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Introduction

Stochastic models recently gain more credibility and numerical efficiency in many domains like chemistry [START_REF] Higham | Modeling and simulating chemical reactions[END_REF], biotechnology [START_REF] Kops | The modelling of noise processes in stochastic differential equations : Application to biotechnological processes[END_REF] or system biology [START_REF] Wilkinson | Stochastic Modelling for Systems Biology[END_REF] where deterministic models have been extensively used. In the present paper we explain how a stochastic modeling approach deepens the insights allowed by the deterministic classical models. We consider a model of a biotechnological process used for wastewater treatment. The principle of classical wastewater treatment is to couple the degradation of organic matter via the action of microorganisms and a decantation processes. An alternative technology to decantation, implemented in membrane bioreactors (MBR), is based on the sieve principle, that is to say the passage of the effluent through calibrated pores of a physical membrane. The main drawback of this technology lies in the membrane performance degradation due to the fouling phenomenon. AM2b is a mathemati-cal model of anaerobic membrane bioreactors developed in [START_REF] Benyahia | Anaerobic membrane bioreactor modeling in the presence of Soluble Microbial Products (SMP) -the Anaerobic Model AM2b[END_REF][START_REF] Benyahia | Modélisation et observation des bioprocédés à membranes : application à la digestion anaérobie[END_REF], it is a variant of AM2 model [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF], 2-steps Acidogenesis-Methanogenesis model, that includes a soluble microbial products (SMP) dynamics. The production and the degradation of SMP play an important role in the membrane fouling phenomenon.

First, we present the original ordinary differential equation (ODE) model of the AM2b. Then we introduce a pure jump Markov model of the same device and the associated exact Monte Carlo simulation method. Next we develop more efficient approximated simulation methods and we propose a stochastic differential equation (SDE) model of the AM2b. Finally a rescaling technique bridges these stochastic models with the original ODE model.

The ODE model

Define : S1 : the organic matter, B1 : the acidogenic biomass, S2 : the volatile fatty acids (VFA), B2 : the methanogenic biomass, S : the soluble microbial products (SMP).

The state of the AM2b model is x = (s1, b1, s2, b2, s) where s1, b1, s2, b2, s are the concentrations in S1, B1, S2, B2, S. The AM2b model describes the dynamics of biological and anaerobic wastewater treatment, where substrate s1 is degraded by a bacterial ecosystem b1 to produce substrate s2 and SMP s. Substrate s2 is transformed by a consortium of bacteria b2 into SMP s. SMP s is also produced by the mortality of biomasses b1 and b2. SMP s is degraded by b1 to produce s2. Schematically, AM2b model is :
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On the right of this scheme is represented the membrane fouling model ; the separation of mater is as follow : substrates s1 and s2 go through the membrane without retention (the size of their molecules is assumed to be smaller than pore diameter), biomasses b1 and b2 are retained by the membrane, and a fraction β s of the SMP go through the membrane and leaves the reactor ((1-β) s will be considered as macromolecules). The evolution of x(t) is classically described by a system of ODEs :

ṡ1 = Din [S1in -s1] -k1 µ1(s1) b1 , ( 1a 
) ḃ1 = [µ1(s1) + µ(s) -Ddec -Dwit] b1 , (1b) 
ṡ2 = Din [S2in -s2] -k2 µ2(s2) b2 + [c12 µ1(s1) + c02 µ(s)] b1 , ( 1c 
) ḃ2 = [µ2(s2) -Ddec -Dwit] b2 , (1d) 
ṡ = [c10 µ1(s1) + Ddec -k0 µ(s)] b1 + [c20 µ2(s2) + Ddec] b2 -M s (1e) 
with :

ki degradation rate of si by bi, 

M = β Din + (1 -β) Dwit
µ1(s1) = m1 s 1 K 1 +s 1 , µ(s) = m s K+s , µ2(s2) = m2 s 2 K 2 +s 2 +s 2 2 /K 3 .
µ1 and µ are of Monod type ; µ2 is of Haldane type to model the phenomenon of inhibition of the eventual accumulation of the VFA in the bioreactor during the methanogenesis, the major problem of the anaerobic digestion.

