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Welcome

Vincent Mousseau (Ecole Centrale Paris) and Marc Pirlot (UMONS) are welcoming you to the
second DA2PL Workshop. The first edition took place in Mons (Belgium) in November 2012. The
aims of this serie of workshop “from multiple criteria Decision Aid to Preference Learning” is to
bring together researchers involved in Preference Modeling and Preference Learning and identify
research challenges at the crossroad of both research fields.

It is a great pleasure to provide, during two days, a positive context for scientific exchanges and
collaboration: four invited speakers will make a presentation, twelve papers will be presented, and
we will have a poster session and a roundtable. We wish to all participants a fruitful workshop, and
an exiting and enjoyable time in Ecole Centrale Paris.

Vincent Mousseau and Marc Pirlot

Aim of the workshop

The need for search engines able to select and rank order the pages most relevant to a user’s query
has emphasized the issue of learning the user’s preferences and interests in an adequate way. That
is to say, on the basis of little information on the person who queries the Web, and, in almost no
time. Recommender systems also rely on efficient preference learning.

On the other hand, preference modeling has been an auxiliary discipline related to Multicriteria
decision aiding for a long time. Methods for eliciting preference models, including learning by
examples, are a crucial issue in this field.

It is quite natural to think and to observe in practice that preference modeling and learning
are two fields that have things to say to one another. It is the main goal of the present workshop
to bring together researchers involved in those disciplines, in order to identify research issues in
which cross-fertilization is already at work or can be expected.

The theme of the DA2PL 2014 workshop is (specifically but not excusively) devoted to “pref-
erence models with interacting criteria”.

Communications related to successful usage of explicit preference models in preference learn-
ing are especially welcome as well as communications devoted to innovative preference learning
methods in MCDA. The programme of the workshop will consist 10 sessions including:

• 6 invited lectures of internationally recognized scholars,

• 12 refereed research presentations,

• a poster session.

Support

This workshop is organized in the framework of the GDRI (Groupement de Recherche Interna-
tional) “Algorithmic Decision Theory”, which is recognized and supported by CNRS (France),
FNRS (Belgium), FNR (Luxemburg). The workshop is also supported by the French GDR RO
(CNRS) - Pôle : Décision : Modélisation, Prévision, Evaluation (DMPE). The support of Ecole
Centrale Paris (Direction de la Recherche) is also gratefully acknowledged.
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Organization

The DA2PL workshop is jointly organized by Vincent Mousseau, Ecole Centrale Paris (ECP),
France, and Marc Pirlot, University of Mons (UMONS), Faculté Polytechnique, Belgium.

Program committee

• Raymond Bisdorff (University of Luxembourg, Luxembourg),

• Craig Boutillier (University of Toronto, Canada),

• Denis Bouyssou (Paris Dauphine University, France),

• Robert Busa-Fekete (Marburg University, Germany),

• Olivier Cailloux (University of Amsterdam, Netherlands),

• Yann Chevaleyre (University of Paris North, France),

• Yves Crama (University of Liege, Belgium),

• Bernard De Baets (Ghent University, Belgium),

• Yves De Smet (Université libre de Bruxelles, Belgium),

• Krzysztof Dembczyn’ski, Poznan University of Technology, Poland,

• Luis Dias (University of Coimbra, Portugal),

• Philippe Fortemps (University of Mons, Belgium),

• Michel Grabisch (University Paris 1, France),

• Salvatore Greco (University of Catania, Italy),

• Eyke Hullermeier (Marburg University, Germany),

• Christophe Labreuche (Thales, France),

• Patrick Meyer (Telecom Bretagne, France),

• Vincent Mousseau (Ecole Centrale, Paris),

• Patrice Perny (Pierre and Marie Curie University, France),

• Marc Pirlot (University of Mons, Belgium),

• Fred Roberts (DIMACS, Rutger University, USA),

• Ahti Salo (Aalto University, Finland),

• Roman Slowinski (Poznan University of Technology, Poland),

• Alexis Tsoukias (Paris Dauphine University, France),

• Aida Valls (Universitat Rovira I Virgili, Catalonia, Spain),

• Paolo Viappiani (Pierre and Marie Curie University, France)
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Program overview

Thursday November 20th, 2014

9h30 Session 1

• Invited speaker: "Preference Learning: Machine Learning meets MCDA"
Eyke Hüllermeier, Department of Computer Science, Universität Paderborn, Germany

The topic of “preferences” has recently attracted considerable attention in artificial intelli-
gence in general and machine learning in particular, where the topic of preference learning
has emerged as a new, interdisciplinary research field with close connections to related areas
such as operations research, social choice and decision theory. Roughly speaking, preference
learning is about methods for learning preference models from explicit or implicit prefer-
ence information, which are typically used for predicting the preferences of an individual or
a group of individuals. Approaches relevant to this area range from learning special types
of preference models, such as lexicographic orders, over “learning to rank” for information
retrieval to collaborative filtering techniques for recommender systems. The primary goal of
this tutorial is to provide a brief introduction to the field of preference learning and, moreover,
to elaborate on its connection to multiple criteria decision aid.

10h30 Session 2

• “On the use of copulas to simulate multicriteria data”,
Jairo Cugliari, Antoine Rolland, Thi-Min-Tuy Tran, Lab. ERIC, Université Lyon 2

Several methods have been proposed in the past decades to deal with Multicriteria Decision
Aiding (MCDA) problems. However, a comparison between these methods is always arduous
as the number of dataset proposed in the literature is very low. One of the limitations of the
existing datasets is that generally MCDA method are dealing with very small sets of data;
typically, a MCDA problem deals with a number of alternatives that does not exceed 20 or
30 and often less. Therefore, it should be interesting to propose a way to simulate new data
based on some existing dataset, i.e. taking into account the potential links that should exist
between the criteria. We introduce in this paper the use of the statistical functions named
copula to simulate such data. A practical way to use copula is proposed, and the quality of
the obtained data is discussed.

• “Data Generation Techniques for Label Ranking”,
Massimo Gurrieri, Philippe Fortemps, Xavier Siebert, Marc Pirlot, Nabil Aït-Taleb
MATHRO, Faculté Polytechnique, UMONS
In light of the lack of benchmark data for label ranking, experimentations are typically per-
formed on data sets derived from classification or regression data sets. The generation of
artificial datasets is however not trivial since instances have to be associated with rankings
over a finite set of labels and attributes (i.e. the feature vector) have to be linked (correlated)
with such rankings. This paper discusses and proposes datasets generation techniques in
order to provide artificial datasets suitable for label ranking.
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11h30 Coffee Break

12h00 Session 3

• Invited speaker: “Boolean functions for classification: logical analysis of data”,
Yves Crama, University of Liège, Belgium
Boolean functions are among the simplest and most fundamental objects investigated in
mathematics. In spite, or because of their simplicity, they find applications in many scientific
fields, including logic, combinatorics, operations research, artificial intelligence, computer
science, game theory, engineering, and so forth. In this talk, we present a collection of
Boolean models that have been developed over the last 25 years under the name of "Logi-
cal Analysis of Data" (or LAD) in order to handle a large variety of classification problems.
We focus on the frequent situation where a decision-maker has observed a number of data
points (say, vectors of binary attributes) which have been classified either as "positive" or as
"negative" examples of a phenomenon under study. The task of the decision-maker is then to
develop a classification system that allows her to assign one of the "positive" or "negative"
qualifiers to any point that may be presented to her in the future, in a way that remains consis-
tent with the initial observations. We first recall useful facts about partially defined Boolean
functions and their extensions, and we introduce the main concepts and definitions used in the
LAD framework: support (or "sufficient") sets of attributes, patterns (or "elementary classi-
fication rules"), theories (obtained by combining patterns), etc. We show how these building
blocks can be used to develop simple interpretable classifiers that perform and generalize
well in a variety of experimental situations. Moreover, we argue that these classifiers satisfy
some minimal requirements for “justifiability". Finally, we clarify the relation between the
LAD classifiers and certain popular classifiers used in the machine learning literature, such
as those computed by nearest neighbor classification algorithms or decision trees.

13h00 Lunch

14h20 Group Photo session

14h30 Session 4

• Invited speaker: “Learning and identifying monotone boolean functions”,
Endre Boros, Rutgers University, NJ, USA
Numerous applications require the task of learning and/or identifying a hidden monotone
Boolean function.In this talk, first we review several learning models and clarify the the
corresponding learning complexity when the hidden function is known to be monotone. The
considered models include extending a given partially defined Boolean function or one with
missing bits within a specified class of monotone Boolean functions, and learning a certain
type of monotone function using membership queries. In the second part of the talk we
consider identification problems, which is a special case/extension (depending how one views
it) of learning by membership queries. Identification of a monotone function means that
we try to generate all of its minimal true (resp. maximal false) points. This problem is
strongly related to Boolean dualization or equivalently to finding all minimal transversals of
a hypergraph. In this talk we survey some of the related results, and provide a sample of the
standard algorithmic techniques.
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15h30 Coffee Break

16h00 Session 5

• “Learning the parameters of a majority rule sorting model taking attribute interactions into
account”, Olivier Sobrie1,2, Vincent Mousseau1 and Marc Pirlot2
1 LGI, Ecole Centrale Paris,
2 MATHRO, Faculté Polytechnique, UMONS
We consider a multicriteria sorting procedure based on a majority rule, called MR-Sort. This
procedure allows to sort each object of a set, evaluated on multiple criteria, in a category
selected among a set of pre-defined and ordered categories. With MR-Sort, the ordered cate-
gories are separated by profiles which are vectors of performances on the different attributes.
An object is assigned in a category if it is as good as the category lower profile and not better
than the category upper profile. To determine if an object is as good as a profile, the weights
of the criteria on which the object performances are better than the profile performances are
summed up and compared to a threshold. In view of improving the expressiveness of the
model, we modify it by introducing capacities to quantify the power of the coalitions. In the
paper we describe a mixed integer program and a metaheuristic that give the possibility to
learn the parameters of this model from examples of assignment. We test the metaheuristic
on real datasets.

• “Conjoint axiomatization of the Choquet integral for two-dimensional heterogeneous prod-
uct sets”,Mikhail Timonin, Queen Mary University of London
We propose an axiomatization of the Choquet integral model for the general case of a hetero-
geneous product set X = X1 ×X2. Previous axiomatizations of the Choquet integral have
been given for particular cases X = Y n and X = Rn. The major difference of this paper
from the earlier axiomatizations is that the notion of “comonotonicity” cannot be used in the
heterogeneous structure as there does not exist a “built-in” order between elements of sets
X1 and X2. However, such an order is implied by the representation. Our characterization
does not assume commensurateness of criteria a priori. We construct the representation and
study its uniqueness properties.

• “Utilitaristic Choquistic Regression”,
Ali Fallah Tehrani1, Christophe Labreuche2, Eyke Hullermeier1
1Department of Mathematics and Computer Science, University of Marburg,
2 Thales Research & Technology
Traditionally in machine learning, the attributes are a priori normalized (standardized) and
their normalization is not part of the learning process. Taking inspiration from multi-criteria
decision aid, we investigate in this paper the interest of learning also the utility function.
More specifically we extend two classification methods - namely logistic regression and
Choquistic regression - to learn both the normalization and the aggregation of the criteria.
Some premilinary results are presented in this paper.
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• “About the french hospitals rankings: a MCDA point of view”,
Brice Mayag, LAMSADE, Université Paris Dauphine
The aim of this paper is to convince the Multi-Criteria Decision Aid (MCDA) and Preference
Learning communities to investigate and to contribute in the development of methodologies
dedicated to hospital ranking. To do so, we present the french hospital ranking and show
how these rankings can be built properly through two existing methods: decision tree and
ELECTRE Tri.

19h00 Workshop Banquet

• at Restaurant "Le Berny", 127 Avenue Aristide Briand, 92160 Antony, tel.: 01 42 37 72 40

xii



Friday November 21rst, 2014

9h Session 6

• Invited speaker: “Scaling Optimization Methods for Data-driven Marketing”,
Craig Boutillier, University Toronto, Canada ,

The emergence of large-scale, data-driven analytics has greatly improved the ability to pre-
dict the behavior of, and the effect of marketing actions on, individual consumers. Indeed,
the potential for fully personalized "marketing conversations" is very real. Unfortunately,
advances in predictive analytics have significantly outpaced the ability of current decision
support tools and optimization algorithms, precisely the tools needed to transform these in-
sights into marketing plans, policies and strategies. This is especially true in large marketing
organizations, where large numbers of campaigns, business objectives, product groups, etc.
place competing demands on marketing resources—the most important of which is customer
attention. In this talk, I will describe a new approach, called dynamic segmentation, for solv-
ing large-scale marketing optimization problems.

We formulate the problem as a generalized assignment problem (or other mathematical pro-
gram) and create aggregate segmentations based on both (statistical) predictive models and
campaign-specific and organizational objectives. The resulting compression allows problems
involving hundreds of campaigns and millions of customers to be solved optimally in tens of
milliseconds. I’ll briefly describe how the data-intensive components of the algorithm can be
distributed to take advantage of modern cluster-computing frameworks. I will also discuss
how the platform supports real-time scenario analysis and re-optimization, allowing decision
makers to explore tradeoffs across multiple objectives in real-time.

Time permitting, I’ll hint at how the technique might be extended to solve sequential, stochas-
tic problems formulated as Markov decision processes, and briefly mention other potential
applications of this class of techniques.

10h00 Session 7

• “Factorization of large tournaments for the median linear order problem”,
Alain Guénoche, Institut de Mathématiques de Marseille (I2M - CNRS)
Computing a median linear order for a given set of linear orders on n elements, is an ordinary
task for preference aggregation. This problem is formalized by a tournament (complete di-
rected graph) with n vertices, arcs corresponding to majority preferences. To build a median
linear order is to make it transitive, realizing a minimum number of arc-reversal operations.
They define the remoteness of any median linear order to this tournament. The computation
of a minimum series of arc reversals is usually made using a Branch & Bound algorithm
which cannot be applied when n overpasses a few tens. In this text we try to decompose
a large tournament (n > 100) into sub-tournaments and to assemble the median orders on
each one into a linear order on n elements. We show, making several simulations on random
tournaments, weighted or unweighted, that this decomposition strategy is efficient.

xiii



• “Listing the families of Sufficient Coalitions of criteria involved in Sorting procedures”,
Eda Ersek Uyanik1, Olivier Sobrie1,2, Vincent Mousseau2 and Marc Pirlot1
1 MATHRO, UMONS, 2 LGI, Ecole Centrale Paris
Certain sorting procedures derived from ELECTRE TRI such as MR-Sort or the Non Com-
pensatory Sorting (NCS model) model rely on a rule of the type: if an object is better than a
profile on a “sufficient coalition” of criteria, this object is assigned to a category above this
profile. In some cases the strength a coalition can be numerically represented by the sum of
weights attached to the criteria and a coalition is sufficient if its strength passes some thresh-
old. This is the type of rule used in the MR-Sort method. In more general models such as
Capacitive-MR-Sort or NCS model, criteria are allowed to interact and a capacity is needed
to model the strength of a coalition. In this contribution, we want to investigate the gap of
expressivity between the two models. In this view, we explicitly generate a list of all possible
families of sufficient coalitions for a number of criteria up to 6. We also categorize them
according to the degree of additivity of a capacity that can model their strength. Our goal is
twofold: being able to draw a sorting rule at random and having at disposal examples in view
of supporting a theoretical investigation of the families of sufficient coalitions.

11h00 Coffee break

11h30 Session 8

• Invited speaker: “Surrogate loss functions for preference learning”,
Krzysztof Dembczynski,
Poznan University of Technology, Poland,
In preference learning we use a variety of different performance measures to train and test
prediction models. The most popular measures are pairwise disagreement (also referred to as
rank loss), discounted cumulative gain, average precision, and expected reciprocal rank. Un-
fortunately, these measures are usually neither convex nor differentiable, so their optimiza-
tion becomes a hard computational problem. However, instead of optimizing them directly
we can reformulate the problem and use surrogate or proxy loss functions which are easier
to minimize. A natural question arises whether optimization of a surrogate loss provides a
near-optimal solution for a given performance measure. For some of the performance mea-
sures the answer is positive, but in the general case the answer is rather negative. During the
tutorial we will discuss several results obtained so far.

12h30 Lunch

13h20 Poster session

• “An Arrow-like theorem over median algebras”,
Miguel Couceiro1 and Bruno Teheux2,
1 LAMSADE, Université Paris-Dauphine,
2 Université du Luxembourg
We present an Arrow-like theorem for aggregation functions over convervative median alge-
bras. In doing so, we give a characterization of conservative median algebras by means of
forbidden substructures and by providing their representation as chains.
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• “A Metaheuristic Approach for Preference Learning in Multi-Criteria Ranking based on Ref-
erence Points”,
Jinyan Liu, Wassila Ouerdane, Vincent Mousseau, LGI, Ecole Centrale Paris
In this paper, we are interested by an aggregation method called multi-criteria ranking method
based on Reference Points (RMP). Briefly, instead to have pairwise comparisons between
alternatives, the pairs of alternatives are judged according to the reference points. The intro-
duction of such points facilitates the comparison of any two alternatives in which dominance
relationship does not necessarily exist. However, we notice that little attention has been
brought on how to learn the parameters of this kind of model. Therefore, to tackle this prob-
lem, we propose in this work a methodology for preference learning for the RMP method.
More precisely, we are interested by learning the parameters of this method when DMs pro-
vide us a large set of data or information. Specifically, an algorithm is provided that is a
combination of an evolutionary approach and a linear programming approach. Experimental
tests and analysis are also presented.

• “Inferring the parameters of a majority rule sorting model with vetoes on large datasets”,
Alexandru-Liviu Olteanu, Patrick Meyer, Telecom Bretagne
The article is centered on the problem of inferring the parameters of a majority rule sort-
ing model when large sets of assignment examples are considered. Beside the proposal of
an approach for solving this problem, the main focus of the paper lies in the inclusion of
veto thresholds inside the majority rule model, which, as we illustrate, increases the expres-
siveness of the model. However, due to its complexity, an exact approach for inferring its
parameters is not practical especially when large datasets are considered. Therefore, we pro-
pose a metaheuristic approach to overcome this difficulty. The approach is validated over a
set of constructed benchmarks as well as on several datasets containing real data.

• “A Dataset Repository for Benchmark in MCDA”,
Antoine Rolland and Thi-Minh-Thuy Tran, Lab. ERIC, Université Lyon 2
Several methods have been proposed in the past decades to deal with Multicriteria Decision
Aiding (MCDA) problems. However, a comparison between these methods is always arduous
as there is no benchmark in this domain. In the same time, people proposing new MCDA
methods have no standardized data to deal with to prove the interest of their methods.We
propose the creation of a web MCDA DataSet Repository to face this lack of data. We detail
the presentation of this repository in this paper.

• “User Experience Driven Design of MCDA Problems with DecisionCloud”,
Michel Zam1,2, Meltem Ozturk2 and Brice Mayag2,
1 KarmicSoft Research,
2 LAMSADE, Université Paris-Dauphine
Incremental transformation of stakeholder’s decision problems in robust models remains a
challenging and complex task that needs better tools. Realistic user experience gives the
most valuable input but usually requires several life-cycles. This takes too long, costs too
much, and lets precious ideas die. Sketching tools are too superficial, formal modeling tools
are too cryptic and development tools are not productive enough.

We address the evolution vs. consistency challenge and provide an agile solution approach
through the whole collaborative modeling process of multicriteria decision problems, in-
cluding sketching, modeling and interacting with running apps. DecisionCloud is a MCDA
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extension of the MyDraft platform. Way beyond declaring criteria, alternatives, constraints,
evaluations and run classical decision problems, DecisionCloud provides features as domain
modeling and instant GUI prototyping. The whole evolutionary process runs in the cloud and
is fully traced. Users, designers, and coders, if any, collaborate consistently using only their
web browsers and grow their decision models directly in the cloud.

14h00 Session 8

• Invited speaker: “Preference modeling with Choquet integral”,
Michel Grabisch, Université Paris 1
In this talk, we show how capacities and the Choquet integral emerge as natural ingredi-
ents when building a multicriteria decision model, especially when the criteria cannot be
considered as independent. To face the complexity of the model, we provide efficient sub-
models based on k-additive capacities, which are naturally connected with the interaction
indices, quantifying the interaction existing among criteria in a group of criteria. The case of
2-additive capacities seems to be of particular interest, since it leads to a model which is con-
vex combination of an additive model and max and min over any pair of two criteria. Lastly,
we address the issue of the identification of the model through learning data and preferences.

15h00 Coffee break

15h30 Session 9

• “Characterization of Scoring Rules with Distances: Application to Clustering of Rankings”,
Paolo Viappiani, LIP6, Université Pierre et Marie Curie
We consider the problem of clustering rank data, focusing on distance-based methods. Two
main steps need to be performed: aggregating rankings of the same cluster into a repre-
sentative ranking (the cluster’s centroid) and assigning each ranking to its closest centroid
according to some distance measure. A principled way is to specify a distance measure for
rankings and then perform rank aggregation by explicitly minimizing this distance. But if
we want to aggregate rankings in a specific way, perhaps using a scoring rule giving more
importance to the first positions, which distance measure should we use?
Motivated by the (known) observation that the aggregated ranking minimizing the sum of the
Spearman distance with a set of input rankings can be computed efficiently with the Borda
rule, we build a taxonomy of aggregation measures and corresponding distance measures; in
particular we consider extensions of Spearman that can give different weights to items and
positions

• “An interactive approach for multiple criteria selection problem”,
Anil Kaya1, Özgür Özpeynirci1, Selin Özpeynirci2,
1 Izmir University of Economics, Department of Logistics Management,
2 Izmir University of Economics, Industrial Engineering Department
In this study, we develop an interactive algorithm for the multiple criteria selection problem
that aims to find the most preferred alternative among a set of known alternatives evaluated on
multiple criteria. We assume the decision maker (DM) has a quasiconcave value function that
represents his/her preferences. The interactive algorithm selects the pairs of alternatives to be
asked to the DM based on the estimated likelihood that an alternative is preferred to another
one. After the DM selects the preferred alternative, a convex cone is generated based on
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this preference information and the alternatives dominated by the cone are eliminated. Then,
the algorithm updates the likelihood information for the unselected pairwise questions. We
present the algorithm on an illustrative example problem.

• “FlowSort parameters elicitation: the case of partial sorting”,
Dimitri Van Assche, Yves De Smet,
CoDE, Université libre de Bruxelles
We consider the context of partial sorting. We address the problem of finding the parameters
of the FlowSort method using an existing categorization. This contribution constitutes an
extension of a method we have developed in the context of complete sorting. It relies on the
use of a dedicated Genetic Algorithm based on variations of search parameters. We show
how to manage the problem of correct categorization prediction, which is more difficult,
since ranges of categories are considered. The method is tested on three different datasets for
which a partial sorting has been generated with a particular instantiation of FlowSort.

• “On confident outrankings with multiple criteria of uncertain significance”,
Raymond Bisdorff, University of Luxemburg
We develop Monte Carlo simulation techniques for taking into account uncertain criteria
significance weights and ensuring an a priori level of confidence of the Condorcet outrank-
ing digraph, depending on the decision maker. Those outranking situations that cannot be
ensured at a required level of confidence are assumed to be indeterminate. This approach
allows us to associate given confidence degree to the decision aiding artifacts computed from
a bipolarly-valued outranking, which accounts for the essential and unavoidable uncertainty
of numerical criteria weights.

17h30 Closing session
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Session 1

• Invited speaker: "Preference Learning: Machine Learning meets MCDA"
Eyke Hüllermeier, Department of Computer Science, Universität Paderborn, Germany

The topic of “preferences” has recently attracted considerable attention in artificial intelli-
gence in general and machine learning in particular, where the topic of preference learning
has emerged as a new, interdisciplinary research field with close connections to related areas
such as operations research, social choice and decision theory. Roughly speaking, preference
learning is about methods for learning preference models from explicit or implicit prefer-
ence information, which are typically used for predicting the preferences of an individual or
a group of individuals. Approaches relevant to this area range from learning special types
of preference models, such as lexicographic orders, over “learning to rank” for information
retrieval to collaborative filtering techniques for recommender systems. The primary goal of
this tutorial is to provide a brief introduction to the field of preference learning and, moreover,
to elaborate on its connection to multiple criteria decision aid.
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Session 2

• “On the use of copulas to simulate multicriteria data”, Jairo Cugliari, Antoine Rolland, Thi-
Min-Tuy Tran, Lab. ERIC, Université Lyon 2

• “Data Generation Techniques for Label Ranking”, Massimo Gurrieri, Philippe Fortemps,
Xavier Siebert, Marc Pirlot, Nabil Aït-Taleb, MATHRO, Faculté Polytechnique, UMONS
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On the use of copulas to simulate multicriteria data
Jairo Cugliari 1 and Antoine Rolland 2 and Thi-Min-Tuy Tran 3

Abstract. Several methods have been proposed in the past decades
to deal with Multicriteria Decision Aiding (MCDA) problems. How-
ever, a comparison between these methods is always arduous as the
number of datasets proposed in the literature is very low. One of the
limitations of the existing datasets is that generally MCDA method
are dealing with very small sets of data; typically, a MCDA problem
deals with a number of alternatives that does not exceed 20 or 30
and is often less. Therefore, it should be interesting to propose a way
to simulate new data based on some existing dataset, i.e. taking into
account the potential links that should exist between the criteria. We
introduce in this paper the use of the statistical functions named cop-
ula to simulate such data. A practical way to use copula is proposed,
and the quality of the obtained data is discussed.

1 Introduction

Multicriteria Decision Aiding (MCDA) studies aim at helping a De-
cision Maker (DM) to take (good) decisions. Many different models
have been proposed since more than 50 years (see [3] or [7] for a
survey), among others:

• utility-based approaches, using linear (MAUT [15], AHP [24]) or
non-linear (Choquet integral [14]) aggregation functions

• outranking approaches, like ELECTRE [13] or PROMETHEE [8]
methods

• mixed methods, like rule-based methods [20, 21] and others.

There is still a great increase of the number of very specific meth-
ods, or variants of existing methods, to be proposed. All these meth-
ods are always presented as very interesting and perfectly adapted
to the situation. The fact is that it is very difficult to test and com-
pare different methods described in the literature, as they often are
dedicated to one specific situation. Even if the axiomatic foundations
have been generally well studied (see [7] for a first approach), it is
often difficult to realize which are the difference in practice between
the results obtained by two different methods. Therefore, there is a
lack of testing sets of data on which one can try the different meth-
ods. Several solutions have already been proposed to increase the
possibility of benchmark between MCDA methods. We can cite the
Decision Deck project which proposes a unified data standard for
MCDA data [5], and a unified web services platform through DIVIZ
[18]. We can cite also a companion paper [22] which aims at propos-
ing a repository of real or fictitious datasets for MCDA situations.

But sometimes only very few data are available; for example, from
an preference learning point of view, the dataset should be so limited

1 Lab. ERIC, Université Lyon 2, email: Jairo.Cugliari@univ-lyon2.fr
2 Lab. ERIC, Université Lyon 2, email: Antoine.Rolland@univ-lyon2.fr
3 Lab. ERIC, Université Lyon 2, email: Thi-minh-thuy.Tran@etu.univ-

lyon1.fr

that it is too small to be divided into a test subset and a validation sub-
set. Researches should also desire to have more data to test the pro-
posed methods. There is then a need to be able to increase the size of
the datasets through simulated data. Good practices in MCDA point
out the fact, among others, that criteria should be as independent as
possible [23]. But in real life the values taken by an alternative on
different criteria are generally not totally independent. For example,
if the DM is facing a problem like flat rental, she would like to se-
lect several flats to visit. Obviously, data like surface, price, or rooms
number seem to be good criteria to decide which flat to visit. But
these criteria are often linked: increasing the surface is greater in-
crease also the chance to have more rooms; or the price is an increas-
ing function of the surface, with respect to other criteria. Therefore,
MCDA data cannot be independently well simulated. The problem
is then to model the interaction between criteria in a plausible way.
We propose to use a statistical approach to overcome this difficulty.
Copula is a statistical tool which aims at modelling those interac-
tions. Basically, a copula is a function that describe a multivariate
distribution as a function of the marginal univariate distributions. We
propose in this paper to use copulas to first model the interactions
between criteria, and then to simulate new alternatives. We automat-
ically learn the copula parameters from the actual dataset (used as
training set) so as to generate new simulated data sets.

As far as we know, there is no work about the simulation of mul-
ticriteria data except a tentative using Bayesian network presented in
[2].

In this paper we present a practical way to use copulas to simu-
late MCDA data inspiring from the work in [12]. In section 2 we
introduce the copulas functions and quickly present the most well-
known copulas families. In section 3 we first stand the hypothesis
under which we worked. We then present a process to elicitate the
parameters of the copulas following [1]. Finally, we show some nu-
merical experiments we performed on available MCDA dataset in the
literature.

2 Copulas
In this section we recall some basic notions about modeling depen-
dency with copulas (see [19] for a more formal presentation of the
subject). The basic construction bricks will be pair copula construc-
tions (PCC) which are assembled together in a vine copula.

2.1 A brief introduction to copulas
In a nutshell a copula is a multivariate cumulative distribution func-
tion which has all its margins uniformly distributed on the unit inter-
val. If U1, . . . , Un;n ≥ 2 are random variables with uniform distri-
bution in [0, 1], then a copula C : [0, 1]n 7→ [0, 1] satisfies

C(u1, . . . , un) = P (U1 ≤ u1, . . . Un ≤ un) (1)
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A central result on copulas is Sklar’s theorem [25] which al-
lows one to represent any n−variate cumulative distribution function
F (x1, . . . , xn) of the random vector X = (X1, . . . , Xn) as

F (x1, . . . , xn) = C(F (x1), . . . , F (xn)), (2)

where F (x1), . . . , F (xn) are the univariate marginal distribution
functions of the vector X. Moreover, this representation is unique
if the marginals are absolutely continuous. A converse result is
Nelsen’s corollary [19] which identifies the copula from the joint and
marginal distribution

C(u1, . . . , un) = F (F−1(x1), . . . , F
−1(xn)). (3)

Intuitively, the probabilistic structure of the vector X is the result
of coupling the marginal behavior of the components of X by means
of the copula C which has intermediate practical implications. For
example, from the observation of n independent and identical real-
izations X1, . . . ,Xn of X, one can estimate the joint multivariate
distribution function F by estimating the marginals and identifying
one copula function among the elements of known copula families
(e.g. the elliptical or Archimedean classes among others [19]). If F
is absolutely continuous, then we use the chain rule to write the den-
sity equivalent to equation (2)

f(x1, . . . , xn) = c(F1(x1), . . . , Fn(xn))f1(x1) . . . fn(xn) (4)

where the copula density function c is given by

c(u1, . . . , un) =
∂nC(u1, . . . , un)

∂u1, . . . , ∂un
(5)

The difficulty of this problem depends on the data dimension n. In
the bivariate case, e.g. n = 2, only one pair-copula must be estimated
and many solutions have been already proposed to do so (see for
example [16, Chapter 5]). However, several of these approaches are
not feasible in higher dimension spaces.

2.2 Pair-Copula Construction (PCC)
To avoid some problems that arise on high dimension datasets, [4]
propose a pair-copula construction in order to decompose the mul-
tivariate joint density of X into a cascade of building blocks called
pair-copula.

As before f is the joint density ofX which is factorized (uniquely
up to a relabeling of the elements of X) as

f(x1, . . . , xn) = f(xn)f(xn−1|xn) . . . f(x1|x2, . . . , xn). (6)

Then, one can write each of the conditional densities on (6) using
(4) recursively which yields on this general expression for a generic
element Xi of X given a generic conditioning vector v

f(xi|v) =cxi,vj |v−j
(F (xi|v−j), F (vj |v−j))

× f(xi|v−j). (7)

In last expression we use the notation vj for the j-th element of v
and v−j for all the elements of v but vj .

For example, let take three random variables X1,X2 and X3. We
have the following decomposition:

f(x1|x2x3) =c12|3 (F (x1|x3), F (x2|x3))
× f(x1|x3). (8)

2.3 Vines copulas

Vines copulas have been proposed to classify alternatives factor-
ization of (6) into a structured graphical model [4]. This construc-
tion allows highly flexible decompositions of the (possibly high) di-
mensional distribution of X because each pair-copula can be cho-
sen independently from the others. The iterative decomposition pro-
vided by the PCC is then arranged into a set of linked trees (acyclic
connected graph). Two special schemes are usually used: C-vines
(canonical vines) and D-vines. In the former one, a dependent vari-
able is identified and chosen to be the root of the tree. In the follow-
ing tree, the dependence will be computed conditional on this first
variable and so on. In the latter scheme, a variable ordering is cho-
sen. Then on the first tree one models the dependence of each of the
consecutive pairs of variables. The following tree will model the de-
pendence of the remaining pairs, conditional on the those that were
already modeled. See [1] for a more detailed exposition of this con-
struction.

2.4 Simulation

Simulation of copula data (i.e. n-variate data with uniformly dis-
tributed marginals) can be done using the probability integral trans-
form. It is convenient to define the h-function

h(x|v, θ) =
∂dCx,vj |v−j

(F (x|vj), F (x|v−j), |θ)
∂F (vj |v−j)

, (9)

where θ is a parameter vector associated to the decomposition level.
The h-function is the conditional distribution of x given v and we
let h−1(u|v, θ) be its inverse with respect to u, i.e. the inverse of
the cumulative conditional distribution. The simulation for the vine
is as follows. First sample n uniformly distributed random variables
w1, w2, . . . , wn. Then use the probability integral transform of the
corresponding conditional distribution:

x1 = w1,

x2 = F−1(w2|x1),
x3 = F−1(w3|x1, x2),
. . .

xn = F−1(wn−1|x1, . . . , x−1).

At each step, the computation of the inverse conditional distribution
is made through the (inverse) h-function.

3 Numerical experiments

The aim of the data simulation is to obtain new fictitious data in
accordance with a set of real data. The model (copula) parameters
are automatically learned from the real dataset, and then the model is
used to simulate new data. Ideally, the new fictitious data should be
indiscernible from the real ones. We detail in the following sections
the hypothesis on the real data that we make, then the simulation
process and the way we can prove that we reach our objective of
indiscernibility.

3.1 Hypothesis

The input data are a set of p alternatives described on n criteria. Typ-
ically, a MCDA problem faces a small number of alternatives (from
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5 or 6 to less than 50). The number of criteria is also small rang-
ing between 3 and about 10. It should be noticed that the real data
can be considered as example data but not as sampled data as in the
classical statistical sampling theory framework: the data set is not
obtained by a random sampling, as the data has been generally pre-
viously selected for their interest. Therefore it is difficult to infer the
distribution of each criteria from the data, as there exists a observa-
tion bias.

Since the margins are unknowns, it is preferable to use normal-
ized ranked data to estimate the copula parameters. This avoids the
problem of estimating the marginal distribution. However, we need to
estimate these distributions in order to transform the simulated data
(whose margins are uniformly distributed) into the original scale of
the data. Two different solutions can be considered:

• choose a parametric form of distribution (Gaussian, uniform...) for
the criteria and estimate its parameters, or

• use a non-parametric approach for the marginal distribution.

We chose to use the empirical distribution invert function which is a
fully non-parametric approach. The inconvenience stands in the fact
that we can only infer marginal distribution contained between the
observed (real) minimum and maximum for each criterion. Therefore
extrema values could be not so well simulated.

In order to avoid problems due to count data we assume that the
margins are absolutely continuous. Thus, the representation in (2) is
unique.

3.2 Simulation scheme

We use the statistical software R to perform the numerical experi-
ments. The simulation process has been implemented in the CDVine
package [9]. The input data set is a numeric performance matrix. To
obtain a simulated dataset we follow these steps:

Step 1. Transform original data into copula data, i.e. purely ordinal
distributions for each criterion.

Step 2. Select a C or a D vine structure via the function
CDVineCopSelect proposed in the package CDVine. Param-
eters of this function are the choice between C-Vine or D-Vine
structure to be selected, and the selection criterion (AIC or BIC).

Step 3. Estimate the parameters of all the pair copula jointly through
the maximization of the pseudo likelihood. This step is performed
via the function CDVineMLE proposed in the package.

Step 4. Simulate the desired number of data via the function
CDVineSim proposed in the package CDVine.

Step 5. Transform back copula data into real-like data via the in-
verse of the empirical cumulative function.

3.3 Evaluation

The testing step consists in the analysis of the differences between
the set of real data and the set of simulated one. We want to detect if
there is any difference between both sets and quantify the difference
if any. An acceptable simulation procedure would yield on simulated
data that is indistinguishable from the real data.

Since we are interested on a joint multivariate probability struc-
ture, using classical univariate tests (e.g. Kolmogorov-Smirnov test)
on the margin of the joint distribution is clearly not sufficient. How-
ever, the simulation scheme must warranty that these margins are
correctly simulated as well as the joint structure.

One could then rely on clustering methods to split the mixed
datasets of real and simulated data into two clusters. Then, one com-
putes a confusion matrix using the classes obtained from the clus-
tering methods and the real labels (real vs simulated) and tests for
independence through a χ2 test. The k-means method is one of the
most common and popular unsupervised clustering method. How-
ever, this method should be useless here, as it will always conclude
to the confusion of real and simulated data as long as the marginal
distributions will be close. This clustering method is able to capture
clusters that are not in the same place in the possible data space, but
is less able to capture clusters that have different structures in the
same subspace.

Alternatively, one could use a binary classifier to test whether the
merged data is easy to discriminate in terms of the added labels real
vs. simulated. We use the Random Forest algorithm [10] as a su-
pervised learning method. This algorithm allows to estimate the in-
fit sample error rate, that is the proportion of alternatives that are
wrongly classified. For this, the algorithm constructs many binary
trees classifiers on bootstrapped subsets of the merged dataset. Then,
it test the classifier on the remaining alternatives and computes the
error rate. The quality indicator we look at is the mean global error
ratio computed over all the classifiers constructed by the Random
Forest algorithm. Heuristically, the higher the ratio the better it is in
our case as it indicates that there is more and more confusion between
real and simulated data.

A more formal way of measuring the quality of the simulation is to
test the existence of differences between the simulated and real data.
For instance, one could use a flexible multivariate ANOVA [26]. We
do not explore this method in this paper.

3.4 Results
We tested the elicitation process on 3 data sets obtained from the
MCDA data set repository [22]. Let us present the three selected
cases.

Case 1. A data set of farms evaluated on the animal welfare, de-
scribed in [6]. The dataset is composed of 29 farms described on
4 criteria valued between 0 and 100.

Case 2. A data set of 27 scenarios for radioactive waste manage-
ment, with regard to 4 criteria, described in [11].

Case 3. A data set of 243 virtual peach ideotypes with regard to 3
criteria described in [17].

The three data sets are represented on the left panels of Figures 1, 2
and 3 respectively. These panels contain all the pairwise scatter plots
for each data set on its upper triangle. On the lower triangles we rep-
resent each estimated pairwise copula density by means of contour
plots. These pair copula are the elemental brick on the construction
of the vines. It is possible to remark different kinds of probability
structures and dependence between the three cases. For instance, the
contour plots show spherical shapes in Figure 1 and elliptical shapes
in Figure 2 which can be associated to multivariate normal or t distri-
butions. The shapes of the contour plots in Figure 3 are more intricate
and therefore represent more complex dependence structures.

In order to obtain a estimation of the quality of the simulation
procedure we repeated the simulation scheme (see 3.2) 1000 times,
producing then 1000 simulated data sets for each of the three real
data sets. The simulated data sets have the same dimensions as the
real data sets they are simulated from. Figures 1, 2 and 3 allow to
visually inspect one of the replicates of the simulation procedure for
each of the MCDA data sets. On the first two cases, it is hard to tell
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Figure 1: Animal welfare dataset [6]. On the right, the pairs plot of the data points (black dots) and simulated points (gray dots). On the left,
the original data points are represented as normalized ranks on the upper triangle and the estimated pair copulas as shown as contour plots on
the lower triangle.

that the global pattern of the data is not respected, however there are
some simulated data points that lay in zone of low real data density.
On the third case, it is more clear that the structure of the simulated
dataset does not necessarily follow the structure of the real data. In
particular, we see how simulated data points lay far away from the
strong structure of real data set.

For each simulation we tested the univariate and multivariate ad-
equacy of the simulated datasets to the real datasets. We used the
Kolmogorov-Smirnov test on each margin and the proposed eval-
uation (see 3.3) using the Random Forest intrinsic error ratio. The
Kolmogorov-Smirnov test is marginally rejected at the level of 5%
(the maximum rejection was 5 times out of 1000 replication using
the first dataset and the first variable) so we do not include the re-
sults here. The obtained average error ratios using Random Forest
are presented in table 1 which is detailed and analysed in the next
section.

In order to ensure that results are not purely due to randomness,
we also produced 1000 simulated data sets without any hypothesis
of dependence between criteria, i.e. we generated criteria values in-
dependently, following only the marginal distributions for each cri-
terion on each dataset. The results of such simulation are also listed
in table 1.

RandomForest Error Ratio
Data Set With copulas Without copulas

Case 1 [6] 0.534 0.5
Case 2 [11] 0.573 0.012
Case 3 [17] 0.204 0.119

Table 1: Average error ratio of the Random Forest classifier for each
of the MCDA datasets for the simulation scheme using copula to
model dependence and without any dependence structure.

A higher error ratio shows that it is more difficult to distinguish be-
tween learning data and simulated data with the use of copulas, and
as a consequence we consider that the simulation is of better quality.
If we consider that a higher error ratio implies a simulation of higher
quality, then we notice that for all the proposed datasets the quality
of the simulated data seems to be better when we use copulas than
under the independence hypothesis. However, the differences among
the three cases are not negligible. For example while in the first case
both error rates are very close (0.534 under the dependence hypothe-
ses against 0.500 under the independence hypothesis), in the second
case the error rates are quite different (0.573 under the dependence
hypothesis against 0.012 under the independence hypothesis). Let us
examine more in detail these results.

First we used vine tree plots to graphically represent the esti-
mated dependence structure. Vine tree plots represent dependent pair
copulas as connected components on a graph. The non connected
components are the (conditionally) independent couples of variables.
When a pairwise dependence exists, the associated edge indicates the
strength of the association and a label is placed together with the em-
pirical Kendall’s tau as well as the retained copula. Vine tree plots
for our experiment are presented on Figure 4. With this representa-
tion it is easy to see the low dependence structure of the first case
(where only one non independent pair copula is estimated), and also
the strong structure observed in case 3 where all the possible pair-
wise components are linked together. Finally the case 2 is somehow
more interesting because the dependence structure is present at some
levels of the disaggregation and for some variables.

We now try to interpret the obtained results in terms of the practi-
cal problem associated to each one of the cases we studied.

Case 1. [6] presents data that are very weakly dependent (see figure
1). There, the representation of the data and the used copula seems
to indicate that the dataset could be correctly represented using a
spherical copula. Therefore, a simulation under the independence
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Figure 2: Radioactive waste management dataset. On the right, the pairs plot of the data points (black dots) and simulated points (gray dots). On
the left, the original data points are represented as normalized ranks on the upper triangle and the estimated pair copulas as shown as contour
plots on the lower triangle.
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Figure 3: Peach ideotypes dataset. On the right, the pairs plot of the data points (black dots) and simulated points (gray dots). On the left, the
original data points are represented as normalized ranks on the upper triangle and the estimated pair copulas as shown as contour plots on the
lower triangle.

hypothesis will give good results and will not be very improved
by the use of copulas.

Case 2. [11] is a very interesting case as the data are more linked
by a non-linear relation (see figure 2 for the representation of the
data and the used copula). In this case the use of copulas permits to
really improve the quality of the simulation by taking into account
these links.

Case 3. [17] is a very special case since all the alternatives in the
dataset are situated in a 3D-surface which is a Pareto front (see
3 for the representation of the data and the used copula). Sim-
ulating data without the constraint of being in the surface leads
for sure to absurd solutions. The use of copulas in this situation
can weakly improve the quality of the data, but cannot of course
use the special surface structure of the data to better simulate new
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alternatives. The simulation process should be linked with a clean-
ing phase where only pareto-optimal solutions should be kept in
the dataset.

4 Conclusion

The objective of our work is to propose to the community a practical
tool to simulate ”real-like” data from a real dataset. We focused on
the way to take into account weak and non-linear links between cri-
teria and proposed a solution based on the use of copulas to model
these links. We have shown that the use of copula increases the qual-
ity of the simulated data compared to the simple model only based on
the use of the marginal distributions. The proposed process is based
on a automatic learning of the copula model and parameters. How-
ever, we can imagine that the expert can define the used model of
copula and/or part of the parameters if needed.

The use of copulas to simulate new MCDA data from a set of real
ones seems to be validated by the tests we made. In each case data are
of better quality with the use of copulas than if we simulate data un-
der the hypothesis of complete independence between criteria. How-
ever, the use of copulas is of higher interest when the criteria are
linked by a weak relation: if no relation exists between criteria one
can simulate criteria values independently; if a strong (and hidden)
relation exists between criteria copulas can fail at representing it.

