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NORMAL MODES OF VIBRATION FOR 
NON-LINEAR CONTINUOUS SYSTEMS 

S. W. SHAW AND C. i'rnRRE 

Department of Mechanical Engineering and Applied Mechanics, 
The University of Michigan, Ann Arbor, Michigan 48109-2125, U.S.A. 

A definition and a constructive methodology for normal nodes of motion are developed 
for a class of vibratory systems the dynamics of which are governed by non-linear partial 
differential equations. The definition for normal modes is given in terms of the dynamics 
on two-dimensional invariant manifolds in the system phase space. These manifolds are a 
continuation of the planes which represent the well-known nOrmal modes of the linearized 
system. A local asymptotic approximation of the geometric structure of these manifolds can 
be obtained by using an approach which follows that used for generating center manifolds. 
The procedure also provides the non-linear ordinary differential equations which govern 
individual modal dynamics and a physical description of the system configuration when 
it is undergoing a modal motion. In this paper, the general theory is described for the 
application of vibrations of continuous media, but it can easily be extended to other 
situations. In order to demonstrate the power of the approach and its unique procedural 
aspects, three examples involving beam vibrations are worked out in detail. The examples 
are conservative, simply supported beams. The first demonstrates the methodology for a 
linear beam model, the second is a beam on a non-linear elastic foundation, and the 
third example is a beam with non-linear torsional springs attached at each end. In these 
examples, the simplicity of the mode shapes of the linearized model yields relatively simple 
calculations that do not obscure the important features of the procedure. 

I. INTRODUCTION 

The concept of normal modes of motion is well developed for a wide class of dynamical 
systems, typically defined by linear ordinary or partial differential with constant co­
efficients, which are obtained by linearizing equations of motion about an equilibrium 
configuration (see, for example, Weaver et al. [1]). These normal modes represent a special 
set of motions of the system in which it behaves like a system of lower order (specifically, 
of second order in most vibrations applications). For linear, conservative, non-gyroscopic 
systems that are spatially distributed, each normal mode has associated with it a mode 
shape, given by the corresponding eigenfunction, and a natural frequency, determined by 
the corresponding eigenvalue. When damping and/or gyroscopic terms are present, normal 
modes also exist, but the situation is not so simple, as normal modes are typically travelling 
wave motions. However, for virtually all linear systems, the dynamics of each individual 
mode is governed by a second order linear modal oscillator which is uncoupled from all 
other modal oscillators. 

The present work demonstrates the underlying geometrical structure which exists in the 
phase space for typical non-linear distributed parameter systems near an equilibrium 
(namely, the structure which is the source of the special normal mode motions). This 
geometrical structure is comprised of a set of invariant, normal mode manifolds. In this 
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paper, it is shown how these manifolds provide a means of constructing mode shapes and 
modal oscillators for motions of such non-linear systems about equilibrium. 

It is important to note that a complete analogy with linear modal analysis is not possible 
for non-linear systems, simply due to the fundamental fact that superposition does not 
hold. However, the existence of normal modes of motion for non-linear systems gives 
significant insight into the dynamics of these systems and provides a systematic method 
for carrying out model reduction. 

The method presented herein is an extension of that proposed and developed recently 
by the authors for finite-dimensional dynamical systems [2]. The motivating ideas are 
from the theory of invariant manifolds, an approach which, at least in the engineering 
community, has been completely overlooked as a means of defining normal modes. The 
method employed is quite simple in concept: it determines a set of two-dimensional 
invariant manifolds in the phase space which represent normal mode motions for the 
non-linear system, and then provides the equations of motion which dictate the dynamics 
on these manifolds. Utilizing the existence of the linear normal modes, one can locally 
construct formal asymptotic series expansions for these normal mode manifolds and the 
attendant modal oscillators. These seri~s represent a form of non-linear separation of 
variables which exactly recovers the linear dynamics when non-linearities are neglected and 
systematically produces the non-linear corrections to the normal modes. Such an approach 
is very adaptable, and may find use in many areas where one is interested in the non-linear 
dynamics of spatially distributed systems. 

The oscillators which describe the modal dynamics are completely uncoupled on the 
individual modal manifolds (as they must be from invariance), except in cases where 
internal resonance occurs. In such situations, there exists a coupling between the resonant 
modes which cannot be eliminated. The present method signals such resonances in the 
usual manner-by the appearance of small divisors. 

Virtually all previous works on non-linear normal modes, for example those of 
Rosenberg [3], Rand [4], and Vakakis [5], have been restricted to finite-dimensional, 
conservative systems. Efforts to generate normal modes for non-linear continuous systems 
include the works of Bennouna et al. [6, 7] and Szemplinska [8], which are also restricted 
to conservative systems and, in addition, assume a separation of temporal and spatial 
behavior as the first step in the analysis. Such methods are essentially a combination of 
harmonic balance and eigenfunction expansions. The approaches found in references 
[3-5] are more similar in spirit to the approach taken here, however, in that the form 
of the system's time behavior in a given mode is not prescribed a priori, but is 
determined by differential equations of motion which are derived for these modal motions. 
In reference [2], the authors introduced such a methodology, based on the concept of 
invariant manifolds, which generalized the normal mode results for finite-dimensional 
systems to include cases in which damping or gyroscopic terms are present. The extension 
presented herein further generalizes the formulation to the important class of systems 
modelled by partial differential equations. It differs from previous methods for continuous 
systems, e.g., those found in references [6-8], in that it may be applied to non-conservative 
and/or gyroscopic systems, and, more importantly, in that the behavior of the modal 
dynamics is not specified a priori, but is determined from differential equations 
which govern the modal dynamics. Furthermore, the approach presented herein does 
not require a series representation of the mode shapes at the outset of the solution 
procedure, as do the methods found in references [6-8]. Rather, the present method 
generates, in a systematic manner, the differential equations which the mode shapes 
must satisfy. It turns out that these equations often (but not always) are conveniently 
solved by a series solutions, but the assumption is in no way required at the outset of the 
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procedure. Also, the present method is founded on basic principles of dynamical systems; 
namely, the representation of normal modes by invariant manifolds in the phase space, 
which provides a general theoretical formulation that is not restricted by the amplitude 
of motion. Also, while the general case is not solvable in closed form except in special 
situations, it naturally admits a constructive solution procedure for weakly non-linear 
systems. In addition to the above advantages, the present approach offers a new way to 
attack linear problems and provides a very clean alternative to the use of complex normal 
modes for systems with damping or gyroscopic effects. This will be described in detail in 
a forthcoming paper [9]. 

The paper is arranged as follows. Section 2 provides a description of the general 
approach for the class of problems considered. The examples are presented in section 3, 
and the paper closes with a discussion in section 4. 

2. THE GENERAL METHOD 

The motivation for the present work lies in applications from structural vibrations, and 
thus equations of motion which are of second order in time derivatives and of arbitrary 
order in spatial derivatives are considered. Furthermore, the class of systems is restricted 
to those which, when linearized, have simple normal modes which arise from a discrete 
spectrum, i.e., no systems with continuous spectral components are considered. The 
general method is developed in detail for one-dimensional motions of one-dimensional 
continua, e.g., planar, transverse vibrations of beams. The means of generalizing the 
method to other cases is described at the end of this section. 

Consider the vibrations of a spatially extended system which occupies a one-dimensional 
region !2. Material points in the body in its equilibrium state are labelled by a position 
scalar s. When undergoing a general motion, the point s is displaced such that the 
displacement for that point is u(s, t), which is a scalar function of s and time, t. The 
velocity of the material point at s is given by v(s, t) = ou(s, t)fot. It is assumed that 
(u(s, 1), v(s, I))= (0, 0) is the equilibrium configuration of the system, this is easily achieved 
by a suitable choice of u. Under quite general circumstances, the equations of motion for 
excursions about equilibrium can be written in first order form as 

ou(s, t)fiJt = v(s, 1), 

ov(s, t)/ot = F(u(s, t), v(s, t)), 

with boundary conditions of 

s eQ- iJQ, 

B(u(s, t), v(s, t)) = 0, seiJQ, 

(1) 

(2) 

where F denotes some non-linear operator, typically of integro-differential type, in the 
spatial variable s, iJQ denotes the boundary of the region !2, and B denotes the spatial 
boundary condition operators. Often one must invert linear or non-linear inertia operators 
in order to achieve this form (see, for example, Hsieh et al. [10]). 

The definition of normal modes based on invariant manifolds is as follows: a normal 
mode of motion for a non-linear, autonomous system is a motion which takes place on a 
two-dimensional invariant manifold in the system's phase space. This manifold has the 
following properties: it passes through the stable equilibrium point (u, v) = (0, 0) of the system 
and at (u, v) = (0, 0) it is tangent to a plane which is an eigenspace of the system linearized 
about (u, v) = (0, 0). 

The key observation in the development of these normal modes is the following: in a 
normal mode motion, if the displacement u,(t) = u(s0 , t) and velocity v0(t) = v(s0 , t) of a 
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single point, s = s0 , are known, then the entire displacement and velocity fields can be 
determined by the dynamics of that single point. This can be stated mathematically, at least 
in some neighborhood of equilibrium, as follows: 

u(s, t) = U(u,(t), v0 (t), s, s0 ), v(s, t) = V(u,(t), u,(t), s, s0 ), (3) 

where U and V represent functional relationships which relate the entire (u, v) field to 
(u0 , v0 ) and which satisfy the boundary conditions. These relations are essentially a type 
of constraint, such that a motion which satisfies them is completely determined by the 
state (Uo, v0 ). The concomitant dynamics of the system are governed by a second order 
non-linear ordinary differential equation, that is, it behaves like a simple non-linear 
oscillator. A more geometrical way of viewing equations (3) is that they represent a 
two-dimensional manifold in the infinite-dimensional phase space of the system. There will 
be one such manifold for each normal mode. 

The following obvious identities on U and V, evaluated at s = s0 , are noteworthy: 

U(u0 (t), v0 (t), s0 , s0 ) = u0 (t), V(u0 (t), v0 (t), s0 , s0 ) = v0 (t). (4) 

Conditions dictate that these manifolds be invariant for the equations of motion are now 
derived. The approach followed here is similar to that used in the construction of center 
manifolds (see Carr [11]). The aim is to eliminate all time derivatives from the equations 
of motion by using the constraint conditions, after which one is left with equations which 
describe the geometry of the invariant manifolds; these are given by ( U, V) in terms of u0 

and v0 • Once the manifolds are obtained, the dynamics on them are obtained directly by 
evaluating the equations of motion on the normal mode manifold. 

