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Scale transition models based on Eshelby’s solution provide interesting information on the
properties and multi-scale mechanical states experienced by materials presenting complex
microstructures, such as composite materials, accounting for the constituents’ properties
but also microstructural parameters such as the morphology of the heterogeneous inclu-
sions constituting the material. Nevertheless, until now, these approaches cannot reliably
account for multiple inclusion morphologies in the same representative elementary vol-
ume of the modeled material, as they predict two distinct sets of properties depending
of the quantities (strains or stresses) used to formulate the homogenization procedure.

The present work aims to investigate the validity of Kröner–Eshelby self-consistent
model for thermo-elastic behaviour, in the case when several morphologies do coexist
within the same representative elementary volume. A study of the two resulting formula-
tions and their limits leads to suggest a mixed formulation inspired of Vook–Witt’s model,
as an understandable but acceptable compromise between the two alternatives. The
results of this formulation are also described in the case of a thermo-mechanical load.

1. Introduction

The recent development of composite materials during
the last two decades opened new prospects to mechanical
part engineering, particularly for aeronautical applications,
because of their high strength-to-weight ratio as well as
corrosion and fatigue resistance. But, as a counterpart of
these advantages, the inherent heterogeneity of these
material induce complex mechanical behaviours under
service loads, and also internal stresses produced during
the cure and tooling processes of a part.

Thus, the need for predicting the stress distribution
among the constituents gave a boost to the development
of the so-called ‘‘scale transition models”, which permit
to relate the behaviour of the material at several scales of
interest. Among these, Eshelby’s solution based models

(like Mori-Tanaka or Kröner–Eshelby estimates, the latter
often referred to as the self-consistent model of the poly-
crystal) suggest a realistic and interesting approach, which
enables to calculate the homogenized properties of the
material, and also to predict how the stresses do concen-
trate between the constituents as a function of the consid-
ered load. Eshelby’s equations were first used by Kröner to
estimate the elastic moduli (Kröner, 1958) and the plastic
behaviour (Kröner, 1961) of polycrystals, from the proper-
ties of its constitutive crystallites. This elastoplastic model
inspired similar studies on the thermo-elastic behaviour of
heterogeneous materials (Hutchinson, 1970), then on the
time-dependent creep and relaxation of polycrystals
(Weng, 1993). These models are more and more used as
computation capacities knew a boom in the last decade
(François, 1991; Fréour, 2003). They were also found inter-
esting for composite materials, owing to the strong heter-
ogeneity of their constituents. Thereby, several recent
papers have shown the relevance of these approaches for
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describing the hygro-mechanical and thermo-mechanical
behaviour of composite structures (Fréour et al., 2005,
2006; Jacquemin et al., 2005).

These models have also been applied to new industrial
materials that present a microstructure containing inclu-
sions of various morphologies or geometrical orientations
(Baptiste, 2003; Le Pen and Baptiste, 2002). This kind of
microstructure also corresponds to nano-composites, con-
stituted of very rigid and stretched (about 50 nm-long and
5 nm-wide) carbon nanotubes with random geometrical
orientation, embedded in a weak-stiffness organic matrix.
Nanotubes are still used at a very reduced volume content
(below 1%), but show extremely interesting mechanical
properties and notably a Young’s modulus higher than
1 TPa (Treacy et al., 1996), which promises very important
future developments.

Eshelby’s solution-based homogenization procedures
are often formulated from both Hill’s averages relations,
equating the set average achieved over the mechanical
strains (respectively stresses) of every inclusion constitut-
ing the effective medium to the corresponding macro-
scopic quantity (see relations (3) and (4) below). One can
show that, when both of them are satisfied, the model is
self-consistent, i.e., leads to the same macroscopic effective
properties regardless of the equation used. Benveniste
(1987) and several authors shown evidence that both Hill’s
average relation could simultaneously be fulfilled by the
Mori-Tanaka and self-consistent models, but at the cost
of some restrictions over the materials microstructure: (i)
either the inclusions must have the same Base Volume
(BVs), i.e., shape and alignment of the elementary single
heterogeneous inclusions accounted for achieving the
scale-transition process should be strictly identical, (ii) or
the material and inclusions must be isotropic, (iii) or only
single or two-phase materials can be reliably modeled.
This includes randomly oriented spheroidal particles, pen-
ny-shaped particles randomly oriented in a layout, aligned
fibers in a composite ply, isotropic aggregates... Analytic
expressions of the thermo-elastic macroscopic properties
of the effective medium have been elegantly determined
for these cases in a series of paper from Benveniste, Dvo-
rak, and Chen (1991, 1992). Some applications also can
be found in Pham (2000) or Qiu and Weng (1991).