Moreover, it should be noticed in a multicriteria combinatorial op-
timization point of view that we only generate alternatives with cred-
ible criteria values. We do not check if these alternatives correspond
effectively to feasible solutions or not.

Perspectives of this work are the following:

• to provide an efficient similarity-index to test the similarity be-
tween real and simulated data;

• to develop an available R service for anyone to simulate MCDA
data from a learning dataset;

• to study the effect of criteria number and alternatives number in
the learning set on the quality of the simulation;

• to propose a process using copulas to simulate data directly from
indications of the DM without any learning dataset.
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(a) Case 1: low stochastic dependence structure

(b) Case 2: high stochastic dependence structure

(c) Case 3: high deterministic dependence structure

Figure 4: Tree vine plot for the three cases studied. Nodes represent the pair copula components. Edges are present where a significant depen-
dence is estimated between pair copula.

9



Data Generation Techniques for Label Ranking

Massimo Gurrieri 1, Xavier Siebert, Nabil Aït-Taleb, Marc Pirlot, Philippe Fortemps

UMONS, Université de Mons, Faculté Polytechnique, rue de Houdain 9, 7000 Mons, Belgium

Abstract

In view of the lack of benchmark data for label
ranking, experimentations are typically performed on
data sets derived either from classi�cation or regres-
sion data. However, though such data sets are ac-
cepted by several researchers in this �eld, they do not
provide in general trustworthy data and fail to deal
with more general settings. Moreover they are not
guaranteed to verify more general properties suited
for particular settings. This paper proposes datasets
generation techniques to provide synthetic data suit-
able for label ranking and its extensions.

Keywords: Preference Learning, Label Ranking,
Machine Learning, Data generation, Bayesian Net-
works, Multi-criteria Decision Aid.

1 Introduction

The topic discussed in this paper concerns label rank-
ing [1�5], a prediction task in preference learning,
where the goal is to learn a map from instances to
rankings over a �nite set of classes (or labels). The
main goal in label ranking is to predict weak or par-
tial orders (more generally total orders) of labels for
a new query (or instance). For example, a group
of custumers is willing to rank �ve products, such
that position one is associated to the best product
(the top ranked one), position two to the second best
and so on. The learning of such a model (i.e. the
label ranker) is based on custumer's features (e.g.
his/her net salary, his/her age, etc.) and will be
capable of predicting a ranking on these �ve prod-
ucts for a new custumer based on his/her features.
Several methods to label ranking have been recently
presented [1�7] and in view of the lack of benchmark
data for label ranking, experimentations were mainly

performed on data sets derived either from classi-
�cation or regression data sets, i.e. from machine
learning repositories (UCI, MLData, StatLib, Stat-
log...) [5]. However, though such data sets are well
accepted by several researchers in this �eld, they do
not provide, in general, trustworthy data for label
ranking data and fail to deal with more general set-
tings, namely label ranking where the learning set
contains either incomplete rankings or partial orders
instead of linear orders. Moreover they are not guar-
anteed to verify more general properties (e.g. prior
knowledge of monotonicities between attributes and
labels or correlations between labels) suited for par-
ticular settings. The generation of arti�cial datasets
is however not trivial since instances have to be as-
sociated with full/incomplete rankings over a �nite
set of labels and attributes (i.e. the feature vector)
have to be linked with such orders. In this paper we
discuss some methods to generate arti�cial data sets
for label ranking.

This paper is organized as follows. In section 2, we
introduce label ranking more formally. In section 3,
we describe existing datasets for labels ranking. In
section 4 and 5, we introduce approaches to generate
data sets suitable for label ranking. Finally, in section
6 and 7, we present some experimental results and
conclusions, respectively.

2 Label Ranking

In label ranking [6, 7] the main goal is to predict for
any instance x, from an instance space X, a prefer-
ence relation �x: X → L, where L= {l1; l2; ...; lk} is
a �nite set of labels or alternatives, such that li �x lj
means that instance x prefers label li to label lj or,
equivalently, li is ranked higher than lj . More speci�-
cally, we are interested to the case where �x is a total
strict order over L, or equivalently, a ranking of the

1
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entire set L. This ranking can therefore be identi�ed
with a permutation πx ∈ Ω (the permutation space
of the index set of L), such that πx(i) < πx(j) means
that label li is preferred to label lj (πx(i) represents
the position of label li in the ranking).

3 Data sets from Machine

Learning

Existing label ranking data sets are available at KEBI
Data Repository 2. These data sets are essentially
multiclass and regression data sets from the UCI
repository and the Statlog collection that were turned
into label ranking data in two di�erent ways. As for
classi�cation data (denoted type A), the procedure
proposed in [1] consists in training a naive Bayes
classi�er on the complete data set. For each train-
ing instance, all the class/labels present in the data
set are then ordered with respect to the predicted
class probabilities (ties are arbitrarly broken). As for
regression data (denoted type B) [5], a certain num-
ber of (numerical) attributes are removed from the
set of predictors and are accordingly considered as
labels. Finally, to obtain a ranking for each instance,
the (removed) attributes are standardized and sorted
by decreasing order of their values. Since the overall
original attributes are correlated, the remaining pre-
dictive attributes will be somehow correlated with the
�nal rankings. As stated in [5], experimentally, the
second type of data generation produces more dif-
�cult learning problems (in view of the correlation
between remaining and removed attributes). How-
ever, though the above-mentioned datasets are used
for experimentations related to label ranking, they
lack of trustworthiness and cannot be used to model
more general settings where, for example, the train-
ing set contains incomplete rankings or partial orders
instead of full rankings. This is mainly due to the fact
that even when two labels are incomparable or indis-
tinguishable, they are arbitrarily discriminated and
ordered to form a total order. In the case of type-A
data, very often, when running the procedure sug-
gested in [1, 5], it is possible to observe that there

2http://www.uni-marburg.de/fb12/kebi/research/repository

L1 L2 L3 L4 L5 L6 L7

0 0 0 0 0 0 1

0.853 0.048 0.1 0 0 0 0

0 0.884 0 0 0.102 0 0.014

0.782 0.213 0.005 0 0 0 0

0.957 0.013 0.029 0 0 0 0

0 0.072 0 0 0.928 0 0

Table 1: Partial class probability distributions for
the (multiclass) data setGlass obtained with a naive
Bayes classi�er. Each row represents the predicted
probability distribution of classes L1-L7. Such distri-
butions tend to privilegiate one class, while the others
are more or less equally distributed with probabilities
close to zero.

is a dominating class (the one with the highest class
probability) while the other classes are more or less
equally distributed. As an example, Table 1 partially
shows class probability distributions obtained with a
naive Bayes classi�er for the multiclass data set Glass
(214 instances, 9 attributes and 7 classes) run on
Weka [8]. It is evident that (almost) the overall prob-
ability is always given to one class, while the other
classes have probability values close to zero. Thus,
the way rankings are obtained from such probabilities
values is somehow unreliable. As a main consequence,
di�erent strategies to break ties may lead to di�er-
ent rankings on the set of labels, so that the perfor-
mances of a label ranker could be directly in�uenced
by such a choice. As for regression data sets, the way
labels are chosen among the predictors is once again
arbitrary and unclear. Therefore, it is clear that con-
verting classi�cation/regression data into label rank-
ing data cannot always ensure the trustworthiness of
data. To sum up, it would be very useful to pro-
vide reliable methods for generating synthetic data
that would allow one not only to have trustworthy
data, but also to simulate/represent more general set-
tings and to take into account more general properties
(e.g. monotonicities between attributes and labels [9]
or correlations between labels [10, 11]) that could be
useful for future research in this �eld. In view of the
above, in this paper, we present methods for the gen-
eration of arti�cial data sets (denoted type C) based

2
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DATA Type Instances Labels Attributes

DATAGEN1 C 1000 5 10

DATAGEN2 C 1000 5 10

DATAGEN3 C 1000 5 5

DATAGEN4 C 1000 4 5

DATAGEN5 C 1000 4 5

Table 2: Summary of generated synthetic data

on Multi-criteria decision making approaches [12] and
on Bayesian Networks [13]. A summary of �ve exem-
plary arti�cial data sets, and their properties, that we
generated with the methods proposed in this paper,
is given in Table 2.

4 Arti�cial Data sets: Utility

function approach

In this section we present methods for generating syn-
thetic data for label ranking that are based on the no-
tion of utility functions [6,12,14], where it is possible
to provide rankings (total orders) among the set of
labels based on values of their utilities. Note that, if
a threshold for utilities is �xed, then the preference of
a label over another one can also be associated with
a notion of intensity, meaning that utilities within
that threshold of each other are declared incompa-
rable (rejecting the assumption that indi�erence is
transitive, i.e. arising semiorders [12] instead of total
orders ). Let L= {l1; l2; ...; lK} be the set of labels
for which a ranking has to be provided based on the
n-dimensional feature vector x = (a1, a2, ..., an) de-
scribing an instance x ∈ X, with |X| = N . Thus, the
�nal data set will be comprised of instances such as:

(x, πx) = (x, lπ−1
x (1) �x lπ−1

x (2) �x ... �x lπ−1
x (K))

(4.1)

In order to generate such a ranking, labels will be
ordered w.r.t. decreasing values of (real-valued) util-
ity functions, one for each label:

fk : X → R ∀k ∈ 1, 2, ...,K (4.2)

so that lh �x lk ⇔πx(i) < πx(j) ⇔ fh(x) > fk(x).

In the following three sections, we discuss three dif-
ferent approaches for label ranking data sets genera-
tion based on the notion of utilities. Though the pre-
sented methods concern the generation of instances
associated with strict linear orders, they can easily
be adapted to deal with more general settings (par-
tial orders or semiorders instead of linear orders, as
discussed above).

4.1 Data sets generation method:

DATAGEN1

In our �rst proposed method, we assume that each
label lk, k = 1, 2, ...,K, is characterized by a M -
dimensional vector (or equivalently a set of M cri-
teria). Thus, the utility given by the generic instance
i, i = 1, 2, .., N , to label lk will be a weighted sum on
the M criteria:

fk(i) =

M∑

s=1

ωiscs,k (k = 1, 2, ...,K) (4.3)

where the weight ωis is linear combination of the eval-
uations of the instance i on the n attributes and cs,k
represents the evaluation of the kth label on the sth
criteria:

ωis =
n∑

j=1

ai,jbj,s (4.4)

as explained in the following. Let A = [(ai,j)] be
the feature matrix wherein the ith line is an n-
dimensional vector describing the instance i among
a set of N instances, w.r.t. to n attributes (i.e.
its feature vector or equivalently, the evaluation of
the instance i on each of the n attributes). Thus
i = 1, 2, .., N and j = 1, 2, ...n. The matrix A, con-
taining the feature vector of each instance, can be
randomly generated.
Let us now de�ne the matrix B = [(bj,s)], j =

1, 2..., n, s = 1, 2, ...,M , where the sth column bj,s,
j = 1, 2, ..., n, contains a n-dimensional vector of
weights related to the n attributes a1, a2, ..., an w.r.t.
to the current criterion s. In other words, columns
1, 2, ..., s can be considered as s di�erent ways of giv-
ing importance to the n attributes. Note that the
number M of such models can be chosen arbitrarly

3
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Figure 1: DATAGEN1: Histograms of attributes A1-
A10 and of labels L1-L5. L3 occupies most of times
the �rst or the last position while L4 never occupies
the �rst position and only two times the last position
in the generated rankings.

depending on how each label is described. The matrix
B is generated with the constraint that the elements
of each column sum up to one (they are weights given
to attributes):

n∑

j=1

bj,s = 1 (4.5)

In order to draw normalized vectors of weights in uni-
form way, we used the algorithm discussed in [15] that
prevents non-uniformity of sampling.
Let us �nally de�ne the matrix C = [(cs,k)], s =

1, 2, ...,M , k = 1, 2, ...,K, where the generic kth col-
umn cs,k, s = 1, 2, ...,M , contains the evaluations
of the kth label on the M criteria. The columns of
the matrix C are generated similarly as for matrix
A = [(ai,j)]. The output of this method will be a set
of instances (xi, πxi) = (ai,1, ..., ai,n, πxi), where the
ranking πxi on labels is obtained by ordering labels
w.r.t. values of their utilities (obtained by inserting
4.4 in 4.3):

fk(i) =
n∑

j=1

M∑

s=1

ai,jbj,scs,k (k = 1, 2, ...,K) (4.6)

thus fk(i) is a weighted sum of theM criteria related
to the label k, where weights are linear combinations

of the n attributes speci�c for the ith instance. Figure
1 shows the attributes and labels distributions of the
generated data set. Though attributes A1 to A10
are uniformly distributed (at least approximatively),
labels L3 and L4 present some bias. L3 occupies
most of times the �rst or the last position while L4
never occupies the �rst position and only two times
the last position in the generated rankings.

4.2 Data sets generation method:

DATAGEN2

The method described in this section can be con-
sidered as a speci�c instance of the method DATA-
GEN1 where the utility given by the generic instance
i, i = 1, 2, .., N , to label lk is simply a weighted sum
of the n attributes.

Let de�ne the matrix A = [(ai,j)] as in the pre-
vious section, while B = [(bj,k)], j = 1, 2..., n,
k = 1, 2, ...,K is now a matrix whose the generic kth
column bj,k, j = 1, 2, ..., n, contains weights given
to the n attributes used to describe the kth label.
In other words, such a column represents the im-
portance given by a generic instance i to the n at-
tributes that describe the kth label. Note that the
elements of B are generated as in DATAGEN1. The
output of this method will be a set of instances
(xi, πxi) = (ai,1, ..., ai,n, πxi), similarly to method
DATAGEN1, where the ranking πxi on labels is ob-
tained by ordering labels w.r.t. their utilities:

fk(i) =
n∑

j=1

ai,jbj,k (k = 1, 2, ...,K) (4.7)

Figure 2 shows attributes and labels distributions
of the generated data set. Attributes A1 to A10 as
well as labels L1 to L5 are uniformly distributed.

4.3 Data sets generation method:

DATAGEN3

A slightly di�erent method is described hereinafter.
Let Ω = [(ωi,j)], i = 1, 2..., N , j = 1, 2, ..., n, be a ma-
trix where each line represents a n-dimensional set
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Figure 2: DATAGEN2: Histograms of attributes A1-
A10 and of labels L1-L5. All labels are uniformly
distributed along the positions of the generated rank-
ings

of weights. Thus, a generic line i identi�es a par-
ticular set Si = (ωi,1, ωi,2, ..., ωi,n) of weights asso-
ciated to the n attributes. The main idea is that
if we want to rank K objects (i.e. labels) through
a weighted sum of their n attributes, di�erent sets
of weights should provide di�erent rankings on these
objects. Thus, N sets of weights will provide N dif-
ferent rankings on the given objects. Thus the output
of this method will be a set of instances (xi, πxi) =
(Si, πSi

) = (ωi,1, ..., ωi,n, πxi), i = 1, 2..., N where the
ranking πSi is obtained by ordering labels w.r.t. their
utilities:

fk(i) =
n∑

j=1

ωi,j gj,k (k = 1, 2, ...,K) (4.8)

where the rows of the matrix Ω = [(ωi,j)] are gen-
erated as for DATAGEN1 and DATAGEN2 (i.e. the
elements of each row are normalized weights) while
the generic kth column of the matrix G = [(gj,k)]
contains the evaluations of the kth label on the n
attributes and can be randomly generated. Never-
theless, in order to guarantee monotonicity between
attributes and labels, the matrix G could also be ob-
tained, for example, by using a real data set where
such a monotonicity is provided. Figure 3 shows the
attributes and labels distributions of the generated
data set. In this example, we used the car's choice

Figure 3: DATAGEN3: Histograms of attributes A1-
A5 and of labels L1-L5. Attributes and labels are not
uniformly distributed. L1 always occupies the forth
and the �fth position, L2 and L3 always occupy the
third, fourth and �fth positions and L4 and L5 oc-
cupies the �rst and second positions in all generated
rankings.

data set [14] to obtain the matrix G. Attributes A1 to
A5 are not uniformly distributed and all labels reveal
some bias. L1 always occupies the forth and the �fth
position, L2 and L3 always occupy the third, fourth
and �fth positions and L4 and L5 occupies the �rst
and second positions in all generated rankings.

5 Arti�cial Data sets: Bayesian

Networks

In previous approaches the feature matrix A, C and
G containing, respectively, the evaluations of each
instance on attributes, the evaluations of each label
on a set of criteria and the evaluations of each label
on attributes, are drawn independently, which is to
some extent not realistic. In this section, we present
a method that allows to generate correlated evalu-
ations. The present method is based on Bayesian
Networks [13] and allows to generate data wherein
conditional dependencies between attributes and la-
bels can be explicitly given as input.
Assume that we want to generate N -dimensional

data vectors whose correlations are as close as pos-
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sible to a correlation matrix R given as input. In
the following, we brie�y describe the principles of the
method designed for this purpose. However, the in-
terested reader is referred to the working paper [16]
for further information.
Let us �x an order on the N dimensions and con-

sider a Bayesian Network whose the graph is a di-
rected acyclic graph (DAG) of this order. TheN vari-
ables are genereted iteratively as follows. The �rst
random variable X1 is simply drawn from a standard
normal distribution, i.e. X1 ∼ N (0, 1). The second
random variable X2 is generated in such a way as to
preserve the value of the required correlation (given in
the matrix R) between the �rst two variables X1, X2,
i.e. X2 is obtained as a noisy linear regression of the
variable X1. The third variable X3 is similarly ob-
tained so as to preserve the given correlation with
X1 and X2, and so on. As a result, each variable Xi,
i = 1, 2, ...N , is obtained as a noisy linear regression
on the previuos variable X1, X2, ..., Xi−1. At a given
step, in case it is not possible to exactly preserve
the speci�ed correlations, a matrix algorithm [17] is
used to minimize the (Frobenius) distance between
the current correlation matrix and matrix R given
as input. At the end of this process, the associated
Bayesian Network can generate random vectors dis-
tributed according to a multivariate Gaussian distri-
bution whose the correlation matrix is, in a certain
sense, the correlation matrix closest to the given ma-
trix R. Though each variable Xi, i = 1, 2, ...N , is
N (0, 1), it is possible to adjust the marginal means
and variances by using an appropiate a�ne transfor-
mation. Note that such a process can be adapted to
the case in which the matrix R is only partially spec-
i�ed. Alternatively, one can specify the main cor-
relations by drawing an acyclic graph. The desired
correlations are speci�ed for the arcs of the graph
only. In such a case, the order relation on the vari-
ables is chosen in such a way as to contain all arcs of
the graph (which is always possible since the graph is
acyclic). In the current label ranking setting, a spe-
ci�c instance of the desired synthetic dataset can be
represented as a directed acyclic graph (DAG) whose
nodes are either attributes (in arbitrary number) or
labels, while edges represent conditional dependen-
cies between any two nodes. In the following sec-

tions, we discuss two exemplary datasets generated
by means of the present method.

5.1 DATAGEN4: the case of uncorre-

lated labels

In the present case, we do not impose correlations
between labels evaluations (i.e. the set of labels is
an independent set of nodes in the DAG). Thus, all
arcs in the DAG are either linking attribute nodes
between them or attribute nodes with label nodes.
Moreover, in order to guarantee uncorrelated label
evaluations, all arcs linking attribute nodes with la-
bel nodes should have their origin at label nodes, as
shown in Figure 4. As a consequence, label evalua-
tions will be drawn independently. The correlations
obtained for DATAGEN4 are represented in Table 3
and are in accordance with the required correlations
given as input. The generated data can be inter-
preted as follows: the sub-vector corresponding to
attribute values represent the feature vector of a spe-
ci�c instance while the sub-vector corresponding to
the label values represent utilities that are used to
form a ranking on labels. Note that label values are
uncorrelated and that attribute values and label val-
ues follow Gaussian distributions with mean 100 and
standard deviation 20. In particular, the attributes
values are noisy linear regressions of the labels values.

5.2 DATAGEN5: the case of corre-

lated labels

In this exemplary dataset, DATAGEN5, we imposed
some correlations between labels nodes, as depicted
in Figure 5. The correlations obtained for DATA-
GEN5 are represented in Table 4 and are in accor-
dance with the required correlations given as input.
Attribute values and label values also follow Gaussian
distributions with mean 100 and standard deviation
20. Note that the possibility to establish correlations
between labels, as proposed in this paper, would be
particularly useful in the context of preference learn-
ing and more particularly in multi-label classi�cation
where the interdependency (or correlation) between
labels is a crucial issue to take into account during
the learning phase [10,11].
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A 1

A 2

A 3

A 4 A 5

L 1

L 2

L 3

L 4

Figure 4: Conditional Dependencies Structure of
DATAGEN4.

6 Experimental setup

This section is devoted to experimentations on the
arti�cial datasets generated with the presented meth-
ods. The evaluation measures used in this study are
the Kendall's tau and the Spearman's rank correla-
tion coe�cient [18]. A cross validation study (10-
fold) was performed. The following methods were
used in our experimentation: ranking by pairwise
comparison (RPC) [1], nominal coding decomposi-
tion (ND ) [2�4] and random classi�er chains for label
ranking (CD) [4]. The experimental results, in terms
of Kendall's Tau and Spearman's rank corrrelation,
are shown in Table 5. In this experiment, we evalu-
ated all algorithms using WEKA [8] in batch mode
from a Python program and Radial Basis Function
(RBF) as base-classi�er with default parameters.
DATAGEN4, DATAGEN5 are the most di�cult

datasets to learn since both measures are lower w.r.t.
any method. Conversely, DATAGEN3, DATAGEN1
and DATEGEN2 are less di�cult to learn. At least
intuitively, this could be explained by the distribu-
tions of attributes and labels, as shown in Figures

A 1

A 2

A 3

A 4 A 5

L 1

L 2

L 3

L 4

Figure 5: Conditional Dependencies Structure of
DATAGEN5.

Figure 6: DATAGEN4: Bayesian Network (no corre-
lation between labels). Histograms of attributes A1-
A5 and of labels L1-L4. Attributes A1 to A4 follow
(approximately) a Gaussian distribution around the
mean while all labels are uniformly distributed along
the positions of the generated rankings.
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A1 A2 A3 A4 A5 L1 L2 L3 L4

A1 1.000 0.631 0.044 0.111 0.052 0.484 -0.003 -0.423 0.405

A2 0.631 1.000 0.084 0.015 -0.567 0.115 -0.201 -0.525 0.080

A3 0.044 0.084 1.000 0.062 -0.172 -0.014 -0.388 -0.003 0.052

A4 0.111 0.015 0.062 1.000 0.001 0.133 -0.035 0.129 0.058

A5 0.052 -0.567 -0.172 0.001 1.000 -0.058 0.098 0.087 0.133

L1 0.484 0.115 -0.014 0.133 -0.058 1.000 0.008 0.026 0.015

L2 -0.003 -0.201 -0.388 -0.035 0.098 0.008 1.000 -0.021 -0.003

L3 -0.423 -0.525 -0.003 0.129 0.087 0.026 -0.021 1.000 -0.003

L4 0.405 0.080 0.052 0.058 0.133 0.015 -0.003 -0.003 1.000

Table 3: Correlation matrix obtained for DATAGEN4. Correlation values are in accordance with the corre-
lations given as input.

A1 A1 A3 A4 A5 L1 L2 L3 L4

A1 1.000 -0.318 0.002 0.430 0.063 -0.108 -0.030 0.713 0.442

A2 -0.318 1.000 0.029 0.068 -0.252 0.499 0.349 -0.383 0.152

A3 0.002 0.029 1.000 -0.002 -0.624 0.078 -0.027 0.020 -0.013

A4 0.430 0.068 -0.002 1.000 0.010 0.127 0.104 0.115 0.108

A5 0.063 -0.252 -0.624 0.010 1.000 -0.180 -0.030 0.064 -0.043

L1 -0.108 0.499 0.078 0.127 -0.180 1.000 0.404 0.013 0.286

L2 -0.030 0.349 -0.027 0.104 -0.030 0.404 1.000 -0.013 0.516

L3 0.713 -0.383 0.020 0.115 0.064 0.013 -0.013 1.000 0.048

L4 0.442 0.152 -0.013 0.108 -0.043 0.286 0.516 0.048 1.000

Table 4: Correlation matrix obtained for DATAGEN5. Correlation values are in accordance with the corre-
lations given as input.
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Figure 7: DATAGEN5: Bayesian Network (correla-
tion between labels). Histograms of attributes A1-
A5 and of labels L1-L4. Attributes A1 to A4 follow
(approximately) a Gaussian distribution around the
mean. All labels are (approximately) uniformly dis-
tributed along the positions of the generated rankings
except L3 which seems to appear mostly either in the
�rst or the last position of the generated rankings.

1-7: datasets having labels uniformly distributed over
the ranking positions (DATAGEN4, DATAGEN5)
are more di�cult to learn. Conversely, datasets
(DATAGEN3, DATAGEN1, DATAGEN2) for which
labels are distributed less uniformly are less di�cult
to learn (i.e. they present a bias due to the fact that
some labels occupy very often the same position in
the rankings).

7 Conclusions

In this paper, we introduced some techniques for
generating datasets suitable for label ranking. We
mainly investigated two generation methods: a �rst
method which is based on the concept of utility func-
tions (DATAGEN1, DATAGEN2, DATAGEN3) and
a second one which is based on Bayesian Network
(DATAGEN4, DATAGEN5). In particular, the latter
allows to generate data where some statistical param-
eters (mean, variance and correlation) can be given
as input. In order to study such datasets, we used
some label ranking methods and evaluate their per-
formances w.r.t. to Kendall's Tau and Spearman's

Kendall tau

SD ND CC

DATAGEN1 .794+-.020 .427+-.073 .724+-.035

DATAGEN2 .750+-.021 .486+-.028 .704+-.024

DATAGEN3 .973+-.008 .895+-.018 .960+-.011

DATAGEN4 .252+-.057 .168+-.005 .220+-.007

DATAGEN5 .322+-.036 .242+-.065 .297+-.004

Spearman's rank correlation

SD ND CC

DATAGEN1 .861+-.018 .512+-.083 .776+-.036

DATAGEN2 .835+-.019 .588+-.027 .798+-.022

DATAGEN3 .986+-.004 .946+-.009 .979+-.006

DATAGEN4 .313 +- .063 .200 +- .073 .267 +- .008

DATAGEN5 .379 +- .037 .285 +- .075 .348+-.004

Table 5: Kendall's Tau and Spearman's rank corre-
lation on Arti�cial Data Sets - RBF as base classi�er

rank correlation. As a main result, datasets having
labels uniformly distributed (DATAGEN4, DATA-
GEN5 and DATAGEN2) over the ranking positions
are more di�cult to learn. Conversely, datasets for
which some labels present a bias (i.e. they occupy
very often the same position in a ranking) are less
di�cult to learn. In particular, as expected, DATA-
GEN4 is the most di�cult dataset to learn, since
labels are independent from attributes and uncorre-
lated between them. Beside the experimental results
provided for the exemplary datasets generated with
the proposed methods, this paper discusses and at-
tempts to solve an important issue in label ranking,
namely how to generate synthetic data suitable for
this setting. The methods proposed in this paper
would be useful not only to provide trustworthy la-
bel ranking data, but also to simulate/represent more
general settings (incomplete rankings, partial orders)
and to take into account more general properties re-
quired for future research in this �eld.
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Session 3

• Invited speaker: “Boolean functions for classification: logical analysis of data”,
Yves Crama, University of Liège, Belgium
Boolean functions are among the simplest and most fundamental objects investigated in
mathematics. In spite, or because of their simplicity, they find applications in many scientific
fields, including logic, combinatorics, operations research, artificial intelligence, computer
science, game theory, engineering, and so forth. In this talk, we present a collection of
Boolean models that have been developed over the last 25 years under the name of "Logi-
cal Analysis of Data" (or LAD) in order to handle a large variety of classification problems.
We focus on the frequent situation where a decision-maker has observed a number of data
points (say, vectors of binary attributes) which have been classified either as "positive" or as
"negative" examples of a phenomenon under study. The task of the decision-maker is then to
develop a classification system that allows her to assign one of the "positive" or "negative"
qualifiers to any point that may be presented to her in the future, in a way that remains consis-
tent with the initial observations. We first recall useful facts about partially defined Boolean
functions and their extensions, and we introduce the main concepts and definitions used in the
LAD framework: support (or "sufficient") sets of attributes, patterns (or "elementary classi-
fication rules"), theories (obtained by combining patterns), etc. We show how these building
blocks can be used to develop simple interpretable classifiers that perform and generalize
well in a variety of experimental situations. Moreover, we argue that these classifiers satisfy
some minimal requirements for “justifiability". Finally, we clarify the relation between the
LAD classifiers and certain popular classifiers used in the machine learning literature, such
as those computed by nearest neighbor classification algorithms or decision trees.

Session 4

• Invited speaker: “Learning and identifying monotone boolean functions”,
Endre Boros, Rutgers University, NJ, USA
Numerous applications require the task of learning and/or identifying a hidden monotone
Boolean function.In this talk, first we review several learning models and clarify the the
corresponding learning complexity when the hidden function is known to be monotone. The
considered models include extending a given partially defined Boolean function or one with
missing bits within a specified class of monotone Boolean functions, and learning a certain
type of monotone function using membership queries. In the second part of the talk we
consider identification problems, which is a special case/extension (depending how one views
it) of learning by membership queries. Identification of a monotone function means that
we try to generate all of its minimal true (resp. maximal false) points. This problem is
strongly related to Boolean dualization or equivalently to finding all minimal transversals of
a hypergraph. In this talk we survey some of the related results, and provide a sample of the
standard algorithmic techniques.
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Session 5

• “Learning the parameters of a majority rule sorting model taking attribute interactions into
account”, Olivier Sobrie1,2, Vincent Mousseau1 and Marc Pirlot2
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Learning the parameters of a majority rule sorting
model taking attribute interactions into account

Olivier Sobrie1,3,4 , Vincent Mousseau2 and Marc Pirlot3

Abstract. We consider a multicriteria sorting procedure
based on a majority rule, called MR-Sort. This procedure al-
lows to sort each object of a set, evaluated on multiple cri-
teria, in a category selected among a set of pre-defined and
ordered categories. With MR-Sort, the ordered categories are
separated by profiles which are vectors of performances on
the different attributes. An object is assigned in a category
if it is as good as the category lower profile and not better
than the category upper profile. To determine if an object
is as good as a profile, the weights of the criteria on which
the object performances are better than the profile perfor-
mances are summed up and compared to a threshold. In view
of improving the expressiveness of the model, we modify it
by introducing capacities to quantify the power of the coali-
tions. In the paper we describe a mixed integer program and
a metaheuristic that give the possibility to learn the parame-
ters of this model from examples of assignment. We test the
metaheuristic on real datasets.

1 Introduction
In Multiple Criteria Decision Analysis, the sorting problem-
atic consists in assigning each alternative of a set, evaluated
on several monotone criteria, in a category selected among
a set of pre-defined and ordered categories. Several MCDA
methods are designed to handle such type of problematic. In
this paper, we consider a sorting model based on a major-
ity rule, called MR-Sort [11, 17]. In MR-Sort, the categories
are separated by profiles which are vectors of performances
on the different criteria. Each criterion of the model is as-
sociated to a weight representing its importance. Using this
model, an alternative is assigned in a category if (a) it is con-
sidered at least as good as the category lower profile and (b)
it is not considered at least as good as the category upper
profile. An alternative is considered as good as a profile if its
performances are at least as good as the profile performances
on a weighted majority of criteria.

Consider a MR-Sort model composed of 4 criteria (c1, c2,
c3 and c4) and 2 ordered categories (C2 � C1), separated by a
profile b1. Using this model, an alternative is assigned in the
“good” category (C2) iff its performances are as good as the
profile b1 on at least one of the four following minimal criteria
coalition:
1 email: olivier.sobrie@gmail.com
2 École Centrale Paris, Grande Voie des Vignes, 92295 Châtenay
Malabry, France, email: vincent.mousseau@ecp.fr

3 Université de Mons, Faculté Polytechnique, 9, rue de Houdain,
7000 Mons, Belgium, email: marc.pirlot@umons.ac.be

1. c1 ∧ c2
2. c3 ∧ c4
3. c1 ∧ c4
4. c2 ∧ c4

A coalition of criteria is said to be minimal if removing any
criterion is enough to reject the assertion “alternative a is as
good as profile b”. Using an additive MR-Sort model, it can be
achieved by selecting, for instance, the following weights and
majority threshold: w1 = 0.3, w2 = 0.2, w3 = 0.1, w4 = 0.4
and λ = 0.5. We have w1 +w2 = λ, w3 +w4 = λ, w1 +w4 > λ
and w2 +w4 > λ. All the other coalitions of criteria which are
not supersets of the 3 minimal coalitions listed above are not
sufficient to be considered as good as b1 (e.g. w1 + w3 < λ).

Now consider the same type of model, but with the follow-
ing minimal criteria coalitions:

1. c1 ∧ c2
2. c3 ∧ c4

Modeling this classification rule with an additive MR-Sort
model is impossible. There exist no weights and majority
threshold satisfying solely the 2 minimal criteria coalitions. In
view of being able to represent such type of rule, we propose in
this paper a new formulation of MR-Sort, called Capacitive-
MR-Sort. This formulation expresses the majority rule of MR-
Sort with capacities like in the Choquet Integral [8].

The paper is organized as follows. The next section de-
scribes formally the MR-Sort model and the new formulation
of MR-Sort with capacities. Section 3 recalls the literature
dealing with learning parameters of MR-Sort models from as-
signment examples. The next two sections describe respec-
tively a Mixed Integer Program and a metaheuristic that al-
low to learn the parameters of a Capacitive-MR-Sort. Some
experimental results are finally presented.

2 MR-Sort and Capacitive-MR-Sort
2.1 MR-Sort
MR-Sort is a method for assigning objects in ordered cate-
gories. Each object is described by a multicriteria vector of
attribute values. The attribute values can be meaningfully or-
dered, i.e. there is an underlying order on each attribute scale,
which is interpreted as a “better than” relation. Categories are
determined by limit profiles, which are vectors of attribute
values. The lower limit profile of a category is the upper limit
profile of the category below. The MR-Sort rule works as fol-
lows. An object is assigned to a category if it is better than
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the lower limit profile of the category on a sufficiently large
coalition of (weighted) attributes and this condition is not
met for the upper limit profile of this category. Obviously,
MR-Sort is a monotone rule, i.e. an object that is at least
as good as another on all attributes cannot be assigned to a
lower category.

The MR-Sort rule is a simplified version of the ELECTRE
TRI procedure, a method that is used in MCDA to assign
objects to predefined categories [19, 16]. The underlying se-
mantic is generally to assign the objects labels such as “good”,
“average”, “bad”, . . . .

Formally, let X be a set of objects evaluated on n ordered
attributes (or criteria), F = {1, ..., n}. We assume that X is
the Cartesian product of the criteria scales, X =

∏n
j=1Xj .

An object a ∈ X is thus a vector (a1, . . . , aj , . . . , an), where
aj ∈ Xj for all j.

The ordered categories which the objects are assigned to
by the MR-Sort model are denoted by Ch, with h = 1, . . . , p.
Category Ch is delimited by its lower limit profile bh−1 and
its upper limit profile bh, which is also the lower limit profile
of category Ch+1 (provided 0 < h < p). The profile bh is the
vector of criterion values (bh,1, . . . , bh,j , . . . , bh,n), with bh,j ∈
Xj for all j. We denote by P = {1, ...., p−1} the list of profile
indices.

By convention, the best category, Cp, is delimited by a fic-
tive upper profile, bp, and the worst one, C1, by a fictive lower
profile, b0.

It is assumed that the profiles dominate one another, i.e.:

bh−1,j ≤ bh,j , h = 1, . . . , p; j = 1, . . . , n.

Using the MR-Sort procedure, an object is assigned to a
category if its criterion values are at least as good as the
category lower profile values on a weighted majority of criteria
while this condition is not fulfilled when the object’s criterion
values are compared to the category upper profile values. In
the former case, we say that the object is preferred to the
profile, while, in the latter, it is not. Formally, if an object
a ∈ X is preferred to a profile bh, we denoted this by a <
bh. Object a is preferred to profile bh whenever the following
condition is met:

a < bh ⇔
∑

j:aj≥bh,j

wj ≥ λ, (1)

where wj is the nonnegative weight associated with criterion
j, for all j and λ sets a majority level. The weights satisfy the
normalization condition

∑
j∈F wj = 1; λ is called the majority

threshold ; it satisfies λ ∈ [1/2, 1].
The preference relation < defined by (1) is called an out-

ranking relation without veto or a concordance relation ([16];
see also [2, 3] for an axiomatic description of such relations).

Consequently, the condition for an object a ∈ X to be as-
signed to category Ch writes:

∑

j:aj≥bh−1,j

wj ≥ λ and
∑

j:aj≥bh,j

wj < λ (2)

The MR-Sort assignment rule described above involves pn+
1 parameters, i.e. n weights, (p− 1)n profiles evaluations and

one majority threshold. Note that the profiles b0 and bp are
conventionally defined as follows: b0,j is a value such that
aj ≥ b0,j for all a ∈ X and j = 1, . . . , n; bp,j is a value such
that aj < bp,j for all a ∈ X and j = 1, . . . , n.

A learning set A is a subset of objects A ⊆ X for which
an assignment is known. For h = 1, . . . , p, Ah denotes the
subset of objects a ∈ A which are assigned to category Ch.
The subsets Ah are disjoint; some of them may be empty.

2.2 Capacitive-MR-Sort
Before describing the Capacitive-MR-Sort model, we intro-
duce the notion of capacity. To illustrate this, we consider an
application in which a committee for a higher education pro-
gram has to decide about the admission of students on basis
of their evaluations in 4 courses: math, physics, chemistry and
history. To be accepted in the program, the committee judges
that a student should have a sufficient majority of evaluations
above 10/20. The courses (criteria) coalitions don’t have the
same importance. The strength of a coalition of courses varies
as a function of the courses belonging to the coalition. The
committee stated that the following subsets of courses are the
minimal coalition of courses in which the evaluation should
be above 10/20 in view of being accepted:

• {math, physics}
• {math, chemistry}
• {physics, history}

As an example of this rule, Table 1 shows evaluations of sev-
eral students and, for each student, if he is accepted or refused.

Math Physic Chemistry History A/R

James 11 11 9 9 A
Marc 11 9 11 9 A
Robert 9 9 11 11 A
John 11 9 9 11 R
Paul 9 11 9 11 R
Pierre 9 11 11 9 R

Table 1. Evaluation of students and their acceptance/refusal sta-
tus

Representing these assignments by using a MR-Sort model
with profiles fixed at 10/20 in each course is impossible. There
are no weights allowing to model such rules. MR-Sort is not
adapted to model such types of rules because it does not han-
dle criteria interactions.

In view of taking criterion interactions into account, we pro-
pose to modify the definition of the global outranking relation,
a < bh, given in (1). We introduce the notion of capacity. A
capacity is a function µ : 2F → [0, 1] such that:

• µ(B) ≥ µ(A), for all A ⊆ B ⊆ F (monotonicity) ;
• µ(∅) = 0 and µ(F ) = 1 (normalization).

The Möbius transform allows to express the capacity in an-
other form:

µ(A) =
∑

B⊆A
m(B) (3)
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for all A ⊆ F , with m(B) defined as:

m(B) =
∑

C⊆B
(−1)|B|−|C|µ(C) (4)

The value m(B) can be interpreted as the weight that is ex-
clusively allocated to B as a whole. A capacity can be defined
directly by its Möbius transform also called “interaction”. An
interaction m is a set function m : 2F → [−1, 1] satisfying the
following conditions:

∑

j∈K⊆J∪{j}
m(K) ≥ 0 ∀j ∈ F, J ⊆ F\{i} (5)

and
∑

K⊆F
m(K) = 1.

If m is an interaction, the set function defined by µ(A) =∑
B⊆Am(B) is a capacity. Conditions (5) guarantee that µ is

monotone [5].
Using a capacity to express the weight of the coalition in

favor of an object, we transform the outranking rule as follows:

a < bh ⇔ µ(A) ≥ λ with A = {j : aj ≥ bh,j}
and µ(A) =

∑

B⊆A
m(B) (6)

Computing the value of µ(A) with the Möbius transform in-
duces the evaluation of 2|A| parameters. In a model composed
of n criteria, it implies the elicitation of 2n parameters, with
µ(∅) = 0 and µ(F ) = 1. To reduce the number of parameters
to elicit, we use a 2-additive capacity in which all the interac-
tions involving more than 2 criteria are equal to zero. In the
literature [12], for the ranking problematic, it has been shown
experimentally that a 2-additive model allows to improve the
representation capabilities. However using a 3-additive capac-
ity instead of a 2-additive one does not significantly improve
the accuracy of the model. Inferring a 2-additive capacity
for a model having n criteria requires the determination of
n(n+1)

2
− 1 parameters.

Finally, the condition for an object a ∈ X to be assigned
to category Ch can be expressed as follows:

µ(Fa,h−1) ≥ λ and µ(Fa,h) < λ (7)

with Fa,h−1 = {j : aj ≥ bh−1,j} and Fa,h = {j : aj ≥ bh,j}.

3 Learning the parameters of a MR-Sort
model

Learning the parameters of MR-Sort and ELECTRE TRI
models has been already studied in several articles [14, 13,
15, 6, 7, 11, 4, 17, 20]. In this section, we recall how to learn
the set of parameters of an MR-Sort using respectively an
exact method [11] and a metaheuristic [17].

3.1 Mixed Integer Programming
Learning the parameters of an MR-Sort model using linear
programming techniques has been proposed in [11]. The pa-
per describes a Mixed Integer Program (MIP) taking a set
of assignment examples and their vector of performances as
input and finding the parameters of an MR-Sort model such
that a majority of the examples are restored by the inferred
model. We recall in this subsection the main steps to obtain
the MIP formulation proposed in [11].

The definition of an outranking relation (1) can be rewritten
as follows:

a < bh ⇐⇒
n∑

j=1

cha,j ≥ λ, with cha,j =

{
wj if aj ≥ bh,j
0 otherwise

To linearize this constraint, we introduce for each value cha,j , a
binary variable δla,j that it is equal to 1 when the performance
of the object a is at least equal or better than the performance
of the profile bl on criterion j and 0 otherwise. To obtain the
value of δla,j , we add the following constraints:

M(δla,j − 1) ≤ aj − bl,j < M · δla,j (8)

By using the value δla,j , the values of cla,j are deduced as
follows:




cla,j ≤ δla,j
cla,j ≤ wj
cla,j ≥ δla,j − 1 + wj

The objective function of the MIP consists in maximizing
the number of examples compatible with the learned model,
i.e. minimizing the 0/1 loss function. In order to model this,
we introduce new binary variables γa, equal to 1 if object a
is assigned in the expected category, i.e. the category it has
been assigned in the learning set, and equal to 0 otherwise.
To deduce the value of γa variables, two additional constraints
are added:
{∑n

j=1 c
h−1
a,j ≥ λ+M(γa − 1)∑n

j=1 c
h
a,j < λ−M(γa − 1)

Finally, the combination of all the constraints leads to the
MIP given in (9).

3.2 Metaheuristic
The MIP presented in the previous section is not suitable
for large datasets because of the high computing time that is
required to infer the MR-Sort parameters. In view of learn-
ing MR-Sort models in the context of large datasets, a meta-
heuristic has been proposed in [17]. As in the MIP, the meta-
heuristic takes as input a set of assignment examples and
their vector of performances and returns the parameters of
an MR-Sort model.

The metaheuristic proposed in [17] works as follows. First
a population of MR-Sort models is initialized. After the ini-
tialization, the two following steps are repeated iteratively on
each model in the population:
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



max
∑

a∈A
γa

n∑

j=1

ch−1
a,j ≥ λ+M(γa − 1) ∀a ∈ Ah, h = {2, ..., p}

n∑

j=1

cha,j < λ−M(γa − 1) ∀a ∈ Ah, h = {1, ..., p− 1}

aj − bl,j < M · δla,j ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
aj − bl,j ≥ M(δla,j − 1) ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

cla,j ≤ δla,j ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
cla,j ≤ wj ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
cla,j ≥ δla,j − 1 + wj ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
bh,j ≥ bh−1,j ∀j ∈ F, h = {2, ..., p− 1}

n∑

j=1

wj = 1

δla,j ∈ {0, 1} ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
cla,j ∈ [0, 1] ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
bh,j ∈ R ∀j ∈ F,∀h ∈ P
γa ∈ {0, 1} ∀a ∈ X
wj ∈ [0, 1] ∀j ∈ F
λ ∈ [0.5, 1]

(9)

1. A linear program optimizes the weights and the majority
threshold on basis of assignment examples and fixed pro-
files.