System (1) could also be denoted :

ẋ(t) = f (x(t)) , x(0) = x0 . (2) 
Model ( 2) relies on the fact that the stochastic effects can be neglected, thanks to the law of large numbers, or at least can be averaged out. Although this level of description is sufficient for numerous applications of interest, it could be interesting to account for the stochastic nature of the process which could prominent at low biomasses concentrations or when small perturbations cumulate in the context of multi-species. Also, whereas the experimental results observed in well mastered laboratory conditions match closely the ODE theoretical behavior, a discrepancy may occur in operational conditions. In these cases, stochastic features may not be neglected.

Pure jump model

Based on the reactions featured in the AM2b model, we propose a AM2b model as a pure jump Markov process (X(t)) t≥0 which takes values in R d + . We follow the approach proposed in [START_REF] Campillo | Stochastic modeling of the chemostat[END_REF]. Let X = (S1, B1, S2, B2, S) be the concentrations in S1, B1, S2, B2, S respectively. This process will encompass J = 15 reactions : each reaction j is characterized by its rate function λj(x) and its jump function νj(x). Then X(t) is a time-homogeneous markov process and can be described as : being at X(t) = x :

X(t + ∆t) = x + νj(x) , with probability λj(x) ∆t + o(∆t) for j = 1, . . . , 15 , x , with probability 1 -λ(x) ∆t + o(∆t) (3) 
where :

λ(x) def = 15 j=1 λj(x) , pj(x) def = λj(x)/λ(x) .

Reaction network

The reaction scheme of AM2b model is based on a modification of reaction scheme of the AM2 model [2, Chapter 2] by introducing the variable s for the SMP component. The production of SMP is related to the degradation of s1, s2, and biomass decay b1 and b2. They are also degraded and converted into s2 and carbon dioxide CO2 by the consortium b1.

We define a network of J = 15 reactions classified in three sets :

1) Biological reactions :

Acidogenesis + SMP production k1 S1 + B1 λ 1 -→ 2 B1 + c12 S2 + c10 S + κ1 CO2 , Methanogenesis + SMP production k2 S2 + B2 λ 2 -→ 2 B2 + c20 S + κ2 CH4 , SMP degradation k0 S + B1 λ 3 -→ 2 B1 + c02 S2 + κ3 CO2 , SMP production from biomass decay B1 λ 4 -→ S , B2 λ 5 -→ S
2) Substrate inflow and substrate outflows represented as reactions :

Substrate inflow ∅ λ 6 -→ S1 , ∅ λ 7 -→ S2 , Substrate outflows S1 λ 8 -→ ∅ , S2 λ 9 -→ ∅ , S λ 10 --→ ∅
3) Biomass and substrate withdrawal described as reactions :

Withdrawal S1 λ 11 --→ ∅ , B1 λ 12 --→ ∅ , S2 λ 13 --→ ∅ , B2 λ 14 --→ ∅ , S λ 15 --→ ∅
where the rate functions λj are to be specified. The second and third set of reactions are not biochemical reactions they just describe the inflows and outflows in the AM2b process. In reaction 10 only a proportion β of the SMP goes through the membrane, and in reaction 13 a proportion 1β of the SMP is withdrawn.

