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Abstract 

Based on General Relativity, we derive theoretically, the Milgrom phenomenological MOND 

equation that explains Rotation Curves in galaxies. This is made possible by taking into 

account the inhomogeneous space expansion, in and around, galaxies. Our derivation supports 

the effort to dispel the need for Dark Matter, or the need to modify known and accepted 

physics. 
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 Introduction 1

The issue of Rotation Curves in galaxies led, in 1933, to the Zwicky hypothesis of Dark 

Matter [1]. Alternatively it led, in 1983, to the suggestions by Milgrom [2] to modify 

Newtonian Gravity (MOND) and by Bekenstein [3], in 2004, to modify General Relativity 

(TeVeS). 

Distance and time are considered fundamental attributes of the reality and the result of their 

division is velocity. Based on the Rindler discussion [4] on clock synchronization, we suggest 

considering distance and velocity as fundamental and time as merely a practicality. This has 

implications for how we interpret the first term in the Schwarzschild metric. It leads us to 

conclude that the Newtonian gravitational central acceleration, gN, can be looked upon as a 

gradient in light velocity, created by space curving (contraction) around a mass.  

Light velocity is a constant of nature, since Local Observers measuring light velocity in 

their own zones of space arrive at the same result. But it is not a constant for a Faraway 

Observer examining other zones of space rather than its own.  

Space in the universe expands, but hardly within galaxies. We show that the inhomogeneous 

expansion of space in and around galaxies creates a similar gradient in light velocity in and 

around them. This causes an additional, overlooked, universal central acceleration, g0. The 

geometric mean of these two central accelerations gN and g0 yields the Milgrom MOND 

equation.  

 Remarks on Distance Time and Light Velocity 2

2.1 Space as a Lattice 

By attributing a cellular structure to space, we can explain its expansion, its elasticity and can 

introduce a cut-off in the wavelength of the vacuum state spectrum of its vibrations. Without 

this limitation on the wavelength, infinite energy densities arise. The need for a cut-off is 
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addressed by Sakharov [5], Misner et al [6], and by Zeldovich [7].  In addition, the Bekenstein 

Bound sets a limit to the information available about the other side of the horizon of a black 

hole [8].  Smolin [9] argues that: 

There is no way to reconcile this with the view that space is continuous for that implies that each finite 

volume can contain an infinite amount of information. 

We relate to space as a 3D elastic, deformable lattice, rather than a bent manifold. We show 

that Riemannian geometry is applicable also for a 3D elastic, deformable lattice [10].  

2.2 Space Density 

Space density  is defined as the number of space cells per unit volume. Space density in a 

zone of space without deformations (far away from masses) is denoted 0. 

2.3 Distance 

Consider the linear dimension of a space cell as the local observer’s miniature yardstick. 

Hence, in a space lattice the distance between two points is simply the number of space cells 

on the straight line between the two points for a Euclidian space and on the geodesic for a 

Riemannian (deformed) space. 

We consider a standard unit of length as a yardstick with the same number of space cells 

along its length, anywhere in space. A one centimeter yardstick, for example, contains the 

same number of space cells anywhere, but the linear dimensions of these cells might vary in 

different zones of space. Hence, the length of standard yardsticks of local observers, in 

different zones of space, as seen by faraway observers, may also vary. 

2.4 Time 

We do not know what time is, we only know what motion is. 

We can build devices called clocks; whose hand movement (or whatever is analogous to the 

hand movement) describes to us the “passing of time”. The time of an event would be the 
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position of the hands at the moment, and at the place of the event. The hands of the clock 

must move in a rhythmic circular motion so that each cycle is exact. In the case of a non-

circular, but rhythmic motion the physical conditions must be preserved so that every motion 

is like the one preceding it. Thus we can talk about the clock’s rhythm, or frequency of its 

motions, where each cycle represents a unit of time.  

We consider a standard unit of time as the time that it takes for a light beam to cross a 

standard unit of length. If the yardstick moves with respect to space we relate as a unit of time 

to the time it takes for the beam to move back and forth. This device is our standard clock. 

2.5 Light Velocity 

The discussion here and in Section 3 will clarify the fact that observers in all zones of space, 

regardless of their space densities, will claim to get the same result measuring light velocity 

with their standard yardsticks and clocks. Hence we relate to Light Velocity as a constant of 

nature. However, each and every faraway observer finds that according to his measurements 

and understanding light velocity elsewhere, where local observers reside, might vary 

according to space density in their locality. This is the result of light velocity dependence on 

the permittivity and permeability of space. But the permittivity and permeability of space 

depend on the density of space [11]. Hence, we should not consider light velocity as a 

constant and relate to the coordinate speed of light of GR [12] as a real speed. 

