class of symbols on R2:

S(R2) =
{

a ∈ C∞(R2); ∀α ∈ N
2, there exists a constant Cα > 0 such that: |∂αa| ≤ Cα

}

.

Remark 2.2.2. Let a~ ∈ C∞
~
(R2) be a function such that, for all (x, y) ∈ R2, we

have:

a~(x + 2π, y) = a~(x, y) = a~(x, y + 1).

Then the function a~ belongs to the class of symbols S(R2).

Definition 2.2.3 (First definition of the Weyl quantization of the torus). Let
a~ ∈ C∞

~
(R2) be a function such that, for all (x, y) ∈ R2, we have:

a~(x + 2π, y) = a~(x, y) = a~(x, y + 1).

Define the Weyl quantization of the symbol a~, denoted by Opw(a~)(x, ~Dx), by the
following integral formula, for u ∈ S(R):

Opw(a~)(x, ~Dx)u(x) =
1

2π~

∫

R

∫

R

ei(x−y)ξ/~a~

(

x+ y

2
, ξ

)

u(y)dydξ.

We call a~ the symbol of the pseudo-differential operator Opw(a~)(x, ~Dx).

Recall that if a~ ∈ S(R2), then (see for example the book of Maciej Zworski
[Zwo12, Chapter 3]):

1. Opw(a~)(x, ~Dx) : S(R) −→ S(R);
2. Opw(a~)(x, ~Dx) : S ′(R) −→ S ′(R);

are continuous linear transformations and the action of Opw(a~) on S ′(R) is defined,
for ψ ∈ S ′(R) and φ ∈ S(R), by:

(3) 〈Opw(a~)ψ, φ〉S′,S = 〈ψ,Opw(ã~)φ〉S′,S ,

where, for (x, y) ∈ R2, ã~(x, y) := a~(x,−y) ∈ S(R2). This property allows to
easily prove the following proposition (see [CZ10]).

Proposition 2.2.4. Let a~ ∈ C∞
~
(R2) be a function such that, for all (x, y) ∈ R2,

we have:

a~(x + 2π, y) = a~(x, y) = a~(x, y + 1).

Then, if ~ =
1

k
for k ≥ 1, we have: Opw(a~)(x, ~Dx) : Lk −→ Lk.

Since we consider a symbol a~ ∈ C∞
~
(R2) which is periodic, we can rewrite it as

a Fourier series, for all (x, y) ∈ R2:

(4) a~(x, y) =
∑

(m,n)∈Z2

a~m,ne
ixne−i2πym
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where
(

a~m,n
)

(m,n)∈Z2
is a sequence of complex coefficients depending on the semi-

classical parameter ~. Recall an other definition of the Weyl quantization of a
symbol on the torus, linked to Equation (4), found in the book of Monique Cobes-
cure and Didier Robert [CR12, Chapter 6]. By convention, this definition uses the
parameter k, which is the inverse of the semi-classical parameter ~. Throughout
this text, we will make the abuse of notation of using ak and a~ for the same object
where ~ = 1/k.

Definition 2.2.5 (Second definition of the Weyl quantization of the torus). Let
ak ∈ C∞

k (R2) be a function such that, for all (x, y) ∈ R2, we have:

ak(x + 2π, y) = ak(x, y) = ak(x, y + 1).

Define the Weyl quantization of the symbol ak, denoted by Opwk (ak), by the following
formula:

Opwk (ak) =
∑

(m,n)∈Z2

akm,nT̂

(

2πm

k
,
n

k

)

,

where the sequence
(

akm,n
)

(m,n)∈Z2
is defined by Equation (4) and where T̂ (p, q)

is the Weyl-Heisenberg translation operator by a vector (p, q) ∈ R2 defined, for
φ ∈ S(R), by:

T̂ (p, q)φ(x) = e−iqpk/2eixqkφ(x− p).

Proposition 2.2.6 ([CR12]). Let ak ∈ C∞
k (R2) be a function such that, for all

(x, y) ∈ R
2, we have:

ak(x + 2π, y) = ak(x, y) = ak(x, y + 1).

Then, we have: Opwk (ak) : Lk −→ Lk.

Remark 2.2.7 ([CZ10]). Definition 2.2.3 and Definition 2.2.5 coincides in the
sense that, if a~ = ak ∈ C∞

~
(R2) is a function such that, for all (x, y) ∈ R2, we

have:

a~(x + 2π, y) = a~(x, y) = a~(x, y + 1).

Then, Opw(a~) = Opwk (ak) on the space Lk.

2.2.2. Bargmann transform. In this paragraph, we recall the definition of the semi-
classical Bargmann transform and we study some of its properties. The principal
difference with the transform introduced by Valentine Bargmann in the article
[Bar67] is the weight function that we choose. The semi-classical Bargmann trans-
form has been studied by Anders Melin, Michael Hitrik and Johannes Sjöstrand in
[MS02, MS03, HS04] and by the last two authors in the mini-course [HS15]. Here,
we investigate the action of the semi-classical Bargmann transform on the Schwartz
space, on the tempered distributions space and on the space Lk.

First, we recall the definition of the Bargmann transform and its first properties
(see for example the book of Maciej Zworski [Zwo12, Chapter 13]).

Definition 2.2.8 (Bargmann transform and its canonical transformation). Let φ1
be the holomorphic quadratic function defined, for (z, x) ∈ C× C, by:

φ1(z, x) =
i

2
(z − x)2.
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The Bargmann transform associated with the function φ1 is the operator, denoted
by Tφ1

, defined on S(R) by:

Tφ1
u(z) = cφ1

~
−3/4

∫

R

e(i/~)φ1(z,x)u(x)dx = cφ1
~
−3/4

∫

R

e−(1/2~)(z−x)2u(x)dx,

where:

(5) cφ1
=

1

21/2π3/4

| det ∂x∂zφ1|
(detℑ∂2xφ1)1/4

=
1

21/2π3/4
.

Define the canonical transformation associated with Tφ1
by:

κφ1
: C× C −→ C× C,

(x,−∂xφ1(z, x)) =: (x, ξ) 7−→ (z, ∂zφ1(z, x)) = (x− iξ, ξ).

We have the following properties on the Bargmann transform (see for example
[Zwo12, Chapter 13]).

Proposition 2.2.9.

(1) Tφ1
extends to a unitary transformation: L2(R) −→ H~(C,Φ1).

(2) If T ∗
φ1

: L2
~
(C,Φ1) −→ L2(R) denotes the adjoint of Tφ1

: L2(R) −→ L2
~
(C,Φ1),

then it is given by the following formula, for v ∈ L2
~
(C,Φ1):

T ∗
φ1
v(x) = cφ1

~
−3/4

∫

C

e−(1/2~)(z−x)2e−2Φ1(z)/~v(z)L(dz).

(3) Let ψ1 be the unique holomorphic quadratic form on C × C such that, for
all z ∈ C, we have:

ψ1(z, z) = Φ1(z).

Then the orthogonal projection ΠΦ1,~ : L2
~
(C,Φ1) −→ H~(C,Φ1) is given

by the following formula:

ΠΦ1,~u(z) =
2 det ∂2z,wψ1

π~

∫

C

e2(ψ1(z,w)−Φ1(w))/~u(w)dwdw.

Moreover, ΠΦ1,~ = Tφ1
T ∗
φ1

.

The following proposition gives a connection between the Weyl quantization of
R2 and the complex Weyl quantization of R2 (see for example the mini-course
[HS15]).

Proposition 2.2.10. Let a~ ∈ S(R2) be a function admitting an asymptotic ex-
pansion in powers of ~. Let OpwΦ1

(b~) := Tφ1
Opw(a~)T

∗
φ1

. Then:

1. OpwΦ1
(b~) : H~(C,Φ1) −→ H~(C,Φ1) is uniformly bounded with respect to

~;
2. OpwΦ1

(b~) is given by the following contour integral:

OpwΦ1
(b~)u(z) =

1

2π~

∫∫

Γ(z)

e(i/~)(z−w)ζb~

(

z + w

2
, ζ

)

u(w)dwdζ,
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where Γ(z) =

{

(w, ζ) ∈ C2; ζ =
2

i

∂Φ1

∂z

(

z + w

2

)

= −ℑ
(

z + w

2

)}

, where

the symbol b~ is given by b~ = a~ ◦ κ−1
φ1

and where the canonical transfor-
mation κφ1

is defined by:

κφ1
: R2 −→ ΛΦ1

= {(z,−ℑ(z)); z ∈ C}
(x, ξ) 7−→ (x− iξ, ξ).