However, in the general case of ‘‘multi-phased” materi-
als (i.e., whose microstructure involves more than two con-
sistuents) with inclusions of several shapes, Benveniste
et al. (1991) demonstrated that the Mori-Tanaka and
self-consistent approximations led to unsymmetric stiff-
nesses, and problems related to the simultaneous fulfilling
of Hill’s average relations. At the present time, the compu-
tation of thermo-elastic properties for materials exhibiting
a complex microstructure while presenting an anisotropic
behaviour at various scales still seems to constitute an
open problem. The ambition of this paper is to decline
the well-known classical self-consistent scheme in the case
of multimorphous and multiphased materials. Hill’s aver-
ages principles (see beneath) are used to define validity
criterions, and to give an enhanced estimate of the macro-
scopic thermo-elastic properties.

In a first part, the classical scale transition formalism set
up by Hill and Eshelby is extended to the case when mate-

rials present a complex morphological microstructure (i.e.,
when the uniqueness of the BV morphology is not satis-
fied). The formulations based on the volume averages over
stresses and strains are described within the framework of
a Kröner–Eshelby model with multiple morphologies, lead-
ing to two sets of relations for the effective properties.

In a second part, the model is used to describe the mul-
tiscale behaviour of a composite material with a random
distribution of the geometrical orientation of the reinforc-
ing strips. A two-steps scale transition homogenization
procedure is developed and applied to the material; the re-
sults for effective properties and respect of Hill’s averages
principles are discussed for the two formulations. A mixed
formulation is then suggested and validated.

In the last part, this formulation is used to predict local
stresses in the material subjected to mechanical and ther-
mal loadings.

2. General presentation of the multimorphous model

2.1. Hill’s formalism and Kröner–Eshelby model

The Kröner–Eshelby scale transition model (more com-
monly called ‘‘self-consistent model”) is based on a repre-
sentation of the material at several scales: on one hand, the
‘‘local” scale denoted by the superscript i, where one ob-
serves the behaviour of each constituent, considered as
an ellipsoidal and homogeneous inclusion (also called Base
Volume or BV); on the other hand, the macroscopic scale
denoted by the superscript I, where one can observe the
behaviour of the Effective Medium (or EM). As thermo-
elastic behaviours are considered here, they are expressed
by the following laws:

rI ¼ LI : ðeI � aIDTÞ ð1Þ
ri ¼ Li : ðei � aiDTÞ ð2Þ

In these relations, the stiffnesses are represented by the
4th-order tensors L, and the Coefficients of Thermal Expan-
sion (CTE) by the 2nd-order tensors a. The temperature
increment is denoted by DT, whereas r and e stand for
the stress and strain, respectively.

The scale transition relations are basically written as
volume averages operations on stresses and strains. Hill
(1967) showed, in a very general way, the equivalence be-
tween set (i.e., volume) averages and volume integrals.
Hill’s volume average relations over the mechanical states
(also called consistency principles on mechanical states)
are written:

eI ¼ heii ð3Þ
rI ¼ hrii ð4Þ

where the square brackets h...i represent the arithmetical
volume average.

In a fundamental work, Eshelby studied the behaviour
of an inclusion embedded in a homogeneous medium
loaded at the infinite (Eshelby, 1957). He demonstrated
that, if and only if the inclusion had an ellipsoidal shape,
the local stresses and strains where homogeneous inside
the BV. Hill (1965) was the first to write the following
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relation between local and overall states, where L* is
widely known as Hill’s constraint tensor:

ri � rI ¼ �L� : ðei � eIÞ ð5Þ

This scheme is often called the ‘‘dilute approximation” as it
neglects any inter-particles interactions. The self-consis-
tent and Mori-Tanaka models both use this relation, con-
sidering the constituents as Eshelby’s inclusions. In the
mori-Tanaka scheme, one of the constituents (often called
the ‘‘matrix phase”) is considered as the embedding med-
ium; the model is mainly adapted for materials whose ma-
trix phase volume fraction dominates all the others. On the
contrary, within the self-consistent model, the embedding
medium is given the properties of the EM. As a conse-
quence, the expressions giving the effective properties
are implicit and require iterative solving methods, which
only give numerical solutions. However, this approach is
better adapted than Mori-Tanaka’s for materials where
all the phases have comparable volume fractions, as in-
ter-particle interactions are indirectly taken in count via
the EM (Berryman and Berge, 1996).