The process begins by taking a time derivative of equation (3), which yields 

du ou ou 
-dt =a;; Uo,t +-;-V Vo,t' 

0 u 0 

dV ov ov 
-d = .,.-- u,,, + .,.-- v,,,. 

t uu0 uv0 

(5) 

(For notational simplicity, the explicit dependence of u, v, u0 , v0 , U and V on s, s0 , and 
t is dropped wherever no confusion is possible. Also, note that time derivatives are denoted 
here by (), = o( )jot or by ( ), = o( )jot, as convenient.) The equations of motion are then 
used to replace u, and v, v, with F(u, v), u0,, by v0 , and v0,, by F(u, v)l.~., (that is, F(u, v) 
evaluated at s = s0 ). Then the constraint is enforced everywhere by replacing u by U and 
v by V, including in the boundary conditions. This results in the following semi-linear, 
hyperbolic partial differential equations, which are to be solved for U and V as functions 
of u0 , v0 , sand s0 : 

ou ou 
V =.,--v0 +.,--[F(U, V)],_,,, 

uu0 uv0 

av ov 
F(U, V)=.,--v0 +.,--[F(U, V)],_.,, sEll -oil, 

uu, uV0 
(6) 

with boundary conditions 

B(U, V)= 0, s EO!l. (7) 

As is typical in such procedures, these equations are at least as difficult to solve as the 
original differential equations, but they do allow for solutions to be obtained in the form 
of power series, here in terms of Uo and v0 • At this point, it should be noted that the solution 
procedure given below for these equations restricts one to considering local non-linear 
effects up to some order in an asymptotic sense, but that equations (6) and (7) are valid 
in a more global sense. In fact, if other means are used for solving them, for example, if 
special symmetries allow for global solutions or if numerical solutions can be obtained, 
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then the range of validity of the modal manifolds and the modal dynamics can be extended. 
One obvious limitation of this formulation is that the functional form given in equation 
(3) breaks down at any point where a manifold bends back on itself, such that it becomes 
multi-valued in terms of "o and/or v0 • However, this is of no real concern in applications 
in which first order non-linear effects are of interest. 

The dynamics of the system, restricted to a normal mode manifold, is then easily 
captured by substituting into the equations of motion the corresponding solution for U 
and V, performing all spatial operations, and then evaluating everything at s = s0 . This 
results in the following two-dimensional dynamical system for u0 and v0 : 

du0 fdt = v0 , dv0 /dt = F(u(s, t), v(s, t))l,=•o• (8) 

or, in second order form, 

d
2
u, ( 8u(s, t))l 

dt' - F u(s, t), _a_t_ •=•o = 0, (9) 

which is the modal oscillator associated with the manifold defined by U and V. It describes 
the dynamics of the point s0 when the system is undergoing a purely single mode motion, 
while equation (3) provides the physical manner in which the system is configured during 
the modal motion. There is one such modal oscillator for each non-linear normal mode, 
and each normal mode for the linearized system has a corresponding non-linear normal 
mode (except in cases of internal resonance). 

The form of equation (8), which trivially converts to a second order differential equation 
in u,, is denoted as the oscillator form of the modal dynamics and emerges directly from 
the manner in which the problem is formulated. Specifically, it is due to the use of u, and 
v0 as the two independent variables which span the two-dimensional invariant manifolds. 
This may not be the most convenient representation for all applications, but it has many 
appealing features for mechanics problems. 

Local solutions for these manifolds can be obtained by a procedure which is similar in 
spirit to that used in constructing center manifolds (Carr [11]). One proceeds by assuming 
an approximate, asymptotic series solution for equation (6) and the boundary conditions 
(7), of the form 

U(u,, v0 , s, s0 ) = a1 (s, s0 )u0(t) + a2(s, s0 )v0(t) 

+ a3 (s, s0 )u,(t)' + a4 (s, s0 )u0(t)v0 (t) 

+ a,(s, s0 )v0 (t)2 + a6 (s, s0 )u0(t)3 + · · ·, 
V(u,, v0 , s, s0 ) = b 1(s, s0 )u0(t) + b2(s, s0 )v0 (t) 

+ b3(s, s0 )u0(t)2 + b4(s, s0 )u0(t)v0(t) 

+ b,(s, s0 )v0 (t)2 + b6 (s, s0 )u0 (t)3 + · · ·, (10) 

which is a type of non-linear separation of variables. The a,'s and b,'s contain information 
about the spatial distribution for a given mode, and u0 and v0 represent the attendant modal 
displacement and velocity, i.e., the time behavior. Note that the mode shape depends on 
the amplitudes of u, and v0 , since the relative contributions of the various a,'s and b1's vary 
depending on the magnitudes of u, and v0 • In fact, the mode shape depends not only on 
the peak amplitude of motion, but the spatial configuration of the system changes as a 
function of time during a given motion. This is in contrast to the methods which initially 
assume spatial and temporal separation [6-8]. 

The a,'s and b,'s are solved for by substituting the series into equations (6) and boundary 
conditions (7), expanding in terms of u0 and v0 , gathering terms of like powers in u, and 
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v0 , and matching coefficients of uOvO with m, n = 0, 1, 2, ... and m+ n ~ 1. This results 
in a sequence of boundary value problems for the a,'s and b,'s in the s variable. These 
problems are uncoupled in sequential order (as is typical in such series solutions), allowing 
for a direct solution strategy. It can be shown that the solutions obtained in this way for 
the coefficients of the linear terms in u0 and v0 ; that is, a1 , a,, b1 and b2 recover, in a rather 
unusual manner, the linear eigensolution with a peculiar normalization. (See section 3.1 
for an example; the general proof is to be published [9].) This implies that the manifolds 
represented by U and V are two-dimensional invariant manifolds which are tangent to the 
invariant planes which represent the eigenspaces for the linearized problem. 

It is also worth noting that the identities given in equation (4) above and the 
independence of u0 and v0 require the following conditions to hold for the a1's and the b1's: 

a1 (s0 , s0 ) = l, 

b 1 (s0 , s0 ) = 0, 

a2(s0 , s0 ) = 0, 

b2(s0 , s0 ) =I, 

ai(s0 ,s0 )=0, }=3,4,5, ... , 

bi(s0 ,s0 )=0, }=3,4,5, .. . (11) 

By considering s evaluated at another point, say s =50 , other identities which the a,'s and 
b1's must satisfy can be obtained. Some of these are derived and presented in Appendix 
A. Since s0 is a free parameter, and not an independent variable, the explicit dependence 
of the a,'s and the b,'s on s0 is dropped from this point on. This freedom for selecting s0 

will have some interesting consequences in the example problems presented below. 
This section is closed with some remarks. First, although the above solution strategy 

is based on series expansions about equilibrium, which infers that the linear results are 
simply being extended, the normal mode manifolds are more globally defined and should 
be thought of as the source of the linear eigenmodes, and not as mere extensions of them. 
Also, the special features of linear eigenmodes-that they are generally uncoupled and can 
be directly superimposed-arise from the fact that all non-linear coupling terms in the 
equations of motion expressed in terms of non-linear modal co-ordinates vanish by 
definition when the system is linearized. 

Second, it may be possible to represent the normal mode manifolds with co-ordinates 
other than (u0 , v0 ). For example, for pointwise measurement, control or actuation, it might 
be more suitable to use the displacements (or velocities) of two points on the structure for 
each mode. The formulation will not be as convenient, but is feasible in principle. 

Finally, although the above formulation has been derived for one-dimensional 
vibrations of one-dimensional continua, the basic ideas can be generalized to other 
situations, including m-dimensional vibrations of n-dimensional continua. In that case, Q 
is an n-dimensional region and s is a n-dimensional vector, while u, v, U, V and F will 
be m-dimensional (see Figure 1). For example, for transverse vibrations of a plate, n = 2 
and m = I, and for non-planar vibrations of a slender beam, n = I and m = 2. In the 

Figure I. Schematic diagram for the general theory. 
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general case, the formulation differs from the one given above in that u0 cannot simply 
be u(s, t) evaluated at s0 , but must be taken to be a particular element of u(s, t) evaluated 
at s0 • This is so because u0 must be a scalar in order for the (u,, v0 ) dynamics to be 
two-dimensional; that is, those of a normal mode. The generation of equations (6) and the 
construction of the modal dynamics from equation (8) require the use of the element of 
F which corresponds to the direction chosen for (u,, v0 ). Care must be taken in selecting 
this element, since modes which have no motion in the chosen direction will be completely 
overlooked. In this general setting, the a1's and b,'s are m-dimensional vectors, and these 
provide the required distribution of u0 amongst all the elements of the vectors u and v. Also, 
note that in cases for which n > I, the identities given in equations (4) and (11) are not 
valid and must be modified. 

3. EXAMPLES 

The examples are selected to illustrate the method and the types of results which can 
be obtained. The example systems are chosen from transverse vibrations of beams in one 
spatial dimension; this simplifies the calculations and allows for closed form solutions to 
be obtained in many cases. In each example, the equation of motion considered has been 
non-dimensionalized, so that the minimum number of parameters appears. Also, the 
standard notation is employed in which subscripts sand/or t denote partial derivatives with 
respect to sand/or t, respectively. Whenever it is clear, overdots are used for derivatives 
with respect to t and primes are used for derivatives with respect to s. 

Three examples are presented, each of which is a variation on the central theme of 
transverse vibrations of simply supported Euler-Bernoulli beams. The case of a cantilever 
beam with geometric curvature and inertial non-linearities is considered in reference [I 0]. 
The first example considers the simplest case-transverse vibrations of a linear, simply 
supported beam. Although this example may seem to be too trivial to occupy journal 
pages, the features of the present approach are quite unusual and require demonstration. 
Furthermore, this example provides results which are used in the following examples. The 
second system considered is a simply supported beam which lies on a non-linear elastic 
foundation. The third example is a linear simply supported beam with non-linear torsional 
springs at each end. This demonstrates how the method can be used to handle discrete 
non-linear elements, such as those which often appear in boundary conditions. 