We study now the action of the Bargmann transform on the Schwartz space in
the spirit of the article of Valentine Bargmann [Bar67], except that in our case, we
introduce a semi-classical parameter and a different weight function. Therefore, for
the sake of completeness, we recall the theory. To do so, we introduce some new
notations.

Notation:

• for j ∈ N:

Sj(R) :=
{

φ ∈ Cj(R); ‖φ‖j := max
m≤j

(

sup
x∈R

|(1 + x2)(j−m)/2∂mx φ(x)|
)

< +∞
}

;

thus, the Schwartz space can be rewritten as follows:

S(R) =
∞
⋂

j=0

Sj(R) = {φ ∈ C∞(R); ∀j ∈ N, ‖φ‖j < +∞} ;

• for j ∈ N:

S
j(C) :=

{

ψ ∈ Hol(C); |ψ|j := sup
z∈C

(

(

1 + |z|2
)j/2

e−Φ1(z)/~|ψ(z)|
)

< +∞
}

;

• we finally define:

S(C) :=

∞
⋂

j=0

S
j(C) = {ψ ∈ Hol(C); ∀j ∈ N, |ψ|j < +∞} .

Proposition 2.2.11.

(1) Let j ∈ N, let φ ∈ Sj(R), then, for all z ∈ C, we have the following
estimate:

(6) |Tφ1
φ(z)| ≤ a~j

(

1 + |z|2
)−j/2

eΦ1(z)/~‖φ‖j ,
where a~j is a constant depending on j and on the semi-classical parameter

~. As a result: Tφ1
Sj(R) ⊂ S

j(C).
(2) Tφ1

S(R) ⊂ S(C).

Proof. We give a sketch of the proof ; for more details, see the article of Valentine
Bargmann [Bar67] where the argument can be adapted to the new weight.
Step 1: we prove using simple integral estimates that for j = 0 and for φ ∈ S0(R),
there exists a constant a~0 such that, for all z ∈ C, we have:

|Tφ1
φ(z)| ≤ a~0e

Φ1(z)/~‖φ‖0.
Step 2: we prove that for j ≥ 1 and for φ ∈ Sj(R), there exists a constant a~j such
that, for all z ∈ C, we have:

|Tφ1
φ(z)| ≤ a~j

(

1 + |z|2
)−j/2

eΦ1(z)/~‖φ‖j .
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This step can be divided into 7 steps.

• Step 2.1: it follows from the definition of ‖φ‖j that:
(a) |∂mx φ(x)| ≤ ‖φ‖j for m ≤ j;

(b) |φ(x)| ≤ ‖φ‖j(1 + x2)−j/2.
• Step 2.2: for z ∈ C and for τ ∈ R, let: F (τ) = (Tφ1

φ)(τz), thus:
F (1) = (Tφ1

φ)(z) and we can use the function F to decompose (Tφ1
φ)(z)

into two functions:

F (1) = pj(z) + rj(z),

where:






















pj(z) =

j−1
∑

l=0

F (l)(0)

l!
,

rj(z) =

∫ 1

0

(1− τ)j−1

(j − 1)!
F (j)(τ)dτ.

Then, we deduce the following estimates:






















|pj(z)| ≤
j−1
∑

l=0

|z|lηl(0),

|rj(z)| ≤
∫ 1

0

(1− τ)j−1

(j − 1)!
|z|jηj(τz)dτ,

where ηl(z) is a bound on ∂l(Tφ1
φ)(z).

• Step 2.3: we prove that the function ηl satisfies the following equality for
z ∈ C:

ηl(z) = βeΦ1(z)/~ for l ≤ j,

where β = (π~)−1/4‖φ‖j using Lebesgue’s theorem, Step 2.1 (a) and inte-
gral estimates.

• Step 2.4: we deduce from Step 2.2 and Step 2.3 that, for z ∈ C, we have
the following estimates:















|pj(z)| ≤ β

j−1
∑

l=0

|z|l,

|rj(z)| ≤ β|z|j(2~)je1/2~(1 + ℑ(z)2)−jeΦ1(z)/~.

• Step 2.5: we prove using Step 2.4 that, for z ∈ C, we have:

|Tφ1
φ(z)| ≤ ρ′~‖φ‖j(1 + |z|2)j/2(1 + ℑ(z)2)−jeΦ1(z)/~ where ρ′~ is a constant.

• Step 2.6: we prove using Step 2.1 (b) that, for z ∈ C, we have:

|Tφ1
φ(z)| ≤ ρ′′~‖φ‖j(1 + ℜ(z)2)−j/2eΦ1(z)/~ where ρ′′~ is an other constant.

• Step 2.7: we compare the estimates of Step 2.5 and Step 2.6 and we deduce
that, for z ∈ C, we have:

|Tφ1
φ(z)| ≤ ρ~‖φ‖j(1 + |z|2)−j/2eΦ1(z)/~ where ρ~ = max(2jρ′~, 2

j/2ρ′′~).
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Step 3: the fact that Tφ1
Sj(R) ⊂ S

j(C) is a corollary of Equation (6) and
Tφ1

S(R) ⊂ S(C) can be deduced from the first assertion of the proposition and the
definitions of the spaces S(R) and S(C). �

Remark 2.2.12. Since S(R) ⊂ L2(R), then according to Propositions 2.2.9 and
2.2.11, we have S(C) ⊂ H~(C,Φ1).

Conversely, we have the following proposition.

Proposition 2.2.13.

(1) Let µ = 1+ j + τ with j ∈ N and τ ∈ N∗, then, for all ψ ∈ S
µ(C), we have

the following estimate:

(7) ‖T ∗
φ1
ψ‖j ≤ a~j,τ |ψ|µ,

where a~j,τ is a constant depending on the semi-classical parameter ~ and

on the integers j and τ . As a result: T ∗
φ1
S
µ(C) ⊂ Sj(R).

(2) T ∗
φ1
S(C) ⊂ S(R).

Proof. We give a sketch of the proof, for more details see [Bar67].
Step 1: we give an estimate on ∂mT ∗

φ1
ψ for m ≤ j by following these steps.

• Step 1.1: we prove using Lebesgue’s theorem that, for x ∈ R, we have:

∣

∣∂mx (T ∗
φ1
ψ(x))

∣

∣ ≤ |cφ1
|~−3/4

∫

C

Bm(z, x)L(dz),

where for (z, x) ∈ C× R:

Bm(z, x) =
∣

∣

∣
∂mx

(

e−(1/2~)(z−x)2
)

e−2Φ1(z)/~ψ(z)
∣

∣

∣
.

• Step 1.2: we prove that, for (z, x) ∈ C× R and for m ≤ j, we have:

Bm(z, x) ≤ δj
~
2m
(

1 +
1

2~
(ℜ(z)− x)2

)m/2

e−(1/2~)(ℜ(z)−x)2(1 + |z|2)(m−µ)/2|ψ|µ,

where δj
~

is a constant depending on j and ~. To do so, we use estimates on

Hermite polynomials for the term
∣

∣

∣
∂mx

(

e−(1/2~)(z−x)2
)∣

∣

∣
and the following

estimate, for z ∈ C:

|ψ(z)| ≤ (1 + |z|2)−µ/2eΦ1(z)/~|ψ|µ,
resulting from the fact that ψ ∈ S

µ(C).
• Step 1.3: according to Step 1.1 and Step 1.2, for x ∈ R, we have:

|∂mx (T ∗
φ1
ψ(x))| ≤ a~j,τ (1 + x2)(m−j)/2|ψ|µ,

where a~j,τ is a constant depending on j, τ and ~.

Step 2: according to Step 1, for x ∈ R and µ = 1 + j + τ , we have:

(1 + x2)(j−m)/2|∂mx (T ∗
φ1
ψ(x))| ≤ a~j,τ |ψ|µ.

Thus:

sup
x∈R

(

(1 + x2)(j−m)/2|∂mx (T ∗
φ1
ψ(x))|

)

≤ a~j,τ |ψ|µ.