Hill’s constraint tensor can be written from the Eshelby
tensor SI

esh or the Morris tensor EI (also called ‘‘influence
tensor” P), thanks to the following relation (where I is the
4th-order Identity tensor):

L� ¼ LI : ðSI
esh
�1 � IÞ ¼ ðEI�1 � LIÞ ð6Þ

The Morris tensor expresses the interaction of an inclusion
with a given morphology, independently of its elastic prop-
erties, and the EM (Morris, 1970). In the case of an ellipsoi-
dal inclusion whose principal axes lengths are {2a1, 2a2,
2a3}, it is written in the coordinate system of the inclusion:

EI
ijkl ¼

1
4p

Z p

0
sin h:dh

Z 2p

0
cI

ijkl:du with cI
ijkl ¼ ðK

I
ikÞ
�1:nj:nl

ð7Þ

In the case of an orthotropic macroscopic symmetry, the
Kik(n) components were given by Kröner (1953):

KI¼

LI
11n

2
1þLI

66n
2
2þLI

55n
2
3 LI

12þLI
66

� �
n1n2 LI

13þLI
55

� �
n1n2

LI
12þLI

66

� �
n1n2 LI

66n
2
1þLI

22n
2
2þLI

44n
2
3 LI

23þLI
44

� �
n2n3

LI
13þLI

55

� �
n1n2 LI

23þLI
44

� �
n2n3 LI

55n
2
1þLI

44n
2
2þLI

33n
2
3

2
66664

3
77775

where n1 ¼ sin h cos u
a1

; n2 ¼ sin h sinu
a2

; n3 ¼ cos h
a3

.
Some computations of the Morris tensor are given in

(Kocks et al., 1998; Mura, 1982), who also give a detailed
presentation of the Kröner–Eshelby model. Because of the
complex expression of the integrand cI

ijkl, one cannot gen-
erally give an analytical expression of EI, except for some
specific configurations (fibers, discs and spheres in partic-
ular). The calculation of this tensor is thereby a key-point
of the models based on Eshelby’s inclusion.

Furthermore, specific attention must be paid to the fact
that the calculation of the Morris tensor must be made
with the stiffness tensor LI dropped in the coordinate sys-
tem Ri of the inclusion. In the lack of an isotropy with re-
spect to the rotation carried out, several new non-null
components appear in LI, thus invalidating the expression
of KI given by Kröner.

If the inclusions constituting the material do not pres-
ent a single morphology in the macroscopic coordinate
system RI, the tensors L*, SI

esh and EI are not purely macro-
scopic anymore but related to the considered BV also; in
consequence, the superscript I (or *) will be replaced by Ii

(or * i). The transition between the local and macroscopic
coordinate systems is made through the convention intro-
duced by Roe (1965). In order to lighten the equations, the
tensors will be implicitly dropped in RI for the averaging
operations.

2.2. Formulation with stresses and strains

Starting form the local and macroscopic behaviour laws,
and using the scale transition relation given above (Eq. (7)),
one can express the local stresses and strains as:

Riei ¼ RiðLi þ L�iÞ�1 : ½RiðL
I þ L�iÞ : RieI þ RiðLi : ai � LI : aIÞDT�

ð8Þ

Riri ¼ RiL
i : RiðLi þ L�iÞ�1 : bRiðL

I þ L�iÞ : RiL
I�1

: RirI

þ RiL
�i : RiðaI � aiÞDTc ð9Þ

One would notice that the term Ri(Li + L*i)�1:Ri(LI + L*i)
which appears in (8) is equivalent to the elastic strain

localization tensor: RiA
i
i ¼ RiE

Ii : RiL
i � RiL

I
� �

þ I
h i�1

. The
same is true for the elastic stress concentration tensor:
Bi ¼ Li : Ai : LI�1