Pure jump Markov process

The AM2b reaction network described in previous section is translated into the pure jump Markov process X(t) defined by (3) thanks to the stochastic law of mass action [START_REF] Wilkinson | Stochastic Modelling for Systems Biology[END_REF] and mass conservation : each reaction j is described as an instantaneous jump X(t) → X(t) + νj(X(t)) occurring with intensity λj(X(t)) defined respectively by :

λj(x) def = Nj λj(x) , νj(x) def = [x + 1 N j νj]+ -x (4) 
where [x]+ the orthogonal projection of x onto R 5 + , and :

j λj(x) ν * j j λj(x) ν * j 1 µ1(s1) b1 (-k1, 1, c12, 0, c10) 9 Dout s2 (0, 0, -1, 0, 0) 2 µ2(s2) b2 (0, 0, -k2, 1, c20) 10 β Dout s (0, 0, 0, 0, -1) 3 µ(s) b1 (0, 1, c02, 0, -k0) 11 Dwit s1 (-1, 0, 0, 0, 0) 4 Ddec b1 (0, -1, 0, 0, 1) 12 Dwit b1 (0, -1, 0, 0, 0) 5 Ddec b2 (0, 0, 0, -1, 1) 13 Dwit s2 (0, 0, -1, 0, 0) 6 DinS1in (1, 0, 0, 0, 0) 14 Dwit b2 (0, 0, 0, -1, 0) 7 DinS2in (0, 0, 1, 0, 0) 15 (1 -β) Dwit s (0, 0, 0, 0, -1) 8 
Dout s1 (-1, 0, 0, 0, 0)

The coefficients Nj are rescaling parameters which characterize the size of the jump in the reaction j. Large Nj corresponding to frequent and small jumps. These scale parameters Nj do not act on the mean values of the increments but on their variances, large Nj will correspond to small variances. We can assume that the Nj's range from 10 4 to 10 9 . When a reaction involves only substrate molecules the corresponding Nj's range from 10 7 to 10 9 . When a reaction involves only bacteria the corresponding Nj's range from 10 4 to 10 6 . A standard case could be :

Nj =    10 
6 for j = 4, 5, 12, 14 , 10 5 for j = 1, 2, 3 , 10 4 for 6 ≤ j ≤ 15 .

(
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We define :

F (x) def = 15 j=1 λj(x) νj(x) (6) 
note that F (x) depends on the Nj's but F (x) = 15 j=1 λ j (x)

N j × Nj νj(x) so that, for large Nj's :

F (x) ≃ 15 j=1 λj(x) νj (7) 
and :

f (x) def = 15 j=1 λj(x) νj (8) 
is exactly the second hand term of Equation ( 2).

Note that : νj(x)

def = [x + 1 N j νj]+ -x We have then for each component : ∀ i = 1, . . . , 5 : -if xi + 1 N j {νj}i ≥ 0 then {νj(x)}i = 1 N j {νj}i ; -if xi + 1
N j {νj}i ≤ 0 then {νj(x)}i = -xi. In this last case |{νj(x)}i| = xi ≤ 1 N j |{νj}i| and then ∃ C such that for all j :

|Nj νj(x)| ≤ C |νj| , ∀x ∈ R 5 + . (9) 

Representation of the process X(t)

Trajectories of the process X(t) can be exactly simulated according to the so-called Stochastic Simulation Algorithm (SSA) popularized by Gillespie [START_REF] Gillespie | Exact stochastic simulation of coupled chemical reactions[END_REF]. Starting for an initial condition X(0), we simulate the next time of jump T1 from an exponential distribution of intensity λ(X(0)), then we draw the index j0 of the reaction from the distribution pj(X(0)), j = 1, . . . , J. Then X(T1) = X(0) + νj 0 (X(0)), and so on. Hence the Markov process X(t) can be represented as :

X(t) = X(0) + 15 j=1 t 0 R + νj(X(s -)) 1 [0,λ j (X(s -))] (v) Nj(ds, dv) ( 10 
)
where the Nj(ds, dv) are independent Poisson random measures (also independent from X(0)) of intensity measure ds × dv, the Lebesgue measure on R 2 + . Note that [START_REF] Higham | Modeling and simulating chemical reactions[END_REF] is expressed in law and is a generalization of the expression obtained in the case of constant jumps (see [17, theorem 4.1 chapter 6]), namely we used :