Consequently, we have:

‖T ∗
φ1
ψ‖j = max

m≤j

(

sup
x∈R

(

(1 + x2)(j−m)/2|∂mx (T ∗
φ1
ψ(x))|

)

)

≤ a~j,τ |ψ|µ.



14 OPHÉLIE ROUBY

Step 3: the fact that T ∗
φ1
S
µ(C) ⊂ Sj(R) is a corollary of Equation (7) and

T ∗
φ1
S(C) ⊂ S(R) can be deduced from the first assertion of the proposition and the

definitions of the spaces S(R) and S(C). �

We are interested now in the action of the Bargmann transform on the tempered
distributions space. Here again we can adapt the techniques of [Bar67].

Notation:

• S
′(C) denotes the dual of the space S(C) (equipped with the topology of

the semi-norms |·|j) i.e. the space of continuous linear functionals on S(C);
• 〈·, ·〉S′,S denotes the duality bracket between S

′(C) and S(C);
• for f, g ∈ Hol(C), we denote by 〈g, f〉 the following product:

〈g, f〉 =
∫

C

g(z)f(z)e−2Φ1(z)/~L(dz),

when this integral converges.

Remark 2.2.14.

• The bracket defined above coincides with the scalar product 〈g, f〉L2

~
(C,Φ1)

when g, f ∈ H~(C,Φ1).
• If g ∈ S

ρ(C) and f ∈ S
σ(C) with ρ + σ > 2, then the bracket 〈g, f〉 is

well-defined.

We use this bracket to describe the elements of the space S
′(C) similarly to the

article of Valentine Bargmann [Bar67].

Proposition 2.2.15. Every continuous linear functional L on S(C) can be written,
for all f ∈ S(C), as follows:

L(f) = 〈g, f〉 =
∫

C

g(z)f(z)e−2Φ1(z)/~L(dz),

where g is a function in S
−l(C) for l ∈ N and is uniquely defined, for all a ∈ C, by

g(a) = L(ea) (where for all z ∈ C, ea(z) = e−(a−z)2/(4~)).
Conversely, every functional of the form L(f) = 〈g, f〉 with g ∈ S

−l(C) defines a
continuous linear functional on S(C).

Proof. We give a sketch of the proof, for more details see [Bar67].
Step 1: for all L ∈ S

′(C), there exists C > 0 and l ∈ N such that: |L(f)| ≤ C|f |l,
for all f ∈ S(C).

Step 2: for a ∈ C, let g be the function defined by g(a) = L(ea). We prove using
Step 1 that ea ∈ S(C) and g ∈ S

−l(C) (ea is a reproducing kernel for the space
H~(C,Φ1) and for S(C)).
Step 3: let L1 be the continuous linear functional defined, for f ∈ S(C), by
L1(f) = 〈g, f〉. We show that, for all a ∈ C, we have L1(ea) = L(ea) then we
deduce that L = L1 using the density of the set of finite linear combinations of
elements of B = {ea, a ∈ C} in S(C). �

As in the article of Valentine Bargmann [Bar67], we prove that the Bargmann
transform Tφ1

and its adjoint T ∗
φ1

act on the spaces S ′(R) and S
′(C) respectively.

Proposition 2.2.16.



QUANTIZATIONS OF THE TORUS 15

(1) Tφ1
extends to an operator: S ′(R) −→ S

′(C), which satisfies for v ∈ S ′(R)
and f ∈ S(C):

〈Tφ1
v, f〉S′,S = 〈v, T ∗

φ1
f〉S′,S .

(2) T ∗
φ1

extends to an operator: S
′(C) −→ S ′(R), which satisfies for L ∈ S

′(C)

and φ ∈ S(R):
〈T ∗
φ1
L, φ〉S′,S = 〈L, Tφ1

φ〉S′,S.

Proof. We give a sketch of the proof, for more details see [Bar67].
Let v ∈ S ′(R), let L(f) be the functional defined by:

L(f) = 〈v, φ〉S′,S ,

where f = Tφ1
φ ∈ S(C), then L(f) is a continuous linear functional on S(C).

Conversely if L ∈ S
′(C) and if we define v by:

v(φ) = 〈v, φ〉S′,S = L(f) where f = Tφ1
φ,

then v is a continuous linear functional on S(R). Then, according to Proposition
2.2.15, for l ∈ N, there exists g ∈ S

−l(C) such that:

L(f) = 〈g, f〉.
Thus, for all v ∈ S ′(R) and for all φ ∈ S(R), we have:

〈v, φ〉S′,S = 〈g, Tφ1
φ〉.

This equality gives a bijection between the spaces S ′(R) and S
′(C) with:

g := Tφ1
v and v =: T ∗

φ1
g.

�

Remark 2.2.17. For ψ ∈ S ′(R), we can rewrite Tφ1
ψ as follows (see for example

[HS15] or [Zwo12]):

Tφ1
ψ(z) =

〈

ψ, cφ1
~
−3/4e−(1/2~)(z−.)2

〉

S′,S
.

We are now looking at the range by the Bargmann transform of the space Lk
and we prove that this range is the space Hk, where we recall that:

Lk =
{

ψ ∈ S ′(R); τ2πψ = ukψ, τ1F~(ψ) = v−kF~(ψ)
}

,

Hk =
{

g ∈ Hol(C); g(p+ 2π, q) = ukg(p, q), g(p, q + 1) = vke−i(p+iq)k+k/2g(p, q)
}

.

To our knowledge, this result is new in the literature and it constitutes a funda-
mental step in our proof of Theorem A.

Proposition 2.2.18. Let k ≥ 1. Then, we have:

(1) Tφ1
: Lk −→ Hk;

(2) T ∗
φ1

: Hk −→ Lk.

Proof. According to Proposition 2.2.16, Tφ1
: S ′(R) −→ S

′(C). Since Lk ⊂ S ′(R),
then Tφ1

is well-defined on this space. Let’s prove that the Bargmann transform Tφ1

sends the basis (ǫl)l∈Z/kZ of Lk (see Equation (2)) on the basis (el)l∈Z/kZ of Hk (see
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Equation (1)). Let c be the real number such that u = eic. Let l ∈ {0, . . . , k − 1},
using Remark 2.2.17, we have:

Tφ1
ǫl(z) =

〈

ǫl, cφ1
~
−3/4e−(1/2~)(z−.)2

〉

S′,S
,

=

〈

uk./(2π)
∑

j∈Z

(

v−k
)j
ei(l+jk)., cφ1

~
−3/4e−(1/2~)(z−.)2

〉

S′,S

,

= cφ1
k3/4

∑

j∈Z

(

v−k
)j
〈

uk./(2π)ei(l+jk)., e−(k/2)(z−.)2
〉

S′,S
since k =

1

~
,

= cφ1
k3/4ukz/(2π)

∑

j∈Z

(

v−k
)j
ei(l+jk)z

〈

uk./(2π)ei(l+jk)., e−(k/2)(.)2
〉

S′,S
,

= cφ1
k3/4ukz/(2π)

∑

j∈Z

(

v−k
)j
ei(l+jk)z

√

2π

k
exp

(

− 1

2k

(

ck

2π
+ l + jk

)2
)

.

By a simple computation, we obtain:

1

2k

(

ck

2π
+ l + jk

)2

=
1

2k

(

ck

2π
+ l

)2

+
j2k

2
+ jl +

jck

2π
.

Therefore, we have:

Tφ1
ǫl(z) = cφ1

k3/4ukz/(2π)
∑

j∈Z

(

v−k
)j
ei(l+jk)z

√

2π

k
exp

(

− 1

2k

(

ck

2π
+ l + jk

)2
)

,

= clku
kz/(2π)

∑

j∈Z

(

v−ke−jk/2−luik/(2π)
)j

ei(l+jk)z ,

= clkel(z),

where clk is given by the following equality:

clk = cφ1

√
2πk1/4 exp

(

− 1

2k

(

ck

2π
+ l

)2
)

.