 The Metric and Light Velocity 3

Schwarzschild, in 1916, was the first to find a solution to Einstein’s field equation - a general 

spacetime metric - for the exterior of a spherically-symmetric star of radius R, i.e., for  r > R: 

 22222
rr0r

22
00

2 dθsindθrdrgdtdr2gdtcgds         (1) 

The metric’s elements 00g , 0rg  and grr are functions of r and t. 
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According to [13] the line element ds
2  

is: 

 22222rc

2GM

22rc

2GM

2 dθsindθrdredtceds
22




        (2) 

We denote a gravitational scale factor, a: 

a = rc

GM
2

e


                   (3) 

For the surface of the sun or the edge of our galaxy: GM/rc
2
 ~ 10

-6
 and thus GM/rc

2
 << 1. 

For GM/rc
2
 << 1 equation (3) is approximated as: 

a = (1− GM/rc
2
)         a < 1     r → ∞      a → 1        (4) 

We rewrite equation (2) to become:         

 22222-22222 dθsindθrdradtcads            (5) 

The metric in equation (5) is derived by a faraway observer OB1 – far away from the center 

of a mass, M, that serves as the origin of his co-ordinates. 

For OB1, a radial distance interval, dl, close to M, contains a smaller number of his yardstick 

units, dr, than dr0, the number of the local observer OB2 yardstick units that dl contains. This 

is the result of the OB2 yardstick contraction (curving), which is the contraction of his local 

space. Hence: 

dr0 = a
-1

dr a < 1            (6) 

From the synchronization of clocks, [4] Rindler arrives (p. 184) at: 

dt0 = adt a < 1            (7) 

Thus, for OB1, a time interval, dτ, contains a larger number of time units, dt, than the number 

of time units, dt0, for OB2.  
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The 4D spacetime interval between two events [4]; the “emission” of a short pulse of light at 

point A and the “arrival” of this pulse at point B is:    

ds
2 

= 0.  

Hence, using equation (5): 

2-2222 dradtca   = 0              (8) 

acdt = a
-1

dr             (9) 

dr/dt = a
2
c           (10)  

This, dr/dt = c’, for OB1,is the light velocity close to a mass M. Light velocity, for OB1, far 

away from M, is c (standard light velocity), whereas   dr/dt = c’ < c.  

This, dr/dt = c’, is a local, real and slower, light velocity since, according to equation (4), 

a < 1.  

In the literature dr/dt in equation (10) is called coordinate speed of light, [12]. This is a 

misleading name, since dr/dt  should be considered a real speed [14].  

Substituting dr from equation (6) and dt from equation (7) in equation (8) gives: 

dr/dt = adr0/a
-1

dt0 = a
2
dr0/dt0         (11) 

Comparing equation (11) to equation (10), gives: 

dr0/dt0 = c             (12) 

And from (11) again:  

c’= a
2
c             (13) 

The results here and the discussion in Section 2.5 lead us to conclude that OB1 and OB2 

measuring light velocity locally in their own zones of space arrive at the same result. 
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Due to this invariance, light velocity is considered “a constant of nature”, despite the fact 

that in different zones of space it behaves differently.  

In conclusion: 

dr0 = a
-1

dr             (6) 

dt0 = adt             (7) 

c’= a
2
c             (13) 

 The Gravitational Field as a Gradient in Light Velocity 4

Substituting a, equation (4), in equation (10), gives for the case GM/rc
2
 << 1:  

dr/dt = a
2
c = (1− GM/rc

2
)

2
c ~ (1− 2GM/rc

2
)c  = (1+ 2φ/c

2
)c     (14) 

From equation (14) and dr/dt = c’ (Section 3) we get the gravitational potential φ:   

φ = ½ c (c’- c)            (15) 

Note that c’< c, which complies with φ < 0.  The field strength (central acceleration g) is thus: 

Eg = g = − dφ/dr = − ½ cdc’/dr         (16) 

Eg = g = − 1/2 c𝛁𝐜’         (17) 

Thus, the gravitational field (central acceleration) can be considered a gradient in light 

velocity.   

Note that c’ is not a scalar, it is a vector c’, and 𝛁𝐜′  is a gradient of a vector. This gradient 

involves Christoffel symbols which are involved in the GR field equation.  

To check our derivation we take (14) and c’ = dr/dt    and get:  

c’ = (1− 2GM/rc
2
)c            (18) 

dc’/dr = 2GM/r
2
c            (19) 

https://en.wikipedia.org/wiki/Christoffel_symbols
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Hence, according to equation (16) the central acceleration is: 

g =  ½ cdc’/dr = GM/r
2      

      (20) 

g = − (GM/r
3
) r          (21) 

Note that M is a gravitational mass, since it comes from Einstein’s GR field equation. 