that appears in the expression of the local
stresses. These tensors are defined, for elastic loads, by
the two relations:

ei ¼ Ai : eI ð10Þ
ri ¼ Bi : rI ð11Þ

Of course, Hill’s averages principles imply the following
relation on Ai and Bi:

hAii ¼ hBii ¼ I ð12Þ

Hill’s averages principles can be written on both strains
and stresses; nevertheless, only one relation is needed to
obtain the effective properties, which leads to two alter-
nate expressions.Thus, if using Hill’s average principle on
stress, one would write the macroscopic stress as:

rI ¼ hLi : ðLi þ L�iÞ�1 : ðLI þ L�iÞ : LI�1i : rI

þ hLi : ðLi þ L�iÞ�1 : L�i : ðaI � aiÞiDT ð13Þ

The relation being satisfied for any macroscopic state {rI, D
T}, one obtains:

hLi : ðLi þ L�iÞ�1 : ðLI þ L�iÞ : LI�1i ¼ hLi : Ai : LI�1i ¼ hBii ¼ I

ð14Þ

hLi : ðLi þ L�iÞ�1 : L�i : ðaI � aiÞi ¼ 0 ð15Þ

The relation (14) implies the following expression for the
effective stiffness:

LI ¼ hLi : Aii ð16Þ

In a same way, a few algebraic manipulations of the rela-
tion (15) give an expression of the effective CTE:
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aI ¼ hLi : ðLi þ L�iÞ�1 : L�ii�1 : hLi : ðLi þ L�iÞ�1 : L�i : aii
ð17Þ

On the contrary, if one uses Hill’s average principle over
the strains, one would obtain:

eI ¼ hðLi þ L�iÞ�1 : ½ðLI þ L�iÞ : eI þ ðLi : ai � LI : aIÞDT�i ð18Þ

which implies the two following relations on elastic and
thermal strains:

hðLi þ L�iÞ�1 : ðLI þ L�iÞi ¼ hAii ¼ I ð19Þ
hðLi þ L�iÞ�1 : ðLi : ai � LI : aIÞi ¼ 0 ð20Þ

One would then obtain the following effective properties:

LI ¼ LI : hAii�1 ¼ hLi�1
: Bii�1 ð21Þ

aI ¼ LI�1
: hðLi þ L�iÞ�1i�1 : hðLi þ L�iÞ�1 : Li : aii ð22Þ

Several authors have shown that, if the inclusions had a
unique morphology in the macroscopic coordinate system,
the two formulations led to a same set of effective proper-
ties. That’s why the model is widely used for metals
(Fréour, 2003) constituted by spherical inclusions, and for
unidirectional composite plies with organic (Fréour et al.,
2006) or metallic matrix (Le Pen and Baptiste, 2002). On
the other hand, in the case that the material exhibits a
morphological texture with a distribution of the inclusion
geometry, one obtains two solutions that satisfy Hill’s
average principle on strains or stresses, but never both of
them simultaneously. Benveniste (1987) noticed this
drawback of the Eshelby-based models, but no systematic
study of it can be found in the bibliography. As a conse-
quence, this numerical study will be achieved in the next
section of the present work and compared the results given
by each formulation, for a composite material with planar
isotropy.

3. Application to an in-plane isotropic material

The present application is focused on a high-perfor-
mance composite material developed for the design of
composite parts to be used for aeronautical applications.
This material is made of unidirectional reinforcing strips
with rectangular shape (60 � 8 � 0.15 mm) and randomly
disposed in the layout (see Fig. 1 below).

The strips themselves are composed of T300 fibers and
epoxy matrix, set as an unidirectional ply. The material
then appears as a thick layout (1.3 mm) with in-plane isot-
ropy. The properties of the epoxy resin and the T300 fibers
are given in (Jacquemin et al., 2005; Agbossou and Pastor,
1997); they are summed up in the Table 1. In order to
lighten the expressions, a ‘‘local” coordinate system Rxyz,
oriented along the axis of the fibers constituting the strips,
is introduced. This coordinate is obtained by a rotation H
around the 3-axis of the ‘‘global” coordinate system R123

bound to the effective material.