Conversely, we compute T ∗
φ1
el. First, since Hk ⊂ S

0(C) and since the function

z 7−→ e−(1/2~)(z−x)2 belongs to the space S(C), then for v ∈ Hk, we have (according
to Remark 2.2.14):

〈

cφ1
~
−3/4e−(1/2~)(.−x)2, v

〉

= cφ1
~
−3/4

∫

C

e−1/(2~)(z−x)2e−2Φ1(z)/~el(z)L(dz) < +∞.
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Let l ∈ {0, 1, . . . , k − 1}, then we have:

T ∗
φ1
el(x)

= cφ1
~
−3/4

∫

C

e−1/(2~)(z−x)2e−2Φ1(z)/~el(z)L(dz),

= cφ1
k3/4

∫

C

e−(k/2)(z−x)2e−k(ℑz)
2

el(z)L(dz) because Φ1(z) =
1

2
(ℑz)2 and k =

1

~
,

= cφ1
k3/4

∫

C

e−(k/2)(z−x)2e−k(ℑz)
2

ukz/(2π)
∑

j∈Z

(

v−ke−l−jk/2uik/(2π)
)j

ei(l+jk)zL(dz),

= cφ1
k3/4

∑

j∈Z

(

v−ke−l−jk/2uik/(2π)
)j
∫

C

e−(k/2)(z)2e−k(ℑ(z+x))2uk(z+x)/(2π)ei(l+jk)(z+x)L(dz),

= cφ1
k3/4ukx/(2π)

∑

j∈Z

(

v−ke−l−jk/2uik/(2π)
)j

ei(l+jk)x
∫

C

e−(k/2)(z)2e−k(ℑz)
2

eiz(l+jk+ck/(2π))L(dz).

We have to compute the following integral (after the change of variables z = p+iq):
∫

R

∫

R

e−(k/2)(p−iq)2e−kq
2

ei(p+iq)(l+jk+ck/(2π))dpdq

=

∫

R

∫

R

e−kp
2/2e−kq

2/2eikpqeip(l+jk+ck/(2π))e−q(l+jk+ck/(2π))dpdq.

By a simple computation, we obtain:

∫

R

e−kp
2/2eikpqeip(l+jk+ck/(2π))dp =

√

2π

k
exp

(

− 1

2k

(

l+ jk +
ck

2π

)2

− kq2

2
− q

(

l + jk +
ck

2π

)

)

.

Thus, by an other simple computation, we obtain:
∫

R

∫

R

e−kp
2/2e−kq

2/2eikpqeip(l+jk+ck/(2π))e−q(l+jk+ck/(2π))dpdq =
√
2
π

k
e(l+jk+ck/(2π))

2/(2k).

Consequently, we obtain:

T ∗
φ1
el(x)

= cφ1
k3/4

√
2
π

k
ukx/(2π)

∑

j∈Z

(

v−ke−l−jk/2uik/(2π)
)j

ei(l+jk)xe(l+jk+ck/(2π))
2/(2k),

= cφ1
k−1/4

√
2πe(l+ck/(2π))

2/(2k)ukx/(2π)
∑

j∈Z

(

v−k
)j
ei(l+jk)x,

= c̃lkǫl(x),

where c̃lk = cφ1
k−1/4

√
2πe(l+ck/(2π))

2/(2k). �

Since the Bargmann transform is a unitary transformation between the spaces
L2(R) and H~(C,Φ1), we study this feature between the spaces Lk and Hk.

Proposition 2.2.19.

(1) T ∗
φ1
Tφ1

= id on Lk.
(2) Tφ1

T ∗
φ1

= id on Hk.
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Proof. Let c be the real number such that u = eic. According to the proof of
Proposition 2.2.18, we have, for l ∈ {0, . . . , k − 1}:

Tφ1
ǫl = clkel with clk = cφ1

√
2πk1/4e−(ck/(2π)+l)2/(2k).

Let C = diag(c0k, . . . , c
k−1
k ) be the matrix of the operator Tφ1

in the basis (el)l∈Z/kZ.
According to the proof of Proposition 2.2.18, we also have, for l ∈ {0, . . . , k − 1}:

T ∗
φ1
el = c̃lkǫl with c̃lk = cφ1

k−1/4
√
2πe(l+ck/(2π))

2/(2k).

Let C∗ = diag(c̃0k, . . . , c̃
k−1
k ) be the matrix of the operator T ∗

φ1
in the basis (ǫl)l∈Z/kZ.

We want to prove that: CC∗ = C∗C = Ik. Let k ≥ 1 and let l ∈ {0, 1, . . . , k− 1}, we
have:

clk c̃
l
k = cφ1

√
2πk1/4e−(ck/(2π)+l)2/(2k)cφ1

k−1/4
√
2πe(l+ck/(2π))

2/(2k),

= c2φ1
2π3/2,

=

(

1

21/2π3/4

)2

2π3/2 according to Definition 2.2.8,

= 1,

= c̃lkc
l
k.

Therefore, we have: CC∗ = C∗C = Ik. �

2.2.3. Complex Weyl quantization of the torus. In this paragraph, we define the
complex Weyl quantization of a symbol on the torus. As in the classical Weyl
quantization case, we have two definitions for the complex Weyl quantization. With
an Egorov theorem analogous to Proposition 2.2.10 in the R2-case, we exhibit the
notion of complex Weyl quantization of the torus. First, we introduce a new class
of symbols. Recall that ΛΦ1

denotes the following space:

ΛΦ1
=

{(

z,
2

i

∂Φ1

∂z
(z)

)

; z ∈ C

}

= {(z,−ℑ(z)); z ∈ C} .

And that the canonical transformation κφ1
is defined as follows:

κφ1
: R2 −→ ΛΦ1

(x, y) 7−→ (z, w) := (x− iy, y).

Notice that, if ak ∈ C∞
k (R2) is a function such that, for all (x, y) ∈ R2, we have:

ak(x + 2π, y) = ak(x, y) = ak(x, y + 1);

and if bk is the function defined by the following relation, for (z, w) ∈ ΛΦ1
:

bk(z, w) := ak ◦ κ−1
φ1

(z, w).

Then bk ∈ C∞
k (ΛΦ1

) is a function such that, for (z, w) ∈ ΛΦ1
, we have:

bk(z + 2π,w) = bk(z, w) = bk(z + i, w − 1).

Besides, thanks to the identification of ΛΦ1
with C, we can rewrite the symbol bk

as a convergent series, for z ∈ C ≃ ΛΦ1
:

(8) bk(z) =
∑

(m,n)∈Z2

bkm,ne
inℜ(z)e2iπmℑ(z),
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where
(

bkm,n
)

(m,n)∈Z2
is defined by the following formula:

bkm,n = akm,n where for (x, y) ∈ R
2, ak(x, y) =

∑

(m,n)∈Z2

akm,ne
inxe−2iπmy.

Remark 2.2.20. Since ΛΦ1
≃ C, then the class of symbols S(ΛΦ1

) can be identified
with S(C) ≃ S(R2).

We can now deduce the following Egorov theorem.

Proposition 2.2.21.

Let ak ∈ C∞
k (R2) be a function such that, for all (x, y) ∈ R2, we have:

ak(x + 2π, y) = ak(x, y) = ak(x, y + 1).

Then, we have:

Tφ1
Opwk (ak) = OpwΦ1,k(ak ◦ κ

−1
φ1

)Tφ1
on S(R),

where OpwΦ1,k is defined by the following formula, for u ∈ S(C):

OpwΦ1,k(ak ◦ κ
−1
φ1

)u(z) =
∑

(m,n)∈Z2

akm,ne
−iπmn/ke−n

2/2keinzu

(

z − 2πm

k
+
in

k

)

,

where
(

akm,n
)

(m,n)∈Z2
is the sequence of coefficients defined in Equation (4).

Proof. According to Definition 2.2.5, Opwk (ak) : S(R) −→ S(R). Let φ ∈ S(R),
then we have:

Tφ1
(Opwk (ak)φ)(z)

= cφ1
~
−3/4

∫

R

e−(1/2~)(z−x)2(Opwk (ak)φ)(x)dx,

= cφ1
~
−3/4

∫

R

e−(1/2~)(z−x)2
∑

(m,n)∈Z2

akm,ne
−iπmn/keixnφ

(

x− 2πm

k

)

dx,

= cφ1
~
−3/4

∫

R

∑

(m,n)∈Z2

akm,ne
−iπmn/keizne−(1/2~)(z−x)2e−i(z−x)nφ

(

x− 2πm

k

)

dx,

= cφ1
~
−3/4

∫

R

∑

(m,n)∈Z2

akm,ne
−iπmn/keizne−(1/2~)(z−x+in~)2e−n

2
~/2φ

(

x− 2πm

k

)

dx,

= cφ1
~
−3/4

∫

R

∑

(m,n)∈Z2

akm,ne
−iπmn/keizne−(1/2~)(z−x+in~−2πm~)2e−n

2
~/2φ (x) dx,

=
∑

(m,n)∈Z2

akm,ne
−iπmn/ke−n

2
~/2eizncφ1

~
−3/4

∫

R

e−(1/2~)(z−x+in~−2πm~)2φ (x) dx,

=
∑

(m,n)∈Z2

akm,ne
−iπmn/ke−n

2/2keizn(Tφ1
φ)

(

z − 2πm

k
+
in

k

)

because ~ =
1

k
.