2. Given the inferred weight and the majority threshold, a
heuristic adjusts the profiles of the model on basis of the
assignment examples.

After applying these two steps to all the models of the pop-
ulation, the bn

2
c models restoring the least numbers of ex-

amples are reinitialized. These steps are repeated until the
metaheuristic finds a model that fully restores all the exam-
ples or after a number of iterations given a priori.

The linear program designed to learn the weights and the
majority threshold is given by (10). It minimizes a sum of
slack variables, x′a and y′a, that is equal to 0 when all the
objects are correctly assigned, i.e. assigned in the category
defined in the input dataset. We remark that the objective
function of the linear program does not explicitly minimize
the 0/1 loss but a sum of slacks. It implies that compensatory
effects might appears to the detriment of the 0/1 loss. How-
ever in this metaheuristic, we consider that this effects are
acceptable. This linear program doesn’t contain binary vari-
ables, therefore the computing time remains reasonable when
the size of the problem increases.

The objective function of the heuristic varying the pro-
files maximizes the number of examples compatible with the
model. To do so, it iterates over each profile h and each cri-
terion j and identifies a set of candidate moves which cor-
respond to the performances of the examples on criterion j
located between the profiles h− 1 and h+ 1. Each candidate
move is evaluated as a function of the probability to improve
the classification accuracy of the model. To evaluate if a can-
didate move is likely or unlikely to improve the classification

of one or several objects, the examples which have an evalu-
ation on criterion j located between the current value of the
profile, bh,j and the candidate move, bh,j + δ (resp. bh,j − δ)
are classified in different subsets:

V +δ
h,j (resp. V −δh,j ) : the sets of objects misclassified in Ch+1

instead of Ch (resp. Ch instead of Ch+1), for which moving
the profile bh by +δ (resp. −δ) on j results in a correct
assignment.

W+δ
h,j (resp. W−δh,j ) : the sets of objects misclassified in Ch+1

instead of Ch (resp. Ch instead of Ch+1), for which moving
the profile bh by +δ (resp. −δ) on j strengthens the criteria
coalition in favor of the correct classification but will not
by itself result in a correct assignment.

Q+δ
h,j (resp. Q−δh,j) : the sets of objects correctly classified in
Ch+1 (resp. Ch+1) for which moving the profile bh by +δ
(resp. −δ) on j results in a misclassification.

R+δ
h,j (resp. R−δh,j) : the sets of objects misclassified in Ch+1

instead of Ch (resp. Ch instead of Ch+1), for which moving
the profile bh by +δ (resp. −δ) on j weakens the criteria
coalition in favor of the correct classification but does not
induce misclassification by itself.

T+δ
h,j (resp. T−δh,j ) : the sets of objects misclassified in a cate-
gory higher than Ch (resp. in a category lower than Ch+1)
for which the current profile evaluation weakens the criteria
coalition in favor of the correct classification.

In order to formally define these sets we introduce the fol-
lowing notation. Alh denotes the subset of misclassified ob-
jects that are assigned in category Cl by the model while in
the dataset, they are assigned in category Ch. A>l<h denotes
the subset of misclassified objects that are assigned in cate-
gory higher than Cl by the model while in the dataset it is
assigned in a category below Ch. We denote by σ(a, bh) =
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



min
∑

a∈A
(x′a + y′a)

∑

j:aj≥bh−1,j

wj − xa + x′a = λ ∀a ∈ Ah, ∀h ∈ P\{1}
∑

j:aj≥bh,j

wj + ya − y′a = λ− δ ∀a ∈ Ah, ∀h ∈ P\{p− 1}

n∑

j=1

wj = 1

wj ∈ [0; 1] ∀j ∈ F
λ ∈ [0.5; 1]

xa, ya, x
′
a, y
′
a ∈ R+

0

(10)

∑
j:aj≥bh,j wj , the sum of criteria weights in favor of object a

against profile bh. We have, for any h, j and positive δ:

V
+δ
h,j =

{
a ∈ Ah+1

h : bh,j + δ > aj ≥ bh,j and σ(a, bh)− wj < λ
}

V
−δ
h,j =

{
a ∈ Ahh+1 : bh,j − δ < aj < bh,j and σ(a, bh) + wj ≥ λ

}

W
+δ
h,j =

{
a ∈ Ah+1

h : bh,j + δ > aj ≥ bh,j and σ(a, bh)− wj ≥ λ
}

W
−δ
h,j =

{
a ∈ Ahh+1 : bh,j − δ < aj < bh,j and σ(a, bh) + wj < λ

}

Q
+δ
h,j =

{
a ∈ Ah+1

h+1 : bh,j + δ > aj ≥ bh,j and σ(a, bh)− wj < λ
}

Q
−δ
h,j =

{
a ∈ Ahh : bh,j − δ < aj < bh,j and σ(a, bh) + wj ≥ λ

}

R
+δ
h,j =

{
a ∈ Ahh+1 : bh,j + δ > aj ≥ bh,j

}

R
−δ
h,j =

{
a ∈ Ah+1

h : bh,j − δ < aj < bh,j

}

T
+δ
h,j =

{
a ∈ A>h<h : bh,j + δ > aj ≥ bh,j

}

T
−δ
h,j =

{
a ∈ A<h+1

>h+1 : bh,j − δ < aj ≤ bh,j
}

The evaluation of the candidate move is done by aggregat-
ing the number of elements in each subset. Finally the choice
to move or not the profile on the criterion is determined by
comparing the candidate move evaluation to a random num-
ber drawn uniformly. These operations are repeated multiple
times on each profile and each criterion.

4 Mixed Integer Program to learn a
Capacitive-MR-Sort model

As compared to a MR-Sort with additive weights, a MR-Sort
model with capacities implies more parameters. In a stan-
dard MR-Sort model, a weight is associated to each crite-
rion, which makes overall n parameters to elicit. With an
MR-Sort model limited to two-additive capacities, the com-
putation of the weights of a coalition of criteria involves the
weights of the criteria in the coalition and the pairwise inter-
actions (Möbius coefficients) between these criteria. Overall
there are n+ n(n−1)

2
− 1 = n(n+1)

2
− 1 coefficients. In the two-

additive case, let us denote by mj the weights of criterion j
and by mj,k the Möbius interactions between criteria j and
k. The capacity µ(A) of a subset of criteria is obtained as:
µ(A) =

∑
j∈Amj +

∑
{j,k}⊆Amj,k. The constraints (5) on

the interaction read:

mj +
∑

k∈J
mj,k ≥ 0 ∀j ∈ F,∀J ⊆ F\{j} (11)

and
∑

j∈F
mj +

∑

{j,k}⊆F
mj,k = 1.

The number of monotonicity constraints evolves exponentially
as a function of the number of criteria, n. In [10], two other
formulations are proposed in order to reduce significantly the
number of constraints ensuring the monotonicity of the capac-
ities. The first formulation reduces the number of constraints
to 2n2 but leads to a non linear program. The second formu-
lation introduces n2 extra variables and reduces the number
of constraints to n2 + 1 without introducing non linearities.

With a 2-additive MR-Sort model, the constraints for an
alternative a to be assigned in a category h (7) can also be
expressed as follows:
{∑n

j=1 c
h−1
a,j +

∑n
j=1

∑j
k=1 c

h−1
a,j,k ≥ λ+M(γa − 1)∑n

j=1 c
h
a,j +

∑n
j=1

∑j
k=1 c

h
a,j,k < λ−M(γa − 1)

(12)

with:

• ch−1
a,j (resp. cha,j) equals mj if performance of alternative a
is at least as good as the performance of profile bh−1 (resp.
bh) on criterion j, and equals 0 otherwise;

• ch−1
a,j,k (resp. cha,j,k) equals mj,k if performance of alternative
a is at least as good as the performance of profile bh−1 (resp.
bh) on criteria j and k, and equals 0 otherwise.

For all a ∈ X, j ∈ F and l ∈ P , constraints (11) imply that
cla,j ≥ 0 and that cla,j,k ∈ [−1, 1]. The values of ch−1

a,j and cha,j
can be obtained in a similar way as it is done for learning the
parameters of a standard MR-Sort model by replacing the
weights with the corresponding Möbius coefficient (13).




cla,j ≤ δla,j
cla,j ≤ mj

cla,j ≥ δla,j − 1 +mj

(13)

However it is not the case for the variables ch−1
a,j,k and cha,j,k,

because they imply two criteria. To linearize the formulation,
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we introduce new binary variables, ∆l
a,j,k equal to 1 if alter-

native a has better performances than profile bl on criteria j
and k and equal to 0 otherwise. We obtain the value of ∆l

a,j,k

thanks to the conjunction of constraints given at (8) and the
following constraints:

2∆l
a,j,k ≤ δla,j + δka,j ≤ ∆l

a,j,k + 1

In order to deduce the value of cla,j,k, which can be either
positive or negative, for all l ∈ P , we decompose the variable
in two parts, αla,j,k and βla,j,k such that cla,j,k = αla,j,k−βla,j,k
with αla,j,k ≥ 0 and βla,j,k ≥ 0. The same is done for mj,k

which is decomposed as follows: mj,k = m+
j,k − m−j,k with

m+
j,k ≥ 0 and m−j,k ≥ 0. The value of αla,j,k and βla,j,k are

finally obtained thanks to the following constraints:




αla,j,k ≤ ∆l
a,j,k

αla,j,k ≤ m+
j,k

αla,j,k ≥ ∆l
a,j,k − 1 +m+

j,k





βla,j,k ≤ ∆l
a,j,k

βla,j,k ≤ m−j,k
βla,j,k ≥ ∆l

a,j,k − 1 +m−j,k

Finally, we obtain the MIP given in (14).

5 Metaheuristic to learn a
Capacitive-MR-Sort model

The MIP described in the previous section requires a lot of
binary variables and is therefore unsuitable for large problems.
In subsection 3.2, we described the principle of a metaheuristic
designed to learn the parameters of an MR-Sort model. In
this section, we describe an adaptation of the metaheuristic
in view of learning the parameters of a Capacitive-MR-Sort
model. Like for the MIP described in the previous section, we
limit the model to 2-additive capacities in order to reduce the
number of coefficient in comparison to a model with a general
capacity.

The main component that needs to be adapted in the meta-
heuristic in order to be able to learn a Capacitive-MR-Sort
model is the linear program that infers the weights and the
majority threshold (10). Like in the MIP described in the
previous section, we use the Möbius transform to express ca-
pacities. In view of inferring Möbius coefficients,mj andmj,k,
∀j, ∀k with k < j, we modify the linear program as given in
(15).

The value of xa − x′a (resp. ya − y′a) represents the dif-
ference between the capacity of the criteria belonging to the
coalition in favor of a ∈ Ah w.r.t. bh−1 (resp. bh) and the
majority threshold. If both xa − x′a and ya − y′a are positive,
then the object a is assigned to the right category. In order to
try to maximize the number of examples correctly assigned
by the model, the objective function of the linear program
minimizes the sum of x′a and y′a, i.e. the objective function is
min

∑
a∈A(x′a + y′a).

The heuristic adjusting the profile also needs some adap-
tations in view of taking capacities into account. More pre-
cisely, it is needed to adapt the formal definition of the sets in
which objects are classified for computing the candidate move
evaluation. The semantic of the sets, described in Section 3.2

remains the same, only the formal definitions of the sets are
adapted as follows.

V
+δ
h,j =

{
a ∈ Ah+1

h : bh,j + δ > aj ≥ bh,j and µ(Fa,h\{j}) < λ
}

V
−δ
h,j =

{
a ∈ Ahh+1 : bh,j − δ < aj < bh,j and µ(Fa,h ∪ {j}) ≥ λ

}

W
+δ
h,j =

{
a ∈ Ah+1

h : bh,j + δ > aj ≥ bh,j and µ(Fa,h\{j}) ≥ λ
}

W
−δ
h,j =

{
a ∈ Ahh+1 : bh,j − δ < aj < bh,j and µ(Fa,h ∪ {j}) < λ

}

Q
+δ
h,j =

{
a ∈ Ah+1

h+1 : bh,j + δ > aj ≥ bh,j and µ(Fa,h\{j}) < λ
}

Q
−δ
h,j =

{
a ∈ Ahh : bh,j − δ < aj < bh,j and µ(Fa,h ∪ {j}) ≥ λ

}

The formal definitions of the sets R+δ
h,j , R

−δ
h,j , T

+δ
h,j remain

the same as for the simple additive MR-Sort model as well as
function computing the evaluations taking into account the
size of the sets.

6 Experimentations

The use of the MIP for learning a Capacitive-MR-Sort model
is limited because of the high number of binary variables
it involves. It contains more binary variables than the MIP
learning the parameters of a simple additive MR-Sort model.
In [11], experiments have demonstrated that the computing
time required to learn the parameters of a standard MR-Sort
model having a small number of criteria and categories from a
small set of assignment examples becomes quickly prohibitive.
Therefore we cannot expect to be able to treat large problems
using the MIP learning Capacitive-MR-Sort models.

In view of assessing the performances of the metaheuristic
designed for learning the parameters of a Capacitive-MR-Sort
model, we used it to learn Capacitive-MR-Sort models from
several real datasets presented in Table 2. These datasets have
been found in the UCI machine learning repository [1] and
in WEKA [9]. They have been already used to assess the
learning performances of other algorithms, like in [18] and
[17]. The dataset presented in Table 2 contains from 120 to
1728 instances, 4 to 8 criteria (criteria) and 2 to 36 categories.
In the experimentations, the categories have been binarized
by thresholding at the median (like in [18, 17]). All the input
criteria of the datasets are considered as monotone.

Dataset #instances #criteria #categories

DBS 120 8 2
CPU 209 6 4
BCC 286 7 2
MPG 392 7 36
ESL 488 4 9
MMG 961 5 2
ERA 1000 4 9
LEV 1000 4 5
CEV 1728 6 4

Table 2. Datasets

In a first experiment, we used 50% of the alternatives con-
tained in the datasets as learning set and the rest as test
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



max
∑

a∈A
γa

n∑

j=1

ch−1
a,j +

n∑

j=1

j∑

k=1

αh−1
a,j,k −

n∑

j=1

j∑

k=1

βh−1
a,j,k ≥ λ+M(γa − 1) ∀a ∈ Ah, h = 2, ..., p

n∑

j=1

cha,j +

n∑

j=1

j∑

k=1

αha,j,k −
n∑

j=1

j∑

k=1

βha,j,k < λ−M(γa − 1) ∀a ∈ Ah, ∀h ∈ P

cla,j ≤ δla,j ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
cla,j ≤ mj ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
cla,j ≥ δla,j − 1 +mj ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

aj − bl,j < M · δla,j ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
aj − bl,j ≥ M(δla,j − 1) ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

δla,j + δla,k ≥ 2∆l
a,j,k ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah,∀h ∈ P, l = {h− 1, h}

δla,j + δla,k ≤ ∆l
a,j,k + 1 ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

αla,j,k ≤ ∆l
a,j,k ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

αla,j,k ≤ m+
j,k ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

αla,j,k ≥ ∆l
a,j,k − 1 +m+

j,k ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
βla,j,k ≤ ∆l

a,j,k ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
βla,j,k ≤ m−j,k ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
βla,j,k ≥ ∆l

a,j,k − 1 +m−j,k ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
mj +

∑

k∈J
(m+

j,k −m−j,k) ≥ 0 ∀j ∈ F,∀J ⊆ F\{j}

bh,j ≥ bh−1,j ∀j ∈ F, h = {2, ..., p− 1}
n∑

j=1

mj +

n∑

j=1

j∑

k=1

(m+
j,k −m−j,k) = 1

cla,j ∈ [0, 1] ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
δla,j ∈ {0, 1} ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

αla,j,k, β
l
a,j,k ∈ [0, 1] ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah,∀h ∈ P, l = {h− 1, h}

∆l
a,j,k ∈ {0, 1} ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
mj ∈ [0, 1] ∀j ∈ F

m+
j,k,m

−
j,k ∈ [0, 1] ∀j ∈ F,∀k ∈ F, k < j
bh,j ∈ R ∀j ∈ F,∀h ∈ P
γa ∈ {0, 1} ∀a ∈ X
λ ∈ [0, 1]

(14)

set. From the examples of the learning set, we learned MR-
Sort and Capacitive-MR-Sort models with the metaheuristic.
We repeated the operation for 100 random splittings of the
datasets in learning and test sets. The results are given in Ta-
ble 3. We see that the average classification accuracy obtained
with the Capacitive-MR-Sort metaheuristic is in average com-
parable to the one obtained with the MR-Sort metaheuris-
tic. For some datasets, the Capacitive-MR-Sort metaheuristic
gives better results but sometimes it is the contrary. The use
of a more descriptive model does not help to improve the
classification accuracy of the test set.

The second experiment we did consisted in using all the
instances of the datasets as learning set. As in the first exper-
iment, for each dataset, we run the two metaheuristic with
100 different seeds. The average classification accuracy and
the standard deviation of the learning set of each dataset is

Dataset META MR-Sort META Capa-MR-Sort

DBS 0.8400± 0.0456 0.8306± 0.0466
CPU 0.9270± 0.0294 0.9203± 0.0315
BCC 0.7271± 0.0379 0.7262± 0.0377
MPG 0.8174± 0.0290 0.8167± 0.0468
ESL 0.8992± 0.0195 0.9018± 0.0172
MMG 0.8303± 0.0154 0.8318± 0.0121
ERA 0.6905± 0.0192 0.6927± 0.0165
LEV 0.8454± 0.0221 0.8445± 0.0223
CEV 0.9217± 0.0067 0.9187± 0.0153

Table 3. Average and standard deviation of the classification ac-
curacy of the test set when 50 % of examples used as learning set
and the rest as test set
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
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min
∑

a∈A
(x′a + y′a)

n∑

j:aj≥bh−1,j


mj +

j∑

k:ak≥bh−1,k

mj,k


− xa + x′a = λ ∀a ∈ Ah, ∀h ∈ P\{1}

n∑

j:aj≥bh,j


mj +

j∑

k:ak≥bh,k

mj,k


+ ya − y′a = λ− ε ∀a ∈ Ah, ∀h ∈ P\{p− 1}

n∑

j=1

mj +

n∑

j=1

j∑

k=1

mj,k = 1

mj +
∑

k∈J
mj,k ≥ 0 ∀j ∈ F,∀J ⊆ F\{j}

λ ∈ [0.5; 1]
mj ∈ [0, 1] ∀j ∈ F
mj,k ∈ [−1, 1] ∀j ∈ F,∀k ∈ F, k < j

xa, ya, x
′
a, y
′
a ∈ R+

0 a ∈ A.

(15)

given in Table 4. The Capacitive-MR-Sort metaheuristic does
not always give better results than the MR-Sort one.

Dataset META MR-Sort META Capa-MR-Sort

DBS 0.9318± 0.0036 0.9247± 0.0099
CPU 0.9761± 0.0000 0.9694± 0.0072
BCC 0.7737± 0.0013 0.7700± 0.0077
MPG 0.8418± 0.0000 0.8418± 0.0000
ESL 0.9180± 0.0000 0.9180± 0.0000
MMG 0.8491± 0.0011 0.8508± 0.0005
ERA 0.7142± 0.0028 0.7158± 0.0004
LEV 0.8650± 0.0000 0.8650± 0.0000
CEV 0.9225± 0.0000 0.9225± 0.0000

Table 4. Average and standard deviation of the classification ac-
curacy of the learning set when using the MR-Sort and Capacitive-
MR-Sort models when using all the dataset as learning set

The average computing time required to obtain the results
presented in Table 4 is given in Table 5. We observe that
learning a Capacitive-MR-Sort model can take up to almost
3 times the time required to learn the parameters of a simple
MR-Sort model.

Dataset META MR-Sort META Capa-MR-Sort

DBS 3.0508 6.9547
CPU 3.1646 5.2069
BCC 3.3700 7.7545
MPG 4.4136 9.9294
ESL 3.8466 7.2495
MMG 6.1481 13.4848
ERA 5.9689 14.4875
LEV 5.8986 13.2356
CEV 11.1122 31.7042

Table 5. Average computing time (in seconds) required to find
a solution with MR-Sort and Capacitive-MR-Sort metaheuristic
when using all the examples as learning set

The two experiments show that using a more expressive
model does not always result in a better classification accu-

racy. This observation raises two questions. Firstly, in view of
the results obtained, one may doubt that the Capacitive-MR-
Sort extends much the original MR-Sort. For what type of
assignment data is the new model more flexible? Secondly, is
the metaheuristic well-adapted to learn Capacitive-MR-Sort
models? To answer these questions, more experimentations
have to be done.

7 Comments
We observe that using 2-additive weights instead of simple
additive weights in MR-Sort does not result in significant im-
provement of the 0/1 loss. It is somewhat surprising because
the model is more flexible when 2-additive weights are used.

In view of understanding better how the representation ca-
pabilities of an MR-Sort model can be improved by using
2-additive weights, we do the following experimentation. We
modify the MIP presented in section 3.1 to learn only the
weights and the majority threshold of an MR-Sort model on
basis of fixed profiles and assignment examples. The objec-
tive function of the MIP remains the minimization of the 0/1
loss. The MIP is used to learn the parameters of an MR-Sort
model composed of 2 categories, C1 � C2, 4 to 6 criteria, and
a fixed profile equals to 0.5 on all the criteria. Each of this
learning sets contains 2n alternatives, with n being the num-
ber of criteria of the model that is learnt. Performances of the
alternatives of the learning are either equal to 0 or 1 on each
criterion and the learning set is built such that each vector
of performances is represented once and only once. Alterna-
tives in the learning set are assigned either in C1 or C2 such
that monotonicity is guaranteed in assignments, i.e. an alter-
native, x, which has at least equal or better performances on
each criterion than another one, y, is never assigned in a least
preferred category than the category in which y is assigned.
In the experiment, we consider all the non-additive learning
sets, i.e. all the learning sets which are not fully compatible
with a simple additive MR-Sort model composed of n criteria.

Results of the experimentation are presented in Table 7.
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Each row of the table contains the results for a given number
of criteria, n. The second column contains the percentage of
learning sets that are not compatible with a simple additive
MR-Sort model composed of n criteria, among all the learning
sets combinations. The last three columns contain the min,
max and average percentage of 2n examples that cannot be
restored by a simple additive model among the non-additive
learning sets. We observe that a MR-Sort model composed
of 4 criteria is, in worst case, not able to restore 6.2% of the
examples of the learning set (1 example on 16). With 5 and 6
criteria, the maximum 0/1 loss increases respectively to 9.4%
and 12.4%. We see that the proportion of the alternatives that
cannot be restored with a simple MR-Sort model is small.
This observation might explain the poor gain observed with
the Capacitive-MR-Sort metaheuristic compared to the MR-
Sort one.

n % non-additive MR-Sort
min. max. avg.

4 11 % 6.2 % 6.2 % 6.2 %
5 57 % 3.1 % 9.4 % 3.9 %
6 97 % 1.6 % 12.5 % 4.8 %

Table 6. Average, minimum and maximum 0/1 loss of the learn-
ing sets after learning additive weights and the majority threshold
of an MR-Sort model

8 Conclusion

In this paper, we proposed an extension of the MR-Sort
model by adding capacitive weights to the model. We called it
Capacitive-MR-Sort. We also modified the MIP presented in
[11] and the metaheuristic described in [17] in view of being
able to learn Capacitive-MR-Sort models. The MIP formu-
lation induces a lot of binary variables and is unsuitable for
problems involving large datasets. As we want to be able to
deal with real datasets, which are often large, we made ex-
periments with the metaheuristic. Tests have been done on
well-known datasets and showed that a more flexible model,
the Capacitive-MR-Sort, does not guarantee to get a better
classification accuracy. More experiments have to be done in
view of being able to better measure and compare the rep-
resentation ability of MR-Sort and Capacitive-MR-Sort mod-
els.
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Conjoint axiomatization of the Choquet integral
for two-dimensional heterogeneous product sets

Mikhail Timonin1

Abstract. We propose an axiomatization of the Choquet in-
tegral model for the general case of a heterogeneous product
set X = X1 ×X2. Previous axiomatizations of the Choquet
integral have been given for particular cases X = Y n and
X = Rn. The major difference of this paper from the ear-
lier axiomatizations is that the notion of “comonotonicity”
cannot be used in the heterogeneous structure as there does
not exist a “built-in” order between elements of sets X1 and
X2. However, such an order is implied by the representation.
Our characterization does not assume commensurateness of
criteria a priori. We construct the representation and study its
uniqueness properties.

1 Introduction
We propose a representation theorem for the Choquet inte-
gral model. Binary relation < is defined on a heterogeneous
product set X = X1 × X2. In multicriteria decision analy-
sis (MCDA), elements of the set X are interpreted as alter-
natives characterized by two criteria taking values from sets
X1 andX2. Previous axiomatizations of the Choquet integral
model have been given for the special cases of X = Y n (see
[Köbberling and Wakker, 2003] for a review of approaches)
and X = Rn (see [Grabisch and Labreuche, 2008] for a
review). One related result is the recent axiomatization of
the Sugeno integral model ([Greco et al., 2004, Bouyssou
et al., 2009]). Another approach using conditions on the util-
ity functions was proposed in [Labreuche, 2012]. The “con-
joint” axiomatization of the Choquet integral for the case of
a general X was an open problem in the literature [Bouys-
sou et al., 2012]. The crucial difference with the previous
axiomatizations is that the notion of “comonotonicity” can-
not be used in the heterogeneous case, due to the fact that
there does not exist a meaningful “built-in” order between
elements of sets X1 and X2. New axioms and modifications
of proof techniques had to be introduced to account for that.

Our axioms aim to reflect the main properties of the Cho-
quet integral. The first one is that the setX can be partitioned
into subsets, such that within every such subset the prefer-
ence relation can be represented by an additive function. The
axiom (A3) we introduce is similar to the “2-graded” condi-
tion previously used for characterizing of MIN/MAX and the
Sugeno integral ([Greco et al., 2004, Bouyssou et al., 2009]).
At every point z ∈ X it is possible to build two “rectangu-
lar cones”: {x : x1p < z1p, az2 < ax2} for all p ∈ X2

and all a ∈ X1, and {x : ax2 < az2, z1p < x1p} for
all p ∈ X2 and all a ∈ X1. The axiom states that triple
cancellation must then hold on at least one of these cones.
The second property is that the additive representations on
different subsets are interrelated, in particular “trade-offs”

1 Queen Mary University of London, email: m.timonin@qmul.ac.uk

between criteria values are “consistent” across partition el-
ements both within the same dimension and across different
ones. This is reflected by two axioms (A4, A5), similar to
the ones used in [Wakker, 1991a] and [Krantz et al., 1971]
(section 8.2). One, roughly speaking, states that triple can-
cellation holds across cones, while the other says that order-
ing of intervals on any dimension must be preserved when
they are “projected” onto another dimension by means of
equivalence relations. These axioms are complemented by a
new condition called bi-independence (A6), weak separabil-
ity (A2) [Bouyssou et al., 2009] - which together reflect the
monotonicity property of the integral, and the standard es-
sentiality, “comonotonic” Archimedean axiom and restricted
solvability (A7,A8,A9). Finally, < is supposed to be a weak
order, and X is order dense (A1).

2 Choquet integral in MCDA
Definition 1. Let N = {1, . . . , n} be a finite set and 2N its
power set. Capacity (non-additive measure, fuzzy measure)
is a set function ν : 2N → R+ such that:

1. ν(∅) = 0;
2. A ⊆ B ⇒ ν(A) ≤ ν(B), ∀A,B ∈ 2N .

In this paper, it is also assumed that capacities are normal-
ized, i.e. ν(N) = 1.

Definition 2. The Choquet integral with respect to a capac-
ity ν of a function f : N → R with values {f1, . . . , fn} is
defined as:

C(ν, (f1, . . . , fn)) =

n∑

i=1

(f(i)−f(i−1))ν({j ∈ N : fj ≥ f(i)})

where f(1), . . . , f(n) is a permutation of f1, . . . , fn such that
f(1) ≤ f(2) ≤ · · · ≤ f(n), and f(0) = 0.

2.1 The model
Let < be a binary relation on the set X = X1 × X2.
�,≺,4,∼, 6∼ are defined in the usual way. In MCDA, el-
ements of set X are interpreted as alternatives characterized
by criteria from the set N = {1, 2}. Sets X1 and X2 contain
criteria values for criteria 1 and 2 respectively. We say that
< can be represented by a Choquet integral, if there exists a
capacity ν and functions f1 : X1 → R and f2 : X2 → R,
called value functions, such that:

x< y ⇐⇒ C(ν, (f1(x1), f2(x2)) ≥ C(ν, (f1(y1), f2(y2)).

As seen in the definition of the Choquet integral, its cal-
culation involves comparison of fi’s to each other. It is not
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obvious how this operation can be performed in a sensible
way in the case of a heterogeneous X . It is well known that
direct comparison of value functions for various attributes is
not meaningful in the additive model [Krantz et al., 1971],
since the origin of each value function can be changed in-
dependently. In the homogeneous case X = Y n this prob-
lem is readily solved, as we have a single set Y (“conse-
quences” in the context of decision making under uncer-
tainty). The required order on Y is either assumed as given
[Wakker, 1991b] or is readily derived from the ordering of
“constant” acts (y, . . . , y) [Wakker, 1991a]. Since there is
only one (“consequence”) set, we also only have one value
function U : Y → R, and thus comparing U(y1) to U(y2)
is perfectly valid, since U represents the order on the set Y .
None of these methods can be easily transferred to the het-
erogeneous case.

2.2 Properties of the Choquet integral
Given below are some important properties of the Choquet
integral:

1. Functions f : N → R and g : N → R are comonotonic
if for no i, j ∈ N holds f(i) > f(j) and g(i) < g(j).
For all comonotonic f the Choquet integral reduces to a
usual Lebesgue integral. In the finite case, the integral is
accordingly reduced to a weighted sum.

2. Particular cases of the Choquet integral (e.g. [Grabisch
and Labreuche, 2008]). Assume N = {1, 2}.
• If ν({1}) = ν({2}) = 1, then C(ν, (f1, f2)) =

max(f1, f2).

• If ν({1}) = ν({2}) = 0, then C(ν, (f1, f2)) =
min(f1, f2).

• If ν({1}) + ν({2}) = 1, then C(ν, (f1, f2)) =
ν({1})f1 + ν({2})f2

Property 1 states that the setX can be partitioned into sub-
sets corresponding to particular ordering of the value func-
tions. In the case of two criteria there are only two such sets:
{x ∈ X : f1(x1) ≥ f2(x2)} and {x ∈ X : f2(x2) ≥
f1(x1)}. Since the integral on each of the sets is reduced
to a weighted sum, i.e. < has an additive representation, we
should expect many of the axioms of the additive conjoint
model to be valid on this subsets. This is the intuition behind
several of the axioms given in the following section.

3 Axioms
Definition 3. A relation< onX1×X2 satisfies triple cancel-
lation provided that, for every a, b, c, d ∈ X1 and p, q, r, s ∈
X2 , if ap4 bq, ar< bs, and cp< dq, then cr< ds.

Definition 4. A relation< onX1×X2 is independent iff, for
a, b ∈ X1, ap< bp for some p ∈ X2 implies that aq< bq for
every q ∈ X2; and, for p, q ∈ X2, ap< aq for some a ∈ X1

implies that bp< bq for every b ∈ X1.

A1. < is a weak order.
A2. Weak separability - for any aipj , bipj ∈ X such that

aipj � bipj , it holds aiqj < biqj for all qj ∈ Xj , for
i, j ∈ {1, 2}.

Note, that from this follows, that for any a, b ∈ X1 either
ap< bp or bp< ap for all p ∈ X2 (symmetrically for the
second coordinate). This allows to introduce the following
definitions:

Definition 5. For all a, b ∈ X1 define <1 as a<1 b ⇐⇒
ap< bp for all p ∈ X2. Define <2 symmetrically.

Definition 6. We call a ∈ X1 “minimal” if b<1 a for all
b ∈ X1, and “maximal” if a<1 b for all b ∈ X1. Symmetric
definitions hold for X2.

Definition 7. For any z ∈ X define SEz =
{x : x ∈ X,x1<1 z1, z2<2 x2}, and NWz = {x : x ∈
X,x2<2 z2, z1<1 x1}.

The “rectangular”cones SEz and NWz play a significant
role in the sequel.

A3. For any z ∈ X , triple cancellation holds either for on SEz

or on NWz .

A slightly modified version of this axiom holds in the n-
dimensional case as well. The axiom says that the set X can
be covered by “rectangular” cones, such that triple cancella-
tion holds within each cone. We will call such cones “3C-
cones”. The axiom effectively partitions X into subsets, de-
fined as follows.

Definition 8. We say that

• x ∈ SE if:

– There exists z ∈ X such that z1 is not maximal and z2
is not minimal, triple cancellation holds on SEz , and
x ∈ SEz , or

– x1 is maximal or x2 is minimal and for no y ∈ SEx \x
triple cancellation holds on NWx;

• x ∈ NW if:

– There exists z ∈ X such that z1 is not maximal and z2
is not minimal, triple cancellation holds on SEz , and
x ∈ SEz , or

– x1 is minimal or x2 is maximal and for no y ∈ NWx\
x triple cancellation holds on SEx.

Define also Θ = {x : x ∈ NW, x ∈ SE}.
Definition 9. We say that i ∈ N is essential on A ⊂ X if
there exist xixj , yixj ∈ A, i, j ∈ N , such that xixj � yixj .

A4. Whenever ap4 bq, ar< bs, cp< dq, it holds that cr< ds,
provided that either:

a) ap, bq, ar, bs, cp, dq, cr, ds ∈ NW(SE), or;

b) ap, bq, ar, bs ∈ NW and i = 2 is essential on NW
and cp, dq, cr, ds ∈ SE or vice versa, or;

c) ap, bq, cp, dq ∈ NW and i = 1 is essential on NW
and cp, dq, cr, ds ∈ SE or vice versa.

Informally, the meaning of the axiom is that ordering be-
tween preference differences (“intervals”) is preserved ir-
respective of the “measuring rods” used to measure them.
However, contrary to the additive case this does not hold on
all X , but only when either points involved in all four rela-
tions lie in a single 3C-cone, or points involved in two rela-
tions lie in one 3C-cone and those involved in the other two
in another.
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A5. Whenever ap4 bq, cp< dq and ay0 ∼ x0π(a), by0 ∼
x0π(b), cy1 ∼ x1π(c), dy1 ∼ x1π(d), and
also eπ(a)< fπ(b), it holds eπ(c)< fπ(d),
for all ap, bq, cp, dq ∈ NW or SE provided
X1 is essential on the subset which contains
these points, ay0, by0, cy1, dy1 ∈ NW or SE,
x0π(a), x0π(b), x1π(c), x1π(d) ∈ NW or SE pro-
vided X2 is essential on the subset which contains these
points, eπ(a), fπ(b), eπ(c), fπ(d) ∈ NW or SE. Same
condition holds for the other dimension symmetrically.

The formal statement of the A5 is rather complicated, but it
simply means that the ordering of the “intervals” is preserved
across dimensions. Together with A4 the conditions are sim-
ilar to Wakker’s trade-off consistency condition [Wakker,
1991b] . The axiom bears even stronger similarity to Axiom
5 (compatibility) from section 8.2.6 of [Krantz et al., 1971].
Roughly speaking, it says that if the “interval” between c and
d is “larger” than that between a and b, then “projecting”
these intervals onto another dimension by means of equiva-
lence relations must leave this order unchanged. We addition-
ally require the comparison of intervals and “projection” op-
erations to be consistent - meaning that quadruples of points
in each part of the statement lie in the same 3C-cone. Another
version of this axiom can be formulated in terms of standard
sequences (similarly to axiom 5’ in Krantz et al. [1971]).

A6. Bi-independence : Let ap, bp, cp, dp ∈ SE(NW) and
ap� bp. If for some q ∈ X2 also exist cq� dq, then
cp� dp. Symmetric condition holds for the second coor-
dinate.

This is a necessary condition as shown in the following
example. Assume ap, bp, cp, dp ∈ SE and ap� bp, cp ∼
dp. Assume also there exist cq, dq ∈ NW such that cq� dq.
Then, provided the representation exists, we get

α1f1(a) + α2f2(p) > α1f1(b) + α2f2(p)

α1f1(c) + α2f2(p) = α1f1(d) + α2f2(p)

β1f1(c) + β2f2(q) > β1f1(d) + β2f2(q).

The first inequality entails α1 6= 0. From this and the fol-
lowing equality follows f1(c) = f1(d), which contradicts
with the last inequality. Thus cq� dq implies cp� dp but
only in the presence of ap� bp in the same “region” (SE or
NW). This is also the reason behind the name we gave to
this condition - “bi-independence”. Together with the struc-
tural assumption (below), bi-independence also implies some
sort of “comonotonic strong monotonicity” Wakker [1989].

Lemma 1. If coordinate 1 is essential on SE(NW), a<1 b
iff ap� bp for all ap, bp ∈ NW. Symmetrical statement
holds for coordinate 2.

Conceptually, Lemma 1 implies that if a coordinate is es-
sential on some 3C-cone NWz(SEz), then it is also essen-
tial on NWx(SEx) for all x ∈ NW(SE). This allows us
to make statements like “coordinate i is essential on NW”.

A7. Both coordinates are essential on X .
A8. Restricted solvability : if xiaj < y<xicj , then there ex-

ists bj : xibj ∼ y, for i, j ∈ {1, 2}.
A9. Archimedean axiom: for every z ∈ NW(SE) every

bounded standard sequence contained in NWz(SEz) is
finite.

Structural assumption. For no a, b ∈ X1 holds ap ∼ bp
for all p ∈ X2. Similarly, for no p, q ∈ X2 it holds ap ∼
aq for all a ∈ X1. If such points exist, say ap ∼ bp for
all p ∈ X2, then we can build the representation for a set
X ′1 × X2 where X ′1 = X1 \ a, and later extend it to X by
setting f1(a) = f1(b).

Dense-rangedness. We assume that when-
ever aipj � bipj there exits ci ∈ Xi such that
aipj � cipj � bipj , for i, j ∈ N (X is order dense).

4 Representation theorem
Theorem 1. Let < be an order on X and let X be order
dense and the structural assumption hold. Then, if axioms
A1-A9 are satisfied, there exist a uniquely determined ca-
pacity ν and value functions f1 : X1 → R, f2 : X2 → R,
such that < can be represented by the Choquet integral:

x< y ⇐⇒ C(ν, (f1(x1), f2(x2))) ≥ C(ν, (f1(y1), f2(y2))),
(1)

for all x, y ∈ X . Value functions have the following unique-
ness properties:

1. If ν({1})+ν({2}) = 1, then for any functions g1 : X1 →
R, g2 : X2 → R such that (1) holds with fi substituted by
gi, it holds fi(xi) = αgi(xi) + βi.

2. If ν({1}) ∈ (0, 1) and ν({2}) ∈ (0, 1) and ν({1}) +
ν({2}) 6= 1, then for any functions g1 : X1 → R, g2 :
X2 → R such that (1) holds with fi substituted by gi, it
holds fi(xi) = αgi(xi) + β.

3. If ν({2}) ∈ (0, 1), ν({1}) ∈ {0, 1}, then for any func-
tions g1 : X1 → R, g2 : X2 → R such that (1) holds with
fi substituted by gi, it holds :

• fi(xi) = αgi(xi) + β, for all x such that f1(x1) <
max f2(x2) and f2(x2) > min f1(x1);

• fi(xi) = ψi(gi(xi)) where ψi is an increasing func-
tion, otherwise.

4. If ν({2}) ∈ {0, 1}, ν({1}) ∈ (0, 1), then for any func-
tions g1 : X1 → R, g2 : X2 → R such that (1) holds with
fi substituted by gi, it holds :

• fi(xi) = αgi(xi) + β, for all x such that f2(x2) <
max f1(x1) and f1(x1) > min f2(x2);

• fi(xi) = ψi(gi(xi)) where ψi is an increasing func-
tion, otherwise.

5. If ν({1}) = ν({2}) = 0 or ν({1}) = ν({2}) = 1,
then for any functions g1 : X1 → R, g2 : X2 → R
such that (1) holds with fi substituted by gi, it holds :
fi(xi) = ψi(gi(xi)) where ψi are increasing functions
such that f1(x1) = f2(x2) ⇐⇒ g1(x1) = g2(x2).

5 Proof sketch
Many aspects of the proof are similar to the characteriza-
tion in [Wakker, 1991a]. The critical difference is in step 10,
where it is shown that value functions for different coordi-
nates are equal for the points from the set Θ.

1. Show that SE(NW) can be covered by sets
SEz(NWz) with z ∈ Θ.
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2. Excluding “extreme” elements of Θ, i.e. points which
have maximal or minimal coordinates, show that for any
z ∈ Θ there exists an additive representation for < on
SEz and NWz .

3. Having built additive representations for < on SEz1 and
SEz2 , show that there exists an additive representation on
SEz1 ∪ SEz2 .

4. Show that this representation - call it V SE , can be ex-
tended to cover all SE (by “joining” representations for
all z ∈ Θ).

5. Perform steps 2 and 3 for NW and obtain V NW .
6. Align and scale V SE and V NW such that V SE1 = V NW1

on the common domain, and V SE2 = λV NW2 on their
common domain.

7. Pick two points r0, r1 from Θ and set r0 as a com-
mon zero. Set V SE1 (r11) = 1 and define φ1(x1) =
V SE(x1), φ2(x2) = V SE(x2)/V SE(r12).

8. Representations now are φ1 +kφ2 on SE and φ1 +λkφ2

on NW.
9. Rescale so that factors sum up to one : 1

1+k
φ1 + k

1+k
φ2,

1
1+λk

φ1 + λk
1+λk

φ2

10. Show that for all x ∈ X it holds φ1(x1) = φ2(x2) iff
x ∈ Θ.

11. Extend the representation to the “extreme” elements of Θ.
12. Show that < can be represented on X by these two repre-

sentations.
13. Show that < can be represented by the Choquet integral.

6 Implied commensurateness
We do not assume any commensurateness between elements
of criteria sets. Nevertheless, it seems that such commensu-
rateness is implied by the axioms, unless < can be repre-
sented by an additive function. The uniqueness part of The-
orem 1 states that for the case of two essential variables the
value functions not only have the same unit (as in the addi-
tive case), but also the same origin (fi(xi) = αgi(xi) + β).
In case when< on SE and NW has only one essential vari-
able (different variable on each subset), the following prop-
erty holds: f1(x1) = f2(x2) ⇐⇒ g1(x1) = g2(x2). For-
mally, we are mostly interested in points where φ1(x1) =
φ2(x2), which turn out to correspond (apart from some ex-
treme cases) to the elements of the set Θ.

Lemma 2. If ap ∈ Θ then for no b ∈ X1 holds bp ∈ Θ and
also for no q ∈ X2 holds aq ∈ Θ, unless < has an additive
representation.

Theorem 2. The following statements hold:

• If both NW and SE have two essential variables, then
for all x ∈ X:

x ∈ Θ ⇐⇒ φ1(x1) = φ2(x2),

unless < can be represented by an additive function.
• If only NW or only SE have two essential variables,

then for all non-extreme x ∈ X:

x ∈ Θ⇒ φ1(x1) = φ2(x2),

and for all x ∈ X:

φ1(x1) = φ2(x2)⇒ x ∈ Θ,

• If both NW and SE have only one essential variable,
then for all x ∈ X:

x ∈ Θ ⇐⇒ φ1(x1) = φ2(x2).

7 Conclusion
We have proposed a conjoint axiomatization of the Choquet
integral for a heterogeneous product set with two dimen-
sions. No commensurateness between dimensions was as-
sumed, rather it was implied by other axioms. We find the
interpretation of the implied commensurateness in MCDA
terms to be a rather difficult and interesting task, which
can probably lead to new results related to the notion of
criteria importance. The extension of our results to the n-
dimensional case also seems to be an interesting technical
problem, which we intend to resolve in subsequent publica-
tions.
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Choquistic Utilitaristic Regression

Ali Fallah Tehrani1, Christophe Labreuche2, Eyke Hüllermeier3

Abstract. Preference models often represent a (global) de-
gree of utility of an alternative in terms of an aggregation of
several local utility degrees, each of which pertains to a spe-
cific criterion. Methods for preference learning, i.e., for learn-
ing preference models from observed preference data, have
mainly focused on fitting the aggregation function while as-
suming the local utility functions to be given. Taking inspira-
tion from multi-criteria decision aid, this paper makes a first
step toward learning both parts of the model simultaneously,
the local utility functions and their aggregation into a global
degree of utility. More specifically, we consider this problem
for two aggregation functions and related machine learning
methods, namely linear functons (logistic regression) and the
Choquet integral (choquistic regression). Moreover, we also
present premilinary experimental results.

1 Introduction

Preference Learning (PL) is an emerging subfield of machine
learning which aims at learning preference models from ob-
served preference data [7]. Like machine learning in general,
PL is typically focusing on learning highly accurate predictive
models from large and possibly noisy empirical datasets. The
models used for this purpose are often of generic nature (for
example, linear or kernel functions).