The calculations were carried out with the aid of the computer assisted symbolic 
mauipulation program Mathematica, running on a NeXT computer. 

3.1. EXAMPLE 1: TRANSVERSE VIBRATIONS OF A LINEAR, SIMPLY SUPPORTED BEAM 

This example considers, from a point of view different from that found in any textbook, 
the classical problem of transverse vibrations of an Euler-Bernoulli beam. The first order 
form of the equation of motion is given by 

u,=v, v, = -USSSS' sE (0, 1), (12) 

where u = u(s, t) is the transverse displacement of the beam, v = v(s, t) is the transverse 
velocity of the beam, s is the independent spatial variable, and t is time. The beam is pinned 
at the left end and simply supported at the right end. This allows for non-zero axial 
displacement at the right end and avoids membrane strain effects. The associated boundary 
conditions are 

u(O, t) = u(l, t) = 0, u~(O, t) = u,(l, t) = 0. (13) 
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A search for normal mode motions begins by assuming that there exists at least one motion 
for which the entire beam behaves like a second order oscillator. The implementation of 
this assumption is carried out by writing the displacement and velocity fields for the 
beam as being dependent on the displacement and velocity of a single point on the beam, 
the point s = s0 • Writing u(s0 , t) = u,(t) and v(s0 , t) = v0 (t) (or simply u, and v0 when 
convenient), this dependence is expressed as given in equation (3). In this linear case, the 
relationship relating U and V to u0 and v0 is linear, and is given by the leading order terms 
of the series expansions, equation (10), as 

u(s, t) = U(u0 , v0 , s, s0 ) =a, (s, s0 )u0 (t) + a2 (s, s0 )v0 (t), 

v(s, t) = V(u0 , v0 , s, s0 ) = b,(s, s0 )u0 (t) + b2 (s, s0 )v0 (t). (14) 

The procedure is described in section 2 is now continued by taking a time derivative of 
these two equations to obtain 

au au 
v,=-a u,,+-a v,,=b,u,,+b,v.,. Uo · Vo ' ' ' 

(15) 

In order to remove all time derivatives, the following substitutions are now made by 
utilizing the equation of motion: v(s, t) for u,(s, t), -uuu(s, t) for v,(s, t), v0 (t) for u0,,(t) 
and -uuu(s0 , t) for v0,,(t). This yields the two equations 

v(s, t) =a, (s)v0(t)- a2 (s)u=,(s0 , t), 

(16) 

The final step in setting up the equations which are to be solved for the mode shapes is 
to substitute everywhere into the above for u, v, and their derivatives with respect to s, 
the expressions given in equation (14) for U and V. Note that some of these expressions 
are evaluated at s = s0 after derivatives in s have been carried out. This results in the 
equations 

Ms )u0 (t) + b2 (s )v0 (t) = a, (s )v0 (t) - a,(s) (a l"(s0 )u0 (t) + a;"'(s0 )v0 (t )), 

-(at(s)u,(t) + a2"(s)v0 (t)) = b,(s)v0(t)- b2(s)(at(s0 )u0 (t) + a2"(s0 )v0 (t)), (17) 

where primes denote derivatives with respect to s. These are the specific versions of 
equation (6) for this example. At this stage, the independence of Uo and v0 is brought to 
bear by requiring that these equations be valid for all values of u0 and v0 • In particular, 
setting u, and v0 equal to zero in turn yields four independent equations, exactly as needed 
in order to solve for al> a,, b, and b2 • Equivalently, these are the equations obtained by 
simply equating coefficients of u0 and v0 • The resulting four equations are 

b, (s) + a2(s)al"(so) = 0, a, (s)- b2(s)- a2(s)a2"(s0 ) = 0, 

a2"(s) + b1 (s)- b2 (s)a2"(s0 ) = 0. (18) 

These four coupled, algebraic-differential, homogeneous equations have a very unusual 
structure. Note that the identities a, (s0 ) =I, a2 (s0 ) = 0, b1 (s0 ) = 0 and b2(s0) =I are 
satisfied by equation (18). At this point it should also be noted that the b,'s appear in a 
linear, non-differential manner; this is due to the fact that no spatial derivatives of v(s, t) 
appear in the equations of motion. This allows for expression of the b,'s in terms of the 
a1's in the first two equations, and thus for a simple elimination of the b,'s from the last 
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two equations, yielding two coupled, fourth order, homogeneous, differential equations in 
the a/s. 

Before discussing the solution of these equations, the boundary conditions need to be 
considered. First, note that boundary conditions on the velocity are required in this 
formulation; these are obtained by simply taking derivatives with respect to t of the 
boundary conditions on u and using the definition v = u,. A direct substitution of the forms 
for U and V in terms of the a,'s and b,'s, and the use of the independence of u0 and v0 yield 
the following boundary conditions on the a,'s and b,'s: 

a1 (0) = a 1 (I)= a2(0) = a2(1) = 0, 

a;(O) = a;(l) = a;'(O) = a;'(l) = 0, 

b1 (0) = b1(1) = b2 (0) = b2 (1) = 0, 

h;(O) = h;(I) = b;'(O) = b;'(l) = 0. (19) 

Note that there are 16 boundary conditions: the eight conditions on the a,'s are for the 
two fourth order differential equations which the a1's must satisfy, while the eight con­
ditions for the b1's must also be satisfied, as the b1's are linearly related to the a,'s. 

In equations (18), the terms which depend on s appear in a linear manner, but some have 
coefficients which depend on the solution evaluated at s0 • This results in a non-linear 
sturcture, but one which is amenable to solution strategies used for linear differential 
equations. Note that if one attempts to solve these equations by considering those terms 
which involve the solution evaluated at s = s0 as constants, the systems eigenvalues will 
depend on the solution! This bothersome structure is not as difficult as it initially 
appears-the solution of a homogeneous problem typically has a free constant, and in this 
case this constant is not free but is fixed in such a manner that the equations are satisfied. 
This is a direct consequence of the formulation, and is in fact required if the identities in 
equation (11) are to be satisfied. This is clearly demonstrated in what follows. 

The following solution procedure is used for the present. It is first observed that for a 
conservative, non-gyroscopic system such as the one considered here, the displacement and 
velocity are not coupled (at linear order) and therefore a2 and b1 are identically zero; this 
automatically satisfies the first and fourth equations in equation (18). The remaining two 
equations in equation (18) simplify directly to the identity 

(20) 

and the differential equation 

a;"(a) = a1 (s)a;"(s0 ) = 0, (21) 

a much simpler situation. Note that by evaluating this equation at s = s0 , the condition 
a 1 (s0 ) = I is returned. 

At this stage, the a;111(s0 ) term is treated as a constant and the usual solution is assumed 
in terms of a linear combination of sin (.l.s ), cos (.l.s ), sinh (.l.s) and cosh (.l.s ). The boundary 
conditions on a1 nullify all terms except the sin (.l.s) term, and furthermore require the 
interesting identity 

.le 4 = a;"(s0 ) = (nn )4
, n = 1,2, 3, ... , (22) 

for a non-trivial solution to exist. The solution is thus of the form 

a1 (s) = A sin (.l.s) = A sin (nns ), n = 1,2,3, ... (23) 

This solution must satisfy the condition a 1 (s0 ) = I. This condition, or equation (22), 
directly gives the following condition on the constant A: 

A = Jjsin (nns0 ), n = 1,2,3, ... (24) 
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Hence, the solution for a1 and b2 is 

a1 (s) = b, (s) = sin (nns )/sin (nns0), n = 1,2,3, .... (25) 

which has the desired (and expected) spatial dependence and which satisfies the required 
identities; namely, that U and V evaluated at s = s0 yield u0 and v0 , respectively. Note 
that there are a countable infinity of modes and that these agree with the well-known 
linear eigensolution. This is most easily seen by considering a motion in the first mode with 
a peak mid-span deflection of A, in which case the mode shape is given by A sin (nns ). 
For the present formulation, such a motion has, for s0 E (0, I), Uo =A sin (nns0 ), verifying 
the equivalence. Also note that the restriction that s0 should not be a nodal point for 
the nth linear mode appears here. This is reasonable, since the approach will obviously 
break down if s0 is chosen at a node. This restriction causes no difficutly, since one is free 
to choose a different s0 for each mode; and a choice of, say s0 = lj2n yields nice results 
for the linear modes. Finally, it should be remarked that since there exists a countable 
infinity of solutions for a1 , it might be preferable to denote each modal solution by 
a subscript n. For notational simplicity, this is done for U and V but not for the a1's or 
the b/s. 

The normal modes are thus given by the functions 

sin (nns) 
U.(Uo(t), Vo(t), S, So)= . ( ) Uo(l), sm mrs0 

sin (nns) 
V.(Uo(t), V0 (t), S, s0 ) = . ( ) V0 (t), (26) 

sm mrs0 

which is valid as long as s0 is not a node. The equations which govern the dynamics for 
a normal mode are determined by substituting equations (26) into the equations of motion 
(12) and evaluating these at s = s0 • This leads to ordinary differential equations which 
govern the motion of the point s0 , from which the motion of the entire beam is dictated 
by u. and v •. The general form for this case is 

a~" (Uo(t), Vo(t), So, So)= V.(Uo(l), Vo(l), So, So), 

av. a•u. fu (Uo(l), Vo(t), So, So)= - as' (uo(l), Vo(l), So, So). (27) 

Using the identities at s = s0 this simplifies to 

Vo = -(nn)4Uo, (28) 

where a dot represents a time derivative. In second order form, these equations simply 
become 

U. + (nn )4u0 = 0, (29) 

from which the modal natural frequencies of w. = (nn )2 are directly obtained. 
It is important to note that in this formulation one first obtains the mode shapes, after 

which the modal dynamics, including the natural frequencies, are determined from the 
differential equations which govern the modal dynamics. This property is a consequence 
of the method. In this approach, one does not need to know the form of the time behavior 
(e.g., exponential or sinusoidal in the linear case) of the system in a modal motion in 
order to construct its normal modes. The feature allows the approach to be extended to 
non-linear systems. 
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3.2. EXAMPLE 2: TRANSVERSE VIBRATIONS OF A SIMPLY SUPPORTED BEAM ON A NON-LINEAR 