Therefore, for u ∈ S(C), we define OpwΦ1,k(ak ◦ κ
−1
φ1

) as follows:

OpwΦ1,k(ak ◦ κ
−1
φ1

)u(z) =
∑

(m,n)∈Z2

akm,ne
−iπmn/ke−n

2/2keiznu

(

z − 2πm

k
+
in

k

)

.

�
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The previous proposition leads us to define the notion of complex Weyl quanti-
zation of a symbol on the torus as follows.

Definition 2.2.22 (First definition of the complex Weyl quantization of the torus).
Let bk ∈ C∞

k (ΛΦ1
) be a function such that, for all (z, w) ∈ ΛΦ1

, we have:

bk(z + 2π,w) = bk(z, w) = bk(z + i, w − 1).

Define the complex Weyl quantization of the symbol bk, denoted by OpwΦ1,k(bk), by
the following formula, for u ∈ S(C):

OpwΦ1,k(bk)u(z) =
∑

(m,n)∈Z2

bkm,ne
−iπmn/ke−n

2/2keinzu

(

z − 2πm

k
+
in

k

)

,

where the sequence
(

bkm,n
)

(m,n)∈Z2
is given by Equation (8).

Let’s prove a basic property on this notion of quantization. The operator
OpwΦ1,k(bk) defined above acts on the space S(C). We are now going to show
that it also acts on the space Hk (as expected since the Bargmann transform sends
the space Lk on the space Hk).

Proposition 2.2.23. Let bk ∈ C∞
k (ΛΦ1

) be a function such that, for all (z, w) ∈ ΛΦ1
,

we have:

bk(z + 2π,w) = bk(z, w) = bk(z + i, w − 1).

Then OpwΦ1,k(bk) can be extended into an operator which sends the space Hk on
itself.

Proof. According to Proposition 2.2.21, OpwΦ1,k(bk) : S(C) −→ S(C). Let u, v ∈ S(C),
then we have:

〈OpwΦ1,k(bk)u, v〉S,S

=

∫

C

OpwΦ1,k(bk)u(z)v(z)e
−2Φ1(z)/~L(dz),

=

∫

C

∑

(m,n)∈Z2

bkm,ne
iπmn/ke−n

2/2ke−inzu

(

z − 2πm

k
+
in

k

)

v(z)e−2Φ1(z)/~L(dz),

=

∫

C

∑

(m,n)∈Z2

bkm,ne
−iπmn/ke−n

2/2ke−inzu

(

z +
in

k

)

v

(

z +
2πm

k

)

e−2Φ1(z)/~L(dz),

=

∫

C

u (z)
∑

(m,n)∈Z2

bkm,ne
−iπmn/ke−n

2/2ke−inzv

(

z +
2πm

k
− in

k

)

e−2Φ1(z)/~L(dz),

=

∫

C

u (z)
∑

(m,n)∈Z2

bk−m,ne
iπmn/ke−n

2/2ke−inzv

(

z − 2πm

k
− in

k

)

e−2Φ1(z)/~L(dz) via m 7−→ −m,

=

∫

C

u (z)
∑

(m,n)∈Z2

bk−m,−ne
−iπmn/ke−n

2/2keinzv

(

z − 2πm

k
+
in

k

)

e−2Φ1(z)/~L(dz) via n 7−→ −n,

=

∫

C

u (z)OpwΦ1,k(bk)v(z)e
−2Φ1(z)/~L(dz),

= 〈u,OpwΦ1,k(bk)v〉S,S,
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where bk ∈ C∞
k (ΛΦ1

) is defined, for (z, w) ∈ ΛΦ1
, by:

bk(z, w) =
∑

(m,n)∈Z2

bk−m,−ne
in(z+iw)e−2iπmw,

=
∑

(m,n)∈Z2

bkm,ne
−in(z+iw)e2iπmw via (m,n) 7−→ (−m,−n),

=
∑

(m,n)∈Z2

bkm,ne
−inℜ(z)e−2iπmℑ(z) because (z, w) ∈ ΛΦ1

, thus w = −ℑ(z),

= bk(z, w).

Since v ∈ S(C) and bk ∈ C∞
k (ΛΦ1

), then OpwΦ1,k(bk)v ∈ S(C) and the complex
Weyl quantization OpwΦ1,k(bk) is well-defined on S

′(C) by the following formula,
for u ∈ S

′(C) and for v ∈ S(C):

〈OpwΦ1,k(bk)u, v〉S′,S := 〈u,OpwΦ1,k(bk)v〉S′,S.

Afterwards, since Hk ⊂ S
′(C), then for g ∈ Hk, OpwΦ1,k(bk)g ∈ Hol(C). Moreover,

for g ∈ Hk, using simple computations we prove that:
{

OpwΦ1,k(bk)g(z + 2π) = ukOpwΦ1,k(bk)g(z),

OpwΦ1,k(bk)g(z + i) = vke−ikz+k/2OpwΦ1,k(bk)g(z).

�

Let’s give a second definition of the complex Weyl quantization of the torus.
This notion is analogous to the already existing one in the R2-case (see for example
[HS15] or [Zwo12]). We believe that it is the first time that such a contour integral
is used in a context of the quantization of a compact phase space.

Definition 2.2.24 (Second definition of the complex Weyl quantization of the
torus). Let b~ ∈ C∞

~
(ΛΦ1

) be a function such that, for all (z, w) ∈ ΛΦ1
, we have:

b~(z + 2π,w) = b~(z, w) = b~(z + i, w − 1).

Define the complex Weyl quantization of the symbol b~, denoted by OpwΦ1
(b~), by

the following formula, for u ∈ S(C):

OpwΦ1
(b~)u(z) =

1

2π~

∫∫

Γ(z)

e(i/~)(z−w)ζb~

(

z + w

2
, ζ

)

u(w)dwdζ,

where the contour integral is the following:

Γ(z) =

{

(w, ζ) ∈ C
2; ζ =

2

i

∂Φ1

∂z

(

z + w

2

)

= −ℑ
(

z + w

2

)}

.

This second definition expresses the fact that the complex Weyl quantization of
R2 (seen in Proposition 2.2.10) can be extended to a symbol defined on the torus.
Similarly to Proposition 2.2.23, we have the following property.

Proposition 2.2.25. Let b~ ∈ C∞
~
(ΛΦ1

) be a function such that, for all (z, w) ∈ ΛΦ1
,

we have:

b~(z + 2π,w) = b~(z, w) = b~(z + i, w − 1).

Then, OpwΦ1
(b~) can be extended into an operator which sends Hk on itself.
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Proof. Let a~ := b~ ◦ κφ1
, then a~ ∈ S(R2) and Opw(a~) : S(R) −→ S(R). Ac-

cording to Proposition 2.2.11, Tφ1
: S(R) −→ S(C) and according to Proposition

2.2.10, we have:

OpwΦ1
(b~) = Tφ1

Opw(a~)T
∗
φ1

: S(C) −→ S(C).

Afterwards, let u, v ∈ S(C), then we have:

〈OpwΦ1
(b~)u, v〉S,S

=

∫

C

(OpwΦ1
(b~)u)(z)v(z)e

−2Φ1(z)/~L(dz),

=

∫

C

1

2π~

∫∫

Γ(z)

e(−i/~)(z−w)ζb~

(

z + w

2
, ζ

)

u(w)dwdζv(z)e−2Φ1(z)/~L(dz),

=

∫

C

C

2π~

∫

C

e(−i/~)(z−w)(−ℑ(z+w/2))b~

(

z + w

2
,−ℑ

(

z + w

2

))

u(w)L(dw)v(z)e−2Φ1(z)/~L(dz),

where we used the definition of the contour integral Γ(z) and where C > 0 is a
constant. Then, for z ∈ C ≃ ΛΦ1

, we have:

b~(z,−ℑ(z)) =
∑

(m,n)∈Z2

b~m,ne
inℜ(z)e2iπmℑ(z).