As opposed to this, Decision Aid (DA) in general and Multi-
Criteria Decision Aid (MCDA) in particular mainly focus on
the definition and the analysis of decision models. The analy-
sis of models is obtained by experimental studies or axiomatic
approaches [18, 25, 22, 14]. There is a wide variety of decision
models studied by DA. In the spirit of Multi-Attribute Util-
ity Theory (MAUT), one can mention very simple models,
such as the additive utility model or the weighted sum, but
also more elaborate models such as the Choquet integral. The
main interest of the latter is its ability to capture interactions
among criteria. Another well-developed research area in DA
concerns the elicitation of the decision maker’s preferences,
and has led to the design of elaborate elicitation methods.

In this paper, we consider four approaches in MCDA: WS,
the weighted sum model, where the weights assigned to cri-
teria are to be determined; AU, the additive utility model,
where a (local) utility function has to be determined for every
attribute/criterion; Ch, the Choquet integral, where the ca-
pacity over the set of criteria needs to be determined; Ch + U,

1 Department of Mathematics and Computer Science, University
of Marburg, Germany

2 Thales Research & Technology, 91767 Palaiseau cedex, France
3 Department of Computer Science, University of Paderborn, Ger-
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the combination of a Choquet integral and utility functions,
where the capacity and the utility functions are determined
simultaneously.

There is evidence in MCDA showing the importance of
learning not only weights on criteria but also a proper scal-
ing and normalization of these criteria, that is, a local utility
function for each individual criterion [4, 19]. This provides a
strong motivation for the approaches AU and Ch + U.

We are interested in the counterparts of the above four
models in a machine learning context. More specifically, we
consider the simple case in which the overall evaluation of an
alternative can only assume two values, i.e., each alternative
is categorized as “good” or “bad”. From a machine learning
point of view, the problem can thus be tackled by means of
binary classification techniques. Extension to problems such
as ordinal classification or different types of ranking problems
are left for future work.

The problems of identifying the WS and Ch models have
been tackled in PL based on the maximum likelihood princi-
ple for model estimation. While the former leads to conven-
tional logistic regression as a learning method, a generaliza-
tion called choquistic regression [24] has been proposed for
the latter.

Surprisingly, there is no counterpart of the approaches AU
and Ch + U in PL so far. We propose such an extension in
this paper. In PL, the features/criteria describing an alterna-
tive are usually normalized before learning the model, using
simple techniques such as standardization. The idea of this
paper is to learn not only weights of features or feature sub-
sets, but also a suitable scaling of the features.

The paper is organized as follows. The next two sections
provide some background on the Choquet integral and the
classification methods of logistic and choquistic regression. In
Section 4, the WS, AU, Ch and Ch + U models are dis-
cussed. In Section 5, we introduce our approach to the com-
bined learning of the Choquet integral and local utility func-
tions. Finally, Section 6 presents preliminary experimental re-
sults.

2 Background on the Choquet Integral

Let M = {1, . . . ,m} be the set of elements (that shall corre-
spond to criteria in DA and to attributes/features in a ma-
chine learning context later on). A capacity [5] (also called
fuzzy measure [23]) on M is a set function µ : 2M → R such
that

• normalization: µ(∅) = 0, µ(M) = 1,
• monotonicity: µ(A) ≤ µ(B) whenever A ⊆ B ⊆M .
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Roughly speaking, µ(A) is the importance of criteria in A.
We introduce an important linear transformation over ca-

pacities. The Möbius transform [20] of a capacity µ, denoted
by m, is the unique solution of the equation

µ(A) =
∑

B⊆A
m(B), ∀A ⊆M,

given by

m(A) =
∑

B⊆A
(−1)|A\B|µ(B).

A capacity µ is k-additive [9] if its Möbius transform satis-
fies m(A) = 0 for all A ⊆ M such that |A| > k, and there
exists A ⊆M , |A| = k, such that m(A) 6= 0. We are particu-
larly interested on 2-additive capacity as it represents interac-
tion between pairs of criteria. The main interest of k-additive

capacities is that the number of unknowns is
∑k
i=0

(
m
i

)
,

which is much less that the 2m parameters of a capacity µ,
when k is small.

The normalization and monotonicity conditions on µ can
be turned into monotonicity conditions on m

m(∅) = 0 ,
∑

A⊆M
m(A) = 1 (1)

∑

B⊆A
m(B ∪ {i}) ≥ 0 ∀A ⊂M,∀i ∈M \A (2)

Now, consider a function f : M → R. The Choquet integral
prescribes how to integrate/aggregate f w.r.t. a non-additive
measure µ [5]. The Choquet integral of f can be written w.r.t.
the Möbius coefficients m as follows:

Cm(f) :=
∑

A⊆M
m(A) min

i∈A
f(i) = Cµ(f) .

For a 2-additive capacity, we have

Cm(f) =
∑

i∈M
m({i})f(i) +

∑

{i,j}⊆M
m({i, j}) min(f(i), f(j)) .

This expression will be called 2-additive Choquet integral in
this paper.

3 Background on Classification

This section recalls some background on classification in gen-
eral and logistic and choquistic regression is particular.

3.1 Classification

Consider a classification problem, that is, the problem of
learning a model L : X → Y that maps instances x ∈ X
to categories y ∈ Y, where Y is assumed to be a finite set
of class labels. As mentioned before, we consider the case of
binary classification, where Y = {0, 1} is composed of two
classes, the negative (0) and the positive (1) one. Instances
x are typically characterized in terms of a feature fector, i.e.,
by a value on each of a predefined set of features:

x = (x1, . . . , xm) ∈ X = X1 × · · · × Xm.

Given a set of training data

D =
{

(x(j), y(j))
}
j=1,...,n

⊆ (X × Y)n , (3)

the aim is to learn a classifier L with an as low as possible
risk

R(L) =

∫

X×Y
L(L(x), y) dPXY(x, y) ,

where L is a loss function and PXY is an (unknown) probabil-
ity measure on X × Y modeling the data generating process.
The simple 0/1 loss function is defined as L(ŷ, y) = 0 if ŷ = y,
and L(ŷ, y) = 1 otherwise.

3.2 Logistic Regression (LR)

Logistic regression models the probability of the positive class
(and hence of the negative class) as a linear (affine) function of
the input attributes. More specifically, since a linear function
does not necessarily produce values in the unit interval, the
response is defined as a generalized linear model, namely in
terms of the logarithm of the probability ratio:

log

(
P(y = 1|x)

P(y = 0|x)

)
= β + ω>x , (4)

where ω = (ω1, . . . , ωm) ∈ Rm is a vector of regression coeffi-
cients and β ∈ R is a bias term (intercept). As P(y = 0|x) =
1−P(y = 1|x), we obtain

πLR(x) = P(y = 1|x) =
1

1 + exp
(
− β − ω>x

) . (5)

Estimation of the parameters ω and β is done on the basis
of the training data (3), typically via maximizing the log-
likelihood function

l(β,ω) =

n∑

j=1

logP
(
y(j)|x(j), β,ω

)

=

n∑

j=1

y(j) log πLR(x(j)) +

n∑

j=1

(1− y(j)) log(1− πLR(x(j))) .

3.3 Choquistic Regression (CR)

In choquistic regression (CR), the linear term ω>x in (4)
is replaced by a Choquet integral [24]. In order to apply the
Choquet integral, the values of attributes are normalized with
the help of a function fx : M → [0, 1], indexed by x. Then
(4) is transformed into

log

(
P(y = 1|x)

P(y = 0|x)

)
= γ

(
Cµ(fx) + β

)
, (6)

where γ is a multiplicative factor. Here, γ > 0 and β are real
constants. The γ-parameter is called precision parameter and
β is the intercept. More details about theses parameters and
their interpretation can be found in [24].
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4 Existing Models and Elicitation
Techniques in DA

In DA, the decision maker (DM) is supposed to have prefer-
ences over a given set of alternatives, which correspond to the
set of instances X in a machine learning context. These pref-
erences are expressed in terms of a binary relation %, which is
reflexive and transitive (possibly complete). The fundamental
problem of decision theory is to build a numerical represen-
tation of %. The most classical representation of % is the
decomposable form [14]

x % x′ ⇐⇒ U(x) ≥ U(x′) ∀x,x′ ∈ X ,

where
U(x) = F (u1(x1), . . . , um(xm)) , (7)

F : Rm → R is an aggregation function [12], ui : Xi → R
(i = 1, . . . ,m) are called utility functions or value functions.
Utility functions are consistent with partial order %i, i.e.,

xi %i x′i ⇐⇒ ui(xi) ≥ ui(x′i) ∀xi, x′i ∈ Xi . (8)

As mentioned before, methods in PL have focused on learning
the aggregation function F so far, i.e., the global utility U ,
while assuming the (local) utility functions ui to be given.

We consider two aggregation functions F here: the weighted
sum and the Choquet integral. Several elicitation techniques
have been developed in the DA community for model (7)
with these two aggregation functions, mainly based on linear
programming. These techniques (called WS, AU, Ch and
Ch + U) are described in the remainder of this section.

4.1 Weighted Sum (WS)

The simplest model is the weighted sum U(x) =∑
i∈M ωi ui(xi), where ωi is the weight of feature i. As for

the Choquet integral, the utility function ui need to return
comparable values. Formally, the scales represented by two
utility functions ui and uj shall be commensurate. We say
that two scales ui, uj over criteria i and j are commensurate
if for every xi ∈ Xi, xj ∈ Xj such that ui(xi) = uj(xj), the
degrees of satisfaction felt by the DM on criteria i and j are
equal. It is often assumed that the utilities lie in the interval
[0, 1], where 1 (resp. 0) means that the criterion is completely
satisfied (unsatisfied).

In DA, the weights and the utility functions are usually
learnt in two steps. Firstly, each utility function ui is con-
structed separately from learning data restricted to Xi (intra-
feature learning), using methods such as AHP [21] or MAC-
BETH [3, 2]. Then, assuming the utility functions to be given,
the weights ω are learnt from additional data, which typically
consists of pairwise comparisons of alternatives [3, 2]. To this
end, techniques such as linear programming (LP) can be used.
The determination of weights in a weighted sum with fixed
utility functions is called WS (Weighted Sum) in this paper.

4.2 Additive Utility (AU)

The main drawback of the previous approach is that the
weights and the utility functions are not learnt simultane-
ously. In particular, the first step of the construction of util-
ity functions is very important, since the weights ω cannot

compensate a bad choice of these functions. It may happen
that the training data is not representable by the weighted
sum when the utility functions are fixed, but could be repre-
sented by a weighted sum if both the weights and the utility
functions are identified at the same time. Yet, the problem
of finding ω and the u1, . . . , um simultaneously is no longer
linear and therefore complex to solve.

In order to bypass this difficulty, it is more convenient
to rewrite the weighted sum as an additive utility function
U(x) =

∑
i∈M vi(xi) (with vi(xi) = ωi ui(xi)). Unlike the

weighted sum, the value functions vi are not commensurate.
In particular, they are neither normalized nor restricted to
the interval [0, 1]. The UTA (UTilities Additives) method can
learn all utility functions at the same time using an LP ap-
proach applied to comparisons of alternatives [13]. The ap-
proach of constructing all utilities at the same time is called
AU (Additive Utility).

4.3 Choquet Integral (Ch)

The model of the weighted sum (or additive utility) exhibits
a limited expressive power as it assumes independence among
criteria. A more versatile model is the Choquet integral w.r.t.
a capacity: U(x) = Cµ(u1(x1), . . . , un(xn)), where µ is a ca-
pacity on M . The utility functions need to be commensurate
and are often normalized to [0, 1].

As for the weighted sum, the capacity µ and the utility
functions ui are typically learnt in two steps [17, 11]. An ex-
tension of the MACBETH approach has been proposed in [17]
to construct each utility function ui separately without the
knowledge of µ. Then, given the utility functions, many pa-
pers propose algorithms to construct the capacity, transform-
ing training data into an optimization problem (see [10, 11]
for review). Most often, the capacity µ is learnt using LP
or quadratic programming. The construction of the capacity
from fixed utility functions is called Ch (Choquet integral).

4.4 Choquet Integral and Utility Functions
(Ch + U)

Like for the weighted sum, one may wonder whether it is rel-
evant to learn the utility functions and the capacity at the
same time. There are two references emphasizing the impor-
tance of doing so. The first one explains that when the utility
functions ui are fixed, it is very easy to construct examples of
preferences that cannot be represented by the Choquet inte-
gral, whereas if both the ui and the capacity µ can be tuned
at the same time, the construction of such examples becomes
much more complex [4]. The second reference presents an ex-
perimental study comparing the representativeness of models
WS, AU and Ch [19]. These authors measure the number of
datasets that can be represented by WS, AU and Ch, where
the datasets are random orders on randomly generated in-
stances. In this experiment, the AU model tends to represent
the random datasets better than Ch [19]. From this exper-
iment, we conclude that the Choquet integral might not be
very useful unless suitable utility functions ui are provided.

Very few theoretical works can be found on MCDA models
composed of both the Choquet integral and its utility func-
tions [15, 16]. The determination of not only the admissible
capacities but also the utility functions has been considered
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from a practical side only in two papers [1, 8]. A stochastic
method (Monte Carlo or genetic algorithm) has been pro-
posed in [1], and a fixed-point approach using nested linear
programs is used in [8].

We have justified the importance of learning the capacity
and the utility functions at the same time. This approach is
called Ch + U (Choquet integral and utility functions).

The previous discussion has shown that, in DA, methods
like Ch + U are typically motivated by their representative
power. Here, the underlying assumption is that the more pref-
erence relations a model can represent, the “better” it is.
Therefore, it is very important to mention that, in a ma-
chine learning context, a high level of expressivity of a model
class is not a desirable property per se. On the contrary, a
higher level of expressivity will in general increase the dan-
ger of overfitting the training data, and hence of generalizing
poorly beyond that data. In fact, the main problem in ma-
chine learning is to find a model class with the right level of
expressivity, neither too low nor too high. Nervertheless, it
is of course interesting to assess the performance of Ch + U
compared to Ch, AU and WS in a machine learning context.

Figure 1 summarizes the relationship between the four
models discussed so far (arrows depict inheritance).

• Ch encompasses WS, since a weighted sum is a particular
case of a Choquet integral. As utilities are fixed both in
WS and Ch, the latter is strictly more general than the
former.

• AU is more general than WS, since the additive utility
model (where utilities are to be determined) encompasses
the weighted sum (where utilities are fixed).

• Ch + U amounts to identify a capacity and the utility func-
tions simultaneously, and is thus more general than AU,
which does not allow for any interaction among criteria.

• Likewise Ch + U is more general than Ch, since the utili-
ties are fixed in this latter.

WS

AU Ch

Ch + U

Figure 1. Relationships between the models.

5 Utilitaristic (Choquistic) Regression

5.1 Models used for Classification

We consider classification problems in which each attribute
domain Xi is equipped with a natural order %i, either “the
larger the better” or “the smaller the better”. For the sake of
clarity, we shall subsequently distinguish between the (origi-
nal) feature or attribute value xi of an instance x and the cor-
responding utility degree ui(xi); for example, the value of the

feature price of an alternative could be xi = 99 e, and the
corresponding utility degree ui(xi) = 0.7. Replaing feature
values by utility degrees comes down to defining (or learn-
ing) a mapping X → R that we shall refer to as a scaling
of the attribute/feature; in agreement with our monotonicity
assumption, this mapping should be monotonic, i.e., either
non-decreasing or non-increasing.

Generalizing (4) and (6) , we are interested in models of
the form

log

(
πU (x)

1− πU (x)

)
= U(x) + β , (9)

where the utility U will depend on the choice of the DA model,
and πU (x) = P(y = 1|x) is indexed by U . This gives

πU (x) =
1

1 + exp(−β − U(x))
. (10)

The model U contains unknown parameters p that will be
explained below.

The four elicitation models described in Section 4 have nat-
ural counterparts in PL (see Table 1 for the correspondence):

• Counterpart of WS: The idea of WS is to learn a weight
vector on the features. This comes down to standard logistic
regression (see Section 3.2), with each input attribute being
scaled beforehand. One may think of standardization, i.e.,

ui =
xi −mi

σi
or ui =

mi − xi
σi

,

depending on whether %i represents “the larger the bet-
ter” or “the smaller the better”, where mi and σi are the
mean and the standard deviation of the i-th attribute in
the training data. Then, the model U is given by

U(x) = ω> u(x) =

m∑

i=1

ωi ui, (11)

where the unknowns are the weights ω = (ω1, . . . , ωm). The
representation of natural preferences %i yields the following
monotonicity conditions on ω:

ω1 ≥ 0, . . . , ωm ≥ 0. (12)

This model will be named LR (Logistic Regression).
• Counterpart of AU: The idea here is to replace the dot

product ω>u(x) by a sum of utilities over the features:

U(x) =

m∑

i=1

ui(xi), (13)

where the utility functions are parametric and the corre-
sponding parameters will be described in Section 5.2. This
model will be named UR (Utilitaristic Regression).

• Counterpart of Ch: The idea of Ch is to learn the capac-
ity of a Choquet integral, where the utility functions are
already fixed:

U(x) = γ Cm(u(x)), (14)

where u(x) is the same scaling as in LR, γ > 0 and the
Möbius coefficients m satisfy (1) and (2). This is exactly
choquistic regression described in Section 3.3. This model
will thus be named CR (Choquistic Regression).
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• Counterpart of Ch + U: In the last model, both the capac-
ity and the utility functions are learnt:

U(x) = γ Cm(u1(x1), . . . , um(xm)), (15)

where the utility functions are parametric and will be de-
scribed in Section 5.2, γ > 0 and the Möbius coefficients
m satisfy (1) and (2). This model will be named CUR
(Choquistic Utilitaristic Regression).

Note that the use of a Choquet integral requires the util-
ity functions to be commensurate, an assumption that is
not required for the additive utility (13). This is why the
utilites ui in (15) are normalized (ui ∈ [0, 1]), which is not
necessarily the case in (13).

One can easily turn Figure 1 into a figure depicting the
relationships between the four methods LR, UR, CR and
CUR (see Figure 2).

MCDA models associated methods in PL
WS LR
Ch CR
AU UR

Ch + U CUR

Table 1. Correspondence between MCDA models and the
associated methods in PL.

LR

UR CR

CUR

Figure 2. Relationship between the PL methods.

5.2 Representation of the Utility Functions

This section describes how the utility functions are repre-
sented in the models UR and CUR.

In MCDA, utility functions are most of the time considered
as piecewise affine [13, 2]. In order to learn utility function ui,
the attribute domain Xi is discretized. The DM is assumed
to provide a finite set a1i , a

2
i , . . . , a

pi
i of pi distinct elements

of Xi, with a1i < a2i < · · · < apii . The two extreme elements
a1i and apii are reference elements for which criterion i is ei-
ther completely satisfied (largest value of utility, e.g. 1 for
CUR) or not satisfied at all (utility 0). If the utility function
is non-decreasing (%i corresponds to ≥), then element a1i is
the largest element in Xi which is considered as not satis-
factory at all, and apii is the smallest element in Xi which is
considered as completely satisfactory (see Figure 3). Hence we
fix ui(a

1
i ) = 0. Value ui(a

pi
i ) is fixed to 1 only if the commen-

surability assumption is made—that is, for the model CUR.
In the previous representation of utility function ui, meth-

ods in MCDA assume that a1i , . . . , a
pi
i are given and the un-

knowns are ui(a
1
i ), . . . , ui(a

pi
i ). The utility function is then

-Xi

6
ui

a1i

sui(a
1
i ) = 0

a2i

sui(a
2
i )

��
�

a3i

sui(a
3
i )

�
��

a4i

sui(a
4
i )

�
�
�
�
�

Figure 3. Example of piecewise affine utility function ui.

obtained for all values in Xi by interpolation (see Figure 3).
The main problem with this representation is that the values
of the thresholds a1i , a

pi
i is very crucial, as it depicts where im-

provement in the value of a feature has an impact in the over-
all utility U . In a machine learning setting, one cannot expect
that these thresholds are given by an expert. The next idea
would be to assume that the unknowns of the utility functions
are a1i , a

pi
i and ui(a

1
i ), . . . , ui(a

pi
i ), where a2i , a

3
i , . . . , a

pi−1
i de-

pend linearly on a1i , a
pi
i . The problem with this representation

is that the log-likelihood l(β,p) is not continuously differen-
tiable in a1i , a

pi
i . Hence, it would be very hard for optimization

algorithms to maximize l(β,p).
We would like to define a parametric expression of ui, where

ui is bounded, Xi can be any subset of R (allowing for both
negative and positive values), such that l(β,p) is continuously
differentiable in the parameters of ui. A natural choice of a
parametric expression is the sigmoid function

1

1 + exp(−ηi (xi − λi))
, (16)

where λi is a shift parameter, and ηi is the slope of the sigmoid
functions. The sigmoid function is skew-symmetric around the
point λi. It is easy to see that the elements xi ∈ Xi for which
the derivative of the sigmoid function is above a threshold
ε > 0 is the interval

[
λi − ∆

ηi
, λi +

∆

ηi

]

where ∆ = log

(
t
2
− 1 +

√
t2

4
− t
)

and t = ηi
ε

. For ε chosen,

the previous interval provides the relevant part of Xi, where
a modification on the feature value has a significant impact
on the utility. The counterpart of this interval for a piecewise
affine utility function is [a1i , a

pi
i ]. Hence expression (16) pa-

rameterized by λi and ηi allows us to learn the part of Xi
which is the most relevant for the classification problem, that
is, where the gradient of ui takes its largest values.

Expression (16) yields values in [0, 1]. When commensura-
bility is not required (for model UR—see (13)), we cannot
enforce the utilities to lie in the unit interval. Hence we con-
sider a new parameter ri which controls the range of the utility
function

ri
1 + exp(−ηi (xi − λi))

, (17)

where ri > 0.
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We already noted that (17) is skew-symmetric around λi.
Since other shapes of utility functions are sought in practice,
we propose a linear combination of sigmoid functions to cap-
ture more complex utility functions:

ui(xi) =

pi∑

l=1

rli
1 + exp(−ηli (xi − λli))

, (18)

where pi is the number of sigmoid functions used for utility
function ui, and rli controls the relative strengths among the
different sigmoid functions. If the utility function ui is non-
decreasing in xi, then

r1i ≥ 0, . . . , rpii ≥ 0 . (19)

For the model CUR, we need to have normalized utility func-
tions, which yields the following constraint:

pi∑

l=1

rli = 1 . (20)

We also enforce the constraints on λli and ηli:

ηli > 0 ∀l ∈ {1, . . . , pi} , (21)

min
j=1,...,n

x
(j)
i ≤ λ1

i < λ2
i < · · · < λpii ≤ max

j=1,...,n
x
(j)
i . (22)

In (22), the values λli are necessarily located in the observed

range of attribute values [minj=1,...,n x
(j)
i ,maxj=1,...,n x

(j)
i ].

5.3 Parameter Learning

For the CUR model, the utility functions and the aggregation
functions need to be learnt simultaneously. To this end, we
make use of a generalization of the approach proposed in [24]
based on likelihood maximization.

Our general model (10) contains a set of parameters,
namely β and the parameters p of utility model U . The list
of parameters for the four models LR, CR, UR, CUR is
summarized in Table 2.

model U parameters p of U constraints on p
LR ω = (ω1, . . . , ωm) ω1 ≥ 0, . . . , ωm ≥ 0
CR m, γ γ > 0, (1) and (2)

UR {rli, ηli, λli}i,l (19), (21), (22)
CUR m, γ, γ > 0, (1), (2),

{rli, ηli, λli}i,l (19), (20), (21), (22)

Table 2. List of parameters and constraints for the four models

From the training dataset D in (3), all unknowns (β and
the parameters p of U) are determined by maximizing the
log-likelihood:

l(β,p) = logP(D|β,p) = log

n∏

j=1

P
(
y(j)|x(j), β,p

)
(23)

=

n∑

j=1

y(j) log πU (x(j)) +

n∑

j=1

(1− y(j)) log(1− πU (x(j))) .

We obtain

l(β,p) = −
n∑

j=1

log
(

1 + exp(−β − U(x(j)))
)

−
n∑

j=1

(1− y(j))
(
β + U(x(j))

)
. (24)

Basically, for the four problems LR, CR, UR and CUR,
the parameters are identified by maximizing l(β,p) over the
variables β and p (see Table 2) under the monotonicity con-
straints on p described in Table 2. For a detailed discussion
of this optimization problem and its tractability, we refer to
[24]. Practically, the fmincon function implemented in the op-
timization toolbox of Matlab has been used. This method is
based on a sequential quadratic programming approach.

6 Experiments

6.1 Experimental Setting

We conducted several experiments to investigate the efficiency
of our approach. To this end, we used monotone data that is
mainly taken from the UCI data repository.4 As discussed, the
scaling of attributes is accomplished through a convex combi-
nation of sigmoid functions. In the experiments, we took the
same number of sigmoid functions for all attributes, namely
with pi = 2 or 3.

For models CR and CUR, a 2-additive capacity has been
used. For models LR and CR, features are normalized by
mapping values xi to their empirical quantiles. More precisely,
for each attribute i ∈ M , we denote by πi a permutation on
{1, . . . , n} ordering the value of instances on attribute i:

x
(πi(1))
i ≤ x(πi(2))

i ≤ · · · ≤ x(πi(n))
i .

Then, ui is interpolating between the following values:

ui
(
x
(πi(k))
i

)
= k−1

n−1
, for every k ∈ {1, . . . , n}.

6.2 Main Experimental Results

In the experiments, we compare the four methods LR, CR,
UR and CUR. This way, we can analyse the added value
of learning local utility functions (that is, scaling, as used
in models UR and CUR) and/or allowing for interactions
between criteria (as in models CR and CUR). Table 3 sum-
marizes the performance of the four models on 9 datasets.
The classification accuracy is measured by the 0/1 loss and
estimated as averages over 20 repetitions of a 5 fold cross val-
idation. The 0/1 loss is noted ηLR, ηCR, ηUR and ηCUR for
the four methods.

We note that CUR returns the best predictions in 5 out
of the 9 datasets (including case Auto-MPG where it is al-
most similar to UR). Moreover, the improvement of CUR
compared to LR is quite significant on datasets CEV and
Auto MPG. We interpret these results are evidence for the
importance of a combed use of scaling and interaction.

Despite being the most expressive model, CUR does not
always achieve the best results. This is not surprising, how-
ever, since, as mentioned before, more expressive models are
not necessarily advantageous from a learning point of view.
For instance, CUR returns the worst predictions for the ERA
dataset. It is interesting to note that, for this dataset, scal-
ing and interaction both have a positive effect when used in
isolation, whereas their joint use does not seem to have any
further advantage. One can measure the interaction (or syn-
ergy) between AN and IF by the following indicator:

ηLR − ηCR − ηUR + ηCUR

4 http://archive.ics.uci.edu/ml/
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Figure 4. Scaling functions for the criterion area on the
DenBosch data computed by quantile normalization (called LN

here) and local utility learning (where l stands for pi in the
figure).

Note that this indicator is similar to the Shapley interaction
index used to interpret a capacity. This indicator is negative
when most of the improvement (compared to the baseline
LR) comes from using either scaling or interaction, but not
when using both at the same time (as it is the case for ERA).
On the other hand, this indicator is positive when most of the
improvement comes when using scaling and interaction simul-
taneously. The interaction index between scaling and interac-
tion is positive for 5 datasets (CPU, DenBosch, ESL, Mammo,
Auto-MPG, Breast Cancer).

Finally, we shall mention that CUR induces a complexity
in terms of execution time, because of the difficulty to learn
at the same time the utility function and the capacity. We
will elaborate on this point in future work.

6.3 Case Study

In order to further explore the properties and benefits of the
proposed approach to learning utility functions, we carried
out an experiment on the DenBosh data. This dataset con-
tains 8 attributes describing houses in the city of Den Bosch:
district, area, number of bedrooms, type of house, volume,
storeys, type of garden, garage, and price. The output is a
binary variable indicating whether the price of the house is
low or high (depending on the comparison with a threshold
[6]). In the experiments, pi = 2, pi = 3 and pi = 4 are used.
We consider the second criteria, namely, area. In Figure 4,
the utility functions obtained for this criterion is shown for
different methods and parameter configurations. As can be
seen, the functions for pi = 3 and pi = 4 are almost the same,
suggesting that pi = 3 offers enough flexibility. In Figure 5,
the utility functions of all 8 attributes are shown for pi = 4 is
chosen.
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Figure 5. Illustration of attribute scaling on the DenBosch
data set (for 2-additive choquistic regression).

7 Conclusion and Future Work

This paper advocates the idea that machine learning tech-
niques can benefit from the use of (monotone) decision mod-
els from MCDA. Such models are often expressed in terms
of a two-level hierarchy: First, local utility degrees are deter-
mined on each criterion, and these utility degrees are then
aggregated into an overall evaluation of an alternative. While
preference learning methods have focused on learning the ag-
gregation function so far, we highlight the usefulness of simul-
taneously learning both parts of this hierarchy, not only the
aggregation but also the local utility functions.

Two existing methods were extended along this line, namely
logistic regression (LR) and choquistic regression (CR). For
the corresponding extensions, called utilitaristic regression
(UR) and utilitaristic choquistic regression (UCR), respec-
tively, utility functions are represented as a linear combina-
tion of sigmoid functions. Mathematically, this representation
is quite convenient and exhibits several advantages. Our pre-
liminary results on 9 benchmark datasets are promising and
suggests the practical interest of local utility learning and rep-
resenting interaction among features.

In future work, we plan to test other forms of parameterized
utility functions, and identify the suitable number of param-
eters. Moreover, going beyond binary classification, our ap-
proach will be extended to other types of preference learning
problems.
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Hospital rankings: a new challenge for MCDA and
preference learning?

Brice Mayag1

Abstract. The aim of this paper is to convince the MultiCriteria
Decision Aid (MCDA) and Preference Learning communities to in-
vestigate and to contribute in the development of methodologies ded-
icated to hospital ranking. To do so, we present the French hospital
ranking and show how these rankings can be built properly through
two existing methods: decision tree and ELECTRE Tri.

Key words: MCDA; Machine Learning; Hospital rankings; Deci-
sion tree; ELECTRE TRI

1 Introduction
MultiCriteria Decision Aid (MCDA) aims at representing the pref-
erences of a Decision-Maker (DM), or a group of Decision-Makers,
over a finite set of alternatives evaluated on several criteria often con-
flicting. Many softwares implementing MCDA methods have been
developed and most of them have proved their efficiency in real ap-
plications, e.g. MACBETH [1], MYRIAD [10]. One of the problem
statement treated by MCDA is the elaboration of rankings.

Since many years, there exist some hospital rankings published
by newspapers. In France, three newspapers publish every year their
hospital rankings. In reality they do not evaluate the global hospital,
but only its surgery specialties. In our knowledge, two other countries
publish regularly hospital rankings:

• United Stated of America: these rankings are published each year
by a news paper called Usnews2. The methodology used is based
on the weighted sum and developed by the Research Triangle In-
stitute (RTI international), a scientific organism. The report of 129
pages about this methodology is free available3.

• United Kingdom: the rankings are elaborated by the National
Health Service (NHS)4.

From the view of MCDA, we were interested in the methodolo-
gies used in French hospital rankings. We studied them in details,
but we were disappointed because all the French methodologies are
just presented in few lines (not more than a half page) compared to
the Usnews methodology which is presented in more than 100 pages.
Furthermore there is no relevant information concerning MCDA as-
pects. The main reason is that, behind these rankings, there are only
journalists (François Malye and Jérôme Vincent for “Le point”) and
some very small consulting companies (Le Guide santé for “Le Fi-
garo Magazine” and Santé Value “Le Nouvel Observateur”) without

1 LAMSADE, University Paris Dauphine, email: brice.mayag@dauphine.fr
2 http://health.usnews.com/best-hospitals
3 http://www.usnews.com/pubfiles/BH 2014 Methodology Report Final Jul14.pdf
4 http://www.nhs.uk

knowledge about good best practices of MCDA. In general, to im-
prove their reputation, the hospitals need and wish to know each year
their rank in the published hospital rankings. Most of these hospitals
choose to advertise this rank, when they are good, in their website.
Health governments agencies also can use these rankings to identify
which are the “weak” hospitals.

The challenge we propose here is to use all the scientific back-
ground of MCDA to properly structure these real and concrete ap-
plications. We propose to identify relevant indicators (criteria) with
machine learning methods such as decision tree. The opportunity to
test also preference learning algorithms should be investigate. Let us
recall that preference learning is a subfield in machine learning in
which the goal is to learn a predictive preference model from ob-
served preference information [8]. Because the databases of indica-
tors filled by the French hospitals are public and available under some
minor conditions, we can solve this actual problem by giving a valid
methodology where algorithms and methods of the two communities
are applied.

The paper is organized as follows: we present in Section 2 the
three French hospital rankings, especially in weight loss surgery and
we give our propositions in Section 3.

2 About French hospital rankings

In France, hospital rankings are published each year by three news-
papers: “Le Nouvel observateur”5, “Le Point”6 and “Le Figaro Mag-
azine”7. To establish these rankings, they manipulate data coming
from some official databases like HOSPIDIAG8. This latter, a tool
developed by the national performance support agency (Agence Na-
tionale d’Appui à la Performance : ANAP), sheds light on a given fa-
cility, bringing together data from different databases (PMSI, annual
institutional statistics, etc.) in a single tool [2]. The databases con-
tain around eighty indicators which are likely to be filled each year
by all the hospitals. In French health system, there are approximately
1600 hospitals classified as public, nonprofit private and commercial
private.

All the three newspapers propose a ranking per surgery specialty,
for instance a ranking of weight loss surgery. Our analysis in this
paper is focused on weight loss surgery. The remarks and comments
developed here are valid for all the specialties.

5 http://classement-hopitaux.nouvelobs.com/
6 http://hopitaux.lepoint.fr/
7 http://sante.lefigaro.fr
8 http://hospidiag.atih.sante.fr
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2.1 Weight loss surgery
Bariatric surgery9 (weight loss surgery) includes a variety of proce-
dures performed on people who are obese. Weight loss is achieved
by reducing the size of the stomach with a gastric band or through
removal of a portion of the stomach (sleeve gastrectomy or bil-
iopancreatic diversion with duodenal switch) or by resecting and re-
routing the small intestines to a small stomach pouch (gastric bypass
surgery).

To identify the “best” hospitals in weight loss surgery, the news-
papers combine a part of the following indicators:

1. (CR1) Volume of activity: it is the number of stays of all patients
with respect to the value of care and some homogeneous price.

2. (CR2) Activity: number of procedures performed during one year.
“Le Point” supposes that if an hospital has a good score on activity
then its teams are more trained and often have good results. This
opinion is not totally shared by some other experts who estimate
that a good score on the activity of an hospital does not imply
necessarily that its teams are best. In this case, one should also
investigate if this hospital does not focus on getting grants of the
government because in France some grants depend on the activity.

3. (CR3) Average Length Of Stay (ALOS): a mean calculated by di-
viding the sum of inpatient days by the number of patients ad-
missions with the same diagnosis-related group classification. A
variation in the calculation of ALOS can be to consider only the
length of stay during the period under analysis. If an hospital is
more organized in terms of resources then its ALOS score should
be low.

4. (CR4) Notoriety: Its corresponds to the reputation and attractive-
ness of the hospital.
For “the Nouvel Observateur”, the attractiveness of the hospital
depends on the distance between the hospital and the patient’s
home. This distance is considered significant if it is more than
fifty kms. Its reputation reflects the gradual isolation of patients:
the more they come from far away, the more the reputation of the
institution is important.
The notoriety indicator of “Le Point” is a percentage of patients
treated in the hospital but living in another French administrative
department. More the percentage increases, more the hospital is
attractive.

5. (CR5) Heaviness: it is a percentage measuring the level of re-
sources consumed (equipment, staff, . . . ) in the hospital.

6. (CR6) Quality score of French National Authority for Health
(HAS) 10: It is the score (between • and • • • • •) obtained by
the hospital after the accreditation and quality visit made by the
experts of HAS.

7. (CR7) % of By-Pass: It is the percentage of surgical procedures
using gastric bypass system.

8. (CR8) Technicality: this particular indicator measures the ratio
of procedures performed with an efficient technology compared
to the same procedures performed with obsolete technology. The
higher the percentage is, the more the team is trained in advanced
technologies or complex surgeries.

9 http://en.wikipedia.org/wiki/Bariatric surgery
10 French National Authority for Health (HAS) aims to improve quality and

safety of healthcare. The objectives are to accredit health care organiza-
tions and health professionals, to produce guidelines for health profession-
als (practices, public health, patient safety), to develop disease manage-
ment for chronic conditions, to advise decision makers on health technolo-
gies (drugs, devices, procedures), and to inform professionals, patients, and
the public.

Remark 1. “Le Nouvel Observateur” use the term activity as a com-
posite indicator of ALOS (CR3) and volume of activity (CR1).

2.2 The 2013 results

The rankings given by “Le Nouvel observateur” [12] take into ac-
count, in the same tables, both public and private hospitals. They
argue that this logic is in spirit of their readers. In terms of MCDA,
this justification of the choice of this set of alternatives appears weak
and seems to be only a “marketing argument”. Table 1 presents the
ranking of only 20 public hospitals (among the first hundred hospitals
evaluated) in weight loss surgery published by “Le Nouvel observa-
teur” in 2013. These hospitals are evaluated on five indicators: Vol-
ume of activity (CR1), ALOS (CR3), % of By-Pass (CR7), Heaviness
(CR5) and Notoriety (CR4). In their methodology, they mention that
they chose indicators which are most significant in terms of medical
innovation, but nothing is said about the concrete selection of such
indicators. The last column, FO , concerns the aggregation function
used. Again, nothing is said about this function and how they calcu-
lated the score of each hospital. We imagine that it could be a simple
weighted sum.

Hospitals CR1 CR3 CR7 CR5 CR4 FO

Georges-Pompidou 406 5.2 55 77 95 19.3
Bichat 203 7.8 75 83 94 18.9
Ambroise-Paré 193 6.6 90 83 94 18.7
Strasbourg 330 6.2 84 79 45 18.2
Nice 351 6.5 94 79 20 18.1
Nancy 230 6.9 87 81 76 17.9
Louis-Mourier 154 5.0 81 81 27 17.9
Pitié-Salpetrière 127 6.0 75 79 92 17.8
Laon 299 1.8 0 54 58 17.7
Lille 233 6.2 68 83 30 17.4
Colmar 192 3.5 97 77 19 17.4
Conception 287 3.1 28 63 22 17.3
Caen 152 6.7 89 79 63 17.1
Toulouse 173 4.3 63 77 87 17.0
Antibes 181 5.6 96 77 23 16.9
Edouard-Herriot 89 4.9 52 81 38 16.9
Havre 115 2.7 78 74 9 16.5
Jean-Verdier 116 6.7 44 79 32 16.4
Timone adultes 69 5.0 32 81 36 16.3
Orleans 131 6.1 69 81 41 16.4

Table 1. The best 20 hospitals in Weight loss surgery (2013). Source: “Le
Nouvel Observateur” [12]

“Le Point” [13] have analyzed 952 hospitals in their rankings. Just
50, 40, 30, 25 or 20 best hospitals per specialty were published. In
Table 2, the ranking published in 2013 concerns the 20 best hospi-
tals in weight loss surgery evaluated on Activity (CR2), (Notoriety)
(CR4) ; ALOS (CR3) and Technicality: (CR8). The last column of the
table refers to the scores obtained by using an aggregation function
FP . Like the previous newspaper, nothing is said about this function
and nothing about the elaboration of criteria. They only indicate that
it is a weighted sum.

Among 1308 hospitals analyzed by the last newspaper, “Le Fi-
garo Magazine” [11], only 830 have been evaluated. The rankings
published concern the 10 best hospitals per specialty and per French
region. We show in Table 3 some best hospitals in eight regions. The
criteria used are: Activity (CR2) and Quality score of French Na-
tional Authority for Health (HAS) (CR6). The ranking is based on
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Hospitals CR2 CR4 CR3 CR8 FP

Bichat 372 80 7.8 94 17.84
Nice 253 19 8.2 95 17.59
Nancy 208 60 8 90 17.37
Ambroise-Paré 140 85 6.5 96 17.23
Colmar 165 14 3.8 99 17.20
Caen 167 47 6.7 96 17.14
Strasbourg 289 25 6.3 82 17.13
Georges-Pompidou 394 80 5.5 56 17.06
Lille 247 18 4.8 63 17.02
Antibes 156 13 5.5 96 16.75
Orleans 167 35 6.7 86 16.66
Rouen 237 29 5.1 48 16.55
Jean-Verdier 174 40 9.7 82 16.45
Conception 332 19 3.8 24 16.44
Louis-Mourier 166 51 5.3 86 16.36
Poissy/St Germain 192 34 4.1 60 16.30
Montpellier 297 25 5.6 33 16.24
Toulouse 181 73 4.6 50 15.94
Amiens 170 28 3.8 10 15.63
Laon 242 23 1.4 0 15.54

Table 2. The best 20 hospitals in Weight loss surgery (2013). Source: “Le
Point” [13]

Hospitals CR2 CR6

Georges-Pompidou 878 • • • • •
Bichat 384 • • ••
Saint-Louis 285 • • ••
Rouen 300 • • ••
Laon 277 ••
Lille 271 • • ••
Caen 179 ••
Nantes 175 ••
Limoges 103 • • •
Rennes 89 ••
Montpellier 353 ••
Nice 263 ••
Orleans 206 • • ••
Tours 122 • • •
Jean-Mermoz Lyon 312 ••
Sens 140 • • •
Nancy 305 ••
Colmar 169 ••
Toulouse 352 • • ••
Bordeaux 133 ••

Table 3. The best 20 hospitals in Weight loss surgery (2013). Source: “Le
Figaro Magazine” [11]

a lexicographic order (CR6 � CR2 ), but nothing about how these
rankings were elaborated.

We are not really surprised if the interesting information for re-
searchers about methodologies used by these three newspaper are
poor and not available. Indeed, in France, the sales of newspapers de-
voted to hospital ranking are often the best of the year. So there exist
a real competition between the three organisms. Therefore, each of
them has to keep secret its methodology.

3 Our propositions
We think that, the elaboration of hospital ranking is a practical ap-
plication where algorithms of MCDA and Machine Learning can be
applied. Compared to the newspapers, the academic background of
researchers of these two domains can help to better understand this
kind of real problem and to propose some valid methodologies. Fur-
thermore, there exists available real data to test these methods and
algorithms or to elaborate some benchmarks. Of course, to have a
good interpretation of results and indicators, there is a need to work
with experts from health systems. Let us give below some sugges-
tions indicating how to proceed.

3.1 Machine learning aspects
In hospital rankings problems, machine learning algorithms can help
to determine relevant indicators to use, i.e. to determine which rele-
vant criteria, in each specialty, are needed in the MCDA methodolo-
gies. In this case, we can use predictive algorithms like decision tree
algorithms.

Decision tree learning [9, 15] is one of the most successful tech-
niques for supervised classification learning. It builds classification
or regression models in the form of a tree structure. It breaks down
a dataset into smaller and smaller subsets while at the same time an
associated decision tree is incrementally developed. The final result
is a tree with decision nodes and leaf nodes. So the goal is to create
a model that predicts the value of a target variable based on several
input variables. It is closely related to the fundamental computer sci-
ence notion of “divide and conquer”. A decision node has two or
more branches. Leaf node represents a classification or decision. The
topmost decision node in a tree which corresponds to the best predic-
tor called root node. Decision trees can handle both categorical and
numerical data.

To illustrate our suggestion, let us apply the J48 algorithm of the
suite of machine learning software Weka11 to data of hospital rank-
ings given in Tables 1 and 2. J48 is an implementation of the C4.5
algorithm developed by Ross Quinlan [14] to generate a decision
tree.

By considering columnFP in Table 2, we can compute two classes
from the “Le Point” ranking of weight loss surgery like this: the class
VeryGood for hospitals with a score between 16.5 and 18, and the
class Good for those having a score between 15 and 16.49. The idea
here is to predict these two classes by applying a decision tree algo-
rithm. The Figure 1 shows the results of this example by applying the

11 Weka is a collection of machine learning algorithms for data mining tasks.
The algorithms can either be applied directly to a dataset or called from
your own Java code. Weka contains tools for data pre-processing, clas-
sification, regression, clustering, association rules, and visualization. It
is also well-suited for developing new machine learning schemes. Weka
is open source software issued under the GNU General Public License.
http://www.cs.waikato.ac.nz/ml/weka/.
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algorithm J48 of Weka. Only 12 hospitals among 20 have been cor-
rectly classified. The decision tree obtained is given by Figure 2. In
this classification problem, ALOS seems the only relevant indicator.