ELASTIC FOUNDATION 

This example considers the vibrations of a simply supported beam which is attached to 
an clastic foundation. The foundation has a non-dimensional linear stiffness coefficient of 
k and a non-dimensional cubic stiffness coefficient of y. The physical system is depicted 
in Figure 2. The equations of motion for this case are 

V1 = -Ums- ku- yu\ SE (Q, 1), (30) 

and the boundary conditions are the same as those in the first example (equations (13)). 
The normal mode shapes and their attendant dynamics for this non-linear problem will 
be generated out to third order. To that end, the series expansions for U and V (equation 
(10)) are taken out to third order in "<> and v0 , thus requiring that solutions be obtained 
for all a; and b; for j =I, 2, ... , 9. The boundary conditions on the a,'s and b1's are 
determined by direct substitution to be (j =I, 2, 3, ... ) 

aj(O) = aj(l) = bj'(O) = bj(!) = 0. (31) 

The solution procedure can be carried out by extending the steps from the first example 
to include non-linear terms, or one can simply tackle the equivalent problem of obtaining 
a series solution to equation (6). At the linear order either approach leads to the following 
equations for a1, a2 , b1 and h2 : 

Ms) + a2(s)(at(s0 ) + ka1 (s0 )) = 0, a, (s)- b2(s)- a2 (s)(a~"(s0 ) + ka2(s0 )) = 0, 

a~"(s) + ka1 (s)- b2 (s)(a~"(s0 ) + ka1 (s0)) = 0, 

a~"(s) + ka2(s) + b1 (s)- b2 (s)(a2"(s0 ) + ka2 (s0 )) = 0. (32) 

Again, note that a, (s0 ) = I, a2(s0 ) = 0, b1 (s0) = 0 and b2 (s0 ) = I satisfy these equations. 
Also, these equations reduce to those from the first example when k = 0. The boundary 
conditions are given in equation (31). The solution again has a2 and b1 identically zero, 
along with the identity 

a1(s) = b2(s). 

After some cancellation, this yields the differential equation 

a;"'(s)- a1 (s)a~"(s0 ) = 0. (33) 

Again, as in Example I, the a~"(s0 ) term is treated as a constant and the solution is found 
to contain only a sin (.Is) term. For non-trivial solutions to exist, the following identity 
is also required: 

). 
4 =a ;"'(s0 ) = (nn)', n = 1, 2, 3, ... (34) 

f(s,t) 
JStt:w;~;;;/7///Jrt~//. 

k,y 

Figure 2. The physical system for Example 2: a simply supported beam attached to an elastic foundation with 
linear stiffness coefficient k and cubic stiffness coefficient y. 
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Following the first example, this again yields the linear mode shapes 

a1 (s) = b2 (s) = sin (mrs )/sin (mrs0 ), n = 1,2,3, ... , 

with the following modal oscillators at the linear mode 

ii0 + ((mr)4 + k)u0 = 0, n = 1, 2, 3, ... (35) 

At this stage the known result is recovered, in which a linear elastic foundation shifts the 
natural frequencies while leaving the mode shapes unaffected (cf., reference [I], page 459). 
Note that for this non-linear problem, the requirement appears that s0 should not be a node 
of the linear mode. 

The ability of the method to handle non-linear problems is now demonstrated by 
proceeding to quadratic and cubic order terms. 

At the quadratic order there are six equations, obtained by gathering coefficients of 
u~, u0 v0 and v~ from each of the two equations (6). These are given below for the case 
in which simplifications have been made using the results from the linear order; namely, 
a2 (s) = b1 (s) = 0, b2(s) = a1 (s ), a1 (s0 ) = I and al"(s0 ) = (mr )4

. 

From the first equation, we have the u~ coefficient, 

(k + (mr)4)a4 (s) +b3 (s) = 0; 

the u0 v0 coefficient 

-2a3 (s) + 2(k + (mr)4)a5(s) + b,(s) = 0; 

and the v~ coefficient 

-a,(s) + b5 (s) = 0. 

From the second equation, we have the u~ coefficient, 

-ka3(s)- a)"(s) + a1 (s)(ka3(s0 ) + a)"(s0 )) + (k + (mr )4 )b4 (s) = 0; 

the u,v0 coefficient, 

-ka4(s)- ar<s) + a1 (s)(ka4 (s0 ) + a~"(s0 )) 
- 2b3 (s) + 2(k + (mr)4 )b5 (s) = 0; 

and the v~ coefficient, 

-ka5(s)- a~"(s) + a1 (s )(ka5(s0 ) + a~"(s0))- b4(s) = 0. 

(36) 

These equations have some similarities to those encountered at the linear level. 
In particular, the equations are of algebraic-differential type, are homogeneous and admit 
the trivial solution. Note that terms such as a/s0 ) have been left in to show the structure 
of the equations, but that due to identities (!I) all such terms must be zero at all non-linear 
orders; that is, for allj;. 3. It is also interesting to note that each individual term involves 
only one spatially dependent function. In some cases this is a1 (s ), in which case the 
coefficient is one or more of the unknowns or its derivatives evaluated at s = s0 • Finally, 
note that the system non-linearity, characterized by the cubic stiffness coefficient y, does 
not appear in these equations. 

The solution at this order must be approached in a manner different to that used at 
the linear order, since the quadratic terms must be zero in the absence of the non­
linearity. This leads to the conclusion that the trivial solution is the required one at 
this order. This can be seen by considering the alternative: any non-trivial solution 
of equation (36) would not vanish in the case y = 0, leaving arbitrary constants and 
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non-linear terms in the modes of the linear system. These terms must be zero in order to 
satisfy the identities given in equation (11 ). Therefore, the trivial solution is taken at the 
quadratic order: 

j = 3,4, 5. (37) 

In fact, since the problem contains only odd (linear and cubic) order terms, only odd order 
terms are to be expected in the modes. This is verified by the cubic order calculations which 
are considered next. 

At the cubic order there are eight equations, obtained by gathering coefficients of ui, 
uiv0 , u.vi and vi from each of the two equations (6). These are given below for the case 
in which simplifications have been made using the results from the linear and quadratic 
orders. 

From the first equations, we have the ui coefficient, 

(k + (mt )4 )a1 (s) + b6 (s) = 0; 

the u~v0 coefficient, 

- 3a6 (s) + 2(k + (nn )4 )a8 (s) + b1 (s) = 0; 

the u0 v& coefficient, 

-2a1(s) + 3(k + (nn)4 )a9(s) + b8(s) = 0; 

and the v~ coefficient, 

-a,(s) + b9(s) = 0. 

From the second equation, we have the ui coefficient, 

y(a1 (s)- a1 (s)3)- ka6(s)- a;"'(s) (38) 

+ a1(s)(ka6(s0 ) + a~"(s0 )) + (k + (nn)4 )b1 (s) = 0; 

the u5v0 coefficient, 

-ka1(s)- a~"(s) + a 1 (s)(ka1(s0 ) + a~"(s0 )) 
- 3b6(s) + 2(k + (nn)4 )b8(s) = 0; 

the u, vi coefficient, 

-ka8(s)- a8"(s) + a 1 (s)(ka8(s0 ) + a8"(s0 )) 

- 2b1(s) + 3(k + (nn )4 )b9 (s) = 0; 

and the vi coefficient, 

-ka9(s)- a:;"(s) + a1 (s )(ka9(s0 ) + a;"(s0 ))- b8(s) = 0. 

Note again that all terms of the form a;(s0 ) for j > 2 are actually zero. These eight 
algebraic-differential equations are first reduced by solving the first four equations for 
the b,'s in terms of the a,'s (this step is trivial since only one b1 appears in each 
equation). This result is then substituted into the remaining four differential equations, 
leading to a set of four equations which are to be solved for the a,'s. These equations have 
a convenient structure in that they constitute two coupled pairs of equations, one in a6 and 
a, and the other in a1 and a.. The two equations involving a1 and a9 are homogeneous, 
similar to the quadratic equation (36), and, using the same reasoning-the system 
non-linearity does not appear in them-the trivial solution must be taken from a1 and a,. 

13



From the linear-algebraic equations, this immediately implies that b6 and b, must be also 
zero. Thus, 

a1 (s) = a9 (s) = b6 (s) = b,(s) = 0. (39) 

The fact that these terms are zero is due to the conservative, non-gyroscopic nature of the 
system. The remaining terms correspond to terms in the mode shapes and modal oscillators 
which represent standing wave normal modes, as expected for this system. This will become 
evident when the mode shapes and modal oscillators are constructed. 

The remaining two equations are coupled, fourth order, non-homogeneous, differential 
equations in terms of a, and a,. These are given by (with the aj(s0 ) terms set to zero) 

(2k + 3(nn )4 )a6 (s)- 2(k 2 + 2k(nn)4 + (nn)')a,(s)- a;"(s) + a1 (s)a;"(s0 ) 

= y( -a1(s) + a 1(s)3
), 

- 6a6 (s) + 6ka,(s) + 1(nn )'a,(s)- a~"(s) + a1 (s )ag"(s0 ) = 0, (40) 

where the boundary conditions are given in equation (31 ). Note that the non-homogeneous 
term is proportional to the non-linear stiffness coefficient y. It is the term which generates 
the distortions of the mode shapes which arise from the non-linearity. Once the solutions 
for a, and a, are determined, the other non-trivial terms, b7 and b9 , are easily obtained from 
equation (38) above. 

Only the particular solution of equations (40) is sought at this (or any) non-linear order, 
since the non-homogeneous terms arise directly from the non-linearity. Therefore, the 
trivial solution for a6 , a,, b1 and b9 will, as required, be returned when the system is 
linearized, i.e., when y = 0. Due to the nature of the boundary conditions, the particular 
solution can be written as a Fourier sine series. In fact, some simple trigonometric 
identities show that the non-homogeneous terms, due to the simple character of the 
non-linearity, are composed of only the first and third spatial harmonics, i.e., sin (nns) and 
sin (3nns) (recalling the solution for a 1 ). Thus, the desired solution will be a finite series 
of the form 

a,(s) = P1 sin (nns) + p, sin (3nns), a,(s) = ~ 1 sin(nns)+ ~3 sin(3nns). (41) 

Substitution of these into the differential equations and projection onto sin (nns) and 
sin (3nns) results in four linear equations for the P's and ~·s. Using the vector of unknowns 
defined as 

W=(pl,p3,~1>~3)T, 

these linear equations can be written in matrix form as Aw = b, where A is the 4 x 4 matrix 
which consists of the four row vectors 

AI = c(k \(nn)')' 
3
:- 2kSi + 

243
;n1! )'- 162(n1! )'Si, -k'- 2k(nn )4 - (nn )', 0). 