Thus, for z ∈ ΛΦ1
, we obtain:

b~(z,−ℑ(z)) =
∑

(m,n)∈Z2

b~m,ne
−inℜ(z)e−2iπmℑ(z) = b~(z,−ℑ(z)).

Therefore, we can rewrite the integral as follows, for u, v ∈ S(C):

〈OpwΦ1
(b~)u, v〉S,S

=
C

2π~

∫

C

∫

C

e(i/~)(z−w)ℑ(z+w/2)b~

(

z + w

2
,−ℑ

(

z + w

2

))

u(w)v(z)e−2Φ1(z)/~L(dw)L(dz).

With a short computation, we prove the following equality:

i

~
(z − w)ℑ

(

z + w

2

)

− 2

~
Φ1(z) =

i

h
(z − w)ℑ

(

z + w

2

)

− 2

~
Φ1(w).

Consequently, for all u, v ∈ S(C), we have:

〈OpwΦ1
(b~)u, v〉S,S

=

∫

C

u(w)
C

2π~

∫

C

e(i/~)(w−z)(−ℑ(z+w/2))b~

(

z + w

2
,−ℑ

(

z + w

2

))

v(z)L(dz)e−2Φ1(w)/~L(dw),

=

∫

C

u(w)
1

2π~

∫∫

Γ(w)

e(i/~)(w−z)ζb~

(

z + w

2
, ζ

)

v(z)L(dz)e−2Φ1(w)/~L(dw),

=

∫

C

u(w)(OpwΦ1
(b~)v)(w)e

−2Φ1(w)/~L(dw),

= 〈u,OpwΦ1
(b~)v〉S,S,

where Γ(w) =

{

(z, ζ) ∈ C2; ζ = −ℑ
(

z + w

2

)}

. Since, for v ∈ S(C), OpwΦ1
(b~)v ∈ S(C),

then the operator OpwΦ1
(b~) is well-defined on S

′(C) by the following equality, for
u ∈ S

′(C) and v ∈ S(C):

〈OpwΦ1
(b~)u, v〉S′,S = 〈u,OpwΦ1

(b~)v〉S′,S.
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As a result, the operator OpwΦ1
(b~) is well-defined on Hk because it is a sub-

space of S′(C). Afterwards, since for g ∈ Hk, OpwΦ1
(b~)g ∈ S

′(C), then we have
OpwΦ1

(b~)g ∈ Hol(C). Besides using simple computations, for g ∈ Hk, we prove
that:

{

OpwΦ1
(b~)g(z + 2π) = ukOpwΦ1

(b~)g(z),

OpwΦ1
(b~)g(z + i) = vke−ikz+k/2OpwΦ1

(b~)g(z).

�

To conclude this paragraph, we link Definition 2.2.22 and Definition 2.2.24.

Proposition 2.2.26. Let b~ = bk ∈ C∞
~
(ΛΦ1

) be a function such that, for all
(z, w) ∈ ΛΦ1

, we have:

b~(z + 2π,w) = b~(z, w) = b~(z + i, w − 1).

Then:

OpwΦ1
(b~) = OpwΦ1,k(bk) on Hk.

Proof. According to Equation (8), for (z, w) ∈ ΛΦ1
, we can rewrite b~ as follows:

b~(z, w) =
∑

(m,n)∈Z2

b~m,ne
in(z+iw)e−2iπmw.

Consequently, we obtain, for u ∈ S(C):

OpwΦ1
(b~)u(z)

=
1

2π~

∫∫

Γ(z)

e(i/~)(z−w)ζ
∑

(m,n)∈Z2

b~m,ne
in((z+w)/2+iζ)e−2iπmζu(w)dwdζ,

=
1

2π~

∫∫

Γ(z)

∑

(m,n)∈Z2

e(i/~)(z−w)ζb~m,ne
in((z+w)/2+iζ)e−iπmn/ku

(

w − 2πm

k

)

dwdζ,

=
1

2π~

∫∫

Γ(z)

e(i/~)(z−w)ζ
∑

(m,n)∈Z2

b~m,ne
−iπmn/ke−n

2/2ku

(

w +
in

k
− 2πm

k

)

dwdζ,

=
1

2π~

∫∫

Γ(z)

e(i/~)(z−w)ζ(OpwΦ1,k(bk)u)(w)dwdζ,

= OpwΦ1,k(bk)u(z),

where we used the change of variables: Γ(z) ∋ (w, ζ) 7−→
(

w +
in

k
, ζ − n

2k

)

∈ Γ(z).

Therefore, for u ∈ S
′(C) and v ∈ S(C), we have:

〈OpwΦ1
(b~)u, v〉S′,S = 〈u,OpwΦ1

(b~)v〉S′,S,

= 〈u,OpwΦ1,k(bk)v〉S′,S,

= 〈OpwΦ1,k(bk)u, v〉S′,S.

In others words, we have:

OpwΦ1
(b~) = OpwΦ1,k(bk) on S

′(C).

Finally, since Hk ⊂ S
′(C), then by restriction and according to Propositions 2.2.23

and 2.2.25, we obtain the result. �
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2.3. Connections between the quantizations of the torus T2. In this para-
graph, we relate the different notions of quantization of the torus. To do so, we
follow these steps:

1. we recall the connection between a Berezin-Toeplitz operator and a complex
pseudo-differential operator of the complex plane;

2. within the Berezin-Toeplitz setting, we relate the quantization of the torus
to the quantization of the complex plane;

3. we establish a correspondence between the Berezin-Toeplitz and the com-
plex Weyl quantizations of the torus.

2.3.1. Berezin-Toeplitz and complex Weyl quantizations of the complex plane. First,
we recall the definition of the Berezin-Toeplitz quantization of a symbol on the
complex plane and then the definition of the complex Weyl quantization of a symbol
on ΛΦ1

(see for example [Zwo12]).

Definition 2.3.1 (Berezin-Toeplitz quantization of the complex plane). Let fk ∈ S(C)
be a function admitting an asymptotic expansion in powers of 1/k. Define the
Berezin-Toeplitz quantization of fk by the sequence of operators Tfk := (Tk)k≥1,
where for k ≥ 1, Tk is defined by:

Tk = ΠΦ1,kMfkΠΦ1,k,

where Mfk : L2
k(C,Φ1) −→ L2

k(C,Φ1) is the multiplication operator by the function
fk and where we recall that ΠΦ1,k is the orthogonal projection of the space L2

k(C,Φ1)
on Hk(C,Φ1) defined in Proposition 2.2.9.
We call fk the symbol of the Berezin-Toeplitz operator Tfk .

Definition 2.3.2 (Complex Weyl quantization of the complex plane). Let b~ ∈ S(ΛΦ1
)

be a function admitting an asymptotic expansion in powers of ~. Define the com-
plex Weyl quantization of b~, denoted by OpwΦ1

(b~), by the following formula, for
u ∈ H~(C,Φ1):

OpwΦ1
(b~)u(z) =

1

2π~

∫∫

Γ(z)

e(i/~)(z−w)ζb~

(

z + w

2
, ζ

)

u(w)dwdζ,

where the contour integral is the following:

Γ(z) =

{

(w, ζ) ∈ C
2; ζ =

2

i

∂Φ1

∂z

(

z + w

2

)

= −ℑ
(

z + w

2

)}

.

Recall now the result relating these two quantizations (see for example [Zwo12,
Chapter 13]).

Proposition 2.3.3.