Figure 1. Applying J48 in Weka from “Le Point” ranking

Figure 2. Decision tree from “Le Point” ranking

From the “Le Nouvel Observateur” ranking in weight loss surgery
(see Table 1), lets us define two classes as follows: the class Very-
Good for hospitals with a score belonging to the interval [19.5;17.5],
and the class Good for those having a score between 15.5 and 16.49.
By applying the algorithm J48 of Weka, Figure 3 shows that only
11 hospitals among 20 have been correctly classified. In the decision
tree produced and represented in Figure 4, ALOS seems to be an
irrelevant indicator.

3.2 MultiCriteria Decision Aid aspects
As indicated in [3], we have to start with a a number of crucial ques-
tions when trying to build an evaluation (ranking) model in MCDA
[5, 6]. These questions, known as good practices, are:

1. What is the definition of objects to be evaluated?
2. What is the purpose of the model? Who will use it?
3. How to structure objectives?
4. How to achieve a “consistent family of criteria”?
5. How to take uncertainty, imprecision, and inaccurate definition

into account? All the French hospital ranking fail this last point.

After answering these questions, the choice of the suitable MCDA
method will be another problem. Some methodologies are based on
the weighted sum (e.g. methodologies of “Le Point” and “Le Nouvel

Figure 3. Applying J48 in Weka from “Le Nouvel Observateur” ranking

Figure 4. Decision tree from “Le Nouvel Observateur” ranking

Observateur”), because this function is simple and understandable by
many persons who are not experts in MCDA.

If we consider the following four hospitals evaluated on three cri-
teria: Notoriety, ALOS and Technicality:

Notoriety ALOS Technicality
Hospital 1 35 80 90
Hospital 2 37 80 89
Hospital 3 35 40 90
Hospital 4 37 40 89

It seems reasonable to give these preferences: hospital 1 is strictly
prefer to the hospital 2 (if ALOS is “weak”, it is preferable to have
an hospital with good evaluation in Technicality) and hospital 4
is strictly prefer to hospital 3 (If ALOS is “good”, we prefers in
this case an hospital with good evaluation in Notoriety). But it is
well known that these aggregation function cannot be model by a
weighted sum because they contain some interactions between crite-
ria [4]. Therefore it will be useful to study the dependence between
criteria in hospital rankings and then introduce other aggregation
functions instead of weighted sum.

We end this section by showing that it is possible to apply an out-
ranking method in this type of application. Because our aim is not to
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show that the rankings obtained by applying these methods are bet-
ter than those presented above, we just chose ELECTRE TRI method
as an example. ELECTRE TRI [7] is a MCDA method which deals
with the sorting problematic. We present hereafter a simple version of
ELECTRE TRI, without any preference thresholds and veto, which
is sufficient in our context.

Let us denote by A = {a1; a2; . . . ; am} a set of m alternatives
or options, N = {1; 2; . . . ;n} a set of n criteria or points of view,
C = {C1;C2; . . . ;Ct} a set of ordered categories (C1 is the worst
one and Ct is the best one) and B = {b1; . . . ; bt−1} a set of profiles
(reference alternatives which can be fictitious) that separate consec-
utive categories. Each category Ci, except C1 and Ct, is limited by
two profiles: bi is the upper limit and bi−1 is the lower limit.

The MCDA ELECTRE TRI method assigns alternatives to cate-
gories by using the concept of outranking relation S on A × B. An
alternative ai ∈ A outranks a profile bh ∈ B (denoted ai S bh) if it
can be considered at least as good as the latter (i.e., ai is not worse
than bh), given the values (performances) of ai and bh at the n crite-
ria. If ai is not worse than bh in every criterion, then it is obvious that
ai S bh. However, if there are some criteria where ai is worse than
bh, then ai may outrank bh or not, depending on the relative impor-
tance of those criteria and the differences in the evaluations (small
differences might be ignored). Roughly speaking,

ai outranks bh (ai S bh)⇔
n∑

1

kj cj(ai, bh) ≥ λ.

Where

• cj(ai, bh) =
{

1 if ai %j bh
0 otherwise

.

The relation ai %j bh means that the value of ai on the criterion
j is at least as good as the value of bh on the same criterion j.

• kj is the importance (weight) of criterion j such that
n∑

1

kj = 1.

• λ is the cutting level i.e. a threshold that indicates whether the
credibility is significant or not. This parameter is often taken be-
tween 0.5 and 1.

Hence ELECTRE TRI assigns the alternative ai to the highest cat-
egory Ch such that ai outranks bh−1 i.e.

for h = 2, . . . , t− 1,




ai belongs to C1 ⇔ not(ai S b1)
ai belongs to Ch ⇔ ai S bh−1 and not(ai S bh),
ai belongs to Ct ⇔ ai S bt−1

We applied ELECTRE TRI on the data given in Tables 1 and 2
by using the software IRIS12. This dataset is translated in the perfor-
mance tables given in Figures 5 and 6.

For each problem, we consider two categories C1 and C2. The
profile between these two categories are presented in Figures 7 and 8.
For instance, the profile considered in “Le Point” ranking in weight
loss surgery is b1 = (150; 60; 5; 80). Note that, g(b1) in Figure 8
corresponds to the values of b1.

The assignments proposed by ELECTRE TRI is given in Figure
10 and 9 with the values of weights of criteria (denoted by k1, K2,

12 IRIS is a software implementing the ELECTRE TRI method. It is free
available at http://www.lamsade.dauphine.fr/spip.php?
rubrique64

Figure 5. Performance table of “Le Nouvel Observateur” in weight loss
surgery

Figure 6. Performance table of “Le Point” in weight loss surgery

Figure 7. Profile of “Le Nouvel Observateur” in weight loss surgery
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Figure 8. Profile of “Le Point” in weight loss surgery

. . . ) and the value of the threshold λ (denoted by lamda). For in-
stance, ELECTRE tri assigns in the same category the five last hos-
pitals whenever you take one of the two rankings given in Tables 2
and 1.

Figure 9. Assignments of hospitals in “Le Point” ranking related to weight
loss surgery

4 Conclusion
We analyzed French hospital rankings, especially in weight loss
surgery, made by three newspapers. There is very little official in-
formation about how these rankings are made, and the process is
not transparent. We showed that this problem is a practical problem
where tools of preference learning and MCDA communities (e.g. de-
cision tree and ELECTRE TRI method) can be used in a complemen-
tary way.

Figure 10. Assignments of hospitals in “Le Nouvel Observateur” ranking
related to weight loss surgery
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[10] Ch. Labreuche and F. Le Huédé. Myriad: a tool suite for MCDA. In Int.
Conf. of the Euro Society for Fuzzy Logic and Technology (EUSFLAT),
pages 204–209, Barcelona, Spain, September 7-9 2005.
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Session 6

• Invited speaker: “Scaling Optimization Methods for Data-driven Marketing”,
Craig Boutillier, University Toronto, Canada ,

The emergence of large-scale, data-driven analytics has greatly improved the ability to pre-
dict the behavior of, and the effect of marketing actions on, individual consumers. Indeed,
the potential for fully personalized "marketing conversations" is very real. Unfortunately,
advances in predictive analytics have significantly outpaced the ability of current decision
support tools and optimization algorithms, precisely the tools needed to transform these in-
sights into marketing plans, policies and strategies. This is especially true in large marketing
organizations, where large numbers of campaigns, business objectives, product groups, etc.
place competing demands on marketing resources—the most important of which is customer
attention. In this talk, I will describe a new approach, called dynamic segmentation, for solv-
ing large-scale marketing optimization problems.
We formulate the problem as a generalized assignment problem (or other mathematical pro-
gram) and create aggregate segmentations based on both (statistical) predictive models and
campaign-specific and organizational objectives. The resulting compression allows problems
involving hundreds of campaigns and millions of customers to be solved optimally in tens of
milliseconds. I’ll briefly describe how the data-intensive components of the algorithm can be
distributed to take advantage of modern cluster-computing frameworks. I will also discuss
how the platform supports real-time scenario analysis and re-optimization, allowing decision
makers to explore tradeoffs across multiple objectives in real-time.
Time permitting, I’ll hint at how the technique might be extended to solve sequential, stochas-
tic problems formulated as Markov decision processes, and briefly mention other potential
applications of this class of techniques.
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Factorization of large tournaments for the median
linear order problem

Alain Guénoche
Institut de Mathématiques de Marseille (I2M - CNRS)

alain.guenoche@univ-amu.fr

Résumé : Computing a median linear order for a given set of linear orders on n elements,
is an standard task for preference aggregation. This problem is formalized by a tournament
(complete directed graph) with n vertices, arcs corresponding to majority preferences. To build
a median linear order is to make it transitive, realizing a minimum number of arc-reversal
operations. These arcs define the remoteness of any linear order to this tournament. A median
linear order has a smallest remoteness value. The computation of a minimum series of arc
reversals is usually made using a Branch & Bound algorithm which cannot be applied when n is
greater than a few tens. In this text we try to decompose a large tournament (n > 100) into sub-
tournaments and to assemble the median orders on each one into a linear order on n elements.
We show, making several simulations on random tournaments, weighted or unweighted, that
this decomposition strategy is efficient.

Mots-clés : Preferences, linear orders, tournament, median order

1 Problem
A group E of experts (|E| = m), ranking a set X of items (|X| = n), defines a linear order

profile Π = {S1, S2, . . . , Sm}. Let δ be the symmetric difference distance between linear orders
considered as item pair sets on X. We try to establish a linear order π from this profile, being
a median order for Π according to distance δ : S × S → N. It means that

∑

i=1,...,m

δ(Si, π) (1)

is minimum over the linear order set S on X [2].
To build a median order from profile Π a table T indexed on X × X is first computed.

T (x, y) = |{S ∈ Π such that x ≺S y}| ; evidently T (x, y)+T (y, x) = m. This table is associated
to a tournament having arc (x, y) directed from x to y iff T (x, y) > T (y, x). This arc can be
weighted by w(x, y) = T (x, y)− T (y, x) and w(y, x) = 0 in the W array.

Often, in practical problems, preferences are not linear orders because of ties. In that case,
preferences are weak orders. Nevertheless, the summarizing of a profile can be done the same
way, defining a majority tournament.

The remoteness of any order O to the tournament is defined as the sum of weights of arcs
(x, y) such that y is before x in O. These are the reversal arcs for O. Obviously, a linear order
is equivalent to a transitive tournament. When it is not, a set of arcs to reverse is searched to
make the computed tournament transitive. This set must have minimal weight to give a median
order. It is the Kemeny problem [11], which is NP-hard (see [10] for a large survey). Using a
Branch & Bound algorithm, a linear order π with minimum remoteness to the tournament is
built. It is a median order for profile Π [8, 3]. Its remoteness W is the sum of weights of the
reversal arcs, that is arcs directed from y to x, when x is before y in π :

1
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WΠ(π) =
∑

x≺πy

w(y, x). (2)

For unweighted tournaments, it is the number of reversal arcs which must be minimized. It
becomes the Slater problem [13], which is the same as before with weights all equal to 1. It is
also NP-hard and the same algorithm is used to solve both problems.

In this article, we are interested with large problems (100 ≤ n < 1000). They generally do
not occur in preference aggregation, because experts cannot rank such a large number of items.
But this type of instance exists when comparing a large number of items evaluated by marks
or criteria, as for the Universities of the Shanghai ranking [4], or genes ordered according to
their suggested importance in a genetic disease [1], considering many gene expression data.
Nevertheless, we keep the preference aggregation scheme to develop our factorization method.

A transitive tournament corresponds to a single linear order, which is easily built ranking
the internal half-degrees in increasing order. But if the tournament contains many circuits, the
Branch & Bound procedure can be very long and fail because of computation time or sufficient
memory to extend the tree. Each node corresponds to a beginning section (a prefix) of a linear
order which can be extended to a median one [8]. Despite many careful efforts [5, 6], as soon
as n is larger than 20 elements, the tree can overpass 500 000 nodes. Then, heuristics are used
to get an upper bound to the remoteness of an optimal linear order from the tournament, and
also an approximate solution to the problem.

2 Classical heuristics
We only keep two of them, because Borda’s method (increasing order of the sum of item

ranks in the profile) and the Smith & Payne method [14] (reversal of arcs involved in the largest
number of 3-cycles) have been found inefficient for the problem size we tackle.

2.1 The increasing order of internal half-degrees
Vertex x is said to be dominated by vertex y when T (y, x) > T (x, y) and the internal half

degree of x is the number of vertices dominating x. It is very natural to put at the first place,
in the searched linear order, a vertex having the smallest half-degree and to continue according
to this increasing order. This simple and fast heuristic is the most efficient for unweighted
tournaments, that is, giving frequently the smallest remoteness value among classical heuristics
in the following simulated problems. The degree sums are computed in O(n2) and the increasing
order in O(n log n).

2.2 The greedy heuristic
The greedy heuristic uses the same principle as for the Branch & Bound procedure, except

the tree of beginning sections is not developed. At each step the item promising the smallest
remoteness is selected and the costs of the remaining items are updated. The column sums of
the weight table are first computed

Sum(x) =
∑

y∈X

w(y, x). (3)

Sum(x) is the contribution of x to the remoteness of an order beginning by x. At each step
– item x such that Sum(x) is minimum is selected ;
– weights are updated : Sum(y)← Sum(y)− w(x, y).

This heuristic is clearly in O(n2) ; it is the best one for weighted tournaments, in the same
sense as before.

There are many other stochastic optimization heuristics, for instances, Variable neighbo-
rhood search [9] or Noising methods [7]. We do not consider them in this study, because of
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parameters to adapt, computation time to manage, or computer codes only made by the au-
thors. But any heuristic solution giving a linear order can be the starting point of optimization
procedures. Again, we select only two of them that are deterministic.

2.3 Two local optimization procedures

Any ordering heuristic establishes a linear order O = (o1, o2, . . . , on) on X. To improve it,
we apply two local optimization procedures.

– The first one is very classical : two consecutive items such that w(oi+1, oi) > 0 are searched.
It is clear that transposing these elements will make the remoteness decrease, erasing a
reversal arc. This procedure is iteratively repeated until there is no such pair to apply.
– The second one is only for weighted tournaments. For each element oj , we sarch for the
closest item oi placed before oj and dominated by oj . If it exists, we have oi ≺O oj , w(oj , oi) >
0 and (oj , oi) is the shortest reversal arc from oj as it is depicted in Fig.1. It is interesting
to swap oj and oi if the items placed between oi and oj do not create reversal arcs with a
larger weight. This is checked by summing values

Q =
∑

i>k>j

w(ok, oj) +
∑

i>k>j−1
w(oi, ok). (4)

The first sum corresponds to arcs ending in oj and the second one to arcs starting from oi

which would became reversal arcs after swapping oi and oj . The last weight w(oi, oj−1) is
not counted in the second sum because, if it is positive, it suffices to transpose oj−1 and oi,
this latter taking the place of oj .

≺ . . . oi . . . ≺ . . . ok . . . ≺ . . . oj . . . ≺

reversal arc

could become reversal arcs
Fig. 1 : The search configuration to apply the second optimization procedure

So, if w(oj , oi) > Q the interval (oi, oi+1, . . . , oj−1, oj) becomes either (oj , oi+1, . . . , oi, oj−1),
or (oj , oi+1, . . . , oj−1, oi) according to w(oi, oj−1) which is positive or not.

As far as I know, this latter optimization procedure is new and its efficiency has been tested.
It is fast, since for each element, it suffices to go back to the last dominated item and to
apply formula (4) within this interval ; its complexity is O(n2). In the following, let BestH
be the smallest remoteness value given by the heuristics followed by these local optimization
procedures.

3 Factorization of a tournament

For median linear order problems of large size (n� 100), these heuristics are poorly efficient.
We study the idea of a tournament decomposition in sub-tournaments, that is to separate the
X items into clusters of elements that are close in a median linear order. It could be efficient
to compute a linear order for each class and to concatenate them making an order on X. We
are going to test if this composed order is closer to the tournament, with a remoteness smaller
than the classical heuristic ones when they are applied to X as a whole.
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3.1 A balanced decomposition
The linear order given by the best heuristic (BestH, the one giving the smallest remoteness)

easily infers a balanced decomposition. Given a number of clusters p, it suffices to build classes
as intervals along this order. May be the items are not optimaly ranked, but one can hope
intervals are. In this decomposition, the n/p first ranked items in BestH are in the first class,
the next n/p in the second, and so on. One gets a partition in balanced clusters denoted PB.

3.2 A partition based on a distance
Considering theW table of the arc weights, one can associate to each element x a bipartition :

Let x+ be the set of items which would be ranked before x because they dominate it, and x−
those which would be placed after x because it dominates them.

x+ = {z ∈ X|w(z, x) > 0} and x− = {z ∈ X|w(x, z) > 0}.

Using these bipartitions, on can define a dissimilarity index on X

D(x, y) = ∆(x+, y+) + ∆(x−, y−) (5)

in which ∆(x+, y+) is the symmetric difference distance between sets x+ and y+ (resp. x−
and y−).

Remark : D is not a distance, because D(x, y) = 0 if w(x, y) = w(y, x) = 0.

Proposition 1 If T is a transitive tournament,
– Two consecutive elements in its median order have distance equal to 2 ;
– D(x, y) is proportional to the rank difference between x and y in the median order ;

Proof
Let x ≺ y be two consecutive elements in the median order corresponding to a transitive
tournament. Classes x+ and y+ (resp. x− and y−) only differ by a single element, x (resp.
y) and so D(x, y) = 2. In the same way, if x and y are separated by k items in the order,
D(x, y) = 2(k + 1). Thus, values increase along rows from the diagonal, and D is a distance
(because there is no tie in preferences). This is the definition of a robinsonian distance.

Consequently, homogeneous classes according to D would gather close elements in a median
linear order. The number of clusters, implying the average number of items per sub-tournament,
will be defined by a simulation process described in section 4.

The partitioning algorithm is based on an optimization criterion. Given a partition of n
items in p classes, denoted P = {P1, . . . , Pp}, it tends to minimize the sum M of the average
distances of each element to the items belonging to its class.

M =
p∑

k=1
[
∑

x∈Pk

1
|Pk|

∑

y∈Pk

D(x, y)] (6)

The resulting partition PM is computed by an iterative procedure similar to k-means. One
starts from the atomic partition only made with singletons. At each iteration one element is
assigned to the class for which its average distance is minimum. It stops when there are p
clusters and no more element to transfer.

3.3 Composition, Complexity and Efficiency
For each class from PB or PM , one evaluates
– its rank index value, equal to the average of its item ranks in the best heuristic order ;
– the sub-tournament corresponding to this class, with weights given in W ;
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– a linear order minimizing, as much as possible, its remoteness to the sub-tournament.
For the following computations, I retain the first heuristic for unweighted problems and the
second one for weighted tournaments. Median orders can be searched, but the computation
time would be much larger even with decomposition in small classes.
Then, the linear orders corresponding to clusters are concatenated according to their rank

index values, making in this way a composed linear order. The local optimization procedures are
applied, making finally two linear orders, CompB, CompM for the two decomposition methods.

The balanced decomposition algorithm is linear. The distance array computation in in O(n3),
since for each item pair, the relative positions of n − 2 elements are compared. Partition PM

is established by an iterative algorithm, without knowing its iteration number, as for k-means,
which is well known for its efficiency. Then, classical heuristics are applied to each class followed
by local optimizations applied to the composed order which remain in O(n2).

Nevertheless, the composed linear order method is fast. For a tournament having 1000 nodes,
a PB linear order in computed in 1”20 and in 19”30 for PM , using an ordinary desk computer.

4 Simulations and results
We generate two series of random problems.

4.1 Random permutations profiles
Selecting m random permutations of order n [12] makes a profile Π and a W matrix. The

two classical heuristics give the BestH linear order. Fixing the number of classes p makes on
one side, the partitioning PB and the composed linear order CompB and on the other side,
calculating distance D and applying the partitioning algorithm gives partition PM and the
CompM linear order. For these three orders their remoteness to the tournament is measured.

Tests are made on 100 profiles with the same parameters. Each row in Table 1 gives the
average remoteness. The three first columns are for unweighted tournaments and the three last
are for weighted ones.

n m p BestH CompB CompM BestH CompB CompM

100 10 3 805 788 784 755 731 719
100 20 3 832 814 812 1236 1203 1187
100 30 3 844 827 825 1569 1534 1522
200 30 4 3584 3520 3514 6825 6678 6614
200 50 5 3621 3542 3536 9047 8820 8784
200 100 6 3645 3554 3560 13129 12762 12782
500 100 5 23726 23476 23456 86600 85336 85107
500 100 10 23726 23313 23502 86600 84670 85635
500 100 15 23726 23294 23555 86600 84636 86078

Table 1 : Remoteness values of the orders given by heuristics on unweighted (left) and
weighted (right) tournaments

The composed linear orders are much better than the best classical heuristic. They win
at each trial, except for a few problems with n = 100. But these are average results and,
for a specific problem, both decomposition methods must be applied. Two questions remain :
which is the optimal number of classes for factorization and how far are these figures from the
optimum (a median linear order) ?

To answer the first one, we consider 100 orders on 300 items (n = 300,m = 100), for which we
seek the optimal number of classes in the average. In Table 2, the two first columns correspond
to unweighted tournament and the two others are again for weighted ones. Classical heuristics
give remoteness values independent of p, respectively 8333 and 30240, always larger than those
obtained by factorizing the tournament.
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p CompB CompM CompB CompM

4 8232 8222 29786 29644
5 8205 8197 29659 29538
6 8183 8192 29551 29561
...

...
...

...
...

10 8144 8225 29409 29832
11 8138 8226 29397 29856
12 8137 8243 29405 29913
13 8140 8245 29419 29938

Table 2 : Average remoteness values of the orders given by decomposition of unweighted
(left) and weighted (right) tournaments, making the number of classes p vary.

Remoteness average values at first decrease when the class number increases, then they
increase. It is why we don’t go further. The minimum value is obtained with class number
depending on the method. But the best decomposition is reached for p = 11 or 12 corresponding
to around 30 elements per class.

4.2 Tournaments with bounded remoteness

Selecting independent random permutations as before generates tournaments far from tran-
sitive and the computed orders have a large remoteness. The best linear order cannot be seen
as a consensus order, because there is no meaningful consensus to these profiles. So now, we
are going to generate tournaments from a unique linear order, making transpositions between
random items. Let t be the parameter counting the transposition number. There are two ge-
nerating processes :

– Starting from the natural linear order, corresponding to a transitive unweighted tourna-
ment, t pairs are selected at random ; when x < y, T (x, y) = 1 and T (y, x) = 0 . Transposing
(x, y) will make T (x, y) = 0 and T (y, x) = 1. Doing so, we are sure there exists a linear order
with a remoteness to the final tournament lower than or equal to t.
– The m permutations are built from the natural order transposing t random pairs in each
one. The weighted tournament is then computed, according to the usual majority rule. But
if t is small compared to the possible number of pairs, the consensus and median order would
be the natural order.

The first tests are for unweighted tournaments with n = 300 are given in Table 3, in which
2000, 3000, 4000 random transpositions are made, over the 44850 possible ones. So the median
order must be very close to the natural order, for which the remoteness is also calculated. The
same algorithms as before are run with a factorization in 10 clusters :

n t p BestH CompB CompM NatOrd
300 2000 10 1965 1903 1898 1895
300 3000 10 2915 2796 2786 2779
300 4000 10 3841 3661 3643 3628

Table 3 : Average remoteness values for the BestH heuristic, the two factorization methods
and the natural order expected to be a median one, on unweighted tournaments obtained

after t random transpositions.

These are again average values over 100 problems. The given bound, equal to t is lightly
improved by the BestH heuristic, but much more by the composed linear orders. And partition
PM provides values very close to those of the natural order suspected to be optimal.

The second test is made with permutations on which 100 pair transpositions have been made
before to calculate the weighted tournament. Factorizations are always made with 10 classes.

57



n m t p BestH CompB CompM NatOrd
300 30 100 10 2065 1721 1434 1555
300 50 100 10 800 677 558 544
300 100 100 10 56 51 49 46

Table 4 : Average remoteness values for the same linear orders as in Table 3, on weighted
tournaments obtained after t random transpositions on m natural orders.

The larger is the number of permutations (m), the lower is the remoteness because the cor-
responding tournament becomes more and more transitive. As it can be seen in Table 4, the
second decomposition method proves its efficiency for problems with a strong consensus.

5 Conclusion
For a large tournament, the factorization strategy is always the winner in these experiments.

And so, it is better to concatenate small orders optimized from sub-tournaments than to
compute an optimized linear order from the whole tournament. More, for tournaments close
to be transitive, the PM decomposition gives linear orders very close to the median one.

So, for a large specific tournament coming from real data, I will first determine an optimal
number of classes with the balanced partitioning, which is very fast and compute the distance
array between items. Then, around this class number, I will try the partitioning algorithm.
A computer program, in C, can be required to the author. A last trial with a 1000 vertices
tournament provides, with the balanced decomposition in 15 clusters, the smallest remoteness
value it founds.
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Listing the families of Sufficient Coalitions of criteria
involved in Sorting procedures

Eda Ersek Uyanık1,4, Olivier Sobrie2,3,4, Vincent Mousseau3 and Marc Pirlot4

Abstract. Certain sorting procedures derived from ELEC-
TRE TRI such as MR-Sort or the Non-Compensatory Sorting
(NCS model) model rely on a rule of the type: if an object is
better than a profile on a “sufficient coalition” of criteria, this
object is assigned to a category above this profile. In some
cases the strength a coalition can be numerically represented
by the sum of weights attached to the criteria and a coalition
is sufficient if its strength passes some threshold. This is the
type of rule used in the MR-Sort method. In more general
models such as Capacitive-MR-Sort or NCS model, criteria
are allowed to interact and a capacity is needed to model the
strength of a coalition. In this contribution, we want to in-
vestigate the gap of expressivity between the two models. In
this view, we explicitly generate a list of all possible families
of sufficient coalitions for a number of criteria up to 6. We
also categorize them according to the degree of additivity of
a capacity that can model their strength. Our goal is twofold:
being able to draw a sorting rule at random and having at
disposal examples in view of supporting a theoretical investi-
gation of the families of sufficient coalitions.

1 Introduction

A sorting method, in Multiple Criteria Decision Analysis, is
a procedure for assigning objects (or alternatives) described
by their evaluation on several criteria to ordered categories.
ELECTRE TRI [17, 10] is a sorting method based on an out-
ranking relation. Basically, each category has a lower limit
profile which is also the upper limit profile of the category
below. An object is assigned to a category if it outranks the
lower limit profile of this category but does not outrank its
upper limit profile. MR-Sort is a simple version of ELECTRE
TRI. MR-Sort assigns an object to a category if its evalua-
tions are better than the value of the lower limit profiles on a
majority of criteria and this condition is not fulfilled with re-
spect to the upper limit profile of the category. More precisely,
a weight wi is attached to each criterion i = 1, 2, . . . , n and
the object a = (a1, a2, . . . , an) is assigned to a category above
profile b = (b1, b2, . . . , bn) whenever the sum of the weights
of the criteria for which ai ≥ bi passes some threshold λ.
Otherwise, it is assigned to a category below b.

1 email: eda.uyanik@gmail.com
2 email: olivier.sobrie@gmail.com
3 École Centrale Paris, Grande Voie des Vignes, 92295 Châtenay
Malabry, France, email: vincent.mousseau@ecp.fr

4 Université de Mons, Faculté Polytechnique, 9, rue de Houdain,
7000 Mons, Belgium, email: marc.pirlot@umons.ac.be

An intermediary sorting method in between ELECTRE
TRI and MR-Sort was proposed and characterized by Bouys-
sou and Marchant [1, 2]. It is known as the Non Compensatory
Sorting (NCS) model. Consider the simple case in which there
are only two categories (e.g. good vs. bad) and no veto. In
such a case, an object is assigned to the category “good” if it
is better than the lower limit profile of this category on a suf-
ficient coalition of criteria. How do they define the “sufficient
coalitions of criteria”? Basically, these can be any collection of
criteria with the following property: a coalition that contains
a sufficient coalition of criteria is itself sufficient.

We claimed that MR-Sort is a particular case of a NCS
model. Indeed, with MR-Sort, a set of criteria is a sufficient
coalition iff the sum of the weights of the criteria in the set is
at least as large as the threshold λ. To fix the ideas consider
the following example. A student has to take 4 exams to be
admitted in a school. To be successful, he has to take a mark
of at least twelve (over twenty) in each of these exams, with at
most one exception. In this case the lower limit profile of the
category "succeed" is the vector (12, 12, 12, 12) and the suffi-
cient coalitions of criteria are all subsets of at least 3 subjects
for which the student’s mark is at least 12. Denote the stu-
dent’s marks by a = (a1, a2, a3, a4). The sufficient coalitions
can be represented by associating a weight to each course,
e.g. each exam receives a weight equal to 1/4, and choosing
an appropriate threshold, here 3/4. The assignment rule then
reads: x succeeds iff |{i : xi ≥ 12}| × 1/4 ≥ 3/4, which is
indeed the typical form of a MR-Sort rule.

Not all assignment rules based on sufficient coalitions can
be represented by additive weights and a threshold. For in-
stance, assume that the exams subjects are French language
(1), English language (2), Mathematics (3) and Physics (4).
To be successful, a student has to take at least 12 points in
one of the first two and in one of the last two. If the weights of
the four subjects are respectively denoted w1, w2, w3, w4 and
the threshold is λ and if we want to represent the rule us-
ing these weights and threshold, we see that these parameters
have to fulfill the following inequalities:





w1 + w3 ≥ λ
w1 + w4 ≥ λ
w2 + w3 ≥ λ
w2 + w4 ≥ λ
w1 + w2 < λ
w3 + w4 < λ

These conditions are contradictory. Indeed, summing up the
first four inequalities, we get that λ ≤ 1/2

∑4
i=1 wi, while
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summing up the last two yields λ > 1/2
∑4

i=1 wi.
Our goal with this paper is to investigate the gap of ex-

pressivity between MR-Sort and NCS model (without veto).
In this perspective, we analyze the possible families of suffi-
cient coalitions up to a number of criteria equal to 6. We start
by listing all these families, which raises difficulties due to the
combinatorial and complex character of this issue. Then we
study which families of sufficient coalitions are representable
by an inequality involving weights attached to the criteria, as
in MR-Sort. We partition the set of all families of sufficient
coalitions according to the type of inequality they fulfill. All
these families are counted and listed. This study aims first at
an explicit description of the families of sufficient criteria, up
to n = 6, in order to support further more theoretical inves-
tigations and practical applications. As a by-product, it also
enables to make simulations by drawing at random a MR-Sort
model or a NCS model. This proves useful e.g. for testing the
efficiency of algorithms designed for learning a NCS model on
the basis of assignment examples.

The rest of the paper is organized as follows. In Section
2, we state the problem more formally, we introduce the no-
tion of capacity and we recall combinatorial results related to
the enumeration of families of sufficient coalitions. Section 3
describes how the sets of sufficient coalitions were generated.
In Section 4, we explain how we partitioned the families of
sufficient coalitions; the size of each class of this partition is
computed. The next section explains how these results can
be exploited for simulation purposes and a short conclusion
follows.

2 Background

2.1 Numerical representation of the
sufficient coalitions

In MR-Sort, the set of sufficient coalitions of criteria can be
represented numerically. In other words it is possible to check
whether a set of criteria is sufficient by checking whether an
inequality is satisfied. More precisely, there is a family of non-
negative weights w1, w2, . . . , wn and a nonnegative threshold
λ such that a set of criteria A ⊆ {1, 2, . . . , n} is sufficient iff
∑

i∈A
wi ≥ λ. (1)

We assume w.l.o.g. that
∑n

i=1 wi = 1. Such a representa-
tion is generally not unique. For instance, in the example
above involving 4 criteria, the family of sufficient coalitions
is formed by all subsets of at least 3 criteria; this family can
be represented by assigning equal weights to all criteria and
using threshold value 3/4. Alternatively, one could use e.g.
w1 = .2, w2 = .2, w3 = .3, w4 = .3 as weights and λ = .70 as
threshold to represent the same family of coalitions.

We saw also above that, in general, not all families of suf-
ficient coalitions can be specified by an inequality such as
(1). If this is not the case, is there another kind of inequality
that can be used? Actually, any family of sufficient coalitions
can be represented using a capacity µ and a threshold λ. We

briefly recall what is a capacity. A capacity is a set function
µ : 2n → R+ which is monotone w.r.t. to set inclusion, i.e. for
all A,B ⊆ {1, 2, . . . , n}, A ⊆ B ⇒ µ(A) ≤ µ(B) (monotonic-
ity) and µ(∅) = 0. We impose w.l.o.g. that µ({1, 2, . . . , n}) =
1 (normalization). Note that a capacity is not additive, in
general, which means that it does not necessarily satisfy the
property: µ(A ∪ B) = µ(A) + µ(B) whenever A ∩ B = ∅. If
it does, then the capacity µ is said to be additive and it is a
probability. This means that there are weights w1, w2, . . . , wn

such that µ(A) =
∑

i∈A wi, for all set A ⊆ {1, 2, . . . , n}. A
(non necessarily additive) capacity can be given by means of
an interaction function (or Möbius transform) m. One has,
for all A ⊆ {1, 2, . . . , n}:

µ(A) =
∑

B⊆A

m(B) (2)

where m is a set function 2n → R which satisfies∑
B⊆{1,2,...,n}m(B) = 1 and

∑
B:i∈B⊆Am(B) ≥ 0, for all

i ∈ {1, 2, . . . , n} and A ⊆ {1, 2, . . . , n}. The capacity defined
by (2) is a probability iff m(B) = 0 whenever |B| > 1. A ca-
pacity is said to be k-additive when k is the largest cardinality
of the subsets for which m is different from 0. Probabilities
are 1-additive (or simply “additive”) capacities.

Proposition 1 Any family of sufficient coalitions can be rep-
resented as the set of subsets A ⊆ {1, 2, . . . , n} verifying

µ(A) ≥ λ, (3)

for some capacity µ and threshold λ ≥ 0. Conversely, if µ is
a capacity and λ is a nonnegative number, the set of subsets
A satisfying the inequality µ(A) ≥ λ is a family of sufficient
coalitions.

Proof. A family of sufficient coalitions is a family of subsets
such that any subset containing a subset of the family is it-
self in the family. Define a nonnegative set function µ letting
µ(A) = 1 if A is a sufficient coalition and 0 otherwise. One
can see that µ is monotone, and therefore a capacity, due
to the characteristic properties of the families of sufficient
coalitions. It is also normalized. Define the threshold λ = .5.
Clearly µ(A) ≥ .5 iff A is a sufficient coalition. The proof of
the converse is also straightforward.

As a consequence of this result, in a NCS model, the set
of sufficient coalitions can be either listed or specified by an
inequality such as (3). In a preference learning perspective, the
latter representation may be at an advantage since it opens
the perspective of using powerful optimization techniques (see
[13] for the learning of a NCS model on this basis)5. As already
observed in the case of weights, the capacity and threshold
used for representing a family of SC are generally not unique.

In the sequel we will be interested in parsimonious repre-
sentations, i.e. representations of a family of SC as the set of
coalitions A satisfying (3), using a k-additive capacity, with k
as small as possible. The smaller k, the smaller the number of

5 In [13], the NCS model without veto is called capacitive MR-Sort
model. Both models are essentially equivalent
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parameters to identify capacity µ, for instance in a learning
process. If k = 1, the family of SC can be represented by an
inequality of type (1), which involves determining the value
of n + 1 parameters (the weights wi and the threshold λ). If
a family of SC is representable using a 2-additive capacity,
then we can write µ(A) =

∑
i∈Ami +

∑
i,j∈A,i6=j mij , where

we abuse notation denoting m({i}) by mi and m({i, j}) by
mij . In this case, learning µ requires the determination of
n(n+1)

2
+ 1 parameters.

2.2 Minimal sufficient coalitions

The set of SC may be large (typically exponential in n), but
one can avoid listing them all. A minimal sufficient coalition
(MSC) is a SC which is not properly included in another SC.
Knowing the set of MSC allows to determine all SC since a
coalition is sufficient as soon as it contains a MSC. A family
of MSC is any collection of subsets of {1, 2, . . . , n} such that
none of them is included in another. In other words, a set of
MSC is an antichain in the set of subsets of {1, 2, . . . , n} (par-
tially) ordered by inclusion. It is well-known that the number
of antichains in the power set of {1, 2, . . . , n} is D(n), the nth
Dedekind number ([15], sequence A000372). These numbers
grow extremely rapidly with n and no exact closed form is
known for them. These numbers have been computed up to
n = 8; these values appear in Table 1.

n D(n)
0 2
1 3
2 6
3 20
4 168
5 7581
6 7828354
7 2414682040998
8 56130437228687557907788

Table 1. Known values of the Dedekind numbers D(n)

Remark. The Dedekind numbers are also the number of
monotone (more precisely, positive [5]) Boolean functions in
n variables. Clearly, the set of sufficient coalitions can be rep-
resented as the set of n-dimensional Boolean vectors which
give the value 1 to a monotone Boolean function, and con-
versely. Another application of the Dedekind numbers is in
game theory. They are the numbers of simple games with n
players in minimal winning form [16, 6].
One way of simplifying the study of the families of sufficient
coalitions consists in keeping only one representative of each
class of equivalent families of SC. Two families will be consid-
ered as equivalent, or isomorphic, if they can be transformed
one into the other just by permuting the labels of the criteria.
Consider e.g. the following family of minimal SC for n = 4:
{2, 4}, {2, 3}, {1, 3, 4}. It consists of 2 subsets of 2 criteria and
one of 3 criteria. There are 12 equivalent families that can
be obtained from this one, by permuting the criteria labels
(the criterion which does not show up in the set of 3 criteria
can be chosen in 4 different ways and the two criteria which

distinguish the two pairs can be chosen in 3 different ways).
The number R(n) of inequivalent families of SC is known for
n = 0 to n = 7 ([15], sequence A003182). R(7) was only re-
cently computed by Stephen and Yusun [14]. Table 2 lists the
known values of R(n).

n 0 1 2 3 4 5 6 7
R(n) 2 3 5 10 30 210 16353 490013148

Table 2. Number of inequivalent families of sufficient coalitions
of n criteria

Finally we recall Sperner’s theorem ([4], p.116-118), a result
that will be useful in the process of generating all possible
families of SC. The maximal size of an antichain in the power
set of a set of n elements is

(
n
bn/2c

)
. Hence the latter is the

maximal number of sets in a family of minimal SC.

3 Listing the families of minimal sufficient
coalitions

For generating all families of MSC and selecting a representa-
tive of each class of equivalent families, we follow a strategy
similar to the one used in [14]. We describe it briefly. The
families of MSC can be partitioned according to their type
(called “profile” in [14]). The type of a family of MSC is an in-
teger vector (k1, k2, . . . , kn), where ki represents the number
of coalitions of i criteria in the family. For instance, the fam-
ily {2, 4}, {2, 3}, {1, 3, 4}, for n = 4, is of the type (0, 2, 1, 0),
since it involves two coalitions of 2 criteria and one of 3 crite-
ria. For any feasible type,

∑n
i=1 ki ≤

(
n
bn/2c

)
, due to Sperner’s

theorem.
The listing algorithm roughly proceeds as follows:

1. generate all type vectors (k1, k2, . . . , kn) in lexicographic
increasing order;

2. for each type, generate all families of subsets of {1, 2, . . . , n}
having the right type and eliminate those that are not an-
tichains, i.e. those involving a subset that is included in
another subset;

3. for each type and for each family of this type, the list of
remaining families is screened for detecting families that
are equivalent, counting them and eliminating them from
the list of families of the type considered.

This algorithm outputs a list containing a representative of
each class of equivalent families of MSC for each type.
Example. For n = 3, the inequivalent families of MSC, with
their number of equivalent versions, are displayed in Table 3.

Remarks:

1. there exist two additional families which do not appear in
Table 3:

• the empty family, corresponding to the case in which no
coalition is sufficient, which means, for a sorting proce-
dure, that all objects are assigned to the “bad” category;

• the family of which the sole element is the empty set; this
means that all coalitions are sufficient, even the empty
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Type Representative # equivalent
(1,0,0) {{1}} 3
(2,0,0) {{1}, {2}} 3
(3,0,0) {{1}, {2}, {3}} 1
(0,1,0) {{1,2}} 3
(1,1,0) {{1}, {2, 3}} 3
(0,2,0) {{1, 3}, {2, 3}} 3
(0,3,0) {{1, 2}, {1, 3}, {2, 3}} 1
(0,0,1) {{1,2,3}} 1
Total 8 18

Table 3. Number of inequivalent families of minimal sufficient
coalitions

one, and consequently, all objects are sorted in the “good”
category.

Adding these two extreme cases to the counts in the last
line of Table 3 yields values that are consistent with Tables
2 and 1.

2. for n = 3, every possible class type has a single representa-
tive. For larger values of n, this is no longer the case. For
instance, for n = 4, we have 3 inequivalent representatives
for type (0, 3, 0, 0):

Type Representative # equivalent
(0,3,0,0) {{1, 3}, {1, 2}, {3, 4}} 12
(0,3,0,0) {{2, 4}, {1, 2}, {1, 4}} 4
(0,3,0,0) {{2, 4}, {3, 4}, {1, 4}} 4

These three inequivalent families are the three sorts of non-
isomorphic 3-edge graphs on 4 vertices.

3. in the sequel, in the absence of ambiguity, we shall drop the
brackets around the coalitions and the commas separating
the elements of a coalition in order to simplify the descrip-
tion of a family of SC; for instance, the first family of type
(0,3,0,0) above will be denoted by : {13, 12, 34} instead of
{{1, 3}, {1, 2}, {3, 4}}.

The algorithm sketched above can be made more efficient
by implementing the following properties (see [14], lemma 2.4
for a proof) linking the families of MSC.

1. There is a one-to-one correspondence between families con-
sisting exclusively of ki MSC of cardinality i and fami-
lies consisting exclusively of

(
n
i

)
− ki MSC of cardinality

i. In other terms, there is a bijection between the fami-
lies of the type (0, . . . , 0, ki, 0, . . . , 0) and these of the type
(0, . . . , 0,

(
n
i

)
−ki, 0, . . . , 0). For instance, in Table 3, gener-

ating family {12} of type (0,1,0), automatically yields fam-
ily {13, 23} of type (0,2,0). The number of representatives
in both types are identical (three, in the latter example).

2. If a family of MSC on n criteria contains at least one sin-
gleton, then the remaining MSC of the family do not in-
volve this criterion and hence belong to a type of family of
MSC on n − 1 criteria. In the example of n = 3, knowing
the families of MSC on 2 criteria allows to generate the
families on three criteria for which one criterion alone is a
sufficient coalition. For instance, if criterion 1 alone is suf-
ficient, one can build all families in which 1 is a MSC by
putting together with 1 each family of MSC on criteria 2
and 3, i.e.: {}, {2},{3},{2, 3} and {23}. This, however, will

not allow to directly compute the number of representatives
of each type, since some families, involving more than one
singleton as MSC, can be generated in several ways. For
instance, {1, 2} will be obtained both when starting from
the singleton 1 as a MSC and completing this family by
MSC included in {2, 3}, and, starting from the singleton 2
and completing this family by MSC extracted from {1, 3}.

3. There is a one-to-one correspondence between families of
MSC belonging to type (k1, k2, . . . , kn−1, 0) and these be-
longing to the “reverse” type (kn−1, . . . , k2, k1, 0). For in-
stance, starting from the family {1, 2} belonging to type
(2,0,0) and taking the complement of each MSC, one ob-
tains the family {23, 13}, which belongs to (0,2,0). This
correspondence allows to halve the computations for D(n)
and R(n).

Using this algorithm on a cluster, we have computed the list
of all inequivalent families of MSC for n = 2 to n = 6. The
results, grouped by type, are available at http://olivier.
sobrie.be/shared/mbfs/. For illustrative purposes, the case
n = 4 is in Appendix A.

4 Partitioning the families of sufficient
coalitions

4.1 Checking representability by a
k-additive capacity

Our main goal in this section is to partition the set of families
of MSC, for fixed n, in categories Ck, which are defined as
follows.

Definition 1 A family of sufficient coalitions belongs to class
Ck if

1. it is the set of all subsets A of {1, 2, . . . , n} satisfying an
inequality of the type: µ(A) ≥ λ, where µ is a normalized
k-additive capacity and λ a non-negative real number;

2. k is the smallest integer for which such an inequality is
valid.

It is clear that all equivalent families of MSC belong to the
same class Ck. Hence it is sufficient to check for one represen-
tative of each class of equivalent families of MSC whether or
not it belongs to Ck.