3.1. Description of the scale transition procedure

The self-consistent model is used in order to perform a
two-steps scale transition (see Fig. 2 below): first, the
effective properties of the reinforcing strip are estimated
from those of the intra-reinforcements matrix and the car-
bon fibers. Then, a homogenization procedure is achieved
in order to find the behaviour of the material, from the
properties of the extra-reinforcements matrix and those
of the reinforcing strips (previously estimated).

The homogenization of the reinforcing strip is not a par-
ticular matter as it corresponds to the case, treated in a re-
cent paper (Jacquemin et al., 2005), of an unidirectionally
reinforced composite ply. Consequently, one will only give
the effective properties of the reinforcing strip (see Ta-
ble 1), accounting for a fiber volume fraction of 63%.

The second homogenization step is more problematic,
as it involves inclusions of various shapes and (possibly
strongly) anisotropic constituents and EM. As a conse-
quence its modelling will be achieved through the ‘‘multi-
morphous” model, as described in the next section.

3.2. Effective properties of the material for each formulation

The Eqs. (16) and (21) provide the effective stiffness of
the material with 10�3 accuracy, for both formulations.
The averaging operations are achieved onto the two previ-
ously described constituents (reinforcing strips with 95%
volume ratio and extra-reinforcement matrix with 5% ra-
tio). A set of 10 orientations uniformly distributed on
180� in the 1–2 plane is considered in order to account
for the morphological texture. The obtained effective elas-
tic moduli are reported in the Table 2.

Fig. 1. Schematic representation of the microstructure of the material.
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These moduli verify, within the prescribed accuracy, the
Reuss and Voigt bounds (see Table 2). The elastic moduli
obtained according to the homogenization procedure satis-
fying Hill’s average principle over strains are close to the
Reuss bound; whereas those obtained by the approach sat-
isfying Hill’s average principle over stresses are practically
merged with the Voigt bound.

Furthermore, the two methods lead to drastically differ-
ent stiffnesses, particularly for the components that govern
the in-plane behaviour (E1, m12 and G12). On the contrary,
the ‘‘out-of-plane” components (E3, m13 and G13) do not
vary very much from a homogenization procedure to
another.

Also, the computation of the averages for localization
and concentration tensors, upon the two constituents and
all the orientations, show that none of the two methods
simultaneously respects both Hill’s averages relations (3)
and (4). Actually, according to Table 3, Eq. (16) satisfies

(4) but not (3), whereas Eq. (21) ensures that (3) is
satisfied, but not (4) anymore. The numerical error is con-
centrated on the ‘‘in-plane traction–compression” compo-
nents (A11 = A22), on ‘‘in-plane shear” (A66) and mainly on
out-of-plane components (A44 = A55 and A31 = A32). Never-
theless, it should be noticed that these errors keep rela-
tively weak for the chosen morphology, in the order of
3% if the out-of-plane shear components are not
considered.

On the contrary, for the homogenization with strains,
the average relation is insured for strains but not stresses
(see Table 3). The errors are particularly significant for
the in-plane components (250% relative error on B11 = B22

and 60% absolute error on B12 = B21), for the in-plane shear
(190% error on B66), as well as out-of-plane transverse
components (120% error on B13 = B23). On the other hand,
the error is null for the out-of-plane components of com-
pression–traction (B33) and shear (B44 = B55).

Table 1
Thermomechanical properties of a reinforcing strip (estimated by the self-consistent model), and its constituents.

Mechanical moduli CTE Density

Ex (GPa) Ey, Ez (GPa) mxy, mxz Gxy, Gxz (GPa) myz Gyz (GPa) ax (10�6/K) ay, az (10�6/K) q (kg/m3)

Reinforcing strips 146.8 10.2 0.274 7.0 0.355 3.8 �0.620 48.0 1620
T300 fibers 230 15 0.20 15 0.07 7 �1.5 27 1866.67
N5208 matrix 4.5 4.5 0.4 1.61 0.4 1.61 60 60 1200

Fig. 2. Schematic representation of the two steps scale transition.

Table 2
Elastic moduli of the material (isotropic in the 1–2 plan), estimated by the self-consistent model, for the two formulations.

E1, E2 (GPa) E3 (GPa) m12 G12 (GPa) m13, m23 G13, G23 (GPa)

He 16.63 9.92 0.121 7.42 0.337 4.45
Hr 55.48 11.24 0.290 21.49 0.266 3.97
Voigt bound 55.46 11.28 X 21.49 X 5.20
Reuss bound 15.44 9.66 X 6.65 X 4.46

Remark: The notations Hr and He are used, respectively, to denote the stress-based and strain-based formulations.