(1) Let fk ∈ S(C) be a function admitting an asymptotic expansion in powers
of 1/k. Let Tfk = (Tk)k≥1 be the Berezin-Toeplitz operator of symbol fk.
Then, for k ≥ 1, we have:

Tk = OpwΦ1
(b~) on Hk(C,Φ1),

where b~ ∈ S(ΛΦ1
) is a function admitting an asymptotic expansion in

powers of ~ given by the following formula, for all z ∈ ΛΦ1
≃ C:

b~(z) = exp

(

1

k
∂z∂z

)

(fk(z)).
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(2) Let b~ ∈ S(ΛΦ1
) be a function admitting an asymptotic expansion in powers

of ~. Then, there exists fk ∈ S(C) a function admitting an asymptotic
expansion in powers of 1/k such that for k ≥ 1:

OpwΦ1
(b~) = Tk +O(k−∞) on H~(C,Φ1),

where (Tk)k≥1 = Tfk is the Berezin-Toeplitz operator of symbol fk and
where, for all N ∈ N and for z ∈ C, fk is given by:

fk(z) =

N
∑

j=0

~j

j!
(DzDz)

j
(b~(z)) +O(~N+1).

2.3.2. Berezin-Toeplitz quantization of the torus and Berezin-Toeplitz quantization
of the complex plane. In this paragraph, we study a Berezin-Toeplitz operator of
the complex plane whose symbol is 2π-periodic with respect to its first variable and
1-periodic with respect to its second variable. Previously, we looked at the action
of a Berezin-Toeplitz operator of the complex plane on the spaces S(C) and S

′(C).

Proposition 2.3.4. Let fk ∈ S(C) be a function admitting an asymptotic expan-
sion in powers of 1/k. Let Tfk = (Tk)k≥1 be the Berezin-Toeplitz operator of symbol
fk. Then, for k ≥ 1, we have:

(1) Tk can be defined as an operator which sends S(C) on itself by:

Tkv = ΠΦ1,k(fkv) for v ∈ S(C),

where ΠΦ1,k is seen as an operator which sends S(C) on itself.
(2) Tk can be extended into an operator which sends S

′(C) on itself by:

〈Tku, v〉S′,S = 〈u, T̃kv〉S′,S for u ∈ S
′(C) and for v ∈ S(C),

where (T̃k)k≥1 =: Tf
k

is the Berezin-Toeplitz operator of symbol fk.

Proof. Since Tfk = (Tk)k≥1 is a Berezin-Toeplitz operator of the complex plane,
then according to Proposition 2.3.3, there exists b~ ∈ S(ΛΦ1

) such that, for k ≥ 1:

Tk = OpwΦ1
(b~) on Hk(C,Φ1).

Besides, according to Proposition 2.2.10, we know that:

T ∗
φ1
OpwΦ1

(b~)Tφ1
= Opw(b~ ◦ κφ1

) : L2(R) −→ L2(R).

Since b~ ◦ κφ1
∈ S(R2), then we have:

Opw(b~ ◦ κφ1
) : S(R) −→ S(R) and Opw(b~ ◦ κφ1

) : S ′(R) −→ S ′(R).

Moreover, according to Propositions 2.2.11, 2.2.13 and 2.2.16, the Bargmann trans-
form and its adjoint satisfy:

{

Tφ1
: S(R) −→ S(C) and T ∗

φ1
: S(C) −→ S(R),

Tφ1
: S ′(R) −→ S

′(C) and T ∗
φ1

: S′(C) −→ S ′(R).

As a result, for k ≥ 1, we obtain:

Tk : S(C) −→ S(C) and Tk : S′(C) −→ S
′(C).

Then, by definition ΠΦ1,k = Tφ1
T ∗
φ1

and according to Proposition 2.2.11, the op-

erator ΠΦ1,k can be extended into an operator which sends S(C) on itself. Since
S(C) ⊂ H~(C,Φ1) (see Remark 2.2.12), then for v ∈ S(C) and for fk ∈ S(C), we
have:

ΠΦ1,kv = v and ΠΦ1,k(fkv) ∈ S(C).
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Therefore, the Berezin-Toeplitz operator Tfk = (Tk)k≥1 is defined as follows, for
k ≥ 1 and for v ∈ S(C):

Tkv = ΠΦ1,kMfkΠΦ1,kv = ΠΦ1,k(fkv),

whereΠΦ1,k is an operator which sends S(C) on itself. Finally, for v = Tφ1
ψ ∈ S

′(C)
and for u = Tφ1

φ ∈ S(C), we have:

〈Tkv, u〉S′,S = 〈OpwΦ1
(b~)v, u〉S′,S according to Proposition 2.3.3,

= 〈v,OpwΦ1
(b~)u〉S′,S according to Proposition 2.2.25,

=: 〈v, T̃ku〉S′,S.

Then, according to Proposition 2.3.3, for z ∈ ΛΦ1
≃ C, we have:

b~(z) = exp

(

1

k
∂z∂z

)

(fk(z)).

Consequently, for z ∈ ΛΦ1
≃ C, we obtain:

b~(z) = exp

(

1

k
∂z∂z

)

(fk(z)).

In others words, the sequence of operators (T̃k)k≥1 is a Berezin-Toeplitz operator

of symbol fk. �

Remark 2.3.5. Let fk ∈ C∞
k (R2) be a function such that, for (x, y) ∈ R2, we have:

fk(x+ 2π, y) = fk(x, y) = fk(x, y + 1).

Let Tfk = (Tk)k≥1 be the Berezin-Toeplitz operator of the complex plane of symbol
fk. Then, for k ≥ 1, the operator Tk is well-defined on Hk according to Proposition
2.3.4 since Hk ⊂ S

′(C).

The following proposition gives a connection between the orthogonal projection
ΠΦ1,k which appears in the definition of a Berezin-Toeplitz operator of the complex
plane (see Definition 2.3.1) and the orthogonal projection Πk which appears in
the definition of a Berezin-Toeplitz operator of the torus (see Definition 1.1.3).
This proposition is fundamental for understanding the relation between these two
quantizations.

Proposition 2.3.6.

Let ΠΦ1,k be the orthogonal projection of L2
k(C,Φ1) on Hk(C,Φ1). Then:

(1) ΠΦ1,k can be extended into an operator which sends Gk on Hk (defined in
Subsection 1.1);

(2) ΠΦ1,k = id on Hk.

Consequently, ΠΦ1,k coincides with Πk on Gk.

Proof. First, let’s prove that ΠΦ1,k is well-defined on Gk. The main difficulty to
prove this result comes from the fact that Gk is not included in S

′(C). Recall the
formula defining ΠΦ1,k for g ∈ L2

k(C,Φ1) (see Proposition 2.2.9):

ΠΦ1,kg(z) =

∫

C

e−(1/4~)(z−w)2g(w)e−2Φ1(w)/~L(dw).
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Let g ∈ Gk, by a simple computation, we notice that, for (m,n) ∈ Z2 and for z ∈ C,
we have:







g(z + 2πm) =
(

uk
)m

g(z),

g(z + in) =
(

vke−izk+kn/2
)n

g(z).

Then, for g ∈ Gk, we can write an estimate of the integral defining ΠΦ1,k as follows:
∫

C

∣

∣

∣
e−(1/4~)(z−w)2g(w)e−2Φ1(w)/~

∣

∣

∣
L(dw),

=
∑

m∈Z

∫

[0,2π]+iR

∣

∣

∣
e−(1/4~)(z−(w+2πm))2g(w + 2πm)e−2Φ1(w+2πm)/~

∣

∣

∣
L(dw),

=
∑

m∈Z

∫

[0,2π]+iR

∣

∣

∣
e−(1/4~)(z−w−2πm)2

(

uk
)m

g(w)e−2Φ1(w)/~
∣

∣

∣
L(dw),

=
∑

(m,n)∈Z2

∫

[0,2π]+i[0,1]

∣

∣

∣
e−(1/4~)(z−(w+in)−2πm)2

(

uk
)m

g(w + in)e−2Φ1(w+in)/~
∣

∣

∣
L(dw),

=
∑

(m,n)∈Z2

∫

[0,2π]+i[0,1]

∣

∣

∣
e−(1/4~)(z−w+in−2πm)2

(

uk
)m
(

vke−iwk+kn/2
)n

g(w)

e−2Φ1(w)/~e−n
2/~e−2nℑ(w)/~

∣

∣

∣
L(dw),

=
∑

(m,n)∈Z2

∫

[0,2π]+i[0,1]

∣

∣

∣
e−(1/4~)(z−w+in−2πm)2

(

uk
)m (

vk
)n
e−kn

2/2e−inkwg(w)e−2Φ1(w)/~
∣

∣

∣
L(dw).