The checking strategy is the following. For each inequiv-
alent family of MSC (listed as explained in Section 3), we
iteratively check whether it belongs to class Ck, starting from
k = 1 and incrementing k until the test is positive (we know,
by proposition 1, that this will occur at the latest for k = n).
The test can be formulated as a linear program. Basically, we
have to write constraints imposing that µ(A) ≥ λ for each suf-
ficient coalition A and that the same inequality is not satisfied
for all other coalitions , which will be called insufficient coali-
tions. It is enough to write these sorts of constraints only for
the minimal sufficient coalitions and for the maximal insuffi-
cient coalitions. The set of minimal sufficient (resp. maximal
insufficient) coalitions will be denoted SCMin (resp. SIMax).
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To formulate the problem as a linear program, we use for-
mula (2), which expresses the value of the capacity µ as a
linear combination of its associated interaction function m.
This enables to control the parameter k which fixes the k-
additivity of the capacity. When checking whether a family
of MSC belongs to class Ck, we set the values of the vari-
ables m(B) to 0 for all sets B of cardinality superior to k;
the remaining values of the interaction function are the main
variables in the linear program. The following constitutes the
general scheme of the linear programs used for each class Ck:




max ε
µ(A) ≥ λ ∀A ∈ SCMin
µ(A) ≤ λ− ε ∀A ∈ SIMax
µ(A) =

∑

B⊆A

m(B) ∀A ∈ SCMin ∪ SIMax
∑

B:i∈B⊆A

m(B) ≥ 0 ∀i ∈ {1, 2, . . . , n}

and ∀A ⊆ {1, 2, . . . , n}∑

B⊆{1,2,...,n}
m(B) = 1

λ, ε ≥ 0

(4)

Note that the variables m(B) are not necessarily positive
(except for |B| = 1). To fix the ideas, we show how to instan-
tiate the third, fourth and fifth constraints in the cases k = 1
and k = 2.

• k = 1 : 1-additive capacity

. µ(A) =
∑

i∈Ami, ∀A ∈ SCMin ∪ SIMax

. mi ≥ 0, ∀i ∈ {1, 2, . . . , n}

.
∑

i∈{1,2,...,n}mi = 1,

where mi stands for m({i})
• k = 2 : 2-additive capacity

. µ(A) =
∑

i∈Ami +
∑

i,j∈A, i6=j mij , ∀A ∈ SCMin ∪
SIMax

. mi +
∑

j∈A, j 6=imij ≥ 0, ∀i ∈ {1, 2, . . . , n} and ∀A 3
i, A ⊆ {1, 2, . . . , n}

.
∑

i∈{1,2,...,n}mi +
∑

i,j∈{1,2,...,n}, i6=j mij = 1,

where mi stands for m({i}) and mij for m({i, j}).

Writing the constraints for the 3-additive case requires the
introduction of a third family of variables mijl for each subset
{i, j, l} of three different criteria (in addition to the already
introduced variables mi and mij).

4.2 Results
For n = 1 to 6 and for each family in the list of inequivalent
families of MSC, we checked whether this family belongs to
Ck, starting with k = 1 and incrementing its value until the
check is positive. The results are presented in Table 4 for the
number and proportion of inequivalent families in classes C2
and C3. The families that are not in these classes belong to

class C1. Up to n = 6, inclusively, there are no families in
classes C4 or above, which means that all families can be rep-
resented using a 3-additive capacity (in the worst case). Up to
n = 5, inclusively, 2-additive capacities are sufficient. Table
5 represents a similar information but each family in the list
of inequivalent families is weighted by the size of the equiva-
lence class it represents. In other words, this is the result that
would have been obtained by checking all families of MSC for
belonging to class C1, C2 or C3.

n R(n) C2 C3
0 2 0 (00.00 %) 0 (00.00 %)
1 3 0 (00.00 %) 0 (00.00 %)
2 5 0 (00.00 %) 0 (00.00 %)
3 10 0 (00.00 %) 0 (00.00 %)
4 30 3 (10.00 %) 0 (00.00 %)
5 210 91 (43.33 %) 0 (00.00 %)
6 16 353 15 240 (93.19 %) 338 (02.07 %)

Table 4. Number and proportion of inequivalent families of MSC
that are representable by a 2- or 3-additive capacity

n D(n) C2 C3
0 2 0 (00.00 %) 0 (00.00 %)
1 3 0 (00.00 %) 0 (00.00 %)
2 6 0 (00.00 %) 0 (00.00 %)
3 20 0 (00.00 %) 0 (00.00 %)
4 168 18 (10.71 %) 0 (00.00 %)
5 7 581 4 294 (56.64 %) 0 (00.00 %)
6 7 828 354 7 584 196 (96.88 %) 145 502 (01.86 %)

Table 5. Number and proportion of all families of MSC that are
representable by a 2- or 3-additive capacity

The information displayed in Table 4 (resp. 5) is repre-
sented in graphical form in Figure 1 (resp. 2). The cases of
0, 1 and 2 criteria are not represented since all families can
be represented by a 1-additive capacity. These figures clearly
show that the proportion of families that can be represented
by means of a 1-additive capacity, i.e. by additive weights,
decreases quite rapidly with the number of criteria. In con-
trast, the proportion of families that can be represented by a
2-additive capacity grows up to more than 93% from n = 3 to
n = 6. The proportions slightly differ depending on whether
only inequivalent families or all families are taken into ac-
count. One can observe that the proportion of families in class
C2 is a bit larger when considering all families (Table 5 and
Figure 2).
Examples. As a matter of illustration, we describe a few ex-
amples for n = 4 and n = 6. The list of all inequivalent
MSC for n = 5, which are not representable by a 1-additive
capacity, is in appendix B. The categorization in classes Ck
is available at http://olivier.sobrie.be/shared/mbfs/ for
n = 4, 5, 6.

1. Here are the three families of MSC on 4 criteria that cannot
be represented using a 1-additive capacity (they can be by
a 2-additive capacity).
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Figure 1. Proportion of inequivalent families of MSC in classes
C1, C2, C3
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Figure 2. Proportion of all families of MSC in classes C1, C2, C3

Type Representative # equivalent
(0,2,0,0) {23, 14} 3
(0,3,0,0) {13, 12, 34} 12
(0,4,0,0) {13, 14, 23, 24} 3

These three inequivalent families yield, by permutations of
the criteria labels, a total of 18 families that can only be
represented using a 2-additive capacity.
The last inequivalent family is precisely the example that
we used in Section 1 to show that not all families of SC
can be represented by a 1-additive capacity. In contrast, it
can be represented, for instance, by setting m1 = m2 =
m3 = m4 = 1/6 and m13 = m14 = m23 = m24 = 1/12,
while the other pairwise interactions m12 and m34 are set
to 0. We then have: µ(13) = µ(14) = µ(23) = µ(24) = 5/12
while µ(12) = µ(34) = 4/12. Setting the threshold λ to
9/24 allows to separate the sufficient coalitions from the
insufficient. This representation is by no means unique. We
construct another capacity by setting m1 = m2 = m3 =
m4 = 1/3, m12 = m34 = −1/6 and m13 = m14 = m23 =
m24 = 0. We have: µ(13) = µ(14) = µ(23) = µ(24) = 2/3
while µ(12) = µ(34) = 1/2. Setting the threshold λ to 7/12
also separates the sufficient from the insufficient coalitions.
Note that the second example, a family of type (0,3,0,0)
already appeared in Remark 2 after Table 3. In this case
all inequivalent families of the type (0,3,0,0) belong to the
same class C2 (see Appendix A). This is not always the case.
For n = 5, there are for instance six different inequivalent
families of the type (0,0,4,0,0), four of which are repre-
sentable by a 2-additive capacity (and not by a 1-additive
capacity; see Appendix B), while the remaining two are rep-
resentable by a 1-additive capacity. There are many more
examples with 5 criteria.
Note also that the first and the last example are comple-
mentary in the sense of the first property allowing to speed
up the enumeration of the families of MSC described at the
end of Section 3. Both these families are composed of pairs
of criteria; the two pairs in the first family are disjoint from
the four in the third family and all pairs are either in one
or the other family. In such a situation, it is clear that both
families belong to the same class Ck.

2. Here are two examples of inequivalent families of MSC on
6 criteria that are not representable by a 2-additive ca-
pacity but require a 3-additive capacity. There are 338
such inequivalent families which yield, through permuta-
tions, a total of 145 502 families6. A simple example is of
the type (0,0,4,0,0,0). The MSC are {136, 234, 125, 456}.
There are 30 equivalent families that can be derived from
this family by permutation. Another, much more com-
plex example is of the type (0,1,7,1,0,0). The MSC are
{135, 256, 345, 36, 234, 456, 1245, 146, 123}. There are 360
families that are equivalent to this one through permuta-
tions.
In the 338 families, no MSC consists of a single criterion;

6 If all permutations of the criteria labels were yielding differ-
ent families, the total number of families would be 338 × 720 =
243 360
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none of them involves 5 criteria. The largest number of
MSC in a family is 16, the maximal cardinality of a family
of MSC on 6 criteria being the Sperner number 20.

5 Usefulness of this analysis
5.1 Applications
The above results, although limited to 6 criteria, maybe useful
for different purposes, mainly related to the choice of a sorting
model and to simulation.

5.1.1 Choice of a sorting model

In the introduction, we argued that the MR-Sort model might
not be sufficiently flexible to accommodate certain assignment
rules of interest. The quick decrease with n (illustrated by Fig-
ures 1 and 2) of the proportion of rules that can be represented
by an inequality comparing a sum of weights to a threshold
(corresponding to families of MSC in class C1) shows that
it may indeed be useful to consider more general rules. For
n = 4, only 18 rules in a total of 168 cannot be represented by
a 1-additive capacity. For 5 criteria, there is no need to con-
sider more complicated models than these using a 2-additive
capacity. And for n = 6, in most of the cases (93% in terms of
inequivalent families of MSC and more than 96% if we con-
sider all families of MSC), a 2-additive capacity is enough.
These considerations are important in the case one wants to
learn a Capacitive-MR-Sort model (i.e. a NCS model with-
out veto) as in [13]. Knowing the minimal value of k enabling
to represent the set of MSC on n criteria allows to limit the
number of parameters (the interaction function m) that have
to be elicited or learned on the basis of examples.

Obviously, in many applications, the number of criteria may
exceed 6 and it would therefore be useful to extend the anal-
ysis for n > 6. Using the same methods as we did, it could be
possible to solve the case n = 7. But from n = 8 on, meth-
ods based on enumeration become impracticable: the number
R(8) of inequivalent families of MSC is not even known. Alter-
native approaches would consist in trying to find bounds on
the cardinal of the classes Ck or to obtain characterizations of
the families in the different classes and use these to generate
examples, whenever they exist, in the various categories.

5.1.2 Simulation

Recently, methods have been proposed to learn variants of
the ELECTRE TRI sorting model on the basis of assignment
examples [7, 18, 12, 13]. It has also been done [8] for a rank-
ing method based on reference points proposed by Rolland
[9, 3]. Consider e.g. a learning algorithm designed to learn a
MR-Sort model, as in [12]. Real data sets can be used to test
the performance of the algorithm. But for learning algorithms
which aim at selecting a rule in a specific family of sorting
rules, it is also needed to perform the following test, with arti-
ficial data. When a set of assignment examples is generated by
a known MR-Sort model, we would like to verify that the algo-
rithm, when applied to these examples, learns a model similar

to the original one. If some noise is added to the learning set,
one expects that the algorithm remains robust. In order to de-
sign such tests, we have to draw at random a MR-Sort model,
i.e. the profiles, the criteria weights and a threshold. Drawing
the profiles and the threshold at random does not raise major
problems. An algorithm for drawing weights summing up to
1 in a uniform way is also well-known [11].

In order to perform the same type of tests in the case of
the Capacitive-MR-Sort model (or the NCS model without
veto), we are facing a difficulty. How can one draw at random
a capacity, or more particularly a k-additive capacity? How
can one define a uniform distribution on the set of capaci-
ties? On second thought, we moved to another formulation
of this question. What we have to do is to draw at random,
uniformly (in some sense), a MR-Sort rule or a Capacitive-
MR-Sort rule, not a capacity. And this makes a difference,
since the representation of a Capacitive-MR-Sort rule by an
inequality involving a capacity and a threshold is not unique
(as observed previously), hence there is a representation bias
in this way of proceeding. Note that this remark also applies
to drawing at random an MR-Sort model. The alternative is
thus to select a rule at random, i.e. a family of MSC. That’s
what our results allow to do, up to n = 6. There is no need to
test the algorithm for several equivalent versions of the same
rule (i.e. for families of MSC that only differ by a permu-
tation of the criteria labels). We can thus sample the set of
inequivalent families (each weighted proportionally to the size
of its equivalence class). To draw a rule uniformly at random
from the set of all Capacitive-MR-Sort rules on n criteria (for
n ≤ 6), proceed as follows:

1. prepare a file in which all inequivalent families of MSC on
criteria are listed together with the size of their equivalence
class; let yl denote the lth family and sl the size of its
equivalence class, for l = 1, . . . R(n);

2. scan this list and sequentially assign to each family yl an
interval of sl consecutive integer numbers: yl is assigned
the interval [Nl, Nl + sl − 1], where Nl =

∑l−1
j=1 sj + 1;

3. draw uniformly at random an integer number N between 1
and NR(n);

4. find l such that N belongs to the interval [Nl, Nl + sl − 1]
and retrieve the representative of the family of MSC that
occupies the lth position in the list.

Note that the lists of inequivalent families also permit to con-
sider non-uniform distributions and to draw at random from
them according to an arbitrary probability distribution on the
families.

6 Conclusion
In this work, we explored the families of minimal sufficient
coalitions as they appear in sorting models such as MR-Sort
and Capacitive-MR-Sort. This exploration is limited to small
numbers of criteria because of the huge number of such mod-
els. Our goal was at least twofold:

1. to have at disposal and make generally available a detailed
picture of the possible families of sufficient coalitions for
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as large as possible numbers of criteria; this information
could help further investigations related in particular to the
characterization of the families of sufficient coalitions that
can be separated from the insufficient ones by an inequality
involving a k-additive capacity.

2. to have at disposal and make generally available a list of
the possible sorting rules in the NCS model, in order to
enable to draw a rule at random according to any specified
probability distribution and use it in simulations. The space
needed to store these lists and the time to scan them can be
reduced, at least somewhat, by retaining only inequivalent
rules.

Further efforts in the future could lead to obtain the list of
inequivalent families of sufficient coalitions for n = 7. Another
interesting topic is the theoretical study of the different classes
Ck. Alternatively, other approaches to subdividing the set of
all families of sufficient coalitions could be of practical and
theoretical interest.
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Appendix
A List of inequivalent families of MSC for

n = 4

The families are grouped by type. There are 25 possible types,
29 inequivalent families of MSC (plus the trivial case in which
all coalitions are sufficient) and 167 families of MSC (plus
the same trivial case). Each inequivalent family in the list is
associated the size of its equivalence class. All inequivalent
families, except three of them, can be represented by a 1-
additive capacity. The three other families can be represented
by a 2-additive capacity. They are marked in the last column
by C2.

Type Family of MSC # eq. Ck
(0,0,0,0) {} 1
(0,0,0,1) {1234} 1
(0,0,1,0) {124} 4
(0,0,2,0) {234, 124} 6
(0,0,3,0) {134, 123, 124} 4
(0,0,4,0) {134, 123, 234, 124} 1
(0,1,0,0) {24} 6
(0,1,1,0) {14, 123} 12
(0,1,2,0) {24, 134, 123} 6
(0,2,0,0) {12, 23} 12

{23, 14} 3 C2
(0,2,1,0) {24, 134, 23} 12
(0,3,0,0) {13, 12, 34} 12 C2

{24, 12, 14} 4
{24, 34, 14} 4

(0,3,1,0) {13, 34, 23, 124} 4
(0,4,0,0) {24, 12, 13, 34} 3 C2

{24, 12, 14, 23} 12
(0,5,0,0) {24, 12, 14, 13, 34} 6
(0,6,0,0) {24, 12, 14, 34, 23, 13} 1
(1,0,0,0) {1} 4
(1,0,1,0) {234, 1} 4
(1,1,0,0) {14, 2} 12
(1,2,0,0) {13, 34, 2} 12
(1,3,0,0) {24, 34, 23, 1} 4
(2,0,0,0) {4, 3} 6
(2,1,0,0) {4, 23, 1} 6
(3,0,0,0) {4, 2, 1} 4
(4,0,0,0) {4, 2, 3, 1} 1

B List of inequivalent families of MSC of
class C2 for n = 5

We list below the 91 inequivalent families of MSC that cannot
be represented by a 1-additive capacity. They can all be rep-
resented using a 2-additive capacity. The families are grouped
by type. Each inequivalent family in the list is associated the
size of its equivalence class.

Type Family of MSC # eq.
(0,0,2,0,0) {135, 234} 15
(0,0,2,1,0) {234, 125, 1345} 15
(0,0,3,0,0) {145, 123, 345} 30

{235, 234, 125} 60
(0,0,3,1,0) {134, 135, 2345, 124} 60
(0,0,4,0,0) {145, 234, 345, 124} 15

{135, 245, 234, 125} 60
{235, 145, 135, 123} 60
{134, 345, 234, 125} 10

(0,0,4,1,0) {245, 123, 234, 125, 1345} 15
(0,0,5,0,0) {235, 134, 135, 345, 125} 60

{235, 134, 135, 245, 124} 12
{235, 145, 134, 245, 124} 60
{145, 134, 123, 234, 125} 60

(0,0,6,0,0) {135, 235, 234, 125, 145, 123} 15
{135, 345, 234, 125, 245, 123} 10
{345, 235, 234, 125, 124, 134} 60
{135, 345, 235, 125, 124, 145} 60

(0,0,7,0,0) {345, 234, 125, 145, 134, 245, 123} 30
{135, 235, 125, 124, 145, 134, 245} 60

(0,0,8,0,0) {135, 345, 234, 125, 124, 145, 245, 123} 15
(0,1,1,0,0) {123, 45} 10
(0,1,2,0,0) {15, 123, 345} 60

{12, 134, 345} 60
(0,1,3,0,0) {235, 14, 123, 125} 60

{13, 235, 145, 124} 60
{235, 14, 123, 245} 60
{24, 134, 135, 123} 30

(0,1,4,0,0) {235, 15, 245, 123, 234} 120
{135, 123, 25, 345, 124} 60
{235, 34, 145, 125, 124} 60
{24, 235, 135, 123, 125} 20

(0,1,5,0,0) {345, 235, 15, 234, 134, 123} 30
{235, 125, 124, 145, 34, 123} 60
{24, 135, 345, 235, 125, 123} 60

(0,1,6,0,0) {24, 135, 345, 235, 145, 134, 123} 60
(0,2,0,0,0) {34, 15} 15
(0,2,1,0,0) {12, 35, 234} 60

{145, 23, 25} 60
(0,2,2,0,0) {24, 13, 125, 345} 30

{24, 12, 135, 345} 30
{134, 23, 35, 124} 60
{13, 12, 245, 234} 120
{12, 245, 35, 234} 60

(0,2,3,0,0) {15, 23, 134, 345, 124} 60
{45, 134, 135, 234, 25} 120
{135, 123, 45, 125, 14} 60
{24, 235, 14, 345, 135} 30
{24, 34, 135, 123, 125} 60

(0,2,4,0,0) {135, 235, 14, 234, 123, 45} 60
{14, 35, 234, 125, 245, 123} 15
{24, 135, 235, 125, 34, 123} 30
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Type Family of MSC # eq.
(0,3,0,0,0) {12, 14, 45} 60

{12, 34, 45} 30
(0,3,1,0,0) {24, 145, 23, 25} 60

{34, 14, 35, 125} 60
{34, 245, 23, 14} 120
{34, 14, 123, 25} 60

(0,3,2,0,0) {15, 14, 123, 25, 345} 60
{24, 12, 134, 35, 145} 30
{13, 23, 245, 125, 14} 120
{15, 45, 123, 234, 25} 60

(0,3,3,0,0) {24, 135, 145, 134, 23, 25} 20
{12, 35, 234, 145, 13, 245} 60

(0,4,0,0,0) {34, 15, 14, 35} 15
{24, 15, 23, 25} 60
{24, 34, 15, 23} 10
{24, 34, 15, 35} 60

(0,4,1,0,0) {13, 34, 35, 25, 145} 60
{24, 13, 15, 25, 345} 60
{13, 15, 23, 25, 345} 30
{34, 14, 45, 125, 23} 60

(0,4,2,0,0) {24, 12, 35, 145, 134, 23} 60
{24, 35, 145, 34, 25, 123} 15

(0,5,0,0,0) {24, 13, 15, 23, 14} 60
{24, 12, 15, 35, 25} 60
{24, 12, 15, 35, 34} 12
{12, 15, 34, 25, 45} 60

(0,5,1,0,0) {135, 12, 14, 34, 23, 25} 60
{15, 35, 124, 23, 13, 45} 60

(0,6,0,0,0) {24, 12, 23, 25, 13, 45} 15
{24, 12, 35, 34, 25, 13} 10
{24, 12, 34, 23, 13, 45} 60
{15, 14, 34, 23, 25, 45} 60

(0,6,1,0,0) {24, 12, 35, 145, 34, 25, 13} 10
(0,7,0,0,0) {12, 14, 34, 23, 25, 13, 45} 30

{24, 12, 15, 14, 35, 34, 45} 60
(0,8,0,0,0) {24, 12, 15, 34, 23, 25, 13, 45} 15
(1,2,0,0,0) {34, 15, 2} 15
(1,3,0,0,0) {24, 15, 3, 25} 60
(1,4,0,0,0) {13, 2, 14, 35, 45} 15
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Session 8

• Invited speaker: “Surrogate loss functions for preference learning”,
Krzysztof Dembczynski,
Poznan University of Technology, Poland,
In preference learning we use a variety of different performance measures to train and test
prediction models. The most popular measures are pairwise disagreement (also referred to as
rank loss), discounted cumulative gain, average precision, and expected reciprocal rank. Un-
fortunately, these measures are usually neither convex nor differentiable, so their optimiza-
tion becomes a hard computational problem. However, instead of optimizing them directly
we can reformulate the problem and use surrogate or proxy loss functions which are easier
to minimize. A natural question arises whether optimization of a surrogate loss provides a
near-optimal solution for a given performance measure. For some of the performance mea-
sures the answer is positive, but in the general case the answer is rather negative. During the
tutorial we will discuss several results obtained so far.
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Poster session

• “An Arrow-like theorem over median algebras”,
Miguel Couceiro1 and Bruno Teheux2,
1 LAMSADE, Université Paris-Dauphine,
2 Université du Luxembourg

• “A Metaheuristic Approach for Preference Learning in Multi-Criteria Ranking based on Ref-
erence Points”,
Jinyan Liu, Wassila Ouerdane, Vincent Mousseau,
LGI, Ecole Centrale Paris

• “Inferring the parameters of a majority rule sorting model with vetoes on large datasets”,
Alexandru-Liviu Olteanu, Patrick Meyer,
Telecom Bretagne

• “A Dataset Repository for Benchmark in MCDA”,
Antoine Rolland and Thi-Minh-Thuy Tran,
Lab. ERIC, Université Lyon 2

• “User Experience Driven Design of MCDA Problems with DecisionCloud”,
Michel Zam1,2, Meltem Ozturk2 and Brice Mayag2,
1 KarmicSoft Research,
2 LAMSADE, Université Paris-Dauphine
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An Arrow-like theorem over median algebras
Miguel Couceiro1 and Bruno Teheux 2

Abstract. We present an Arrow-like theorem for aggrega-
tion functions over convervative median algebras. In doing
so, we give a characterization of conservative median algebras
by means of forbidden substructures and by providing their
representation as chains.

1 Introduction and preliminaries

Informally, an aggregation function f : An → B is a mapping
that preserves the structure of A into B. Usually, B is taken
equal to A and is equipped with a partial order so that ag-
gregation functions are thought of as order-preserving maps
[7]. In this paper, we are interested in aggregation functions
f : An → A that satisfy the functional equation

f(m(x,y, z)) = m(f(x), f(y), f(z)), (1.1)

where A = 〈A,m〉 is a median algebra, that is, an algebra
with a single ternary operation m, called a median function,
that satisfies the equations

m(x, x, y) = x,

m(x, y, z) = m(y, x, z) = m(y, z, x),

m(m(x, y, z), t, u) = m(x,m(y, t, u),m(z, t, u)),

and that is extended to An componentwise. In particular,
every median algebra satisfies the equation

m(x, y,m(x, y, z)) = m(x, y, z). (1.2)

An example of median function is the term function

m(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (z ∧ y) (1.3)

over a distributive lattice. The motivation for considering
(1.1) is rooted in its natural interpretation in social choice:
the score of the median profile is the median of the scores of
the profiles.

Median algebras have been investigated by several authors
(see [4, 9] for early references on median algebras and see
[2, 10] for some surveys) who illustrated the deep interactions
between median algebras, order theory and graph theory.

1 LAMSADE - CNRS, Université Paris-Dauphine, Place du
Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France,
and LORIA (CNRS – Inria Nancy Grand Est – Université
de Lorraine), BP239, 54506 Vandoeuvre les Nancy, France,
miguel.couceiro[at]inria.fr

2 Mathematics Research Unit, FSTC, University of Luxembourg,
6, rue Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg,
bruno.teheux[at]uni.lu

For instance, take an element a of a median algebra A and
consider the relation ≤a defined on A by

x ≤a y ⇐⇒ m(a, x, y) = x.

Endowed with this relation, A is a ∧-semilattice order with
bottom element a [13]: the associated operation ∧ is defined
by x ∧ y = m(a, x, y).

Semilattices constructed in this way are calledmedian semi-
lattices, and they coincide exactly with semilattices in which
every principal ideal is a distributive lattice and in which
any three elements have a join whenever each pair of them is
bounded above. The operation m on A can be recovered from
the median semilattice order ≤a using identity (1.3) where ∧
and ∨ are defined with respect to ≤a.

Note that if a median algebra A contains two elements 0
and 1 such that m(0, x, 1) = x for every x ∈ A, then (A,≤0) is
a distributive lattice order bounded by 0 and 1, and where x∧y
and x∨ y are given by m(x, y, 0) and m(x, y, 1), respectively.
Conversely, if L = 〈L,∨,∧〉 is a distributive lattice, then the
term function defined by (1.3) is denoted by mL and gives rise
to a median algebra on L, called the median algebra associated
with L. It is noteworthy that equations satisfied by median
algebras of the form 〈L,mL〉 are exactly those satisfied by
median algebras. In particular, every median algebra satisfies
the equation

m(x, y, z) = m
(
m
(
m(x, y, z), x, t

)
,

m
(
m(x, y, z), z, t

)
,m
(
m(x, y, z), y, t

))
. (1.4)

Moreover, covering graphs (i.e., undirected Hasse dia-
gram) of median semilattices have been investigated and are,
in a sense, equivalent to median graphs. Recall that a median
graph is a (non necessarily finite) connected graph in which
for any three vertices u, v, w there is exactly one vertex x that
lies on a shortest path between u and v, on a shortest path
between u and w and on a shortest path between v and w. In
other words, x (the median of u, v and w) is the only vertex
such that

d(u, v) = d(u, x) + d(x, v),

d(u,w) = d(u, x) + d(x,w),

d(v, w) = d(v, x) + d(x,w).

Every median semilattice whose intervals are finite has a
median covering graph [1] and conversely, every median graph
is the covering graph of a median semilattice [1, 13]. This
connection is deeper: median semilattices can be characterized
among the ordered sets whose bounded chains are finite and
in which any two elements are bounded below as the ones
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whose covering graph is median [3]. For further background
see, e.g., [2].

Here we are particularly interested in solving equation (1.1)
for median algebras A that are conservative, i.e., that satisfy

m(x, y, z) ∈ {x, y, z}, x, y, z ∈ A. (1.5)

This property essentially states that the aggregation proce-
dure (in this case, a median) should pick one of its entries
(e.g., the median candidate is one of the candidate).

Semilattices associated with conservative median algebras
are called conservative median semilattices. It is not difficult
to verify that a median algebra is conservative if and only if
each of its subsets is a median subalgebra. Moreover, if L is
a chain, then mL satisfies (1.5); however the converse is not
true. This fact was observed in §11 of [12], which presents the
four element Boolean algebra as a counter-example.

The results of this paper are twofold. First, we present a
description of conservative median algebras in terms of for-
bidden substructures (in complete analogy with Birkhoff’s
characterization of distributive lattices with M5 and N5 as
forbidden substructures and Kuratowski’s characterization
of planar graphs in terms of forbidden minors), and that leads
to a representation of conservative median algebras (with at
least five elements) as chains. In fact, the only conservative
median algebra that is not representable as a chain is the four
element Boolean algebra.

Second, we characterize functions f : B → C that satisfy
the equation

f(m(x, y, z)) = m(f(x), f(y), f(z)), (1.6)

where B and C are finite products of (non necessarily finite)
chains, as superposition of compositions of monotone maps
with projection maps (Theorem 3.5). Particularized to aggre-
gation functions f : An → A, where A is a chain, we obtain
an Arrow-like theorem: f satisfies equation (1.1) if and only
if it is dictatorial and monotone (Corollary 3.6).

Throughout the paper we employ the following notation.
For each positive integer n, we set [n] = {1, . . . , n}. Algebras
are denoted by bold roman capital letters A,B,X,Y . . . and
their universes by italic roman capital letters A,B,X, Y . . ..
To simplify our presentation, we will keep the introduction of
background to a minimum, and we will assume that the reader
is familiar with the theory of lattices and ordered sets. We re-
fer the reader to [6, 8] for further background. To improve the
readability of the paper, we adopt the rather unusual conven-
tion that in any distributive lattice the empty set is a prime
filter and a prime ideal. Proofs of the results presented in the
third section are omitted because they rely on arguments in-
volving a categorical duality that are beyond the scope of this
paper.

2 Characterizations of conservative median
algebras

Let C0 = 〈C0,≤0, c0〉 and C1 = 〈C1,≤1, c1〉 be chains with
bottom elements c0 and c1. The ⊥-coalesced sum C0⊥C1 of
C0 and C1 is the poset obtained by amalgamating c0 and c1
in the disjoint union of C0 and C1. Formally,

C0⊥C1 = 〈C0 t C1 /≡, ≤
〉
,

where t is the disjoint union, where ≡ is the equivalence gen-
erated by {(c0, c1)} and where ≤ is defined by

x/≡ ≤ y/≡ ⇐⇒ (x ∈ {c0, c1} or x ≤0 y or x ≤1 y).

Proposition 2.1. The partially ordered sets A1, . . . ,A4 de-
picted in Fig. 1 are not conservative median semilattices.

•z′
•
a

•x •y

•z

(a) A1

•
a

•x

•y •z

(b) A2

•z
′

•
a

•x •y

•z

(c) A3

•z′

•
a

•x •y

•z

(d) A4

Figure 1. Examples of ∧-semilattices that are not conservative.

Proof. The poset A1 is a bounded lattice (also denoted by
N5 in the literature on lattice theory, e.g., in [6, 8]) that is
not distributive. In A2 the center is equal to the median of
the other three elements. The poset A3 contains a copy of
A2, and A4 is a distributive lattice that contains a copy of
the dual of A2 and thus it is not conservative as a median
algebra.

The following Theorem provides descriptions of conserva-
tive semilattices with at least five elements, both in terms of
forbidden substructures and in the form of representations by
chains. Note that any semillatice with at most four elements
is conservative, but the poset depicted in Fig. 1(b).

Theorem 2.2. Let A be a median algebra with |A| ≥ 5. The
following conditions are equivalent.

(1) A is conservative.
(2) For every a ∈ A the ordered set 〈A,≤a〉 does not contain a

copy of the poset depicted in Fig. 1(b).
(3) There is an a ∈ A and lower bounded chains C0 and C1

such that 〈A,≤a〉 is isomorphic to C0⊥C1.
(4) For every a ∈ A, there are lower bounded chains C0 and

C1 such that 〈A,≤a〉 is isomorphic to C0⊥C1.

Proof. (1) =⇒ (2): Follows from Proposition 2.1.
(2) =⇒ (1): Suppose that A is not conservative, that is,

there are a, b, c, d ∈ A such that d := m(a, b, c) 6∈ {a, b, c}.
Clearly, a, b and c must be pairwise distinct. By (1.2), a and
b are ≤c-incomparable, and d <c a and d <c b. Moreover,
c <c d and thus 〈{a, b, c, d},≤c〉 is a copy of A2 in 〈A,≤c〉.

(1) =⇒ (4): Let a ∈ A. First, suppose that for every
x, y ∈ A\{a} we have m(x, y, a) 6= a. Since A is conservative,
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for every x, y ∈ A, either x ≤a y or y ≤a x. Thus ≤a is a chain
with bottom element a, and we can choose C1 = 〈A,≤a, a〉
and C2 = 〈{a},≤a, a〉.

Suppose now that there are x, y ∈ A \ {a} such that
m(x, y, a) = a, that is, x ∧ y = a. We show that

z 6= a =⇒
(
m(x, z, a) 6= a or m(y, z, a) 6= a

)
, z ∈ A. (2.1)

For the sake of a contradiction, suppose that m(x, z, a) = a
and m(y, z, a) = a for some z 6= a. By equation (1.4), we have

m(x, y, z) = m
(
m
(
m(x, y, z), x, a

)
,

m
(
m(x, y, z), z, a

)
,m
(
m(x, y, z), y, a

))
. (2.2)

Assume that m(x, y, z) = x. Then (2.2) is equivalent to

x = m(x,m(x, z, a),m(x, y, a)) = a,

which yields the desired contradiction. By symmetry, we de-
rive the same contradiction in the case m(x, y, z) ∈ {y, z}.

We now prove that

z 6= a =⇒
(
m(x, z, a) = a or m(y, z, a) = a

)
, z ∈ A. (2.3)

For the sake of a contradiction, suppose that m(x, z, a) 6= a
and m(y, z, a) 6= a for some z 6= a. Since m(x, y, a) = a we
have that z 6∈ {x, y}.

If m(x, z, a) = z and m(y, z, a) = y, then y ≤a z ≤a x
which contradicts x ∧ y = a. Similarly, if m(x, z, a) = z and
m(y, z, a) = z, then z ≤a x and z ≤a y which also contradicts
x ∧ y = a. The case m(x, z, a) = x and m(y, z, a) = z leads
to similar contradictions.

Hence m(x, z, a) = x and m(y, z, a) = y, and the
≤a-median semilattice arising from the subalgebra B =
{a, x, y, z} of A is the median semilattice associated with the
four element Boolean algebra. Let z′ ∈ A \ {a, x, y, z}. By
(2.1) and symmetry we may assume that m(x, z′, a) ∈ {x, z′}.
First, suppose that m(x, z′, a) = z′. Then 〈{a, x, y, z, z′},≤a〉
is N5 (Fig. 1(a)) which is not a median semilattice. Suppose
then that m(x, z′, a) = x. In this case, the restriction of ≤a
to {a, x, y, z, z′} is depicted in Fig. 1(c) or 1(d), which contra-
dicts Proposition 2.1, and the proof of (2.3) is thus complete.

Now, let C0 = {z ∈ A | (x, z, a) 6= a}, C1 = {z ∈ A |
(y, z, a) 6= a} and let C0 = 〈C0,≤a, a〉 and C1 = 〈C1,≤a, a〉.
It follows from (2.1) and (2.3) that 〈A,≤a〉 is isomorphic to
C0⊥C1.

(4) =⇒ (3): Trivial.
(3) =⇒ (1): Let x, y, z ∈ C0⊥C1. If x, y, z ∈ Ci for some

i ∈ {0, 1} then m(x, y, z) ∈ {x, y, z}. Otherwise, if x, y ∈ Ci
and z 6∈ Ci, then m(x, y, z) ∈ {x, y}.

The equivalence between (3) and (1) gives rise to the fol-
lowing representation of conservative median algebras.

Theorem 2.3. Let A be a median algebra with |A| ≥ 5. Then
A is conservative if and only if there is a totally ordered set
C such that A is isomorphic to 〈C,mC〉.
Proof. Sufficiency is trivial. For necessity, consider the uni-
verse of C0⊥C1 in condition (3) endowed with ≤ defined by
x ≤ y if x ∈ C1 and y ∈ C0 or x, y ∈ C0 and x ≤0 y or
x, y ∈ C1 and y ≤1 x.

As stated in the next result, the totally ordered set C given
in Theorem 2.3 is unique, up to (dual) isomorphism.

Theorem 2.4. Let A be a median algebra. If C and C′ are
two chains such that A ∼= 〈C,mC〉 and A ∼= 〈C′,mC′〉, then
C is order isomorphic or dual order isomorphic to C′.

3 Homomorphisms between conservative
median algebras

In view of Theorem 2.3 and Theorem 2.4, we introduce the
following notation. Given a conservative median algebra A
(|A| ≥ 5), we denote a chain representation of A by C(A),
that is, C(A) is a chain such that A ∼= 〈C(A),mC(A)〉,
and we denote the corresponding isomorphism by fA : A →
〈C(A),mC(A)〉. If f : A → B is a map between two conser-
vative median algebras with at least five elements, the map
f ′ : C(A)→ C(B) defined as f ′ = fB ◦ f ◦ f−1

A is said to be
induced by f .

A function f : A → B between median algebras A and B
is called a median homomorphism if it satisfies equation (1.6).
We use the terminology introduced above to characterize me-
dian homomorphisms between conservative median algebras.
Recall that a map between two posets is monotone if it is
isotone or antitone.

Theorem 3.1. Let A and B be two conservative median
algebras with at least five elements. A map f : A → B
is a median homomorphism if and only if the induced map
f ′ : C(A)→ C(B) is monotone.

Corollary 3.2. Let C and C′ be two chains. A map f : C→
C′ is a median homomorphism if and only if it is monotone.

Remark 3.3. Note that Corollary 3.2 only holds for chains.
Indeed, Fig. 2(a) gives an example of a monotone map that is
not a median homomorphism, and Fig. 2(b) gives an example
of median homomorphism that is not monotone.

•

•

•

•

•

•

(a) A monotone map which
is not a median homomor-
phism.

•

•

• •

•

•

•

•

•

(b) A median homomorphism
which is not monotone.

Figure 2. Examples for Remark 3.3.

Since the class of conservative median algebras is clearly
closed under homomorphic images, we obtain the following
corollary.
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Corollary 3.4. Let A and B be two median algebras and
f : A → B. If A is conservative, and if |A|, |f(A)| ≥ 5,
then f is a median homomorphism if and only if f(A) is
a conservative median subalgebra of B and the induced map
f ′ : C(A)→ C(f(A)) is monotone.

We are actually able to lift the previous result to finite
products of chains. If fi : Ai → A′i (i ∈ [n]) is a family of
maps, let (f1, . . . , fn) : A1 × · · · × An → A′1 × · · · × A′n be
defined by

(f1, . . . , fn)(x1, . . . , xn) := (f1(x1), . . . , fn(xn)).

If A = A1×· · ·×An and i ∈ [n], then we denote the projection
map from A onto Ai by πAi , or simply by πi if there is no
danger of ambiguity.

The following theorem characterizes median homomor-
phisms between finite products of chains.

Theorem 3.5. Let A = C1×· · ·×Ck and B = D1×· · ·×Dn

be two finite products of chains. Then f : A→ B is a median
homomorphism if and only if there exist σ : [n] → [k] and
monotone maps fi : Cσ(i) → Di for i ∈ [k] such that f =
(fσ(i), . . . , fσ(k)).

As an immediate consequence, it follows that aggregation
functions compatible with median functions on ordinal scales
are dictorial.

Corollary 3.6. Let C1, . . . ,Cn and D be chains. A map f :
C1×· · ·×Cn → D is a median homomorphism if and only if
there is a j ∈ [n] and a monotone map g : Cj → D such that
f = g ◦ πj.

In the particular case of Boolean algebras (i.e., powers of a
two element chain), Theorem 3.5 can be restated as follows.

Corollary 3.7. Assume that f : A → B is a map between
two finite Boolean algebras A ∼= 2n and B ∼= 2m .

1. The map f is a median homomorphism if and only if there
are σ : [m]→ ([n] ∪ {⊥}) and ε : [m]→ {id,¬} such that

f : (x1, . . . , xn) 7→ (ε1xσ1 , . . . , εmxσm),

where x⊥ is defined as the constant map 0.

In particular,

2. A map f : A→ 2 is a median homomorphism if and only if
it is a constant function, a projection map or the negation
of a projection map.

3. A map f : A→ A is a median isomorphism if and only if
there is a permutation σ of [n] and an element ε of {id,¬}n
such that f(x1, . . . , xn) = (ε1xσ(1), . . . , εnxσ(n)) for any
(x1, . . . , xn) in A.
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A Metaheuristic Approach for Preference Learning in
Multi-Criteria Ranking based on Reference Points

Jinyan Liu, Wassila Ouerdane, Vincent Mousseau 1

Abstract. In this paper, we are interested in a family of multi-
criteria ranking methods called Ranking with Multiple reference
Points (RMP). This method is based on pairwise comparisons, but
instead of directly comparing any pair of alternatives, it compares
rather the alternatives to a set of predefined reference points. We
actually focus on a Simplified RMP model (S-RMP) in which the
preference parameters include the criteria weights and the set of ref-
erence points ordered by importance. Elicitation of the parameters
(from the data provided by the decision makers) leads us to the pref-
erence learning algorithms that cannot only be applied on relatively
small dataset. Therefore, we propose in this work a preference learn-
ing methodology for learning S-RMP models from a large set of pair-
wise comparisons of alternatives. The newly proposed algorithm is
a combination of an Evolutionary Algorithm and a Linear Program-
ming approach. Empirical results and analysis are also presented.

1 Introduction

Decision makers (DMs) often face decision situations in which dif-
ferent conflicting viewpoints are to be considered. When modeling
a real world decision problem using Multiple Criteria Decision Aid
(MCDA) theories, several problematics can be considered: choice,
sorting or ranking problem [18]. In this paper, we are interested in
multi-criteria ranking problem, where the aim is to establish a pref-
erence order (or ranking) on the set of alternatives.

The field of MCDA offers a selection of methods and operational
tools i.e. aggregation models that explicitly account for the diversity
of the viewpoints considered. Each method constructs first a model
of DM’s preferences and then exploits this model in order to work out
a recommendation. During the aggregation phase, different parame-
ters are needed, such as weights, marginal value functions, thresh-
olds, etc. depending on the method. Such parameters allow to elabo-
rate models taking into account the DMs preferences. Therefore, it is
clear that such preferences play a key role in the construction of the
recommendations. In fact, they are meaningful and acceptable only
if the DMs values are taken into account.

The process by which the DMs values or the parameters of an ag-
gregation model are captured is called preference elicitation or dis-
aggregation [18]. Preference elicitation aims at helping the analyst
to appropriately elicit the DM’s preferences to be represented in a
decision model. The process consists of a dialogue with the DM,
where the aim is to infer the values of the parameters from the holis-
tic information given by the DM. We note that this is not an easy
task, especially when the information provided contains inconsisten-

1 Laboratoire Génie Industriel, Ecole Centrale Paris, Grande Voie
des Vignes, 92295 Châtenay-Malabry, e-mail: jinyan.liu@ecp.fr, was-
sila.ouerdane@ecp.fr, vincent.mousseau@ecp.fr

cies. Moreover, the DM has in general a limited knowledge on the
aggregation models and can only express his preferences in a rather
intuitive and ambiguous manner.

Generally speaking, there are two paradigms of preference elic-
itation approaches, namely direct and indirect paradigms [13]. In
the direct aggregation paradigm, the parameter values are directly
provided by the DM through an interactive communication with the
analyst. The aggregation model is firstly constructed with these pa-
rameters and then applied to the alternative set to obtain the DM’s
preferences. Within such a paradigm, the DM should make enough
effort to understand the meaning and the roles of these parameters
and to associate appropriate values to them, which may be beyond
his cognitive limitation. In the indirect disaggregation paradigm, the
DM provides holistic preference information such as pairwise com-
parisons, assignment examples etc., from which a preference model
is derived and then applied to contextual recommendation. In con-
trast with the direct elicitation, the parameter values are regressed
from the DM [10].

Nowadays, we are facing with decision problems involving large
datasets. It requires adapting and improving the algorithms and tech-
nics to construct acceptable recommendations. Some of related chal-
lenges have been addressed in the scientific community of Preference
Learning, which focus on the computational complexity rather than
the decision problem itself [9]. In the perspective of preference elic-
itation, the emergence of applications in MCDA with the intention
of dealing with large datasets provokes our research interests. In this
perspective, we intend to provide an efficient algorithms to infer the
parameter values of an aggregation model called S-RMP such that
the DM has provided as input a large set of pairwise comparisons.

The paper is organized as follows: Section 2 introduces the RMP
method and its simplified version S-RMP. We present our meta-
heuristic approach for S-RMP disaggregation in Section 3. The nu-
merical analysis and the benefits of the proposed approach are pro-
vided in Section 4. At the end, we conclude the paper.

2 Ranking with Multiple reference Points

Recently, a ranking method called Ranking with Multiple reference
Points (RMP) has been proposed in [16, 17]. The idea is to construct
the global preference relation between two alternatives on the basis
of their relative comparisons with specified reference points. This
paper is concerned with learning the parameters of this method. We
give in the next sections an overview of such a method as well as
its simplified version named S-RMP, introduced in [23, 22]. Further
work has also been presented in [2].