A2 = (0, k - 39(nn )4
, 0, -k'- 2k(nn )4

- (nn )8
), 

A = (- 3 0 7(k + (nn)
4

) 3k _ 2kS' 243(nn)' 
3 ' ' 2 ' 2 o+ 2 

A4 = (0, -3, 0, 3k- 37(nn)4
), 

where S0 =sin (nns0 ). This matrix has a determinant of 

360n 4n4(k + (nn)4
) 2( -k + 9(nn)4

), 

162(nn)'Si). 

(42) 

(43) 
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which is non-zero for k > 0, except in the case k = 9(mt )4
• The source of this singularity 

is discussed below. The vector b, which results from the non-homogeneous terms, is 
given by 

(
y(3- 4Si) -y )T 

b = 8Si ' 8Si' O, O . (44) 

Note that this vector is zero when the non-linearity is absent, i.e., when y = 0. The solution 
of this linear system of equations is 

(J, 
y( -3 + 4Si}( -3k + 37(mt)4

) p, y( -3k + 37(mt)4
) 

1280(nn)'Si( -k + 9(nn)4
) 1280(nn )'Si( -k + 9(nn)4

)' 

-3y(-3+4Si) -3y 
(45) ~I 1280(nn)'Si( -k + 9(nn)4

)' ~' 1280(nn)'Si( -k + 9(nn)4
) • 

The series solution of the normal modes is now available up to third order in u, and v0 • 

The non-linear normal modes feature amplitude dependent corrections which consist of 
the first and third spatial harmonics of the associated linear mode shapes. They are 
determined by substituting the solutions for the {J's and the ~·s into equation (41), yielding 
a, and a8 , which are then used to obtain b1 and b9 from equations (38). The final result 
is given by (n =I, 2, 3, ... ). 

_ (I _ 2 _ (- 3kui + 37(nn )'ui- 3vi}) ... 
U,-uoa,(s) y(a,(s) I) 320(nn)4(-k+9(nn)4 ) + ' 

( 
2 ( -kui + 39(nn )'ui- vi}) 

V,= v,a,(s) I- 3y(a,(s) -I) 320(nn)'( -k + 9(nn)') + .. ·. (46) 

Several remarks are now in order. First, note that since a1 (s0 ) = I, the identities given 
in equation (4) are exactly satisfied. Also, by recalling the sin (nns) nature of a1 (s ), it is 
seen that these modes contain spatial harmonics of first and third order, and that these 
contributions enter in an amplitude dependent manner-leading to amplitude dependent 
mode shapes. It is also worthy of note that the effect of the non-linearity on the shapes 
decreases for higher mode number. This is consistent with the observation that the elastic 
foundation has a lesser influence on higher modes. Finally, for k = 9(nn )', a singularity 
occurs in the modes; this is precisely where a 3: I internal resonance occurs between the 
nth and the 3nth modes. In such a case, an unremovable coupling exists between those 
modes, and the present formulation fails. This situation can be handled by constructing 
the four-dimensional invariant manifold on which the coupled two-mode dynamics take 
place. This same situation arises in finite-dimensional systems (see reference [2]), and the 
details of its resolution are left for future work. 

Note also that the non-linear normal modes for this example contain only those terms 
in u, and v0 which allow for synchronous modal motions, as expected for a conservative, 
non-gyroscopic system. The synchronicity is easily seen by observing that whenever u, is 
zero, that is, at any instant at which the displacement at s0 is zero, the entire displacement 
field is zero. Similarly, whenever the velocity at s0 is zero, v0 = 0, the entire velocity field 
is zero. Thus, the non-linear normal mode motions are standing waves for the beam, and 
this makes for simple graphical representations of the non-linear normal modes. The 
presence of non-conservative and/or gyroscopic type terms will generally destroy this 
synchronicity, resulting in travelling wave motions for the non-linear normal modes, just 
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as in the linear case. The general formulation given in section 2 can accommodate these 
effects, but in practice obtaining solutions will be formidable, simply because the equations 
for the a;'s and b;'s will be more complicated. 

It is also worth noting that the linear parameter k influences the non-linear mode 
shapes, even though it has no effect on the linear mode shapes. Its influence becomes 
especially important when the parameters approach the internal resonance condition. 

Mode shapes are most naturally observed by considering an instant at which the beam 
reaches its peak displacement; that is, when v0 = 0. In order to plot a mode shape, one can 
simply set v0 = 0 in the expression for u. (equation (46)), choose n for the desired mode, 
select a value for s0 , select parameter values, and then plot the resulting function vs. s for 
a set of amplitudes which are varied by changing u0 • For the present example we have taken 
s0 = 1 /2n for the nth non-linear normal mode, which is an anti-node for each linear mode. 
In Figures 3(a}-(c) are shown non-linear mode shapes for the first three modes for k = 0 
and y = I X 106 for three different values of u,. In these figures, the linear modes shapes, 
obtained by simply taking y = 0, are shown as dashed lines. Also shown, in Figure 3(d), 
is the second mode for the case k = 13 800 (which is close to the case of a 3: I internal 
resonance between the second and sixth modes; that is, k:::; 9 (2n)4

) and y =I x 106
• This 

shows the large modal distortion which occurs near the singularity in the second mode. 
In this case, the first and third modes are virtually unchanged from the k = 0 case. (The 
large values of y and k result from rescaling.) The upper amplitude ranges clearly 
demonstrate the effects of the non-linearity on the first mode. Also, as expected, the 
foundation has a less dramatic effect on the higher modes. In this example, the 
non-linearity is hardening (y > 0), and note that, as expected, the non-linearity "flattens" 
the modes for large amplitudes. A softening non-linearity would accentuate the modal 
peaks. 

0·06.--,.--...,.--,---,---, 
(a) 

0·05 

0·04 

-0·02 

-0·04 

0·06,---,---,---,---,---, 
(b) 

-0·06o!:-.-::o-""o"·2=--"'o·.,•--=o:':.sc--o:-'.s=---:',.Q'0'06oL·-;o--o=".2=--.,.o.L•--,oJ..s,--o.J·"'s _ _jl-O 

Figure 3. The mode shapes for Example 2: non-linear normal mode shapes are shown as solid lines and 
the linear mode shapes are shown as dashed lines for comparison. The base point is at s0 = l{2n for the nth 
mode. Peak amplitudes at s0 are Uo,lllcU = 0·01666 ... , 0·0333 ... and 0·0500. In each non-linear case y = 1 x 106

• 

The linear mode shapes are independent of the value of k: (a) the first mode fork = 0; (b) the second mode for 
k = 0; (c) the third mode fork = 0; (d) the second mode fork = l3 800, near the 3: 1 internal resonance condition. 

16



The equations which govern the dynamics of the modes are obtained by substituting 
the solutions for U. and v. into the equations of motion and then evalauting them 
at s = s0 • The result in second order form in terms of u0 defines the following modal 
oscillators: 

iio + ((nn)' + k)u0 - 16( -k : 
9
(nn )') (ul(9k - 1 Il(nn )4 + 4(k + (nn)') sin (nns0 )') 

+ u0 u~( -9 + 12 sin (nns0 )
2

)) + · · · = 0. (47) 

It is initially puzzling to find s0 appearing in the coefficients of this differential 
equation, since the characteristics of the motion seem to depend on the choice of s0-

clearly not a feature of a normal mode motion. In particular, the frequency correction 
from the non-linearity cannot depend on s0 if a normal mode motion is to be syn­
chronous. This perplexing aspect of the formulation is settled as one proceeds in 
the analysis. At this stage, the amplitude dependent frequencies of oscillations for 
the normal modes are computed via Linstedt's method. This procedure requires the 
amplitude of oscillation to be specified by a parameter-here the assumption is that, to 
first order, the motion is given by u0 (t)"' U0 sin(c:v0 t), where c:v0 =j((nn)'+k) is the 
linear natural frequency of the nth mode. This leads to the non-linear frequency of 
oscillation of 

J •( 9U~y ) w. = k + (ntt) 1 + 32(k + (nn)4 ) sin (nns
0

) 2 + ... · (48) 

Here it seems as if all hope is lost, since the frequency of oscillation appears to depend 
on s0 ! However, note that it also depends on the amplitude U0 , and this salvages things, 
as can be seen by the following argument. Consider a purely modal motion for an odd 
numbered mode, which has a maximum mid-point displacement of magnitude A. For such 
a motion the amplitude of U0 depends on s0 as follows to leading order: U0 "'A sin (nns0 ). 

Therefore, the frequency of oscillation is given by 

( 
9A

1
y ) 

w. = Jk + (nn)' 1 + 32(k + (nn)') + ... (49) 

for any s0 , which clearly shows that the net frequency is independent on s0 • A similar 
argument holds for the even numbered modes. Note that this frequency is exactly 
that which is predicted by the procedure of using the nth linear mode shape as an 
assumed mode, projecting the non-linear equations of motion onto that mode, and 
then computing the frequency using a perturbation method. However, higher order 
frequency corrections will differ. Also, the resulting non-linear modal oscillators are not 
the same. This is an artifact of the co-ordinates used for the linear part of the modes. 
However, the present approach systematically generates the modal distribution due 
to non-linear effects, and these will play a role in higher order terms in the modal 
oscillators. 

Finally, note that the terms in the modal oscillator are all conservative in nature. If the 
system were non-conservative at the linear order and had cubic non-linearities, the a2 , a1 , 

a,, b,, b6 and h, terms would generally be non-zero, and would lead to v0 , v~ and v0 u~ terms 
in the modal oscillators. The paper by Shaw and Pierre [2] provides an example which 
demonstrates this in the finite-dimensional case. 
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3.3. EXAMPLE 3: TRANSVERSE VIBRATIONS OF A SIMPLY SUPPORTED BEAM WITH A NON-LINEAR 

TORSIONAL SPRING AT EACH END 

This example demonstrates the ability of the method to handle discrete non-linear 
elements and non-linearities in boundary conditions. Many of the details in the previous 
examples are skipped over and only the essential points are given in detail. 