For all z ∈ C, we have:
∫

[0,2π]+i[0,1]

∣

∣

∣
e−(1/4~)(z−w+in−2πm)2

(

uk
)m (

vk
)n
e−kn

2/2e−inkwg(w)e−2Φ1(w)/~
∣

∣

∣
L(dw)

=

∫

[0,2π]+i[0,1]

∣

∣

∣
e−(1/4~)(z−w+in−2πm)2e−kn

2/2e−inkwg(w)e−2Φ1(w)/~
∣

∣

∣
L(dw)

≤ ‖g‖2Gk

∫

[0,2π]+i[0,1]

∣

∣

∣
e−(1/4~)(z−w+in−2πm)2e−kn

2/2e−inkw
∣

∣

∣

2

e−2Φ1(w)/~L(dw)

using Cauchy-Schwartz in L2([0, 2π] + i[0, 1], e−2Φ1(z)/~L(dz)),

= ‖g‖2Gk

∫

[0,2π]+i[0,1]

∣

∣

∣
e−(1/4~)(z−w+in−2πm)2e−inkw

∣

∣

∣

2

e−kn
2

e−2Φ1(w)/~L(dw),

≤ C‖g‖2Gk
e−kℜ(z2)/2e−2kπ2m2

e−kn
2/2 max

(

e2πmkℜ(z), e2π(m+1)kℜ(z)
)

max
(

enkℑ(z), e(n+1)kℑ(z)
)

,

where C is a constant independent of k. We recognize the general term of a con-
vergent series in m and n, thus according to Fubini’s theorem, ΠΦ1,k is well-defined
on Gk by the following formula, for g ∈ Gk:

ΠΦ1,kg(z) =

∫

C

e−(1/4~)(z−w)2g(w)e−2Φ1(w)/~L(dw),

=
∑

(m,n)∈Z2

∫

[0,2π]+i[0,1]

e−(1/4~)(z−w+in−2πm)2
(

uk
)m (

vk
)n
e−kn

2/2e−inkwg(w)e−2Φ1(w)/~L(dw).

Now, since the range of ΠΦ1,k consists of holomorphic functions, then for g ∈ Gk,
ΠΦ1,kg ∈ Hol(C). Then, via the change of variables w 7−→ w + 2π, we prove with
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simple integral equalities that, for g ∈ Gk, we have ΠΦ1,kg(z + 2π) = ukΠΦ1,kg(z)
and using the change of variables w 7−→ w + i, we also obtain that, for g ∈ Gk,
ΠΦ1,kg(z + i) = vke−ikz+k/2ΠΦ1,kg(z). Finally, we recall that ΠΦ1,k = id on Hk

comes from Proposition 2.2.19. �

We can now define the action of a Berezin-Toeplitz operator of the complex plane
on the space Hk.

Proposition 2.3.7. Let fk ∈ C∞
k (C) be a function such that, for z ∈ C, we have:

fk(z + 2π) = fk(z) = fk(z + i).

Let Tfk = (Tk)k≥1 be the Berezin-Toeplitz operator of the complex plane of symbol
fk. Then, for k ≥ 1 and for v ∈ Hk, we have:

Tkv = ΠΦ1,k(fkv),

where ΠΦ1,k is seen as the operator which sends Gk on Hk (see Proposition 2.3.6).

Proof. According to Proposition 2.3.4, for v ∈ Hk, for u ∈ S(C) and for k ≥ 1, we
have:

〈Tkv, u〉S′,S = 〈v, T̃ku〉S′,S,

= 〈g, T̃ku〉 with g ∈ S
−l(C) for l ∈ N according to Proposition 2.2.15,

= 〈g,ΠΦ1,kMf
k

ΠΦ1,ku〉 by definition of T̃k on S(C),

= 〈ΠΦ1,kMf
k

ΠΦ1,kg, u〉 since Π∗
Φ1,k = ΠΦ1,k.

Thus, for v ∈ Hk and for k ≥ 1, we obtain, according to Proposition 2.3.6:

Tkv = ΠΦ1,kMfkΠΦ1,kv = ΠΦ1,k(fkv).

�

We deduce from Proposition 2.3.7 and Proposition 2.3.6, a result which relates
a Berezin-Toeplitz operator of the complex plane and a Berezin-Toeplitz operator
of the torus. To our knowledge, this fact is new in the literature and it is also
fundamental to prove Theorem A.

Proposition 2.3.8. Let fk ∈ C∞
k (C) be a function such that, for z ∈ C, we have:

fk(z + 2π) = fk(z) = fk(z + i).

Let TC

fk
= (TC

k )k≥1 be the Berezin-Toeplitz operator of the complex plane of symbol

fk and let T T
2

fk
= (T T

2

k )k≥1 be the Berezin-Toeplitz operator of the torus of symbol
fk. Then, for k ≥ 1, we have:

TC

k = T T
2

k +O(k−∞) on Hk.

Consequently, a Berezin-Toeplitz operator of the complex plane whose symbol is
periodic coincides with a Berezin-Toeplitz operator of the torus.
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2.3.3. Berezin-Toeplitz quantization and complex Weyl quantization of the torus.
Finally, we are able to establish and to prove the following proposition which cor-
responds to Theorem A.

Proposition 2.3.9 (Theorem A). Let fk ∈ C∞
k (R2) be a function such that, for

(x, y) ∈ R2, we have:

fk(x+ 2π, y) = fk(x, y) = fk(x, y + 1).

Let Tfk = (Tk)k≥1 be the Berezin-Toeplitz operator of the torus of symbol fk. Then,
for k ≥ 1, we have:

Tk = OpwΦ1
(b~) +O(k−∞) on Hk,

where b~ ∈ C∞
~
(ΛΦ1

) is defined by the following formula, for z ∈ ΛΦ1
≃ C:

(9) b~(z) = exp

(

1

k
∂z∂z

)

(fk(z)).

Besides, b~ satisfies the following periodicity conditions, for (z, w) ∈ ΛΦ1
:

b~(z + 2π,w) = b~(z, w) = b~(z + i, w − 1).

Proof. Since in particular fk ∈ S(C), if we denote by TC

fk
= (TC

k )k≥1 the Berezin-
Toeplitz operator of the complex plane of symbol fk, then according to Proposition
2.3.3, there exists b~ ∈ S(ΛΦ1

) such that, for k ≥ 1, we have:

TC

k = OpwΦ1
(b~) on H~(C,Φ1),

where b~ is given by the following formula, for z ∈ ΛΦ1
≃ C:

b~(z) = exp

(

1

k
∂z∂z

)

(fk(z)).

Since S(C) is included into H~(C,Φ1) (see Remark 2.2.12) then, by restriction, we
obtain:

TC

k = OpwΦ1
(b~) on S(C).

By duality, we have:
TC

k = OpwΦ1
(b~) on S

′(C).

Since Hk ⊂ S
′(C), we obtain:

TC

k = OpwΦ1
(b~) on Hk.

Notice that the periodicity conditions on fk and Equation (9) give the periodicity
conditions on b~, consequently, OpwΦ1

(b~) is well-defined on Hk.

Finally, according to Proposition 2.3.8, if we denote by T T
2

fk
= (T T

2

k )k≥1 the Berezin-
Toeplitz operator of the torus of symbol fk, we have, for k ≥ 1:

TC

k = T T
2

k +O(k−∞) on Hk.

This concludes the proof. �

Thanks to Theorem A and Proposition 2.3.3, we deduce the following corollary.

Corollary A.1. Let fk ∈ C∞
k (R2) be a function such that, for (x, y) ∈ R2, we have:

fk(x+ 2π, y) = fk(x, y) = fk(x, y + 1).

Let Tfk = (Tk)k≥1 be the Berezin-Toeplitz operator of the torus of symbol fk. Then,
for k ≥ 1, we have:

T ∗
φ1
TkTφ1

= Opw(a~) +O(~∞) on L2(R),
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where a~ ∈ C∞
~
(R2) is defined by the following formula:

a~ = b~ ◦ κφ1
,

where b~ ∈ C∞
~
(ΛΦ1

) is defined by Equation (9). Besides, a~ satisfies the following
periodicity conditions, for (x, y) ∈ R2:

a~(x + 2π, y) = a~(x, y) = a~(x, y + 1).
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