

Asteroid Redirect

Fran de Aquino

▶ To cite this version:

Fran de Aquino. Asteroid Redirect. 2017. hal-01471282

HAL Id: hal-01471282 https://hal.science/hal-01471282

Preprint submitted on 19 Feb 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Asteroid Redirect

Fran De Aquino

Professor Emeritus of Physics, Maranhao State University, UEMA. Titular Researcher (R) of National Institute for Space Research, INPE Copyright © 2017 by Fran De Aquino. All Rights Reserved.

Asteroids are a great threat to mankind. Here we will show that it is possible to redirect them from their trajectories by means of a strong gravitational *repulsion*, produced by the gravitational interaction between the asteroid and a Gravitational Spacecraft positioned close to the asteroid.

Key words: Asteroid Redirect, Gravitational Spacecraft, Gravitational Mass, Gravity.

Previously, I have published a paper where it is shown a new type of quantum device for controlling gravity, called Quantum Controller of Gravity [1], which is basically a spherical capacitor connected to a specific voltage source. This device acts controlling at *subatomic level*, the gravitational mass of a thin spherical shell at the outer plate of the spherical capacitor. This thin shell works as a Gravity Controller, in such way that if the gravity acceleration at the inner border of the Gravity Controller is g (See Fig.1) then the gravity acceleration outside the Gravity Controller becomes $g' = \chi g$ (assuming that the Gravity Controller is sufficiently far from other bodies in such way that the intensity of their gravitational fields are negligible in the region); $\chi = m_g / m_{i0}$ [2] (m_{i0} and m_g are respectively, the inertial mass and the gravitational mass of the thin spherical shell (region of the Gravity Controller)); the value of m_{g} is controlled by means of the variation of the electric field in the mentioned region.

Fig.1 – Schematic diagram of a Gravity Controller

I have also shown that a Quantum Controller of Gravity can be transformed into a Gravitational Spacecraft [3]. In this way, we can imagine a spherical Gravitational Spacecraft

with several (n) concentric spherical capacitors each one with a Gravity Controller, as shown in Fig.2. In this case, if all the *n* Gravity Controllers have the same value for χ , and the gravity acceleration at the inner border of the first Gravity Controller is $g = -Gm_{g(S)}/r^2$, where $m_{g(S)} \cong m_{i0(S)}$ ($m_{i0(S)}$ is the inertial mass of the gravitational spacecraft, correspondent to the region involved by the first Gravity Controller), then the gravity acceleration outside the *n*th Gravity Controller becomes $g' = \chi^n g^{*}$.

In addition, if $\chi < 0$ and *n* is odd then the expression above can be rewritten as follows

$$g' = \chi^n g = -\left|\chi^n \left(-G\frac{m_{g(s)}}{r^2}\right) \cong +\left|\chi^n\right| G\frac{m_{i0(s)}}{r^2} \quad (1)$$

This means that if a Gravitational Spacecraft with $n \pmod{Gravity Controllers}$ is positioned close to an asteroid, then the asteroid will be repelled from it with a gravity acceleration $g' \cong +|\chi^n| Gm_{i0}/r^2$. Therefore, if for example, n = 29, $\chi = -3$, r = 10km and $m_{i0} = 15ton$, then the gravity acceleration, g', acting on the asteroid due to the Gravitational Spacecraft, will be $g' \cong +0.6m/s^2$ (repulsive in respect to the spacecraft).

The idea of generation of a *repulsive* gravitational force field using *Gravity Controllers* is not new. In a previous paper we have showed a similar method [4].

^{*} In this case, there is also a contribution due to the spherical capacitors, but it can be inconsiderate if the capacitors are very thin (thick << 1mm); n << 100; $|\chi| < 10$ and $m_{i0(S)} > 10ton$.

Gravitational Spacecraft

(with *n* concentric spherical capacitors, each one with *one* Gravity Controller)

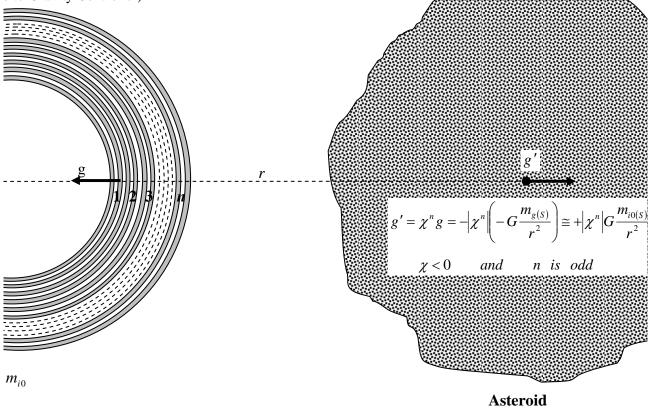


Fig.2- Asteroid Redirect. For example, if n = 29, $\chi = -3$, r = 10km and $m_{i0(s)} = 15ton$, then the gravity acceleration, g', acting on the asteroid due to the Gravitational Spacecraft, will be $g' \cong +0.6m/s^2$ (repulsive in respect to the spacecraft).

References

- De Aquino, F. (2016) Quantum Controller of Gravity. Available at: http://vixra.org/abs/1605.0244 and https://hal.archives-ouvertes.fr/hal-01320459
- [2] De Aquino, F. (2010) Mathematical Foundations of the Relativistic Theory of Quantum Gravity, Pacific Journal of Science and Technology, 11 (1), pp. 173-232. Available at: https://hal.archives-ouvertes.fr/hal-01128520
- [3] De Aquino, F. (2016) Transforming a Quantum Controller of Gravity into a Gravitational Spacecraft.
 Available at: http://vixra.org/abs/1607.0082 and https://hal.archives-ouvertes.fr/hal-01342900
- [4] De Aquino, F. (2013) Repulsive Gravitational Force Field. Available at: https://hal.archives-ouvertes.fr/hal-01077840 and https://pt.scribd.com/document/194252210/Repulsive-Gravitational-Force-Field