Table 3
Averages of the localization and concentration tensors for the in-plane isotropic material, homogenized with stresses or strains.

hAii A11 = A22 A33 A44 = A55 A66 A12 = A21 A13 = A23 A31 = A32

He 1.001 1 0.5 0.5 0 0 0
Hr 1.031 1 0.443 0.512 0.007 0 �0.033

hBii B11 = B22 B33 B44 = B55 B66 B12 = B21 B13 = B23 B31 = B32

He 3.465 1 0.5 1.431 0.604 �1.178 0
Hr 1 1 0.5 0.5 0 0 0

Expected value 1 1 1/2 1/2 0 0 0
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For both formulations, the in-plane components (11, 12

and 66 components) exhibit very important errors over
Hill’s averages principles. For them, the stress-based for-
mulation gives the weaker errors; on the contrary, for the
out-of-plane components, the strain-based formulation is
the most reliable. One can also notice that the in-plane
moduli E1, m12 and G12 are the most dependent of the for-
mulation used. Comparatively, the out-of-plane moduli
E3, m13 and G13 are relatively identical whatever the formu-
lation used.

As explained above, the Coefficients of Thermal Expan-
sion have been computed with respect to the two homog-
enization approaches previously presented in Section 2.2.
The thermal homogenization respecting Hill’s average rela-
tions expressed over the strains is achieved owing to rela-
tion (22), using the effective stiffness obtained by relation
(21); respectively, the stress-based homogenization is
done using the relation (17) and the effective stiffness ob-
tained according to relation (16). This leads to the results
presented in the Table 4 below. As for the stiffness, a signif-
icant deviation between the results occurs, depending on
the homogenization procedure used. By the way, this dis-
crepancy also exists in the case that the same stiffness is
used for the two formulations.

In order to quantify the relevance of these results, the
adimensionnal errors Xthermo and Ythermo are defined as
follows:

Xthermo ¼ hDethermo;ii:ðaIDTÞ�1

Ythermo ¼ hDrthermo;ii:ðLI : aIDTÞ�1

(
ð23Þ

where
Drthermo;i ¼ Li : ðLi þ L�iÞ�1 : L�i : ðaI � aiÞDT

Dethermo;i ¼ ðLi þ L�iÞ�1 : ðLi : ai � LI : aIÞDT

(
ð24Þ

These errors are also presented in Table 4, for both for-
mulations. One can thus observe that the strain-based for-
mulation verifies Hill’s averages principle over strains, but
leads to some errors on thermal stresses and mainly in the
normal direction. Respectively, the stress-based formula-
tion verifies Hill’s averages principle over stresses but
underestimates the in-plane thermal strains by more than
200%.

Furthermore, some tests were made to study the evolu-
tion of the properties with the morphology of the reinforc-
ing strips. One could observe that the three formulations
merged when the inclusions have a circular (or penny-
shaped) morphology, thus confirming the validity of the
model for a unique morphology. Nevertheless, the gap be-
tween the two solutions, as well as the associated errors,
quickly grows up as the morphology is stretched and thick.

3.3. Mixed formulation and results

From the study carried out in the previous section, one
could conclude that none of the two discussed homogeni-
zation procedures can give satisfying results for the overall
thermo-mechanical behaviour. But one can also point out
that each one has a ‘‘preferential direction” where exhib-
ited errors are weak: thus, as an example, the stress-based
formulation gives a satisfying description of the in-plane
behaviour, while the strain-based formulation is well
adapted to describe the out-of-plane behaviour.

The microstructure presented by the studied materials
corresponds to an assembly of thin in-plane layers. Previ-
ous works achieved on similar structures suggested that
extreme direction-dependent homogenization procedures
such as the Vook–Witt model (see Vook and Witt, 1968;
Welzel and Fréour, 2007) gave satisfying results on both
in-plane and out-of-plane behaviour. A similar mixed
homogenenization is thereby suggested, where the in-
plane behaviour is modeled using the stress-based formu-
lation, whereas the strain-based formulation is used for the
out-of-plane behaviour.