J j=1 t 0 Pj(ds × λj(X s -))νj(X s -) L = J j=1 t 0 ∞ 0 1 [0,λ j (X s -)] (u) νj(X s -) Nj(ds, du) ,
for more justification, see [START_REF] Grigelionis | On the representation of integer-valued random measures by means of stochastic integrals with respect to the Poisson measure[END_REF]. The law of the process X(t) is characterized by its infinitesimal generator define by :

A φ (x) = lim t→0 E[φ(X(t)) -φ(X(0))|X(0) = x] t ,
we can easily check that :

A φ (x) = λ(x) R 5 + φ(y) -φ(x) ρ(x, dy) = 15 j=1 λj(x) φ(x + νj(x)) -φ(x)
for all continuous with compact support function φ, where :

ρ(x, dy) def = 15 j=1 pj(x) δ x+ν j (x) (dy)
We introduced the compensated Poisson measure :

Ñj(ds, dv) def = Nj(ds, dv) -ds dv .
From [START_REF] Higham | Modeling and simulating chemical reactions[END_REF] we get :

X(t) = X(0) + t 0 F (X(s)) ds + Mt (11) 
where F (x) is defined by ( 6) and :

Mt = 15 j=1 M j t , with M j t def = t 0 R + νj(X(s -)) 1 [0,λ j (X(s -))] (v) Ñj(ds, dv)
M j t is a square integrable martingale with predictable quadratic variation :

M j t = t 0 λj(X(s)) |νj(X(s))| 2 ds (12) 
In Equation ( 11) the process X(t) is written as the sum of :

-a drift term t 0 F (X(s)) ds which describes the deterministic dynamics of X(t) and, for large Nj's, it coincides with the model AM2b (2) ; -a martingale term Mt with quadratic variation [START_REF] Kops | The modelling of noise processes in stochastic differential equations : Application to biotechnological processes[END_REF], this quadratic variation characterizes the variance of the difference between the stochastic model and the deterministic model. In particular, this term converges to 0 when Nj → ∞.

Discrete time approximations

The Stochastic Simulation Algorithmic (SSA) simulates each reaction of the ecosystem asynchronously in time. In many situations this detailed simulation is too cumbersome, this is why synchronous discrete time approximations have been proposed. Let :

tm def = m ∆t for ∆t > 0 fixed.

Poisson approximation

We construct an approximation ( X(tm)) m≥1 . On the interval [tm, tm+1) suppose that the different rate functions are constant with : λj( X(t) ≃ λj( X(tm)) so that the J = 15 reactions are independent and occur at constant rates λj( X(tm)), that is the occurrence of reaction of type j is a Poisson process of intensity λj( X(tm)). Hence, on the time interval [tm, tm+1) the number of reactions of type j follows a Poisson distribution of parameter ∆t λj( X(tm)). We obtain the following approximation called τ -leaping :

X(tm+1) = X(tm) + 15 j=1 νj( X(tm)) Pj,m + (13)
where for each m, the Pj,m are independent Poisson distributed variables with parameter ∆t λj( X(tm)).

Diffusion approximation

The Poisson distribution with parameter ∆t λj( X(tm)) can be approximated by a normal distribution of mean ∆t λj( X(tm)) and variance ∆t λj( X(tm)). From ( 13) we get : 

ξ(tm+1) = ξ(tm) +
where Wj(t) are independent standard Brownian motions so that Wj(tm+1) -Wj(tm) are independent and N (0, ∆t), and : 

Stochastic differential equation

Equation ( 14), is an Euler-Maruyama approximation of the following SDE :

dξ(t) = F (ξ(t)) dt + 15 j=1 1 Nj gj(ξ(t)) dWj(t) . (15) 