Note also that equations (16) and (17) are general equations, not necessarily limited to the 

Newtonian gravitational field. 

Our paper [15] shows that this understanding leads to the understanding of free fall and yields the 

prof of the equivalence of inertial mass and gravitational mass. 

 The Overlooked Central Acceleration 5

The cosmological scale factor (CSF), a, in the epoch of galaxies formation 500−700 Myr  

(z = 8−11) after the Big-Bang [16], is notated ab. Taking z = 9 gives:  

ab = 1/(z+1) = 0.1, whereas  the present CSF in the intergalactic space is a0 = 1. 

ab = 0.1      a0 =1           (22) 

Note that the CSF, a, in this section is not the gravitational scale factor, a, of Section 3, 

although both relate to space density.  

Space in the universe expands, but space within galaxies does not. We, however, assume that 

at some point in the galaxy or on its skirt space starts to expand gradually to reach a0 =1. 

A simple toy function for a variable CSF, in and around galaxies, is: 

a = ab + (a0 − ab)[1− exp(− r/(R/4))]          (23) 

R is the Hubble sphere radius (which is not the R of Section 3). For r = 0, a = ab and for r →R, 

a = 0.98 , which is close to a0 = 1 . 
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Note that the radius of the universe is many times larger than the Hubble sphere radius R. 

Taking R/4 is arbitrary, but based on the size of “dark matter halos” it is reasonable; it 

should, however, be supported by observations. 

Substituting the values ab = 0.1 and a0 = 1 , of equation (22), in equation (23) gives: 

a = 0.1+ 0.9[1− exp(− 4r/R)]          (24) 

For r << R  equation (24) becomes:  

a = 0.1+ 3.6r/R          (25) 

According to equations (13) and (25) and using the Hubble parameter H = c/R (defined as 

H = ȧ/a) gives for r << R  the following value for dc’/dr: 

dc’/dr  = c d/dr (a
2
 ) = c 2a da/dr =2∙ a∙3.6∙ c /R       

Taking for a its average value (ab+ a0)/2 ~ 0.5 gives:    

dc’/dr = 0.36H           (26) 

The H value as of today - the Hubble constant H0, [17], is:  

H0 = 2.26± 0.25× 10
-18

 sec
-1

.  

Substituting this value (without the error range, since we are using an artificial toy function) 

in equation (26) gives: 
 

 

dc’/dr = 0.36 H0 = 0.81 × 10
-18

sec
-1 

       (27)  

The value for the central acceleration, due to the inhomogeneous space density, as of today, 

is calculated using equations (16) and (27):  

g = − ½ cdc’/dr = −1.22 ×10
-8 

cm s
-2

.        (28) 

This acceleration, notated g0, is:  

g0 = −1.22 × 10
-8 

cm s
-2

         (29) 
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The geometric average (mean) of the Newtonian central acceleration gN = − GM/r
2
, and g0 

gives: 

g = − 
√g0GM

r
                (30)      

Equation (30) resembles the Milgrom MOND phenomenological equation [2]. According to 

MOND, for central accelerations smaller than g0, the Newtonian central acceleration should 

be modified to become equation (30). Our g0, in contrast, is a real additional central 

acceleration. Thus, it is clear that our understanding is not related at all to MOND. We adhere 

to GR and its weak field Newtonian approximation and dispel the need to modify them.  

Note the fit of our value for g0, in equation (29), to the observed [2]  MOND g0, which is:  

g0= − 1.2±0.2 ×10
-8 

cm s
-2

.          (31) 

Note, that the MOND theory uses the notation a0 rather than g0 . 

We take the geometric average (mean), since central accelerations are related to radii of 

space curvatures [10]. This subject, however, is beyond the scope of this paper. 

Gravitation is the contraction of space, whereas space expansion is the dilation of space. gN is 

the result of gravitational space contraction (curving) whereas g0 is the result of space dilation 

(curving). Let r0 denote the distance from the center of a galaxy at which space contraction 

was balanced by space dilation, in the epoch of the galaxy’s creation. This balance at r0 , with 

the larger g0 of that time, is expressed by the equality gN  = g0 ,  or:  

GM/r0
2
 = g0            (32) 

Thus: 

r0 = (GM/g0)
1/2

                        (33) 

Note the following:  
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With time H becomes smaller and so does the gradient in light velocity, see equation (26). 

Thus, the zone of balance, at r0, see (33), moves forward, away from the center of the galaxy, 

as if “Dark Matter Halos” grow with time. 

Our central acceleration, equation (17), is based on a gradient in light velocity; hence we can 

explain lensing, including the lensing of empty zones of space with inhomogeneous space 

density.  

 Summary 6

The inhomogeneous expansion of space around galaxies creates a universal, so far 

overlooked, central acceleration, g0 that explains Rotation Curves.  
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