With this mixed formulation, the stiffness tensor of the
material satisfies the following from:

LI ¼

HrLI
11

HrLI
12

HeLI
13

HrLI
12

HrLI
22

HeLI
23

HeLI
31

HeLI
32

HeLI
33

HeLI
44

HeLI
55

HrLI
66

2
66666666664

3
77777777775

ð25Þ

By injecting this expression in the computation loop of the
stiffness, one obtains the results summed up in Table 5.
One finds effective moduli very close to those obtained
with the stress-based formulation (see Table 2), exception
made of the G13 coefficient which is closer to the modulus
homogenized with strains. It was noticed very little evolu-
tion of these elastic moduli if the shape ratios defining the
morphology were moderately modified.

Furthermore, the computation of the averages of the
localization and concentration tensors (Table 6) shows that
Hill’s averages principles are relatively well verified. The
main errors are committed on the in-plane strains, for
compression–traction (3% error on A11) or shear strains
(2% error on A66). These errors grow up with the stretching
and the thickness of the reinforcing strips, but are much
lower than those occurring according to the classical
formulations.

Table 4
CTEs of the in-plane isotropic material, estimated by the self-consistent model, for the two formulations, and associated errors.

CTE Error on e Error on r

a1, a2 (10�6/K) a3 (10�6/K) Xthermo
1 Xthermo

3 Ythermo
1 Ythermo

3

He 24.8 49.9 0 0 �2.088 0
Hr 3.52 114.9 0.062 �0.424 0 0
Expected value �4 �60 0 0 0 0
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The same method is used for computing the effective
CTE, which satisfies the following symmetry (Eq. 26):

aI ¼

HraI
11

HraI
22

HeaI
33

2
64

3
75 ð26Þ

The resulting CTE are given in Table 7, which also sums up
the errors on thermal stresses and strains, for the studied
morphology (60 � 8 � 0.15). The mixed formulation pro-
vides good results in the considered case, with an error be-
low 3% on thermal strains. By the way, this error becomes
null for a penny-shaped morphology (a1 = a2).

4. Application to thermo-mechanical loads

The proposed scale transition procedure enables to
compute effective properties closed to experimental re-
sults; furthermore, it has been shown that the procedure
enabled to estimate local stresses and strains being consis-
tent with the macroscopic loads. In this last section, this
procedure will be used in order to predict the internal
stresses in the material when subjected to mechanical
and thermal loads.

4.1. Response of the material to purely mechanical load

In order to describe the multi-scale mechanical behav-
iour of the material, a macroscopic tensile load, in the 1-
direction, of 100 MPa is considered. Relation (9) is used
to compute the local strains in the constituents, dropped
in the local coordinate system Ri. The stresses into the rein-
forcing strips and the extra-reinforcements matrix, then

into the very constituents of the reinforcing strip (matrix
and fibers), are computed.

One can observe (see Fig. 3 below) that compression–
traction stresses {rxx, ryy, rzz} evolve as p-periodic cosinu-
soids, while shear stresses rxy evolve as sinusoids. These
evolutions with orientation match the ones observed for
composite laminates subjected to compression–traction
loads. Inside the in-plane isotropic material, the in-plane
stresses are strongly heterogeneous (contrarily to the in-
plane strains, which are rather almost homogeneous):
the reinforcing strips experience up to 260 MPa in the x-
direction, while the organic matrix undergoes less than
10 MPa. This concentration of stresses is a result of the ori-
entation mismatch between the reinforcement strips and
the solicitations. On the contrary, out-of-plane stresses
are rather homogeneous and remains very weak.

The concentration of stresses is increased into the fiber
constituting the reinforcement strips, which experience
more than 400 MPa while the matrix takes less than
20 MPa. One will also notice the emergence of low comple-
mentary stresses (�2 to 2.5 MPa) inside the fibers and the
intra-reinforcement matrix, along the z-direction.

4.2. Response of the material to purely thermal load

A similar study was achieved for the in-plane isotropic
material submitted to a �100 �C thermal load. This kind
of load is typical of the cooling occurring during the cure
process of composite materials, which is reported to possi-
bly induce severe residual stresses (Guemes, 1994; Ogi
et al., 1999).

Contrarily to the mechanical load previously studied,
the thermal expansion does not ‘‘break” the in-plane isot-
ropy, thus the shear stresses and strains are null and the
mechanical states independent of the orientation angle H
of the considered reinforcing strip. One would notice that
this result is also valid for any load respecting the in-plane
symmetry.