Scales and asymptotics

A first analysis

Suppose that Nj = N for all j. We can prove rigorously [START_REF] Kurtz | Solutions of ordinary differential equations as limits of pure jump Markov processes[END_REF][START_REF] Kurtz | Limit theorems for sequences of jump Markov processes approximating ordinary differential processes[END_REF] that :

sup 0≤t≤T |X(t) -x(t)| ----→ N →∞ 0 ( 16 
)
in L 2 (Ω) or in probability. In [START_REF] Wilkinson | Stochastic Modelling for Systems Biology[END_REF] we can also replace X(t) by ξ(t). So under specific conditions, when the population sizes are large and so the number of reactions is, i.e. N large, the ODE model ( 2) is valid. 

Conclusion

We show that the ODE model [START_REF] Benyahia | Anaerobic membrane bioreactor modeling in the presence of Soluble Microbial Products (SMP) -the Anaerobic Model AM2b[END_REF] is valid in large population scales but also in "moderately" large population scales. For small population scales, only the pure jump Markov model is valid. The most promising approach is to hybridize an ODE model for substrate dynamics coupled with a stochastic model for the dynamic of the biomasses.

15 j=1 1

 151 νj( ξ(tm)) ∆t λj( ξ(tm)) + ∆t λj( ξ(tm)) wj,m + where wj,m are independent N (0, 1) random variables. This last equation can be rewritten :ξ(tm+1) = ξ(tm) + F ( ξ(tm)) ∆t +15 j=1 Nj gj( ξ(tm)) [Wj(tm+1) -Wj(tm)]+

gj(x) def =

 def Nj λj(x) νj(x) = λj(x) Nj νj(x) . and according to (9) : |gj(x)| ≤ C λj(x) νj .

FIGURE 1 :

 1 FIGURE 1 : Simulation of diffusion approximation[START_REF] Kurtz | Limit theorems for sequences of jump Markov processes approximating ordinary differential processes[END_REF] with the parameters[START_REF] Campillo | Stochastic modeling of the chemostat[END_REF]. Time evolution of the organic matter concentration (left), time evolution of the acidogenic biomass concentration (right). Phase portrait acidogenic biomass/organic matter concentrations (below).

FIGURE 2 :

 2 FIGURE 2 : Simulation of diffusion approximation (14) with the parameters (5). Time evolution of the AGV concentration (left), time evolution of the methanogic biomass concentration (right). Phase portrait methanogic biomass/AGV concentrations (below).

FIGURE 3 :

 3 FIGURE 3 : Simulation of diffusion approximation (14) with the parameters (5). Time evolution of the SMP concentration (left). Phase portrait acidogenic biomass/SMP concentrations (right).

  contains all the ingredients that can be used to establish a pure jump Markov model. The ODE model is valid only in large population scales. The SDE model
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At an intermediate scale, a functional central limit theorem states that the process √ N (X(t)x(t)) can be approximated in law by 15 j=1 t 0 gj(x(s))d Wj(s) where the Wj(s) are independent standard Brownian motions, that is formally :

This proves that the SDE model ( 15) is valid for N large but also for N moderately large.

A second analysis : hybrid model

In many situation ODE and SDE models are not valid. This is the case when one of the bacterial population is present in low concentration but still affects the global dynamic of the process. This so-called molecular randomness may influence the global dynamic even when the population sizes are not so small [START_REF] Campillo | Effect population size in a Predator-Prey model[END_REF]. In this case we may adopt an hybrid approach.

We present an example where we separate the dynamics of the substrates from the dynamics of the biomasses, i.e. separate substrate type reactions from biomass type reactions, then to describe the first ones as a system of ODE's and to describe the second ones as a pure jump Markov process. We obtain a system of ODE's describing the continuous evolution of the substrates and the SMP concentrations :

coupled to a 2-dimensional pure jump process describing the discrete evolution of the biomasses concentrations :

Simulation

We now present some simulations of the ODE and SDE models using the values for the parameters of the AM2b model defined in [1, Table 1 p. 6].