The system is depicted in Figure 4. It consists of a simply supported, linear beam with 
identical torsional springs attached at each end. These springs are taken to be inertia-free 
and purely non-linear; that is, they provide no moment at the linear approximation. This 
assumption preserves the linear mode shapes and may be thought of as an approximation 
for boundary condition imperfections. For the present case the springs are assumed to 
provide a restoring moment at each end which is proportional to the cube of the slope at 
that end. 

The equation of motion for s e (0, I) is linear and is the same as in Example I. In this 
case, however, the boundary conditions on the displacement are given by 

u(O, 1) = u(l, 1) = 0, uB(O, 1) = a(u,(O, 1))3
, uB(l, 1) = -a(u,(l, 1))3, (50) 

where a is a positive constant. The boundary conditions on the velocity are determined 
by taking a time derivative of the above, which yields 

v(O, 1) = v(l, 1) = 0, Vu(O, 1) = 3a(u,(O, 1))2v,(O, 1), 

vB(l, 1) = -3a(u,(l, 1))2v,(l, 1). (51) 

The corresponding boundary conditions for the a,'s and b,'s are obtained by assuming a 
modal motion, u = U and v = V, directly substituting the series expansions (10) for U 
and V into the above, expanding in terms of u0 and v0 , and gathering terms of like powers 
in u0 and v0 • This procedure yields 

a1(0) = b/0) = 0, a/1) = b/1) = 0, j = I, 2, 3, 4, ... , 

a;'(O) = b;'(O) = 0, a;'(l) = b;'(l) = 0, i =I, 2, 3, 4, 5, 

a0 (0)- a(a; (0))3 = 0, a~ (0)- 3a(ai (0))2a2(0) = 0, 

a;(O)- 3a(a2(0))2ai(O) = 0, a;(O)- a(a2(0))3 = 0, 

b6(0)- 3a(ai(0))2bi(O) = 0, 

b~ (0)- 6aa; (O)a2(0)bi (0)- 3a(ai (0))262(0) = 0, 

b; (0)- 3a(a2(0))2bi (0)- 6aa; (O)a2(0)b2(0) = 0, 

b; (0)- 3a(a2(0))2b2(0) = 0, a6 (I)+ a(a; (1))3 = 0, 

a~(l) + 3a(ai(1))2a2(1) = 0, a; (I)+ 3a(a2(1))2ai(l) = 0, 

a;(I) + a(a2(1))3 = 0, b6(l) + 3a(ai(1))2bi(l) = 0, 

b~ (I) + 6aa; (I )a2 (I )b i (I) + 3a (a! (I ))2b2 (I) = 0, 

b;(I) + 3a(a2(1))2bi (I)+ 6aa; (l)a2(1)b2(1) = 0, 

b;(l) + 3a(a2(1))2bi (I)= 0. 

(52) 

(53) 

(54) 

Since the differential equations for the a,'s and b,'s are identical to those in the previous 
example with y = 0 and k = 0, they are not presented again. The linear part of this problem 
is identical to the first example and the same solutions are obtained for a,, a2 , b1 and b2 • 
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Figure 4. The physical system for Example 3: a simply supported beam with non-linear torsional springs 

attached at each end. The springs are purely cubic, with stiffness coefficient IX. 

Furthermore, the quadratic part of the problem is identical to the quadratic part of the 
second example and yields the trivial solution for a,, a,, a,, b,, b, and b,. 

The interesting part of this problem lies in the cubic order. The algebraic-differential 
equations for a,, a7 , a8 , a,, b,, b, b8 and b9 are the same as those of the second example 
(equation (38)) with y and k set equal to zero. With y = 0, the equations are homogeneous. 
However, in this case, a non-trivial solution exists due to the non-homogeneous nature of 
the boundary conditions. The solution procedure in this case can be streamlined by using 
directly the conservative, non-gyroscopic nature of the problem and observing that the 
trivial solution for a7 , a,, b6 and b8 satisfies four of the algebraic-differential equations and 
their attendant boundary conditions. As in the previous problem, the remaining four 
equations are easily reduced to two, since the b;'s can be solved for in terms of the a,'s 
directly from the non-differential equations. The result of this procedure is the following 
pair of homogeneous equations for a, and a,: 

3(mr)4a6(s)- 2(nn )'a,(s)- a~"(s) +a, (s)at(s0 ) = 0, 

-6a6 (s) + 7(nn)4a8(s)- a;"(s) + a1(s)a;"(s0 ) = 0, (55) 

which are the same as equation ( 40) from the second example with y = 0 and k = 0. Using 
the known solutions at the linear level, the boundary conditions for a6 and a, simplify, from 
equation (54), 

a6(0) = a,(I) = a8(0) = a8(1) = 0, a~ (0) = Jl., 

(56) 

where 

( 
nn )' 11" =a sin (nns

0
) • 

After a, and a8 are obtained, b7 and b9 can be determined directly from equations (38). 
In order to solve for a, and a,, the problem is transformed to a non-homogeneous system 

of equations with homogeneous boundary conditions using a standard procedure [12, 13]. 
Since the non-homogeneity occurs for a,, a new function a6 (s) is defined as follows: 

a,(s) = a6(s)- Jl,h(s), (57) 

with h(s) chosen such that the system of equations in terms of a,(s) and a8(s) has 
homogeneous boundary conditions. The choice for h (s) is not unique: it must simply 
satisfy the boundary conditions 

h(O) = h(l) = 0, h"(O) =I, h"(l)=(-1)'+', (58) 

in order to render the boundary conditions on a, homogeneous. Here the static solution 
for the beam with concentrated moments at the ends is chosen for h(s ): 

h( )=(-2+(-1)") ~-('+(-!)') 3 s 6 s+2 6 s. (59) 

19



This change in functions yields a new system in terms of ii6(s) and a8(s), as follows: 

3(nn )4ii,(s) - 2(nn )'a, (s) - a;"(s) + a, (s )a;"(s,) = - 3(nn )4Jl,h (s ), 

- 6ii6 (s) + 7(nn)4a8(s)- a;"(s) + a1(s)ag"(s0 ) = 6Jl,h(s), 

where h""(s) = 0 has been used. The boundary conditions on ii6 (s) are 

a;(O) = a;(l) = o. 

(60) 

(61) 

The solutions for a6 (s) and a8 (s) can now be obtained by Fourier sine series, as follows: 

00 

a,(s l = L p, sin (ins J, 
1=1 

00 

a8(s)= L ~,sin (ins), 
i=l 

(62) 

Note that in this case an infinite series is required for an "exact" solution at this order. 
However, since the present approach is asymptotic, only a finite number of terms are 
retained in practice. The equations for p, and ~~are linear, and are obtained by projecting 
onto the functions sin Uns ). This procedure has a twist that needs to be pointed out. The 
term a1 (s)a;"(s0 ) in the first equation and its counterpart a1 (s )ag"(s0 ) in the second 
equation yield and interesting result when they are projected onto sinUns ). First, note that 
the a;"(s0 ) term contains all the fl,'s and that these are not directly eliminated by the 
projection onto sin Uns ), since this term does not depend on s (it is evaluated at s0 ). 

However, the a 1(s) term is proportional to sin (nns) and is therefore orthogonal to all 
sin Uns) functions, except in the case j = n. Thus, the equations for p1 and ~1 are pairwise 
uncoupled for all j ,< n, but are completely coupled for j = n. Since only the j = n pair of 
equations contains all the /i,'s and ~,'s, the solution can be easily obtained as follows. 
First, for all j ,< n the equations for fi1 and ~1 are pairwise uncoupled and easily solved. 
Their solution can then be substituted into the j = n equation in order to determine /i, and 
~ •. This procedure is now described in more detail. 

The resulting equations to be solved for fi1 and ~1 are determined to be 

-(in )4/i1 + 3(nn )'/i1 - 2(nn )8~1 + . t"' ) I fi;(in )4 sin (ins0) = 
6~'·.~n' ( 1 + (- 1 )i+ "), 

sm nns0 i=I J 

where b,1 is the Kronecker delta. For j ,< n these equations are pairwise uncoupled and have 
the following solution: 

-6Jl,n4
(}

4
- 3n 4 )(l + ( -l)i+•) 

fi,. 
n 3j 3(j4

- n 4)(j4
- 9n 4

) 

l2Jl,J(l + ( -l)i+") 
~1 = n 7(}4 - n')(J'- 9n 4 )" 

(64) 

Note that the rate of convergence for the infinite series for a, and a8 is rapid since the terms 
decay at the ratej-7

• Also, note that each odd (respectively, even) numbered mode contains 
only odd (respectively, even) order spatial harmonics. 

The solution for the j = n case is obtained by setting j = n and solving the resulting 
equations for /i, and ~. in terms of the j ,< n solutions. The result is 

/i, = 9(:n l' ( 36nnJl, -:.---,-(
1
----,) I (7 /i, + 2(nn )4~,) (in )4 sin (ins,)), 

sm nnso i= I.i~n 

-1 00 

~.= 3( )' · ( ) L (2/i,+(nn)'~,)(in)4 sin(ins0 ). 
mr sm mr:s0 ;~ l,j#n 

(65) 
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The non-linear normal modes are now available and are given by 

sin(mts) [oo . . J [oo . J V,=. ( )u0 + L p,sm(ms)+Jl,h(s) ul+ L ~,sm(ins) u0 vl+···, 
sm nnso i=, i= 1 

sin (nns) 
2 3 V,= . ( )v0 +b1 u0 v0 +b9v0 +· ··, sm nns0 

(66) 

where the expressions for h, Jl, p, and~~ are given above. It is important to remember that 
the i = n term in the infinite series is special. The expressions for b1 and b9 are given in 
terms of a6 and a8 in equation (38) and are not presented in detail here. 