The local stresses inside the in-plane isotropic material
are indicated in the Table 8 below. At the intermediate
scale, one can observe a marked gap between the rxx stres-
ses in the two constituents: the matrix is subjected to

Table 6
Averages of the localization and concentration tensors for the in-plane isotropic material, with the mixed formulation.

hAii A11 = A22 A33 A44 = A55 A66 A12 = A21 A13 = A23 A31 = A32

1.029 1.000 0.500 0.511 0.007 0.000 �0.015

hBii B11 = B22 B33 B44 = B55 B66 B12 = B21 B13 = B23 B31 = B32

1.001 1.001 0.497 0.500 0.001 �0.009 0.001

Expected value 1 1 1/2 1/2 0 0 0

Table 5
Elastic moduli of the in-plane isotropic material, with the mixed
formulation.

E1, E2 (GPa) E3 (GPa) m12 G12 (GPa) m13, m23 G13, G23 (GPa)

55.41 11.20 0.289 21.49 0.279 4.496

Table 7
CTE of the in-plane isotropic material estimated by the self-consistent model, for the mixed formulation, and associated errors.

CTE Error on e Error on r

a1, a2 (10�6/K) a3 (10�6/K) Xthermo
1 Xthermo

3 Ythermo
1 Ythermo

3

H mixed 3.52 64.3 0.031 0.027 0.004 0.002
Expected value �4 �60 0 0 0 0
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traction, although the reinforcing strips are constricted;
besides, this compression state implies a risk of micro-
buckling at the surface of the material. The same scheme
appears at the microscopic scale, where the fibers are
compressed and the matrix stretched. Along the normal
direction z, one can also notice the emergence of comple-
mentary stresses in the fibers and the matrix, due to the
gap on properties between these two constituents.

5. Discussion and prospectives

A two-steps scale transition procedure based on Eshel-
by’s inclusion has been introduced in order to describe
the thermo-mechanical behaviour of an in-plane isotropic
composite material, made of epoxy resin and carbon-epoxy
reinforcing strips, exhibiting an in-plane distribution on

the morphologies. The limits of the self-consistent model
for this kind of microstructures have been discussed, by
comparing the results of the strain-based and stress-based
formulations; each solution was discussed on the base of
Hill’s averages principles. Referring to these as validity cri-
terions, a mixed formulation was then suggested and gave
satisfying results for thermo-mechanical properties and
mechanical states averages.

The previous framework and its results are applicable to
other particles-reinforced materials such as nanocompos-
ites, as the morphologies tested are close to those exhib-
ited by carbon nanotubes. Thereby, the multimorphous
model is an interesting alternative to the Krenchel model
(Krenchel, 1964; Thostenson and Chou, 2003) which gives
a simple estimate of the elastic properties of isotropic par-
ticles-reinforced materials.

The scale transition procedure was applied to two typ-
ical thermo-mechanical loadings. This enabled to calculate
the local stresses in the material when experiencing
mechanical and thermal loads. Theses loads and stresses
are typical of those undergone by carbon-epoxy composite
materials during the cooling of cure processes, and consti-
tute an important issue for industrial applications. The
complex evolution of residual stresses during cure process
is mainly induced by the reticulation reaction of the organ-
ic matrix, with the associated chemical shrinkage, and the
evolution of its properties. These stresses can be predicted
within the above developed framework.

To conclude, this work has shown that the multi-mor-
phous self-consistent model is a powerful tool for the

Fig. 3. Local stress states in the constituents of the material submitted to a 100 MPa mechanical load.

Table 8
Stress states in the material and its constituents under a �100 �C thermal
load.

Scale Medium Stresses (MPa)

rxx ryy rzz

Macroscopic Effective material 0.0 0.0 0.0

Intermediate Extra-reinforcement
matrix

42.6 42.5 0.4

Reinforcing strips �48.1 44.1 0.1

Microscopic Intra-reinforcement
matrix

57.79 55.51 25.39

Fibers �109.9 37.5 �14.7
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prediction of homogenized properties of composite mate-
rials and residual (or service) local stress states. However,
for HEMs constituted by inclusions with very distinct mor-
phologies, special attention must be paid to the uniqueness
of the solution and the verification of Hill’s averages
principles.
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