76



2.1 General RMP method
We consider a multiple criteria ranking problem with n alternatives
in the set A indexed by N = {1, 2, ..., i, ..., n} and m monotone cri-
teria in the set F , indexed by means of a set M = {1, 2, ..., j, ..., m}.
The evaluations of alternatives on a criterion j take their value in the
associated evaluation scale Xj . The X denotes the evaluation space,
X =

∏
j∈M Xj i.e. the Cartesian product of evalution scales. Obvi-

ously, the evaluation of any alternative a ∈ A is a vector denoted by
a = (a1, a2, ..., am) ∈ X .

The RMP method is a three-step multi-criteria paradigm for rank-
ing alternatives. It involves k reference points such that P =
{1, 2, ..., h, ..., k}. The evaluation of each reference point ph, h ∈ P
on a criterion j is denoted by ph

j ∈ Xj . To establish a global prefer-
ence relation between two alternatives, a and b, the method specifies
the following three steps:

1. Compare each alternative a ∈ A (respectively, b ∈ A) to every
reference points ph, h ∈ P on every criterion j, j ∈ M .

2. Aggregate the results of the step 1 considering the m criteria and
deduce the preference relation between two different alternatives
(a, b) which is depending on the reference point ph, also called
the relative preference with respect to the reference point ph;

3. For each pair of alternatives (a, b), aggregate the k preference re-
lations into global preference relation.

The first step establishes the preference relation between each al-
ternative and each reference point on each criterion j. In the sec-
ond, we only consider the criteria for which a (respectively, b) is at
least as good as ph. This set of criteria is denoted by C(a, ph) (re-
spectively, C(b, ph)) and defined as C(a, ph) ∈ P(M) such that
C(a, ph) = {j ∈ M | aj ⩾ ph

j }.
We define then the importance relation among criteria with re-

spect to the reference point, denoted by ▶ph , which means that a set
of criteria is at least as important as another set of criteria as follows;

Definition 1. (Importance relation among criteria w.r.t. reference
point)

The importance relation ▶ph is defined on M × M such that:

1. ∀M1 ⊂ M, M1 ̸= ∅ ⇒ M1▶ph∅, ∀h ∈ P
2. ∀M1 ⊂ M ⇒ M▶phM1, ∀h ∈ P
3. ∀M1, M2 ⊂ M, M1 ⊂ M2 ⇒ M2▶phM1, ∀h ∈ P

Thus, the (relative) preference relation ≿ph defined in Definition
2 expresses how a pair of alternatives compare with each other with
respect to the reference point ph.

Definition 2. (Relative preference w.r.t. reference point)
The relative preference with respect to the reference point ≿ph on

A × A is defined by:

a ≿ph b ⇔ C(a, ph)▶phC(b, ph)

In the third step, we define firstly the importance relation ⊵ as
below.

Definition 3. (Importance relation among reference points)
The importance relation ⊵ is defined on P × P such that:

1. ∀P1 ⊂ P, P1 ̸= ∅ ⇒ P1 ⊵ ∅
2. ∀P1 ⊂ P ⇒ P ⊵ P1

3. ∀P1, P2 ⊂ P, P1 ⊂ P2 ⇒ P2 ⊵ P1

We deduce then the (global) preference relation ≿ as described in
the definition 4. It means that a is at least as good as b if the coalition
of reference points P (a, b) which affirms that a is at least as good
as b is more important than the coalition of reference points P (b, a)
which affirms that b is at least as good as a.

Definition 4. (Global preference relation)
The global preference relation on A×A on the basis of the relative

preferences is:
a ≿ b ⇔ P (a, b) ⊵ P (b, a)

We note that there is no lack of generality to impose a dominance
relation among reference points, as it was shows in [17]. There ex-
ists always an equivalent RMP model for any RMP model with k
reference points such that:

∀j ∈ M, ∀h, h′ ∈ P, h > h′ ⇒ ph
j ⩾ ph′

j (1)

It means also that:

∀a ∈ A, ∀h, h′ ∈ P, h > h′ ⇒ C(a, ph) ⊆ C(a, ph′
) (2)

The two importance relations mentioned respectively in Definition
1 and Definition 3 can be rather general and built on the basis of dif-
ferent rules. Particularly, we present in the next section a simplified
version of RMP method, namely S-RMP in which the importance re-
lation ▶ph is defined by a concordance rule for all reference points
while a lexicography of dictatorial reference points is used as the
importance relation ⊵.

2.2 Simplified RMP model
In this work, we focus on a simplified version of RMP, named S-RMP
model, as considered in [23, 22].

Firstly, the importance relation ▶ph on the criteria set is re-defined
based on a concordance rule by using an additive decomposition as
follow:

C(a, ph)▶phC(b, ph) ⇔
∑

j∈C(a,ph)

ωj ⩾
∑

j∈C(b,ph)

ωj (3)

where ωj represents the weight of the criterion j. Formally, the cri-
teria weights are normalized to 1.

Secondly, as shown in [17], an important result derived from so-
cial choice theory indicates that the only importance relation, which
aggregates the k relative preference relations (with respect to refer-
ence points) and leads to transitive relation on each possible set of
alternatives, is obtained by a lexicographical order on the reference
points. Therefore, a permutation σ on P is used lexicographically to
determine the importance relations among the reference points so as
to deduce globally the preference relations between alternatives. This
is represented by (4).

a ≿ b ⇔ ∃h∗ ∈ P s.t. a ≿pσ(h∗) b

and ∀h ∈ {1, ..., h∗ − 1}, a ∼pσ(h) b

a ∼ b ⇔ ∀h ∈ P, a ∼ph b

(4)

In details, the first reference point is denoted by pσ(1), the second
one by pσ(2) and so on. To compare a and b, we look at first the ref-
erence point pσ(1). If a is strictly preferred to b with respect to pσ(1),
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then we affirm globally that a is preferred to b without even consid-
ering the other reference points and similarly vice versa. However,
if a and b are considered to be indifferent with respect to pσ(1), we
shall proceed with the second reference point pσ(2), etc. Once the
strict relative preference between a and b is confirmed, the global
preference between a and b is affirmed. If we still cannot differenti-
ate these two alternatives until the last reference point pσ(k) has been
processed then they are considered globally as tied for conclusion.

The additive decomposition of importance relation for subsets of
criteria shows that the preference relation between two alternatives
(a, b) can be computed by:

a ≿ b ⇔ ∃h∗ ∈ P s.t.
∑

j∈C(a,pσ(h∗))

ωj >
∑

j∈C(b,pσ(h∗))

ωj

and ∀h ∈ {1, . . . , h∗ − 1},
∑

j∈C(a,pσ(h))

ωj =
∑

j∈C(b,pσ(h))

ωj

a ∼ b ⇔ ∀h ∈ P,
∑

j∈C(a,ph)

ωj =
∑

j∈C(b,ph)

ωj

(5)

2.3 Learning an S-RMP model
2.3.1 Problem context

We are interested in learning S-RMP models in an indirect way. To
account for that, we assume that the information provided by the DM
takes form of pairwise comparisons of alternatives. Learning such
a model amounts to setting values for the criteria weights and the
reference points which are detailed as follow:

• The normalized weights of criteria, ωj , j ∈ M .
• The number of reference points, denoted by k.
• The reference points, ph, h ∈ P where ph = (ph

1 , ph
2 , ..., ph

m) is a
vector in the evaluation space ph ∈ X .

• The lexicographic order of the reference points, defined as a per-
mutation σ on the index set of the reference points P . For in-
stance, pσ(1) is the first reference point to which alternatives are
compared, ∃h ∈ P, σ(1) = h, etc.

To better understand the problem, we provide a brief review on the
latest related researches.

2.3.2 Literature review

A first attempt to elicit indirectly the preference model from the
holistic information given by the DM was presented in [14] for the
ELECTRE TRI method. They considered the pessimistic assignment
rule, and developed a non-linear optimization formulation to infer
all the parameters from a set of assignment examples. A similar
approach was presented in [11] for a simplified version of ELEC-
TRE TRI named Majority Rule Sorting Model (MR-Sort). In [11],
only a few number of categories was considered and there was no
veto threshold characterizing the discordance effect. Later, in [4],
an extension of the previous work for ELECTRE TRI method has
been presented in the group decision problems. The parameters were
inferred from assignment examples, provided by multiple decision
makers, based on a Mixed Integer Programming (MIP).

For the S-RMP method, [23] was the first work that proposed an
MIP to infer the parameters of this models from a given set of pair-
wise comparisons. They assumed the existence of an S-RMP model
that is able to correctly restore all the pairwise comparisons given by
the DM, and provided a linearized set of constraints with binary vari-
ables. However, the algorithm proposed in [23] suffers from a limita-
tion in the case where the pairwise comparisons provided by the DM
contains inconsistent information. It cannot find any solution.

To overcome this problem, [12] proposed a new algorithm deal-
ing with inconsistencies in the elicitation process. The proposal is
also based on an MIP with binary variables. However, the algorithm
searches for an optimal solution that is compatible with as many as
possible pairwise comparisons provided by the DM. Besides, it is
able to identify the inconsistent information.

We remark a common issue for the two algorithms developed for
S-RMP models that is the high computation time due to the introduc-
tion of the binary variables. Actually, when dealing with a very lim-
ited number of pairwise comparisons, the previous two algorithms
are proved to be quite efficient. Nevertheless, the computation time
increases exponentially when a large quantity of pairwise compar-
isons are provided.

Recently, [19] presented a well-adapted algorithm for learning the
parameters of MR-Sort models from large datasets. It takes the ad-
vantages of a heuristic approach combined with a Linear Program-
ming (LP). More details are provided in [20]. We highlight the gen-
eral idea of this work for sorting problems which in our work are
ranking ones instead.

Preference elicitation for RMP models was also encouraged in [2].
Besides, other works are generally interested in preference disaggre-
gation. For interested readers, please refer to [8, 6, 7].

3 A metaheuristic approach
The different approaches presented in section 2.3.2 for learning S-
RMP models have formulated the learning task as a Mixed Integer
linear programming (MIP) optimization problem. However, a com-
mon observation is the considerable high computation time due to
the introduction of binary variables [12, 22, 23].

In the case where the decision problem implies a large dataset,
suchlike MIP consumes even more computation time and usually
leads to the insolvability of the problem within the limited time. This
type of problems is considered as hard optimization problems, which
is defined as optimization problems that cannot be solved to optimal-
ity ([1]).

Thus, our proposal turns to a metaheuristic algorithm with the in-
tention of dealing efficiently with large datasets. In contrast to the
MIPs, the metaheuristic will approximate as accurately as possible
the parameters of the S-RMP model. We remark that multiple S-
RMP models may exist. Our objective is to infer a satisfactory S-
RMP model that is compatible with most (if not all of them) of the
input information. An interactive model calibration process in the
form of supplementary constraints on the parameters should be in-
voked in real decision cases.

3.1 Overview of the algorithm
The proposed metaheuristic follows the general idea of Evolution-
ary Algorithms (EA) and makes use of a local optimization. It starts
with an initialized population of Nmodel S-RMP models rather than
a single solution. Evaluation, Selection, Mutation and Substitution
operations are iterated to adjust the parameters of each individual
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in the operating population. The iteration will repeats until either at
least one of the individuals in the population is able to restore all the
input pairwise comparisons or after a certain number of times. Ac-
tually, due to the limited computation time in practice, we interrupt
the algorithm before it reach the optimality more often. In our con-
text, the limited number of iterations is set to 100. It is summarized
in Algorithm 1

Algorithm 1: OVERVIEW OF THE ALGORITHM

1 Initialize a population of Nmodel S-RMP models
2 Evaluate each individual in the population
3 repeat
4 Select the best individuals from the population with a probability ξ
5 Adjust the reference points for selected individuals and yield

mutants with a probability µ
6 Adjust the criteria weights for mutated individuals
7 Evaluate the newly adjusted individuals
8 Substitute the population with a probability ζ under the constraint

of the initial population size
9 until at least one of the stopping criteria is met;

Actually, on the one side, the reference points are adjusted while
yielding mutants. On the other side, the criteria weights are adjusted
by solving an LP. The rest of this section is structured as below:
Section 3.2 begins with the initialization of the reference points and
the criteria weights. Section 3.3 presents how to learn the reference
points. The LP for learning the criteria weights is provided in Section
3.4.

3.2 Initialization
The first step of the algorithm consists in initializing a population
of Nmodel S-RMP models (in our context, Nmodel = 10). In meta-
heuristic algorithms, it is important that the initial population spans
adequately the solution space as shown in [5]. To do this, we provide
a primitive method.

3.2.1 Reference points

First, we assume that the number of reference points k is fixed
beforehand. From a practical perspective, the number of reference
points in S-RMP models never exceeds 3, since such an S-RMP
model has already a considerable capacity while restoring preference
information as shown in [22].

Second, for a criterion j, k random numbers are generated from
the uniform distribution in the evaluation scale Xj . Depending on
the preference direction of the criterion j, they are then ranked ei-
ther in ascending order such that p1

j ⩽ p2
j ⩽ ... ⩽ pk

j or in de-
scending order such that pk

j ⩽ pk−1
j ⩽ ... ⩽ p1

j . Thus, the gener-
ated reference points guarantee that ph ≻ ph−1 ≻ ... ≻ p1, where
ph = (ph

1 , ph
2 , ..., ph

j , ..., ph
m)

Finally, for k reference points, there are k! possible lexicographic
orders. We randomly choose one of them and it is fixed once initial-
ized.

3.2.2 Criteria weights

Concerning the weights, we use the approach of Butler [3]. Firstly,
m − 1 random integer numbers di where i ∈ {1, ..., m − 1} are
generated uniformly between 0 and 100. Then, they are ranked such
that d0 = 0 < d1 < d2 < ... < dm−1 < 100 = dm. The weight

of a criterion j is defined as wj = (dj − dj−1)/100. It is accurate to
0.01 and 0 ⩽ wj ⩽ 1. This ensure that the weights sum up to 1 and
are uniformly distributed.

3.3 Learning the reference points

3.3.1 Evolutionary algorithm

Our algorithm starts with an initial population of a certain number
of random solutions, and evolves it while yielding a new genera-
tion of population at each iteration. Conventionally, the (t + 1)-th
generation of solutions, denoted by Gt+1, is obtained from the n-th
generation, denoted by Gt, through a procedure composed by sev-
eral well-defined operations as described in [21]. [15] also proposed
a review about Evolutionary Algorithms used in the context of local
search.

In Algorithm 1, a proportion of the best S-RMP models in the
population are selected at the beginning of each iteration. Then, they
are submitted to the mutation operation. Mutations are performed on
each selected model and yield mutants with a probability. The cri-
teria weights of the mutants are adjusted (Section 3.4). After being
re-evaluated, the mutants are considered as the ”children”, while the
initial models are considered as the ”parents”. Finally, the substitu-
tion amounts to selecting the best models among both the parents
and the children based on their evaluation. Otherwise, it also allows
us to introduce newly initialized individuals to the next generation
of population if necessary. The details are provided in the following
sections.

3.3.2 Evaluation operation

The evaluation of the ”best” individuals is done according to their
fitness to the problem. In the context of learning an appropriate pref-
erence model from a set of information provided by the DM, several
objective functions are applicable. In the case of learning S-RMP
model, the fitness function corresponds to the Ranking Accuracy
(RA) of the model, which is simply defined as the ratio of the number
of pairwise comparisons restored correctly by the model to the total
number of pairwise comparisons provided by the DM at the begin-
ning of the process ((6)). Actually, this is the most straightforward
measure of ranking performance.

RA =
Number of pairwise comparisons restored

Total number of pairwise comparisons provided
(6)

3.3.3 Selection operation

The S-RMP model that gives the highest RA in the current population
Gt will be selected randomly with replacement, with a probability ξ
which increases with their fitness. Thereby, we define the probability
ξ(fs) associated to a given S-RMP model fs that consists of a set of
parameters s by:

ξ(fs) =
RA(fs) − RAmin

RAmax − RAmin
(7)

where
RAmin = min {RA(fs) | ∀fs ∈ Gt} (8)

RAmax = max {RA(fs) | ∀fs ∈ Gt} (9)

79



3.3.4 Mutation operation

Mutation operation, which amounts to adjust the reference points, is
only applied to the selected models. For each selected S-RMP model,
the operation is defined in the Algorithm 2. The mutations of the
reference points proceed one by one based on their lexicographic
order σ and then on each criterion from j = 1 to m.

Algorithm 2: MUTATION OPERATION

1 Create an empty list for keeping ignorable pairwise comparisons
2 for each reference point pσ(h) do
3 for each criterion j do
4 Generate a random variation ±θ

σ(h)
j

5 Count possible impacts caused by this change
6 Apply the change to the current model with a probability µ

7 Append newly ignorable pairwise comparisons to the list

8 Yield a mutated model

Firstly, both the sign and the value of the variation, denoted by
±θ

σ(h)
j , are uniformly randomized. However, it should be bounded

to prevent re-degrading the quality of the models after some itera-
tions and the boundary should depend on the current number of iter-
ations Nit. For example, we take herein:

θ
σ(h)
j ≤

⌈
50√
Nit

⌉
(10)

As ±θ
σ(h)
j will be later applied to the current model with a probabil-

ity µ, we denote the changed evaluation of the reference point pσ(h)

on the criterion j by p′σ(h)
j where

p′σ(h)
j = p

σ(h)
j ± θ

σ(h)
j (11)

Then, we should define the probability µ that indicates if the vari-
ation ±θ

σ(h)
j should be applied. To do so, we identify at first the

impacts provoked by ±θ
σ(h)
j on the judgment of preference between

alternatives, which eventually improve (or worsen) the RA, through
the calculations below.

For any pairwise comparison of alternatives a ≿ b provided by the
DM, we define the slack quantity as follows:

s
σ(h)

(a,b) =

m∑

j=1

(
δ

σ(h)
a,j − δ

σ(h)
b,j

)
· ωj (12)

where ωj denotes the weight of the criterion j. ∀(a, b) ∈ BC, ∀h ∈
P and the lexicographic order σ, we compute δ

σ(h)
a,j and δ

σ(h)
b,j as

follows:

δ
σ(h)
a,j =

{
1 if aj ⩾ p

σ(h)
j

0 if aj < p
σ(h)
j

, δ
σ(h)
b,j =

{
1 if bj ⩾ p

σ(h)
j

0 if bj < p
σ(h)
j

(13)
In fact, the (global) judgement of preference between (a, b) is

based on the relative preference between (a, b) with respect to the
reference point pσ(h), which is deduced by

a ≿σ(h) b ⇐⇒ s
σ(h)

(a,b) ≥ 0 (14)

If δ
σ(h)
a,j equals to 1, it means that the criterion j is contributing to

the statement a ≿σ(h) b. The criterion j is namely a contributing

criterion for a in this case. Similarly, if δ
σ(h)
b,j equals to 1, it means

that the criterion j is weakening the statement a ≿σ(h) b. The crite-
rion j is then namely a weakening criterion for b. Particularly, when
δ

σ(h)
a,j − δ

σ(h)
b,j = 0, the criterion j is neither contributing nor weak-

ening. We said that it is neutralized.
The variation ±θ

σ(h)
j affects the calculation of s

σ(h)

(a,b) through

(δ
σ(h)
a,j , δ

σ(h)
b,j ). All the possible impacts provoked by ±θ

σ(h)
j can

be summarized (as shown in Table 1) by the value change of
(δ

σ(h)
a,j , δ

σ(h)
b,j ), where the changed value can be denoted and calcu-

lated by:

δ′σ(h)
a,j =

{
1 if aj ⩾ p′σ(h)

j

0 if aj < p′σ(h)
j

(15)

δ′σ(h)
b,j =

{
1 if bj ⩾ p′σ(h)

j

0 if bj < p′σ(h)
j

(16)

Formally, the positive and negative impacts are respectively de-
fined as follows:

Ipos

(
±θ

σ(h)
j

)

=
{

(a, b) ∈ BC
∣∣∣ (δ′σ(h)

a,j − δ′σ(h)
b,j ) − (δ

σ(h)
a,j − δ

σ(h)
b,j ) > 0

}

(17)

Ineg

(
±θ

σ(h)
j

)

=
{

(a, b) ∈ BC
∣∣∣ (δ′σ(h)

a,j − δ′σ(h)
b,j ) − (δ

σ(h)
a,j − δ

σ(h)
b,j ) < 0

}

(18)

Table 1: Impacts provoked by ±θ
σ(h)
j on

(
δ

σ(h)
a,j , δ

σ(h)
b,j

)

Before After Impact Description
I1 (0,1) (0,0) positive weakening criterion neutralized
I2 (0,1) (1,1) positive weakening criterion neutralized
I3 (0,0) (1,0) positive criterion become contributing
I4 (1,1) (1,0) positive criterion become contributing
I5 (1,0) (0,0) negative contributing criterion neutralized
I6 (1,0) (1,1) negative contributing criterion neutralized
I7 (0,0) (0,1) negative criterion become weakening
I8 (1,1) (0,1) negative criterion become weakening
I9 (0,0) (1,1) neutral no impact on the slack

I10 (1,1) (0,0) neutral no impact on the slack
I11 (0,0) (0,0) neutral no impact on the slack
I12 (1,1) (1,1) neutral no impact on the slack
I13 (1,0) (1,0) neutral no impact on the slack
I14 (0,1) (0,1) neutral no impact on the slack
I15 (0,1) (1,0) n.c. impossible
I16 (1,0) (0,1) n.c. impossible

For instance, we represent, in Figure 1, a couple of examples to
illustrate the adjustment of reference points. We suppose that

• The criteria (c1, c2, c3 and c4) are equal weighted,
i.e. ∀j ∈ {1, 2, 3, 4}, ωj = 0.25.

• The reference points are uniformly initialized and used in se-
quence, i.e. first p1, then p2 and p3.

• The DM provided a ≿ b as input.

With the initialized reference points, we derive at first that a ∼p1

b, b ≿p2 a and a ≿p3 b. Since the reference points are used sequen-
tially, we derive then b ≿ a, which is inconsistent with the statement
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of the DM. Thus, the reference points should be adjusted by the al-
gorithm.

In Figure 1(a), the criterion j = 3, which was originally weaken-
ing the statement a ≿ b (as δp2

a,3 = 0), is neutralized by applying

the variation −θp2

3 to the reference point p2 on the criterion j = 3,

because δ′p2

a,3 = δ′p2

b,3 = 1 and δ′p2

a,3 − δ′p2

b,3 = 0. It is considered
to be a (potential) positive impact, for the fact that, as shown in this
example, we newly derive that a ∼p2 b and finally a ≿ b, which is
consistent with the DM’s statement. In this sense, the reference point
p2 is adjusted.

In Figure 1(b), the criterion j = 2, which was originally neither
weakening nor contributing to statement a ≿ b (as δp2

a,2 − δp2

b,2 = 0),

becomes contributing by applying the variation +θp2

2 to the reference

point p2 on the criterion j = 2, because δ′p2

a,2 = 1 and δ′p2

b,2 = 0. It is
also considered to be a (potential) positive impact, for the similar fact
that we can again finally derive that a ≿ b in this example with the
adjusted reference point p2 even though it was adjusted in a different
way.

Figure 1: Adjustment of reference points

(a) Impact of −θp2

3 (i.e. I2) (b) Impact of +θp2

2 (i.e. I4)

So far, we identify four positive possibilities as well as four nega-
tive possibilities and sum up accordingly the quantity of the positive
(respectively, negative) impacts by

Ipos =
∣∣∣Ipos

(
±θ

σ(h)
j

)∣∣∣ = |I1| + |I2| + |I3| + |I4| (19)

Ineg =
∣∣∣Ineg

(
±θ

σ(h)
j

)∣∣∣ = |I5| + |I6| + |I7| + |I8| (20)

However, we need to make some empirical remarks such that:

1. Usually, the variation ±θ
σ(h)
j provokes both the positive and neg-

ative impacts on different pairs of alternatives at the same time.
Having more positive impacts means that we have more chance to
improve the S-RMP model quality, but not necessarily.

2. Sometimes, we provoke as many negative impacts as the positive
impacts. In such a case, we are more interested in the case where
a large quantity of impacts provoked, as it allows us to introduce
more diversity to the population.

3. When there are less positive impacts than the negative ones, or
even no positive impacts provoked, we consider that it is still pos-
sible to improve the model potentially.

Based on these observations, we define accordingly the probabil-
ity of applying the variation ±θ

σ(h)
j to the current S-RMP model,

denoted by µ(±θ
σ(h)
j ) as it is associated to the variation ±θ

σ(h)
j , as

below :

µ
(
±θ

σ(h)
j

)
=





Ipos

Ipos+Ineg
if Ipos ̸= 0 and Ipos > Ineg

1 − 1
Ipos

if Ipos ̸= 0 and Ipos = Ineg

0.5 ∗ Gaussian if Ipos = 0 or Ipos < Ineg

(21)
Otherwise, as we treat the reference points one by one accord-

ing to the lexicographic order, once (14) is affirmed, (a, b) will be
appended to the list for keeping ignorable pairwise comparisons. Ac-
tually, (a, b) is considered to be ignorable, because the adjustment
for the rest of the reference points will not affect the global judge-
ment on the preference between (a, b) and the impacts provoked by
±θ

σ(h+1)
j on (δ

σ(h+1)
a,j , δ

σ(h+1)
b,j ) (and so on, if exists) can be then

ignored. In other words, once the comparison between any two alter-
natives (a, b) is restored by the previous reference point, no matter
how they compare to the rest of the reference points, it will not be
changed.

3.3.5 Substitution operation

As presented in Section 3.3.1, the mutants with the adjusted crite-
ria weights (Section 3.4 for details) will be re-evaluated and then
appended to the n-th generation of population Gt. The population
that contains both the ”children” and the ”parents” is denoted by G′

t .
Substitution operation decides who will survive in the (t+1)-th gen-
eration of population.

Firstly, it is about selecting the best individuals from the n-th gen-
eration of population G′

t . Therefore, the principle is the same as the
selection operation presented in Section 3.3.3. We define the proba-
bility ζ associated to an S-RMP model fs of being submitted to the
(t + 1)-th generation by:

ζ(fs) =
RA(fs) − RA

′
min

RA′
max − RA

′
min

(22)

where,

RA
′
min = min

{
RA(fs) | ∀fs ∈ G′

t

}
(23)

RA
′
max = max

{
RA(fs) | ∀fs ∈ G′

t

}
(24)

Secondly, if there is not enough number of individuals that are
good enough to be submitted, some newly initialized S-RMP models
will be appended to the (t + 1)-th generation under the constraint of
the initial size of the operating population.

After having defined the substitution operation, the evolutionary
part of the algorithm for learning the reference points is completed.
Now, we discuss how to adjust the criteria weights.

3.4 Learning the criteria weights
Assuming that the reference points are given, we consider the adjust-
ment of criteria weights as a linear optimization problem.

We are interested in setting good values for the criteria weights ωj ,
j ∈ M to restore as many as possible pairwise comparisons provided
by the DM. However, to do that we usually need to introduce binary
variables into the program as it is described in [22]. In the case of
a large dataset, using binary variables will considerably increase the
computation time ([23, 12]). Therefore, we propose in this paper an
alternative formulation without binary variables that has been proved
to be quite efficient (Section 4 for the numerical test results).

We note at first that ωj , j ∈ M are the unknown variables to
be adjusted. Considering then the slack defined by (12) and (13),
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we remark that it is actually an indicator that shows if the (relative)
preference between two alternatives can be restored by the current S-
RMP model. Hopefully, for any pairwise comparison (a, b) provided
by the DM, there should be at least one of the slack variables s

σ(h)

(a,b)

such that

∃h∗ ∈ P, s
σ(h∗)

(a,b) > 0, s
σ(1)

(a,b) = s
σ(2)

(a,b) = ... = s
σ(h∗−1)

(a,b) = 0 (25)

where σ is a specified lexicographic order of reference points.
However, we cannot translate (25) as part of the linear constraints

of the problem, because it is not always true. It means that it is not
always possible to find such an S-RMP model with the given refer-
ence points and the adjusted criteria weights that restores exactly all
the provided pairwise comparisons.

In fact, our objective is, by adjusting the criteria weights, to make
the model compatible with as many as possible pairwise comparisons
provided by the DM. In this case, (25) should be integrated as part of
the objective function but not as linear constraints.

Hence, to account for this, we define then another two auxiliary
variables s

σ(h)+

(a,b) and s
σ(h)−
(a,b) for ∀h ∈ P, ∀(a, b) ∈ BC by:

s
σ(h)

(a,b) − s
σ(h)+

(a,b) + s
σ(h)−
(a,b) ≥ 0 (26)

where both of them are positive by definition. Actually, s
σ(h)+

(a,b) rep-
resents the positive terms in the definition of sh

(a,b) that contributes

to the statement. Respectively, s
σ(h)−
(a,b) represents the negative terms

in the definition of sh
(a,b) that weaken the statement.

Moreover, in order to maximize the number of pairwise compar-
isons correctly restored by the model, the objective function is de-
fined as below:

max
∑

(a,b)∈BC

k∑

h=1

ωσ(h) ·
(
s

σ(h)+

(a,b) − α · s
σ(h)−
(a,b)

)
(27)

where we make use of two weighting system α and ωσ(h).
On the one hand, ωσ(h) for ∀h ∈ P weights the reference points.

We remark that, by carefully choosing their values, it is approxi-
mately equivalent to using the reference points in their lexicographic
order. Actually, if k ⩾ 2, whatever the value of ωσ(k),

ωσ(k−h) =
1

ϵ
·

k∑

i=k−h+1

ωσ(i) (28)

that depends on the small value for ϵ. ϵ represent the accuracy of the
criteria weights that we impose in the solution. For example, if ϵ =
10−3 and we take ωσ(3) = 1 for an S-RMP model with 3 reference
points, then we can deduce that ωσ(2) = 103 and ωσ(1) = 106+103.

On the other hand, α balances the compensatory behavior between
pairwise comparisons. We note that, to avoid using binary variables,
such an objective function cannot garantee that the maximal number
of pairwise comparisons can be correctly restored. However, by set-
ting a big enough value for α (for example, α = 103), it is able to
reduce the compensatory effects efficiently.

We summarize the linear program as below:

max
∑

(a,b)∈BC

k∑

h=1

ωσ(h) ·
(
s

σ(h)+

(a,b) − α · s
σ(h)−
(a,b)

)

s.t.
m∑

j=1

ωj = 1

∀(a, b) ∈ BC, ∀h ∈ P,

s
σ(h)

(a,b) =

m∑

j=1

(
δ

σ(h)
a,j − δ

σ(h)
b,j

)
· ωj

s
σ(h)

(a,b) − s
σ(h)+

(a,b) + s
σ(h)−
(a,b) ≥ 0

s
σ(h)+

(a,b) ≥ 0, s
σ(h)−
(a,b) ≥ 0

4 Numerical analysis

In this section, the proposed algorithm is further investigated numer-
ically based on a large set of artificially generated data. Statistical
techniques were used to demonstrate the advantages of the meta-
heuristic comparing with the conventional disaggregation methods
for outranking models based on LP.

We are firstly concerned with the quality of the solution. For a
suchlike evolutionary approach, it is represented by the ”best” in-
dividual in the operating population. Secondly, there is usually a
compromise between the optimality of the solution and the number
of iterations it takes to reach a satisfactory result as we mentioned
in Section 3.1. By simulating the different decision circumstances
with a large quantity of randomly generated data, we investigate the
improvement curves produced in each circumstance to better under-
stand the behavior of the algorithm. Otherwise, we examine also the
runtime characteristics of the proposed metaheuristic, since one of
the interest of this work is to overcome the insolvability of the MIP-
based disaggregation methods in dealing with large datasets (Section
2.3.2).

The different decision circumstances that we studied are discussed
in the next section.

4.1 Experiments

In the experiments, we consider 1000 alternatives and a varying num-
bers of criteria (4, 6, 8 or 10). We generate randomly an initial S-
RMP model to test the algorithm. It is denoted by fβ , as it is defined
by a set of parameters β. It simulates the preference model of a fic-
titious DM. Then, 500 reference pairwise comparisons among the
alternatives are derived from the initial model fβ based on their ran-
domly generated evaluations on the criteria. We consider also differ-
ent numbers of reference points in the initial model fβ (Ini. NRP, for
Initial Number of Reference Points) to simulate different complexity
levels of the DM’s preference system.

The experiments are divided into two groups according to the dif-
ferent preset numbers of reference points in the inferred model (Inf.
NRP): In Group A, we infer S-RMP models with only 1 reference
point whatever the initial number of reference points in β. While,
in Group B, we infer S-RMP models with exactly their initial num-
ber of reference points, so as to compare these two groups of ex-
periment and better understand the importance of carefully setting a
corresponding number of reference points in S-RMP disaggregation.
The different cases that we considered are distinguished by:
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• Number of criteria = 4, 6, 8 or 10
• Ini. NRP = 1,2 or 3
• Inf. NRP = 1 or the initial number

The experiments are then numbered by a trio-index as shown in
Table 2 and Table 3. For instance, ”4.1.A” means that, we consider 4
criteria and the initial model is generated with 1 reference point and
it is in the group ”A”. For each experiment, all the provided results
are based on the average of 100 repeated trials under the same testing
conditions 2.

4.2 Empirical results
4.2.1 Quality of the solution

The inferred model is denoted by fβ̂∗ with some parameters β̂∗. As
shown in Table 2 and Table 3, the ”closeness” between the initial
model fβ and the inferred model fβ̂∗ is measured by the RA. Since
we generated the input information without introducing any incon-
sistency, the measured value of RA is always expected to be as close
as possible to 1.00. The ”Starting RA” represents the quality of the
”best” individual in the initialized population. The ”Final RA” repre-
sents the quality of the final inferred model fβ̂∗ , which is the ”best”
individual in the population when the algorithm terminated. How-
ever, we remind that multiple non-identical individuals may give the
same value of RA, as the solution is not unique (as presented in Sec-
tion 2.3.1).

In the group A of experiments, we generated the initial models
with 1, 2 or 3 reference points and inferred S-RMP models involving
only 1 reference point (Table 2). We notice that the best final RA,
0.997, is observed in the experiment 4.1.A, while the worst is ob-
served in the experiment 4.3.A. It shows, in general, the capability
of the proposed metaheuristic while inferring an S-RMP model as
simply as possible.

However, exceptions are observed in the experiment 10.3.A. The
final RA is instead even greater than 10.1.A on average. The ran-
domized starting models are also better than in the other two cases
(10.1.A and 10.2.A). This will be further discussed (Section 4.3).

Table 2: Group A of experiments

Exp. Num. Cri. Ini. NRP Inf. NRP Starting RA Final RA
4.1.A 4 1 1 0.807 0.997
4.2.A 4 2 1 0.746 0.904
4.3.A 4 3 1 0.735 0.880
6.1.A 6 1 1 0.813 0.987
6.2.A 6 2 1 0.761 0.934
6.3.A 6 3 1 0.741 0.912
8.1.A 8 1 1 0.810 0.969
8.2.A 8 2 1 0.760 0.940
8.3.A 8 3 1 0.746 0.925
10.1.A 10 1 1 0.805 0.960
10.2.A 10 2 1 0.761 0.931
10.3.A 10 3 1 0.810 0.969

In the group B of experiments, we assume that we can correctly
set the number of reference points in the S-RMP models to be in-
ferred (Table 3). At this time, the worst final RA is observed in
the experiment 10.3.B. It is reasonable, since it is the most compli-
cated case that has been considered in our analysis. However, 0.950,

2 Intel Core i3-2120 3.30 GHz CPU, 4 GB RAM, Ubuntu 14.04 LTS, Eclipse
IDE Kepler SR2, Cplex 12.6

which means 95% of the 500 input pairwise comparisons could be
restored correctly in the inferred S-RMP model, is already satisfac-
tory enough for the disaggregation.

Table 3: Group B of experiments

Exp. Num. Cri. Ini. NRP Inf. NRP Starting RA Final RA
4.1.B 4 1 1 0.807 0.997
4.2.B 4 2 2 0.810 0.983
4.3.B 4 3 3 0.819 0.973
6.1.B 6 1 1 0.813 0.987
6.2.B 6 2 2 0.798 0.966
6.3.B 6 3 3 0.796 0.968
8.1.B 8 1 1 0.810 0.969
8.2.B 8 2 2 0.780 0.961
8.3.B 8 3 3 0.784 0.961

10.1.B 10 1 1 0.805 0.964
10.2.B 10 2 2 0.777 0.952
10.3.B 10 3 3 0.775 0.950

By comparing with the group A, we observe that the starting RAs
as well as the final RAs are significantly enhanced in the group B of
experiments by presetting correctly the number of reference points,
especially in the experiments where the initial models are generated
with more than one reference points (except for 10.3.A and 10.3.B).

To better understand the behavior of the proposed algorithm, the
improvement curves are drawn and investigated below.

4.2.2 Behavior of the algorithm

The improvement curves show not only the starting and the final
point, but the evolution of RA in function of the number of itera-
tions during the whole process. As shown in Figure 2 (for Group A)
and Figure 3 (for Group B), the RA is improved and converges pro-
gressively. Without any surprise, the exceptional phenomenon that
we pointed out in Section 4.2.1 for 10.3.A is also observed in Figure
2(d). The dotted curve that represents the case involving 3 reference
points is instead placed above the curve that represents the case in-
volving 1 reference point (Section 4.3 for further discussions).

For a fixed number of criteria, by comparing each of the subfigures
in Group A with the ones in Group B (for example, Figure 2(a) with
Figure 3(a)), we can firstly visualize the intensively reduced level of
RA due to the improperly set number of reference points. Moreover,
we notice that the reduced level is more significant when the model
involves fewer criteria.

Otherwise, we observe that, in Figure 3, the dashed line for ”2p”
and the dotted line for ”3p” almost coincide with each other. It means
that, comparing with the single reference point cases, the improving
RA is reduced quasi-equally in the multiple reference points cases
regardless of the number of reference points involved.

Actually, the improvement curves can also be grouped by number
of reference points (as shown in Figure 4 and Figure 5) instead of
by criteria number. In Figure 4(c), we inferred S-RMP models that
involve only 1 reference point from the information derived from
the initial models that involve 3 reference points. We notice that, not
similar to the other figures, the curves (in Figure 4(c)) that represent
the cases where more criteria are involved are above the others that
represent the cases where fewer criteria are involved. Related discus-
sions are provided in Section 4.3.

Moreover, the improvement curves can be divided into two stages.
The first stage is the rising section, while the second stage is the
flat section. The flat section shows the final RA that we can reach,
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Figure 2: Group A of experiments (num. of criteria)

0 20 40 60 80 100
0.7

0.8

0.9

1

(a) 4 criteria

1 pt 2 pts 3 pts

0 20 40 60 80 100
0.7

0.8

0.9

1

(b) 6 criteria

0 20 40 60 80 100
0.7

0.8

0.9

1

(c) 8 criteria

0 20 40 60 80 100
0.7

0.8

0.9

1

(d) 10 criteria

Figure 3: Group B of experiments (num. of criteria)
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while the rising section also reveals some important advantages of
the proposed metaheuristic.

We measure the first stage of the improvement curves by the rapid-
ity of convergence. It is defined as the necessary number of iterations
needed to reach a quasi-satisfactory RA. To be precise, we define the
quasi-satisfactory RA as the 97% of the final RA. It shows the ef-
ficiency of the metaheuristic algorithm. The results are presented in
Table 4.

We can observe that the metaheuristic approach is generally quite
efficient. Table 4 shows that the inferred models can reach a quasi-
satisfactory state within around the first 30 iterations and it depends
on the complexity of the preference model of the DM.

Figure 4: Group A of experiments (num. of ref. pts)
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Figure 5: Group B of experiments (num. of ref. pts)
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4.2.3 Computation time

The average computation time is provided in Table 5. We observed
that, even for the case involving 3 reference points and 10 criteria,
the computation time remains within around 3 minutes. These results
should be further compared to the computation times of algorithms
using MIP formulations.

Besides, not only should the runtime value be measured, but also
the evolution of computation time as a function of the criteria number
or the number of the reference points should be investigated. It is
interesting while comparing with other MIP-based algorithms, as it
demonstrates the significant runtime advantage of the metaheuristic
algorithm.
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Table 4: Rapidity of convergence (group B, in number of iterations)

Num. Cri. 1 ref. pt 2 ref. pts 3 ref. pts
4 14 21 19
6 20 21 22
8 20 29 31
10 23 29 32

Table 5: Computation time (group B, in seconds)

Num. Cri. 1 ref. pt 2 ref. pts 3 ref. pts
4 44.55 69.58 77.98
6 85.78 101.48 110.20
8 119.67 136.46 146.35
10 148.28 169.75 182.06

By drawing the runtime curves, as shown in Figure 6(a), we notice
that the computation time is proportional with the criteria number.
We remind that it increases exponentially in the MIP-based S-RMP
disaggregation methods (Section 2.3.2). It endues the metaheuristic
approach with the capacity of dealing with the decision instances that
involve a large quantity of evaluating criteria.

Besides, we also notice that we consume more computation time
when dealing with more reference points, but not as much as for
the LP-based methods. To be clear, we draw once again the runtime
curves in function of the number of reference points (as shown in
Figure 6(b)). At this point of view, the obtained curves are all sub-
linear regardless of the criteria number while in the LP-based S-RMP
disaggregation methods, they are usually exponential vs. the number
of reference points.

4.3 Discussion
By checking the result of the numerical tests, we notice that the pre-
set number of reference points should be carefully adjusted to derive
a better solution, since the final RA is intensively reduced (except
for 10.3.A) in Group A (i.e. learning S-RMP models with single ref-
erence point) of experiments when the initial number of reference
points increases. Nevertheless, starting from an S-RMP model with
single reference point shows greater interpretability to the problem. It
actually expresses a very natural rule based on the distinction of two
classes of evaluation on each criterion. Besides, it helps us to estimate
the complexity of S-RMP models and to fix the number of reference
points. It means that we should consider increasing the number of
reference points when the final RA is not as satisfactory as we ex-
pected.

Moreover, we also notice that the number of criteria should be
limited. On one hand, we observe that, when the number of refer-
ence points is fixed, the final RA is descending progressively when
the criteria number increases. On the other hand, the exceptional phe-
nomenon that we observed (10.3.A) shows that, when there are more
criteria, it is easier to derive an S-RMP model that involves only one
reference point and gives a better RA. In other words, it is easier to
adjust one reference point by calibrating its valuation and the weights
of criteria than to calibrating multiple reference points at the same
time.

The study about the rapidity of convergence of the algorithm could
help us to adjust when to interrupt the algorithm when dealing with
real datasets, and to economize the total computation time in differ-
ent application circumstances. For instance, in the online web ap-

Figure 6: Computation time (in seconds)
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plications, the response time should usually be much more valuable
than in the offline recommendations. To obtain the most accurate re-
sult, it is possible to run the program during a very long time, even
day and night, in the offline cases. However, an acceptable solution
should be worked out as quickly as possible in the online cases and
then be adjusted step by step by a follow-up interactive process.

5 Conclusion

This paper presents an efficient metaheuristic approach to infer S-
RMP models from a large set of pairwise comparisons provided by
the DM. The proposed algorithm was tested with a large quantity
of artificially generated data that simulates a variety of different de-
cision circumstances. Firstly, the metaheuristic is able to deal with
instances involving as many as 500 pairwise comparisons. Suchlike
instances cannot be solved using MIP formulations. Secondly, the
computation time is proportional with the number of criteria involved
and sub-linearly increases with the number of reference points. Fi-
nally, even if the metaheuristic is not able to learn an S-RMP model
which to restore all pairwise comparisons, it infers S-RMP models
which restore up to at least 95% of the input information within a
reasonable computation time. We remark that it constitutes a good
trade-off of quality of result vs. computation time.

One of the interesting questions emerged from this work is the
adjustment of the number of reference points. Moreover, the perfor-
mance of the proposed metaheuristic should also be explored when
we are in presence of inconsistencies, for example, in the case of
group decision problems or in the case of real world applications.
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[10] Eric Jacquet-Lagrèze and Yannis Siskos, ‘Preference disaggregation: 20
years of mcda experience’, European Journal of Operational Research,
130(2), 233–245, (2001).

[11] Agnès Leroy, Vincent Mousseau, and Marc Pirlot, ‘Learning the pa-
rameters of a multiple criteria sorting method’, in Algorithmic Decision
Theory, eds., RonenI. Brafman, FredS. Roberts, and Alexis Tsoukiàs,
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Université Pierre et Marie Curie-Paris VI, 2008.

[17] Antoine Rolland, ‘Reference-based preferences aggregation procedures
in multi-criteria decision making’, European Journal of Operational
Research, 225(3), 479 – 486, (2013).

[18] Bernard Roy, Multicriteria methodology for decision aiding, vol-
ume 12, Springer, 1996.