Since, in practice, one must truncate the infinite series involved in the solution, it is 
useful to consider their convergence properties. It has been noted above that the terms 
in the series for a, and a, are proportional to j-7

; this implies good converge~ 
properties for the non-linear correction terms in the mode shapes. However, the terms 
in the series for p, and ~' are proportional to i- 3 due to the i4 term multiplying p, and 
~~ for i # n. Thus, in order to achieve a desired accuracy for a given mode, several 
terms must be taken in the infinite series appearing in the solution for p, and ~'. 
However, consistent accuracy can be maintained by retaining fewer terms in the series 
for a, and a8 than the number of terms taken in the series for p, and ~,. This fact was 
not exploited in the calculations presented, but it may prove to be useful in some 
applications. 

Plots of the non-linear mode shapes are determined by the process described for the 
previous example, except that in the present case the Fourier series must be truncated. 
Again s0 = 1/2n is chosen. In the calculations, N terms have been used for each series in 
general. The first three modes are generated with the following number of terms retained: 
for the first mode N = 8, for the second mode N = 12, and for the third mode N = 16. 
The expressions for V, for n = l, 2, 3 are given in Appendix B for the stated number of 
terms. In Figure 5 are shown each of the first three linear (dashed lines) and non-linear 
(solid lines) mode shapes for two different amplitudes of u0 with a = 200. Smaller 
amplitudes are used for higher modes, since the non-linearity has a more dramatic effect 
on higher modes. The results presented were compared with those obtained using twice 
the number of terms in Fourier series for each case and there was no discernible difference 
in the mode shapes at the amplitudes shown in Figure 5, thereby confirming satisfactory 
convergence of the series solutions. 

Note that the non-linear spring has exactly the expected effect on the first and second 
modes: while, for small amplitudes, the beam behaves in a linear manner, the beam 
becomes more restrained in its end rotations for large amplitudes. The effect on the 
third mode is different-the primary effect of the springs is to decrease the mid-span 
deflection. This effect is the opposite to that initially expected, and the explanation for it 
is unknown. (In fact,linear torsional springs have the same effect on the third linear mode.) 
In each case the amount of distortion is exactly that required to maintain synchronous 
motion for a mode, and it has been determined in a systematic manner based on first 
principles. 

The modal oscillators are determined in the usual manner, in fact, from equation (27) 
from the first example (since the equations of motion fors E (0, l) are the same) with the 
V, determined from the present example. The result is 

fio + (nn )4u0 + [J
1 
p,(in)4 sin (ins0)}l + L~1 ~,(in )4 sin (ins0 ) }ovl + · · · = 0, (67) 

21



0·06,..-----,---,---,----,----, 
(a) 

0·05 

0·04 
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0·0 0·2 0·4 0·6 0·8 1·0 

Figure 5. The mode shapes for Example 3: non-linear normal mode shapes are shown as solid lines and the 
linear mode shapes are shown as dashed lines for comparison. The base point is at s0 = lf2n for the nth mode. 
In each non-linear case et: = 200. (a) The first mode for peak amplitudes at s0 of u0,..,...... = 0·025 and 0·050; (b) the 
second mode for peak amplitudes at s0 of u0......_.. = 0·015 and 0·030; (c) the third mode for peak amplitudes at 
s0 of U<J.ma:r = 0·0075 and 0·0150. 

where h""(s0 ) = 0 has been used. The modal oscillators and the frequency corrections for 
a specific mode are most easily presented by evaluating the modal oscillators at a specific 
s0 , which is again taken to be l/2n. The resulting oscillators and their amplitude dependent 
frequencies are as follows: 

for the first mode (with N = 8 terms), 

.. 4 (2964311t
4 3 20155 ·2) 

Uo +" u,+ ~ 69069 u,- 23 023 u,u, + ... = O, 

for the second mode (with N = 12 terms), 

(
15 7761t4 62 ) U. + 161t4"o + ~ 

231 
ui-

77 
Uo<il + · · · = 0, 

3A 21t 2~ 
COt =n2+---+ .. ·; 

2 

w2 =41t 2 +6A 21t 2~ + · · ·; 

(68) 

(69) 
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for the third mode (with N = 16 terms), 

ii l1r'u a(24441179694937t
4 

3 _54658600391 .2 ) ••• _ 

o+ 8 o+ 2988690614 u, 2988690614 u,u, + -O, 

27A 21r 2a 
w, = 91t 2 + 2 + .... (70) 

A is the amplitude of oscillation at s = s0 • 

This non-linearity is hardening for a > 0 and has the expected effect on the frequency. 
Note that the non-linearity has a greater influence on higher modes for a given amplitude, 
although smaller amplitudes will generally occur for higher modes. Again these modal 
oscillators are different from those obtained by projecting the equations of motion onto 
the linear modes, but the non-linear frequencies obtained from these two approaches are 
identical, at least to third order in amplitude. 

4. CONCLUSIONS AND SOME DIRECTIONS FOR FUTURE WORK 

This work represents, to the authors' knowledge, the first systematic approach to the 
definition and generation of normal modes of motion for non-linear, continuous vibratory 
systems. The methodology is based on the concept of invariant manifolds for dynamical 
systems and it is constructive for weakly non-linear systems. Using asymptotic series 
expansions, it provides the physical nature of the non-linear mode shapes and the 
associated modal dynamics. The formulation recovers the well-known linear eigenmodes 
when non-linearities are absent, although the approach is completely different from the 
standard eigenvalue problem formulation. In fact, the non-linear normal modes should 
be thought of as the source of the linear modes, not merely as extensions of them. 

An important distinction between the present approach and those which use harmonic 
balance and eigenfunction expansions is that, while both approaches lead to mode shapes 
which depend on the peak amplitude of motion, the formulation presented herein allows 
for changes in the beam shape during a given motion. This is evident by considering that 
the solution for u0 will, for the systems considered, be a periodic function of time, and 
therefore the relative contributions of the various linear mode shapes to U and V from 
Uo and v0 will also be time-periodic. This is not accounted for in the harmonic balance 
approach, and the two methods lead to different expressions for the non-linear mode 
shapes. Since the invariant manifold technique is less restrictive and is based on first 
principles of dynamical systems, the shapes predicted by this approach will more accurately 
represent those of non-linear systems undergoing single mode motions. 

Although a limited class of problems has been considered in this paper (those which 
are governed by equations of the form given by equation (1)), it should be clear that the 
basic approach is very general and can be applied to a wider class of problems. The 
examples presented here demonstrate the power of the approach in handling a variety of 
non-linearities in a very systematic manner. It should be noted that the calculations can 
become quite involved, especially if the boundary conditions are less simple than those 
considered in the examples, and/or if non-conservative and/or gyroscopic terms are 
present. However, with widely available computer-assisted symobolic manipulators, 
many problems of practical interest can be solved by this method. Currently, the authors 
are determining the normal modes for finite deformations of a cantilever beams (Hsieh 
et al. [10]), a problem that involves another complication: a non-linear inertia operator. 
While the calculations are cumbersome, they are manageable and solutions can be 
obtained. 
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It is also important to point out that the range of validity of the asymptotic 
solutions is limited, and therefore there exists an intermediate range of (u0 , v0 ) 

amplitudes over which non-linear effects are correctly captured. For very small amplitudes, 
the linear and non-linear mode shapes are indistinguishable, and as amplitudes are 
increased, the non-linear effects start to become evident. However, at some point the 
non-linear mode shapes predicted by the series solutions begin to differ from the shape 
required for synchronous motion. Estimates for this range of validity can be obtained 
by comparing the mode shapes generated by selecting different values for s0 for a 
given beam amplitude. These shapes should, of course, be nearly the same, and are so 
over a range of amplitudes. However, as the amplitude is increased, these shapes begin 
to diverge from one another, signalling the breakdown of the approximation. In all of 
the examples presented here, the mode shapes were compared for at least three different 
values of s0 at the maximum amplitude shown in order to verify the validity of the 
approximation. 

In the applied mathematics literature there are some results which are pertinent to the 
present work, two of which are the following. First, the invariant manifolds which are used 
here to represent normal modes of motion are known as the "standard foliation" of the 
unstable, center and stable manifolds of a dynamical system near an equilibrium point. 
Mathematical proofs of their existence for the finite-dimensional case can be found in the 
paper by Fenichel [14], and certain non-degeneracy conditions on the eigenvalues are 
required. These conditions correspond precisely to the internal resonance conditions 
encountered in Example 2. Second, there exists a recently developed class of computational 
methods, known as non-linear Galerkin techniques, which also make use of invariance 
properties of modes. That approach is substantially different in spirit to the present one; 
it is more computationally oriented and is used for the simulation of large-scale fluid 
mechanics problems [15]. 

Several extensions, generalizations and applications of the methodology described in this 
paper remain to be tackled, and the authors are currently engaged in work on several of 
them. The most significant ones are mentioned below. 

Although in all example problems the normal mode invariant manifolds have been 
observed to reduce to the linear eigenmodes in the linearized case, a general proof of the 
equivalence of the two approaches for linear systems needs to be formulated. This proof 
was recently completed by the authors, and will be presented in a paper that emphasizes 
the features of an invariant manifold approach to normal modes and modal analysis for 
linear systems [9]. 

A generalization of the present method may offer substantial benefits in the area of 
model reduction for non-linear continuous systems. Reduced order models are typically 
obtained by performing a linear modal analysis of the non-linear system (via orthogonal 
projection) and subsequently ignoring modes that are deemed non-essential to the 
non-linear dynamics. This truncation procedure, however, inherently neglects the two-way 
exchange of energy, or contamination, between the modes of interest and the ignored 
modes, which is automatically generated by the projection of the non -linear equations of 
motion onto the linear modes. The neglect of these interactions causes deteriorating 
convergence and accuracy of the modal analysis procedure. The non-linear normal modes 
defined in this paper, however, allow for the definition of uncontaminated single mode 
non-linear models. By generalizing the procedure in such a manner that invariant 
manifolds of dimension 2N are generated, one could obtain equations in which contami­
nation between the N modes of interest and the ignored modes is eliminated, while the 
modal coupling within the modelled modes is retained. This procedure would therefore 
allow for the generation of very "clean," uncontaminated, reduced order models in a 
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systematic way. This may have important implications in structural dynamics and in the 
design and implementation of control systems. 

As it stands now, the method cannot handle internal resonances. In this situation, there 
exists unremovable coupling between the interacting modes, which renders the approach 
useless for those modes. In the case of M resonant modes, a 2M -dimensional manifold 
is required in order to capture the dynamics of the interacting modes. Such manifolds 
can be obtained by expressing the response of the system as a function of the displace­
ment and velocities of M points in the system and generalizing the procedures presented 
above. This is similar in spirit to the generalization described immediately above, and 
will no doubt involve substantial calculations, even for the simplest cases of internal 
resonance. 

In reference [2], the authors presented a method for non-linear, finite-dimensional 
systems which is analogous to the one presented herein. In that work, several simulations 
were carried out which demonstrated the invariant nature of non-linear normal 
modes developed from an invariant manifold approach. Furthermore, a non-linear 
co-ordinate transformation which relates the physical system co-ordinates to the non­
linear modal co-ordinates was defined and used in the examples. This co-ordinate 
transformation and demonstration of invariance are not so straightforward for continuous 
systems. These topics are currently under investigation and will be presented in a future 
paper. 

Another class of non-linear systems of interest are those with piecewise linear forces, 
such as systems with dry friction or clearances. The asymptotic series approximate 
obviously fails in this situation, because the invariant manifolds corresponding to 
the normal modes are not smooth surfaces, but pieces of planes and/or surfaces joined 
together along the boundaries of the various linear regions. The solution of the equations 
defining the geometry of such manifolds may be attainable by employing matching 
methods. 

In some situations, such as those involving systems with special symmetries, the 
equations for the invariant manifold geometry may possess global solutions, which 
would alleviate the need for local series expansions. Much of the past work on normal 
modes for non-linear discrete systems has been centered on such systems [3, 5]. It is 
expected that some types of non-linearities for continuous systems will also yield such 
global solutions. For example, the equations of motion for a fixed-fixed beam with 
a mid-line stretching non-linearity are known to yield invariant dynamics in terms of 
modal amplitudes when a Galerkin procedure is performed using the linear mode shapes 
as trial functions (see references [7] or [16]). This is a good indication that the linear mode 
shapes will provide a global solution for the normal mode manifold equations for that 
system. 

The stability of non-linear modal motions is also of interest. It is well known that when 
amplitudes become large, the normal modes can become unstable and bifurcate [5]. This 
issue is important in the consideration of reduced order models since one needs to include 
a sufficient number of modes so as to ensure the overall stability of the reduced model: 
that is, the system should be stable to small disturbances in the unmodeled modes. Such 
stability considerations can be examined using methods such as averaging. 

Finally, the authors have recently developed on alternative approach to this class 
of problems which first utilizes a usual Galerkin projection of the non-linear partial 
differential equation (l) onto the linear modes shapes [17]. The method described in 
reference [2] is then applied to the infinite set of coupled non-linear ordinary differential 
equations, leading to results which are equivalent to those presented here. That formu­
lation does, however, avoid some of the subtleties encountered in the present procedure. 
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APPENDIX A: ADDITIONAL IDENTITIES FOR THE a,'s AND b,'s 

Consider the motion of a body undergoing a purely modal motion and let two base 
points, .f0 and s0 , be selected. These will play the roles of two values for s0 in the 
formulation. Using these two points, the modal motion can be written either as 

u(s, t) = U(ii0 (t), v0 (t), s, .f0 ) 

= a1 (s, .f0)ii0 (1) +a, (s, s0 )v0 (t) + · · ·, 
v(s, t) = V(ii0 (t), v0 (t), s, .f0 ) 

(AI) 
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or as 

u(s, t) = 0(u0(1), v,(t), s, s,) 

=a, (s, s,)uo(l) + a,(s, s,)v,(l) + ... , 
v(s, 1) = V(U,(t), v0 (1), s, s0 ) 

= b,(s, s,)U,(I) + b,(s, s0 )v0 (t) + · · ·, 
where U,(l) = u(s0, 1), etc. 

(A2) 

Now V and V are evaluated at s = §0 , and 0 and V are evaluated at s = s0 • This yields 
the following: 

u(s0, 1) = 0(v0(1), v0(1), s0, s0) = u0(t) 

= a 1(.i0, s0)u0(1) + a2(.i0, s0)v0(t) + · · ·, 

v(.i0, t) = i7(U,(1), v0(1), .i0, s0) = Vo(t) 

= b1(.i0, s,)U,(I) + b,(s,, s0)v0(t) + · · ·, 
u(s,, 1) = U(zlo(l), v0 (1), s,, .i0 ) = iio(l) 

=a, (s0, .i0)U,(1) + a2(s0, .i0)v0(1) + · · ·, 

v(s0 , 1) = V(u,(l), v,(t), s,, s0 ) = v,(l) 

= b, (s,, .i,)zlo(t) + b,(s,, .i0)rJ0(1) + · · ·. 

(A3) 

(A4) 

(A5) 

(A6) 

Next, the series defined for U, and 60 in terms of u0 and v0 in equations (A3) and (A4), 
respectively, are substituted for u0 and 60 in the series defined in equations (A5) and (A6), 
and the results are expanded out to third order in U. and 60 • Coefficients of like powers 
in ugv0 are then collected and equated. Including all terms to third order, the result is a 
set of 18 non-linear algebraic identities relating the ai(s0 , .i0 )'s, aj(.i0 , s0 )'s, bj(s0 , s0)'s and 
bj(.i0 , s0)'s. Since these are rather lengthy expression in the general case, only the simplified 
versions for the conservative, non-gyroscopic case with cubic non-linearities are presented 
here. In this case, a,= 0 fori = 2, 3, 4, 5, 7, 9 and bj = 0 for j = I, 3, 4, 5, 6, 8, and b2 =a,, 
which leaves the following non-trivial identities: 

I =a, (s0 , s0)a, (.i0 , s0 ), 

0 = a6 (s0 , .i0 )a/(.i0 , s0 ) +a, (s0 , .i0)a6 (.i0 , s0 ), 

0 = a, (s,, .i,)al (.i,, s,) +a, (so, s,)a, (.i,, So), 

0 = b, (so, .io)al (.i,, So) + a, (so, So)b, (.io, s,), 

o = b,(s0, .i0)al(.i0, s0) +a, (s0, .i0)b,(s0, s0 ). (A7) 

Note that since these hold for all s0 and §0 , they are true for the general case of s0 = s 
and §0 = s0 • Therefore, these identities can be used for checking the validity of approximate 
solutions for the a(s, s0)'s and b(s, s0 )'s. In this general case, the first identity states simply 
that 

(AS) 

which implies that if one simply switches s and s0 in a, (s, s0 ), the inverse of a 1 (s, s0 ) is 
obtained. Note also that for s0 = §0 = s0 , these identities are consistent with those given in 
equation (11 ). 
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More identities can be obtained by extending this process to include more s0 points 
and/or more terms in the expansions. 

APPENDIX B: NORMAL MODES FOR EXAMPLE 3 

The first mode approximation using eight terms is 

. [ '(n's 213 633 857 . U1 = u0 sm(ns) +IX u0 2 (s-I)+ 
55 255 200 

sm (ns) 

13 . ) 311 . ( ) 1199 . ( ) ) 
- 2160 sm (31ts - 2 002 000 sm 5ns - 82 045 600 sm 7ns + · · · 

'( 255019 . I . 
+ u,v, 18 418 400n 4 sm (ns) + 80n4 sm (3ns) 

+ 16 0~ 6n' sin (5ns) + 239 ;OOn' sin (7ns) + · · -) J + · ... 

The second mode approximation using 12 terms is 

[ (
4n 3 

U2 = u,sin (2ns) +a u~ T( -s + 3s2
- 2s 3

) 

58 228 . ) 13 . ) 13 . ( ) 253 . (8 ) + 
15 015 

sm (2ns -
70 

sm (4ns -
2160 

sm 6ns 
335 920 

sm ns 

- 2 0~~ ~OO sin (IOns)- 9 9:~~90 sin (12ns) + · · ·) 

+ u,vi(80 ~~On' sin (2ns) + 3;n' sin (4ns) + !2;0n' sin (6ns) 

+ 
20 9!5

n, sin (8ns) + 
256 

~56", sin (IOns) 

+ 
1 

sin (12ns) + · · ·)] + · · ·. 
185 185n4 

The third mode approximation using 16 terms is 

. [ (27n 3s 793 881 . U3 = u0 sm (3ns) +IX u~ -
2
- (s-I)+ 

7280 
sm (ns) 

362 712 763 007 451 569 . 
+ 125 889 386 947 658 880 sm (3ns) 

1253151 . 7079319 . 13 . 
+ 884000 sm(5ns)-166313840sm(7ns)-2160sm(91ts) 

47 232 639 . I 92 897 199 . I 
- 33 700 707 040 Sin ( Ins)- 217 682 978 240 sm ( 3"s) 

(Bl) 

(B2) 
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- 2 0~~ ~O sin (15ns) + · · ) + u0v5( 72:~,4 sin (ns) 

80 958 693 571 253 723 . 405 . 
+ 3 399 013 447 586 789 760n 4 sm (3ns)- 7072n4 sm (5ns) 

+ 4845:;o,• sin (7ns) + 6481on• sin (9ns) + 25 318:~4on• sin (llns) 

+ 99 0~~5:20,4 sin (13ns) + 1 29/ 296, 4 sin (15ns) + · ·) J + · · ·. (B3) 

For a check on the accuracy of the approximation, the values at s = s0 = lj2n are 
evaluated and are found to be 

I (4482 544 
U1 (so=;)= Uo + l 157 625 - Ctu

3+··· "') 8 0 

= Uo- 0·0036~u~ + · · ·, 

1 (13 108 1t
3
) 3 

U,(s, = 4) = Uo + 3375 -8 ~u, + · .. 

= Uo + 0·0081~u~ + · · ·, 
-1 - (196 819 966 743 566 

U,(s,- ,) - Uo + 3 385 135 128 375 

= Uo + 0·0057~u~ + · · ·, 

15n') -- cxu 3 +·· · 8 0 

(B4) 

which are sufficiently accurate for reasonable values of Uo· As more terms in the Fourier 
series are taken, these all converge to u0 ; that is a6(s0 ) approaches zero. 
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