[19] Olivier Sobrie, Vincent Mousseau, and Marc Pirlot, ‘Learning a major-
ity rule model from large sets of assignment examples’, in Algorithmic
Decision Theory, eds., Patrice Perny, Marc Pirlot, and Alexis Tsoukiàs,
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Inferring the parameters of a majority rule sorting model
with vetoes on large datasets

Alexandru-Liviu Olteanu12 and Patrick Meyer 12

Abstract. When dealing with a majority rule sorting model, the
standard approach to indirectly infer its parameters is to use an ap-
proach based on assignment examples. However, when the sets of
assignments are large the use of exact approaches quickly becomes
impractical. While at least another metaheuristic approach has al-
ready been proposed to deal with this issue, we present in this paper
a related metaheuristic approach. We carefully compare the two ap-
proaches as well as extend the latter to deal with majority rule models
which also contain vetoes. The approaches are compared using both
constructed and real data.

1 Introduction
Multicriteria (MC) decision aiding is the activity which provides a
decision maker (DM) with a prescription on a set of decision alterna-
tives, when facing multiple, usually conflicting viewpoints. The DM,
who is either a single person or a collegial body, takes the respon-
sibility for the decision act and bears a value system or preferences
related to the decision problem, which should be taken into account
in the final prescription. The finite set A of decision alternatives rep-
resents the potential options on which the DM has to make a decision.
The decisions on these alternatives are considered as difficult because
multiple conflicting perspectives have to be considered. They are rep-
resented by a finite set J of criteria indexes. Usually, three types of
decision problems are considered forward in this context [17]:

• the choice problem which aims to recommend a subset of alterna-
tives, as restricted as possible, containing the “satisfactory” ones;

• the sorting problem which aims to assign each alternative into pre-
defined categories or classes;

• the ranking problem which aims to order the alternatives by de-
creasing order of preferences.

In this article we focus on the second category of decision problems.
To support DMs facing a MC decision problem, various method-

ologies have been proposed [8, 17]. Roughly speaking, they originate
from two methodological schools (outranking and value-based tech-
niques). The main differences between these two streams of thoughts
lie in the way the alternatives are compared and in the type of infor-
mation which is required from the DM. Among other things, outrank-
ing methods might be preferable if the evaluation scales of the criteria
are very heterogeneous and if the DM would like to model some im-
preciseness about his preferences in the model, whereas value-based
methods can be favoured if the criteria are evaluated mostly on nu-
merical scales and if a compensatory behaviour of the DM should be

1 Institut Télécom, Télécom Bretagne, UMR CNRS 6285 Lab-STICC,
Technopôle Brest Iroise, CS 83818, 29238 Brest Cedex 3, France

2 Université Européenne de Bretagne

modeled. We choose to explore in this research a sorting technique
which is based on the outranking paradigm. It is a simplified version
of the Electre Tri [7, 14, 16] method, which can be used quite easily,
as it does not need a lot of technical parameters to be tuned properly.
The version considered here is very close to the version studied by
[2, 3].

To model the preferences of the DM, this sorting technique re-
quires criteria importance parameters, category limits separating the
categories, as well as veto thresholds for each category limit and each
criterion. These parameters can either be obtained directly from the
DM (which in most practical situations is not realistic), or learned
from assignment examples provided by the DM for each of the cat-
egories. As we will show in the sequel, most of these learning tech-
niques are not appropriate if the number of assignment examples be-
comes large, as they use mathematical programming techniques in-
volving binary variables to obtain these preferential parameters.

It has therefore been suggested by [18] to use a technique based on
a metaheuristic to learn the parameters of the sorting model. We use
similar ideas here by iteratively running a sequence of two steps. The
first step infers the criteria importance weights and majority thresh-
old while keeping the category limits fixed, whereas the second step
does the opposite and also searches for veto thresholds. Compared
to [18], first we do not employ a population of solutions but only a
single one that evolves over time, second the heuristic for guiding
the algorithm, although similar to that in [18], differs in the use of
majority margins on two levels to guide a simulated annealing imple-
mentation, third contains several adaptive parameters which are used
to steer the algorithm, and last, veto thresholds may also be learned.
The inclusion of vetoes has also been studied in [19], although new
veto definitions are studied and the inference approach is an exact
one.

To validate our approach, we perform tests on artificially generated
benchmarks, as well as classical ones involving real data [1].

The rest of the article is structured as follows. We first introduce
the preference model in Section 2. Then, in Section 3 we detail the
proposed approach, before validating it on benchmarks in Section 4.
Finally, in Section 5 we present some conclusions and perspectives
for future work.

2 The preference model

As mentioned earlier, we consider here a simplified version of the
Electre Tri [7, 14, 16] method, which is appropriate for a lot of prac-
tical applications. It is close to the version axiomatized in [2, 3].

Electre Tri requires, as a definition of the preferences of a DM,
criteria importance parameters, category limits separating the cate-
gories, as well as veto thresholds for each category limit and each cri-
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terion. The criteria importance parameters include a weight for each
of the criteria and a majority threshold that defines when a coali-
tion of criteria is good enough to be decisive. The category limits
separate, for each criterion, two consecutive categories, and a veto
threshold defines, for a given category limit and a given criterion, a
performance which is too bad for the alternative to be assigned to the
given category.

Consider a finite set of alternatives A, a set of category limits
B = {b1, . . . bk}, and a finite set of criteria indexes J . A crite-
rion gj (j ∈ J) is a function from A ∪ B to R where gj(a) de-
notes the performance of the alternative a on criterion gj . The al-
ternatives have to be sorted in k categories, c1, . . . , ck, ordered by
their desirability. c1 is the worst category, and ck is the best one.
Each category ch is defined by the performances of its lower fron-
tier, or category limit, bh−1 and its upper frontier bh of B (except
the worst category c1 has no lower frontier). The performances are
here supposed to be such that a higher value denotes a better perfor-
mance and the performances on the frontiers are non-decreasing, i.e.
∀j ∈ J, 2 ≤ h ≤ k : gj(bh−1) ≤ gj(bh).

To sort the alternatives, Electre Tri uses the concept of outranking
relation. The assignment rule used here, known as the pessimistic
rule, assigns an alternative a to the highest possible category ch such
that the alternative outranks the category’s lower frontier bh−1. An
alternative a outranks a frontier bh−1 if and only if there is a suf-
ficient coalition of criteria supporting the assertion “a is at least as
good as bh−1”, and no criterion strongly opposes (vetoes) that asser-
tion. To compute this, preferential parameters, representing the DM’s
preferences, are used. The coalition of criteria in favour of the out-
ranking, ∀a ∈ A, 1 ≤ h ≤ k, is defined as

∑

j∈J
wjCj(a, bh−1), (1)

where wj is the weight of the criterion gj , and Cj(a, bh−1) ∈ {0, 1}
measures if a is at least as good as bh−1 from the point of view of the
criterion j or not: Cj(a, bh−1) = 1 ⇔ gj(a) ≥ gj(bh−1), 0 other-
wise. The weights are defined so that they sum to one (

∑
j∈J wj =

1). The coalition is compared to a majority threshold λ ∈ [0.5, 1]
extracted from the DM’s preferences along with the weights. If∑

j∈J wjCj(a, bh−1) < λ, the coalition is not sufficient and the
alternative does not outrank the frontier bh−1 and will therefore be
assigned in category below ch.

Even when the coalition is strong enough, a criterion may veto
the outranking situation. It happens when gj(a) > vh−1

j . The veto
threshold vh−1

j is a value that the DM may define and represents the
performance that, if not reached by some alternative a, forbids the
alternative to be in category ch. To summarize, alternative a outranks
frontier bh−1 (and therefore is assigned to at least the category ch) if
and only if

∑
j∈J wjCj(a, bh−1) ≥ λ and ∀j ∈ J : gj(a) > vh−1

j .
The weights and majority thresholds (defining the sufficient coali-

tions) and the category limits may be given directly by the DM. How-
ever, in practice, this requires that the DM understands how these
values will be used. It is moreover a difficult process to directly ask
the DM for these parameters. The approach used here supposes that
he provides assignment examples which are used to infer the prefer-
ential parameters. We denote with A

′
a subset of the alternatives in

A and withK : A′ → {1, ..., h} the assignments of these alternative
to the set of ordered classes.

Previous works aiming to infer preferential parameters for the
Electre Tri procedure on the basis of assignment examples suggest
either to find the entire Electre Tri preference model parameters [13]
from assignment examples, or to find the importance coefficients

only [12], or only the categories limits [15], the other parameters
being supposedly known. Robust approaches are suggested which
compute for each alternative a range of possible categories to which
alternatives can be assigned under incomplete determination of the
parameters [4, 5, 6]. Some tools deal with the problem of non exist-
ing preference model solutions which may arise because of an incon-
sistent set of assignment examples (i.e. assignment examples that do
not match Electre Tri) [11, 10].

However, learning these parameters requires linear programming
techniques which necessitate the use of binary variables. In our con-
text, where potentially large sets of assignment examples are in-
volved, such an approach cannot be considered, as it requires large
computing times. Similarly as in [18], we suggest to use a technique
based on a metaheuristic to learn the parameters of the sorting model.
The next section presents this approach and compares its character-
istics to those of [18].

3 Proposed approach

In order to overcome the difficulties raised by finding the param-
eters of the preference model in an exact manner, we propose the
use of a hybrid approach combining a linear programming approach
and a metaheuristic iteratively in a similar fashion to the approach
of [18]. However, there are a number of differences between the two
approaches, mainly in the overall structure of the approach, which
does not employ a population of solutions but only a single one that
evolves over time, as well as the inclusion of several adaptive pa-
rameters within the approach. The approach looks to maximize the
classification accuracy of the model over a sample of alternativesA

′
.

The construction or choice of the elements that are included in the
sample is not in the scope of this work.

Algorithm 1 Proposed approach;
Input: Initial solution s0, Initial temperature T0.

1: λ,w, b, v = INITIALIZEMODELPARAMETERS();
2: dT, rN = INITIALIZEALGORITHMPARAMETERS();
3: best f = FITNESS(λ,w, b, v);
4: while not STOPPINGCONDITION() do
5: /* Linear program for weights and majority threshold */
6: λ

′
, w
′
= LP(b, v);

7: /* Metaheuristic for category profiles and vetoes */
8: b

′
, v
′
= MH(λ

′
, w
′
, b, v, dT );

9: if best f < FITNESS(λ
′
, w
′
, b
′
, v
′
) then

10: best f = FITNESS(λ
′
, w
′
, b
′
, v
′
);

11: λ,w, b, v = λ
′
, w
′
, b
′
, v
′
;

12: else if restart == 0 then
13: λ,w, b, v = INITIALIZEMODELPARAMETERS();
14: dT, rN = UPDATEALGORITHMPARAMETERS();
Output: λ,w, b, v.

The proposed approach (illustrated in Algorithm 1) divides the
original problem of finding all the parameters of the preference
model into two sub-problems:

• the LP step: finding the majority threshold and the criteria
weights while the category and veto profiles are fixed (Algo-
rithm 1 line 6);

• the MH step: finding the category and veto profiles while the ma-
jority threshold and the criteria weights are fixed (Algorithm 1
line 8).
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These two steps are iterated until the algorithm converges to a fi-
nal, close to optimal, solution (as will be shown in Section 4) or until
a given amount of time has passed.

The algorithm also has two parameters, dT and rN , which are
used to improve its efficiency.

The first parameters, dT , is used inside the metaheuristic step and
influences the number of iterations that this step performs. Initially
dT is high, which leads to the metaheuritic to perform a low num-
ber of iterations. dT is decreased when the metaheuristic does not
improve the best found classification accuracy and is increased oth-
erwise. In this way the metaheuristic is not run pointlessly for too
long when it is able to improve the solution in a lower number of
iterations and it is given more time otherwise.

The second parameter, rN , corresponds to the maximum number
of non-improving iterations of the main loop of the algorithm that are
allowed before restarting from the initial solution. This parameter is
usually fixed beforehand and is used to restart the algorithm in case
it converges to a potentially non-optimal solution.

3.1 Initialization
The initialization step is used in order to set the starting values of all
the parameters. At this time the majority threshold is set to 0.5, while
the criteria are given equal importance in the form of equal weights.
Additionally, all veto thresholds for the category profiles are set to
the least preferred evaluations of the alternatives on each criterion
making them initially inactive.

The category profiles are constructed using a greedy heuristic
which considers each criterion independently from the rest and
places the value of a profile bh so that it separates as much as pos-
sible the values of the alternatives that are classified in categories
above the profile and the values of the alternatives that are classified
in categories below the profile:

max :
∑

a∈A′
hinit(a, h), ∀j ∈ J, ∀h ∈ {1, . . . , k − 1} ,where (2)

hinit(a, h) =





1 , if K(a) > h and aj > bhj
or K(a) 6 h and aj < bhj ;

0 , otherwise.

(3)

3.2 LP step
The linear program for the first step of the approach is presented in
Figure 1.

The assignments of the alternatives and the fixed category profiles
are used indirectly by the linear program in the form of the C+ and
C− parameters. These parameters correspond to the “at least as good
as” assertions on each criterion between an alternative in A

′
and the

category profile delimiting the assigned category and the category
above, respectively the category below.

Aside from the constraint on the criteria weights summing up to 1,
the other two constraints are used in order to validate the assignment
of each alternative to its given category. It may be noticed that when
the α2 variable is strictly positive, the considered alternative is not
considered to be at least as good as the category profile delimiting the
assigned category and the category below, therefore the alternative
will be assigned to a lower category. Similarly when the β2 variable
is strictly positive, the considered alternative is considered to be at
least as good as the category profile delimiting the assigned category

Figure 1. Linear program for the first step;

Parameters:
A
′
, J

C+(a, j) ∈ [0, 1] ∀a∈A′ , ∀j∈J
C−(a, j) ∈ [0, 1] ∀a∈A′ , ∀j∈J
γ ∈]0, 1[

Variables:
λ ∈ [0.5, 1]
wj ∈ [0, 1] ∀j ∈ J
α1(a), α2(a), β1(a), β2(a) ∀a∈A′

objective:
min

∑
a∈A′

(α2(a) + β2(a))

Constraints:
s.t.

∑
j∈J

wj = 1

∑
j∈J

[C−(a, j)·w(j)]−α1(a)+α2(a)=λ ∀a∈A′

∑
j∈J

[C+(a, j)·w(j)]+β1(a)−β2(a)+γ=λ ∀a∈A′

and the category above, therefore the alternative will be assigned to
a higher category. The objective function tries to minimize these two
variables, therefore aiming at minimizing the misclassifications. In
order to keep the mathematical program simple, these variables are
not binary, therefore the objective function does not directly mini-
mize the number of misclassifications. This is an accepted trade-off
in order to keep the first step tractable.

As the the category profiles and their veto thresholds are fixed,
it should also be noted that any alternative in A

′
that is in a veto

situation with either the upper or lower profile of the category to
which it should be assigned is not included in the linear program as
no change in the criteria weights and majority threshold could impact
its final classification.

3.3 MH step
The second step of the approach consists in a slight adaptation of the
simulated annealing algorithm [9].

Algorithm 2 Simulated annealing;
Input: Initial temperature T0, Temperature decrease parameter dT .

1: T = T0;
2: while T > 0 do
3: for all j ∈ J do
4: for all h ∈ {1, . . . , k − 1} do
5: pick several x ∈ [min{vhj , bh−1

j }, bh+1] randomly;
6: select x which maximizes Hb(h, j, x)

7: if Heuristic(x) > 0 or random < e
−1
T then

8: bhj = x
9: UpdateAssignments();

10: pick several x ∈ [vh−1
j ,min{vh+1

j , bhj }] randomly;
11: select x which maximizes Hv(h, j, x)

12: if Heuristic(x) > 0 or random < e
−1
T then

13: vhj = x
14: UpdateAssignments();
15: T = T − dT ;
Output: b, v.

The simulated annealing algorithm performs changes to the cat-
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egory and veto profiles across several iterations. Each iteration is
linked to a temperature parameter which decreases over time. In the
beginning, at high temperatures, the algorithm may perform more
frequently changes to the profiles which would lead to a decrease
of the model fitness, while towards the end, as the temperature de-
creases, such changes get less frequent. Every iteration gives the op-
portunity of each profile to have each of its values on the set of cri-
teria changed. Two heuristics Hb and Hv are used to determine the
amount of increase or decrease in the fitness of the model given a new
value on a criterion for a category profile, respectively a veto profile.
In order to simplify them, we denote with Al

h the set of alternatives

that are classified by the model in class h while in the assignment
examples they are placed in class l. Additionally, we define the flag
V to indicate whether an alternative a ∈ A has a lower evaluation on
criterion j ∈ J than a given veto profile:

Vj(a, vh) =

{
1 , if gj(a) < vh−1

j ;
0 , otherwise.

(4)

The two heuristics are listed in Equations (5), (6), (7), (8), (9) and
(10).

Hb(h, j, x) =
∑

a∈A
H1

b (a, h, j, x) +
1

|A|
∑

a∈A
H2

b (a, h, j, x). (5)

H1
b (a, h, j, x) =





+1 , if (a ∈ Ah+1
h and x > aj > bhj and

∑
i∈J

wiCi(a, bh)− wj < λ)

or (a ∈ Ah
h+1 and

∑
i∈J

Vi(a, vh) = 0 and bhj > aj > x and
∑
i∈J

wiCi(a, bh) + wj > λ);

−1 , if (a ∈ Ah
h and

∑
i∈J

Vi(a, vh) = 0 and bhj > aj > x and
∑
i∈J

wiCi(a, bh) + wj > λ)

or (a ∈ Ah+1
h+1 and x > aj > bhj and

∑
i∈J

wiCi(a, bh)− wj < λ).

(6)

H2
b (a, h, j, x) =





+1 , if (a ∈ Ah+1
h and x > aj > bhj and

∑
i∈J

wiCi(a, bh)− wj > λ)

or (a ∈ Ah
h+1 and

∑
i∈J

Vi(a, vh) = 0 and x > aj > bhj );

−1 , if (a ∈ Ah+1
h and bhj > aj > x)

or (a ∈ Ah
h+1 and

∑
i∈J

Vi(a, vh) = 0 and x > aj > bhj ).

(7)

Hv(h, j, x) =
∑

a∈A
H1

v (a, h, j, x) +
1

|A|
∑

a∈A
H2

v (a, h, j, x). (8)

H1
v (a, h, j, x) =





+1 , if (a ∈ Ah+1
h and x > aj > vhj )

or (a ∈ Ah
h+1 and Vj(a, vh) = 1 and

∑
i∈J

Vi(a, vh) = 1 and vhj > aj > x and
∑
i∈J

wiCi(a, bh) > λ);

−1 , if (a ∈ Ah
h and Vj(a, vh) = 1 and

∑
i∈J

Vi(a, vh) = 1 and vhj > aj > x and
∑
i∈J

wiCi(a, bh) > λ)

or (a ∈ Ah+1
h+1 and x > aj > vhj ).

(9)

H2
v (a, h, j, x) =





+1 , if (a ∈ Ah
h+1 and

∑
i∈J

Vi(a, vh) > 1 and vhj > aj > x)

or (a ∈ Ah
h+1 and Vj(a, vh) = 1 and

∑
i∈J

Vi(a, vh) = 1 and vhj > aj > x and
∑
i∈J

wiCi(a, bh) < λ)

or (a ∈ Ah
h and

∑
i∈J

Vi(a, vh) = 0 and vhj > aj > x)

or (a ∈ Ah
h and

∑
i∈J

Vi(a, vh) > 1 and vhj > aj > x);

−1 , if (a ∈ Ah
h+1 and x > aj > vhj )

or (a ∈ Ah
h and x > aj > vhj ).

(10)

Each heuristic contains two terms. The first is used to reflect im-
mediate changes in classification accuracy due to the change of the
profile evaluation on criterion j to the new value x, while the sec-
ond is used to reflect potential changes in classification accuracy due
to future changes of the profiles on other criteria. The second term is
weighted so that it is dominated by the first. In this way, if the change
in evaluation of the profile leads to an immediate change in classifi-
cation accuracy, either positively or negatively, the second term does
not interfere with it.

The first term from the heuristic for modifying a category pro-

file adds the number of alternatives that are currently misclassi-
fied but which will become correctly classified as a result of the
profile change, and subtracts the number of alternatives for which
the reverse statement is valid. The resulting majority margin indi-
cates through its sign whether the change in the profile evaluation
leads to an increase in classification accuracy (

∑
a∈A

H1
b (a, h, j, x) >

0), a decrease (
∑
a∈A

H1
b (a, h, j, x) < 0), or to no change at all

(
∑
a∈A

H1
b (a, h, j, x) = 0). The second term works in a similar way,
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only that it adds the number of alternatives that are misclassified and
that will remain misclassified as a result of the profile change, but
for which the coalition of criteria in favour of this misclassification
gets weakened, and it subtracts the number of such alternatives for
which the coalition of criteria in favour of the misclassification gets
strengthened. The alternatives that have been misclassified due to a
veto are not taken into account as only a change to the veto profiles
would allow for a change in assignment.

The second heuristic works in a similar way to the first only that
it considers changes to the veto profiles. The exact rules may be de-
duced from its formula.

4 Results and validation

In this section we present several results of the proposed approach on
both generated and real datasets and how it compares to the algorithm
of [18].

In order to validate the approach we have constructed a series of
benchmarks containing between 100, 1000 and 10000 alternatives
defined on 10 criteria. On each benchmark we have used a model
containing two categories, equally important criteria and a majority
threshold of 50%. The only category delimiting profile was placed
at the 50% level on each criterion, while the veto thresholds were
placed at 20%. Alternatives were generated randomly and placed into
one category or another based on the previously mentioned model.
The number of alternatives in each category was set to the same
value. The alternatives in the top category were generated in such
a way as to contain only evaluations above the veto thresholds on all
criteria and evaluations above the category delimiting profile on at
least 50% of criteria. Two strategies for generating the alternatives in
the bottom category were employed. On the one hand, a set of alter-
natives were generated in such a way as to contain only evaluations
above the veto thresholds on all criteria and evaluations above the
category delimiting profile on less than 50% of criteria, while on the
other hand, a second set of alternatives were generated in the same
way as those in the top category, only that on a randomly selected
criterion their evaluations were lowered below the veto threshold.

Two sets of 10 benchmark instances were constructed for each
benchmark size. The first set populated the alternatives in the bottom
category using only the first strategy, while the second constructed
half of the alternatives in this category using the first strategy and half
using the second. The results that follow correspond to 25 executions
of each algorithm on each of the 10 benchmark instances.

In a first study we compare the effectiveness of our metaheuristic
and compare it also to that of [18]. We additionally consider the in-
clusion of vetoes in the majority rule model and the potential increase
in its expressiveness. We consider several instances of our approach
and of the approach of [18] which we denote as follows:

• MR-SORTOM: our approach without veto thresholds, without
restarts and with the number of iterations of the metaheuristic
fixed to that of the algorithm from [18];

• MRV-SORTOM: same as MR-SORTOM but considering models
with veto thresholds;

• MR-SORTOM
a : same as MR-SORTOM but with variable number

of iterations of the metaheuristic, which is followed by a local
search step;

• MRV-SORTOM
a : same as MR-SORTOM

a but considering models
with veto thresholds;

• MR-SORTSMP
1 : the approach from [18] containing only one

model;

In Figures 2,3,4,5,6 and 7 we present the results over the 6 sets
of benchmarks containing 100, 1000 and 10000 alternatives and the
two generation strategies. We recall that the benchmarks constructed
using the first strategy should be easily modelled using a majority
rule model without vetoes, while those constructed using the second
strategy should be modelled better using a majority rule model with
vetoes. In all experiments we have used the entire set of alternatives
as a learning set. We are at this point only interested to determine
how well the algorithms are able to fit the models over these bench-
marks, while experiments using samples over these datasets will be
performed in a future study.
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Figure 2. Average classification accuracy (top) and standard deviation
(bottom) results over first set of benchmarks with 100 alternatives;

Starting with the results over the benchmarks containing 100 al-
ternatives which have been generated specifically for a majority rule
model without vetoes in Figure 2, we first notice that MRV-SORTOM

and MR-SORTSMP
1 start improving the initial solution at approx-

imately the same time, therefore reflecting that the metaheuris-
tics have indeed been tuned so that they perform the same num-
ber of iterations. We also quickly notice that MRV-SORTOM takes
roughly twice that amount of time to start, which is due to it having
twice as many model parameters to tune. The adaptive versions of
MR-SORTOM and MRV-SORTOM start much quicker due to their
initial number of iterations of the metaheuristic being small. We
observe that all versions of our algorithm perform well over these
benchmarks. The non-adaptive versions appear to converge to the
best solution slightly faster than MR-SORTSMP

1 , which may be no-
ticed both by looking at the average classification accuracy but also
at the standard deviation from this value. MRV-SORTOM, while be-
ing slower to start, surpasses MR-SORTOM in terms of robustness of
the solution mid point during the experiment as seen by the standard
deviation value. We consider this to be the effect of the veto construc-
tion which in certain cases forfeits the need to change the weights of
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the model in order to correctly classify certain alternatives. While
these benchmarks have been constructed using a majority rule model
without vetoes, it may be possible that vetoes could be used in or-
der to correctly classify certain alternatives. Similar remarks may be
found when considering the adaptive versions of our algorithm, how-
ever the appear to be much faster than the rest of the algorithms.
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Figure 3. Average classification accuracy (top) and standard deviation
(bottom) results over second set of benchmarks with 100 alternatives;

Looking at Figure 3 we find the results over the benchmarks con-
taining 100 alternatives which have been generated for a majority
rule model with vetoes. Most of the remarks from the first case are
also valid in this case, however we notice that the algorithms using
models with vetoes rise above the others. The difference however is
small, which is due to the way in which the benchmarks have been
constructed. It appears that constructing benchmarks where vetoes
offer a big improvement over majority rule models without vetoes is
a difficult task which we wish to explore further in the future.

Most of the remarks above hold for the results on the benchmarks
containing 1000 and 10000 alternatives. We notice small discrepan-
cies in the case of the benchmarks constructed using the first strat-
egy. The algorithms start from a very good initial solution while the
approaches using vetoes rise above the other quickly. While using
the veto profiles has been previously seen to improve the solutions
quickly, in these cases we do not see the expected rise of the other
approaches to match the performance of these algorithms. Neverthe-
less, the difference may be due to the higher robustness of the algo-
rithms accounting for vetoes, as seen through the standard deviation.
Furthermore, as we are dealing with very good solutions, the prob-
ability of performing changes to them as to increase their fitness is
rather low, which may explain the lack of increase in performance.

The results on the benchmarks constructed using the second strat-
egy hold the same characteristics as the results on the smaller bench-
marks, with the algorithms accounting for vetoes in the majority rule
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Figure 4. Average classification accuracy (top) and standard deviation
(bottom) results over first set of benchmarks with 1, 000 alternatives;
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Figure 5. Average classification accuracy (top) and standard deviation
(bottom) results over second set of benchmarks with 1, 000 alternatives;
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Figure 6. Average classification accuracy (top) and standard deviation
(bottom) results over first set of benchmarks with 10, 000 alternatives;

100 300 500 700 900 1,100 1,300 1,500 1,700 1,900

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time(s)

Classification accuracy - average

100 300 500 700 900 1,100 1,300 1,500 1,700 1,900

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Time(s)

Classification accuracy - standard deviation

MR-SORTOM MRV-SORTOM MR-SORTOM
a MRV-SORTOM

a

MR-SORTSMP
1

Figure 7. Average classification accuracy (top) and standard deviation
(bottom) results over second set of benchmarks with 10, 000 alternatives;

model outperforming the others.
Overall, we may additionally observe that the algorithms scale lin-

early with the size of the dataset.
In a second study we compare the effectiveness of our approach

compared to the standard form of the algorithm in [18]. We denote
the approaches as follows:

• MR-SORTOM: our approach without veto thresholds, without
restarts and with the number of iterations of the metaheuristic
fixed to that of the algorithm from [18];

• MR-SORTOM
5 : same as MR-SORTOM only that the model is

reinitialized after 5 non-improving iterations;
• MR-SORTOM

5 : same as MR-SORTOM only that the model is
reinitialized after 10 non-improving iterations;

• MR-SORTSMP
10 : the approach from [18] containing 10 models;

We have tested these approaches over several containing real data
which have been taken from [1]. A description of a majority of these
datasets may also be found in [20]. The algorithms have been exe-
cuted 25 times over each dataset for an amount of time that would
allow the MR-SORTSMP

10 algorithm to perform at least 20 iterations,
a number that is recommended by the authors of this approach.

In Table 1 we illustrate the average classification accuracy and
standard deviation for the algorithms over each dataset.

Table 1. Results over the datasets in [1];

Dataset
Approach

MR-SORTOM MR-SORTOM
5 MR-SORTOM

10 MR-SORTSMP
10

bcc 77.21 (0.57) 77.50 (0.44) 77.29 (0.56) 76.61 (0.00)
cpu 97.01 (0.24) 96.99 (0.29) 97.11 (0.31) 97.03 (0.47)
dbs 92.50 (0.53) 92.47 (0.60) 92.67 (0.65) 90.52 (0.81)
era 80.90 (0.22) 80.87 (0.19) 80.85 (0.16) 80.60 (0.34)
esl 91.74 (0.28) 91.79 (0.08) 91.74 (0.28) 90.70 (0.62)
lev 84.47 (0.04) 84.48 (0.04) 84.50 (0.01) 85.35 (0.77)

mmg 83.99 (0.87) 84.33 (0.76) 84.69 (0.80) 83.62 (0.28)
mpg 83.69 (0.10) 83.69 (0.10) 83.68 (0.05) 83.45 (0.38)

We observe that the MR-SORTOM approaches are generally
slightly outperforming the MR-SORTSMP approach with a couple
of exceptions for the cpu and lev datasets. In the case of the latter
we have performed additional tests and reached the conclusion that
the heuristics used by both algorithms are not able to guide the al-
gorithms to the better solutions. In fact, the complete removal of the
heuristic in our approach allowed us to reach the exact same values
for the classification accuracy as the approach of MR-SORTSMP.

Considering the variants of MR-SORTOM that restart the algo-
rithm after several non-improving iterations, we may conclude that
using this strategy is generally beneficial, as it either increases the
average found classification accuracy or decreases its standard devi-
ation, however further studies should be performed in order to find a
good strategy of fixing the time when a model should be reinitialized.

5 Conclusion
In this work we have presented an approach for inferring the param-
eters of a majority rule sorting model with the potential inclusion of
veto thresholds. While another metaheuristic approach has been pre-
viously proposed in [18], the main difference lies in the inclusion of
veto thresholds in the model. Furthermore, our approach uses a sin-
gle model and not a population of models, and contains a simulated
annealing implementation at its core instead of a random search. We
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have also extended the method to adapt the time spent on the meta-
heuristic step as well as reinitialize the solution when it is not able to
improve it. The presented approach has been tested and compared to
the approach from [18] over a set of constructed benchmarks, as well
as over datasets containing real data.

Future work should focus on studying strategies for adapting the
time spend on the metaheuristic step and the reinitialization strat-
egy in order to further improve the performance of the algorithm.
We would also like to look into constructing benchmarks where the
veto component of the majority rule model is more prominent and
which would highlight the difference between a majority rule mode
with vetoes and one without. Furthermore, we wish to consider the
performance of the algorithm and that of a majority rule model with
vetoes when the assignment examples represent only a sample of the
original data.
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A Dataset Repository for Benchmark in MCDA
Antoine Rolland 1 and Thi-Minh-Thuy Tran 2

Abstract. Several methods have been proposed in the past decades
to deal with Multicriteria Decision Aiding (MCDA) problems. How-
ever, a comparison between these methods is always arduous as there
is no benchmark in this domain. In the same time, people propos-
ing new MCDA methods have no standardized data to deal with to
prove the interest of their methods. We propose the creation of a web
MCDA DataSet Repository to face this lack of data. This dataset
repository is designed to be used by any multicriteria method, but
particularly in the the frame of the DIVIZ platform. We detail the
presentation of this repository in this paper. The dataset repository is
available at http://data.decision-deck.org/

1 Introduction

MCDA aims at helping a Decision Maker to take decisions. Many
different models have been proposed since more than 50 years (see
[6] or [3] for a survey), among others:

• utility-based approaches, using linear (MAUT [11], AHP [15]) or
non-linear (Choquet integral [8]) aggregation functions

• outranking approaches, like ELECTRE [7] or PROMETHEE [4]
methods

• mixed methods, like rule-based methods [9, 10] and others.

There is still a great increase of the number of very specific meth-
ods to be proposed. All these methods are always presented as very
interesting and perfectly adapted to the situation. The fact is that it is
very difficult to test and compare different methods described in the
literature, as they often are dedicated to one specific situation. There-
fore, there is a lack of testing set of data on which one can try the dif-
ferent methods. Several solutions have already been proposed to in-
crease the possibility of benchmark between MCDA method. We can
cite the Decision Deck project which proposes a unified standard for
MCDA data [2], and a unified web services platform through DIVIZ
[13]. We can cite also a companion paper [5] which aims at propos-
ing a simulation method to generate MCDA fictitious data from real
ones.

Some other dataset repository exist, but as far as we know none of
them is about MCDA. We can cite, among others:

• the UCI Machine Learning Repository [1]. It is a good resource
for classification problems, but the a huge number of variables
and/or alternatives make them inappropriate for a MCDA ap-
proach. The datasets are dedicated to statistical or machine learn-
ing approaches.

1 Laboratoire ERIC, université LYON 2, email: antoine.rolland@univ-
lyon2.fr (corresponding author)

2 Laboratoire ERIC, université LYON 1, email: thi-minh-thuy.tran@etu.univ-
lyon1.fr

• PrefLib [12] is a database specialized in preference aggregation
as in voting theory. Data are lists of complete or incomplete orders
or preorders, but only cardinal informations are provided.

This paper presents the MCDA DataSet Repository. In the next
section, we will first motivate the creation of the repository. We then
present the functionalities of the MCDA DataSet Repository in sec-
tion 3. Section 4 is dedicated to the contain of the MCDA DataSet
Repository .

2 Motivations
As pointed out in the introduction, our main motivation is to provide
to the MCDA community a large set of multicriteria decision situa-
tions and data. Following [12], the main motivations for building a
case library are benchmarking, competition, realism, challenges and
insularity. We agree on these motivations and precise some of them
into the MCDA framework.

• Benchmarking: our main motivation is to provide to the com-
munity a large possibility to compare the results of several dif-
ferent methods on the same dataset. The use of XMCDA as an
unified data standard should increase these possibility. The aim is
not to try to prove the superiority of a specific method, but to help
the analysis of the convergences and divergences of the different
methods on a given dataset. Even if the theoretical divergences are
now well known [3], it is interesting to see in practice on real data
sets when the different methods give the same results or not.

• Insularity is defined in [12] as ”most people work on their own
problems and their own data”. The use of a common problems
repository should favour interactions and cross-over fertilization
between different MCDA researchers.

• Realism: several variants and improvements of MCDA methods
are based on the study of more and more specific cases. For ex-
ample, the MAUT started with linear additive utilities. Then non-
linear utilities have been proposed, and later non-additive aggre-
gation functions have been introduced, increasing both the de-
scription capacities of the proposed methods and their complex-
ity. Many of these improvements/complexifications are justified
by ad-hoc examples. The use of datasets with real data should en-
able to justify (or not) the use of these improvements in practice.

In order to reach theses objectives, the datasets proposed into
MCDA DataSet Repository should fulfil some criteria:

• Quantity: the number of proposed datasets should be large
enough for each user to find a suitable case for its experiments.
We start with more than 15 different cases but we expect an quick
increase of the number of available datasets.

• Diversity: the success of the MCDA DataSet Repository will also
stand into its capacity to provide a great variety of data and sit-
uations. We have paid much attention to select various datasets
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Figure 1. MCDA DataSet Repository Homepage

into the first ones available on-line. Both real and fictitious data,
qualitative, quantitative or mixed data are available.

• Reliability: it is essential that the provided datasets are free of
bugs and mistakes. That’s why we test carefully all the files con-
tained into the proposed data sets. We then guaranty that all the
data are coherent with the XMCDA standards and readable by the
appropriate DIVIZ web services. We cannot of course be consid-
ered as responsible in case of misuse of the data.

• Open access: all the proposed data come from our private exper-
iments or have been taken from the literature. We suppose that
authors publishing their data are doing so for readers to be able to
use them again, which is the spirit of MCDA DataSet Repository
.

3 Functionalities
3.1 Access
The MCDA DataSet Repository is available with the following URL:
http://data.decision-deck.org/

The repository homepage (see fig. 1) presents directly the different
available datasets, and filters to help users to choose the dataset that
better suits his/her needs.

3.2 Dataset structure
A dataset included in the MCDA DataSet Repository is composed of
three types of files:

1. a description file, including a basic presentation of the data frame-
work, a reference to the data source, and a brief description of the
criteria and the alternatives.

2. a performance table file in a .csv format, making the perfor-
mance data directly available on a line/column table. This table
does not include any information about the type of data, scales

and preference directions of the criteria and so on. Please refer to
the description file for these informations.

3. as many files as needed in the .xmcda format (see [2] for details)
to describe entirely the dataset. It includes at least a file for the
alternatives, a file for the criteria and a file for the performance
table. It can also include file with needed information for the use of
specific methods like weights for a weighted mean, or importance
weight for the use of ELECTRE methods for example.

All these files are jointed into a zip file in order to have the dataset
loading facilitated (see fig. 2).

Figure 2. MCDA DataSet Repository : a dataset

3.3 Filters
Facing the list of datasets, the user should like to access directly the
cases that better suit its willing and needs. That’s why the MCDA
DataSet Repository proposes a filtering function (see fig. 3) including
the following selection fields. Note that these fields can be jointly or
independently selected.
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• Problematic: inspired by the classification proposed by Roy [14],
the dataset problematic can concern a ranking, sorting or choice
problem. More problematic can be added if needed.

• Data type (1 & 2): it indicates whether the data are qualitative or
quantitative, and if they are ordinal numbers, real numbers, fuzzy
numbers or intervals.

• Domain specifies the application domain of the case study.
• Inputs indicates if the data are real data or fictitious (simulated)

ones.
• The number of criteria should be a matter of interest to select the

dataset, such as the following.
• The number of alternatives should also be a matter of interest,

as some methods are dedicated to small, or large amounts of data.
• Known Results indicates if the result of the decision process has

been specified in the source, i.e. which solution has been chosen
in the case of a choice problem, or the final category affectation in
the case of a sorting problem for example.

Figure 3. MCDA DataSet Repository : filtering

4 Contain

4.1 Content policy

The aim of the MCDA DataSet Repository is to propose as many
datasets as possible. Any multicriteria decision-making situation is
welcome in the MCDA DataSet Repository . Ideally, the MCDA
DataSet Repository should contain both datasets coming from a real-
life study cases and datasets with fictitious data specially built to il-
lustrate a specific decision case.

The MCDA DataSet Repository can be supplied by several way:

• the authors still maintain a bibliography watch in order to supply
the repository with data coming from case-studies proposed in the
literature.

• any one can also propose a dataset. This can be easily done
through the ”Donate a Dataset” button (see fig. 4)

Figure 4. MCDA DataSet Repository : donate a dataset

4.2 Example
Let us detail the dataset ”VallinVanderpooten2000”. This dataset is
issued from [16]. The data are presented in the following table:

Performances G1 G2 G3
A01 16 14 16
A02 10 18 12
A03 18 12 6
A04 18 4 20
A05 16 10 12
A06 6 14 18

The folder includes 6 files:

• VallinVanderpooten2000 description.txt contains a brief de-
scription of the dataset framework:
"In order to hire someone, a
recruitment agency evaluates 6
candidates through 3 tests:

– competences evaluation (G1)
– general knowledge evaluation (G2)
– motivation evaluation (G3)

These evaluations are noted on a [0;20]
scale and have to be maximized."

• VallinVanderpooten2000 performanceTable.csv contains the
data in a csv format.
Performances;G1;G2;G3
A01;16;14;16
A02;10;18;12
A03;18;12;6
A04;18;4;20
A05;16;10;12
A06;6;14;18

• VallinVanderpooten2000 alternative.xml contains the alterna-
tives list in a xmcda format.
<alternatives>
<alternative id="a01" />
<alternative id="a02" />
<alternative id="a03" />
<alternative id="a04" />
<alternative id="a05" />
<alternative id="a06" />
</alternatives>
</xmcda:XMCDA>

97



• VallinVanderpooten2000 criteria.xml contains the criteria list
in a xmcda format.
<criteria>
<criterion id="G1" name="competences">
<scale>
<quantitative>
<preferenceDirection>max
</preferenceDirection>
<minimum><real>0</real></minimum>
<maximum><real>20</real></maximum>
</quantitative>
</scale>
<thresholds>
<threshold mcdaConcept="veto">
<constant>
<real>9</real>
</constant>
</threshold>
</thresholds>
</criterion>
(...)
</criteria>

• VallinVanderpooten2000 performanceTable.xml contains the
performance table in a xmcda format.
<performanceTable id="normalised"
mcdaConcept="cardinalScales">
<alternativePerformances>
<alternativeID>a01</alternativeID>
<performance>
<criterionID>G1</criterionID>
<value> <real>16</real></value>
</performance>
<performance>
<criterionID>G2</criterionID>
<value> <real>14</real></value>
</performance>
<performance>
<criterionID>G3</criterionID>
<value><real>16</real></value>
</performance>
</alternativePerformances>
(...)
</performanceTable>

• VallinVanderpooten2000 weight.xml contains the criteria
weights in a xmcda format.
<criteriaValues mcdaConcept="Importance"
name="significance">
<criterionValue>
<criterionID>G1</criterionID>
<value><real>0.6</real></value>
</criterionValue>
<criterionValue>
<criterionID>G2</criterionID>
<value><real>0.1</real></value>
</criterionValue>
<criterionValue>
<criterionID>G3</criterionID>
<value><real>0.3</real></value>
</criterionValue>
</criteriaValues>

5 Conclusion
In this paper we have introduced the first version of the MCDA
DataSet Repository . The success of such a repository will come not
only from the use of the proposed databased, but also from the con-
tributions received from the research community. We then encourage
all the MCDA practitioners to enrich the MCDA DataSet Repository
through data donations. Please do not hesitate to contact us for any
help.
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les cas, Ellipses, Paris, 2000. 2e édition, 2002.
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Session 8

• Invited speaker: “Preference modeling with Choquet integral”,
Michel Grabisch, Université Paris 1
In this talk, we show how capacities and the Choquet integral emerge as natural ingredi-
ents when building a multicriteria decision model, especially when the criteria cannot be
considered as independent. To face the complexity of the model, we provide efficient sub-
models based on k-additive capacities, which are naturally connected with the interaction
indices, quantifying the interaction existing among criteria in a group of criteria. The case of
2-additive capacities seems to be of particular interest, since it leads to a model which is con-
vex combination of an additive model and max and min over any pair of two criteria. Lastly,
we address the issue of the identification of the model through learning data and preferences.
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15h30 Session 9

• “Characterization of Scoring Rules with Distances: Application to Clustering of Rankings”,
Paolo Viappiani, LIP6, Université Pierre et Marie Curie

• “An interactive approach for multiple criteria selection problem”,
Anil Kaya1, Özgür Özpeynirci1, Selin Özpeynirci2,
1 Izmir University of Economics, Department of Logistics Management,
2 Izmir University of Economics, Industrial Engineering Department

• “FlowSort parameters elicitation: the case of partial sorting”,
Dimitri Van Assche, Yves De Smet,
CoDE, Université libre de Bruxelles

• “On confident outrankings with multiple criteria of uncertain significance”,
Raymond Bisdorff, University of Luxemburg
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Characterization of Scoring Rules with Distances:
Application to Clustering of Rankings

Paolo Viappiani 1 2

Abstract. We consider the problem of clustering rank data, fo-
cusing on distance-based methods. Two main steps need to be per-
formed: aggregating rankings of the same cluster into a representa-
tive ranking (the cluster’s centroid) and assigning each ranking to its
closest centroid according to some distance measure. A principled
way is to specify a distance measure for rankings and then perform
rank aggregation by explicitly minimizing this distance. But if we
want to aggregate rankings in a specific way, perhaps using a scor-
ing rule giving more importance to the first positions, which distance
measure should we use?

Motivated by the (known) observation that the aggregated rank-
ing minimizing the sum of the Spearman distance with a set of input
rankings can be computed efficiently with the Borda rule, we build a
taxonomy of aggregation measures and corresponding distance mea-
sures; in particular we consider extensions of Spearman that can give
different weights to items and positions.

1 Introduction
It is often the case that data is available in the form of rankings (or-
dered lists of elements that express a preference order), for instance,
this is the case of preference information obtained in electronic com-
merce applications. This paper deals with the problem of clustering
preference data that is available in the form of rankings.

One motivation for clustering rankings is that by producing a
(small) number of aggregated rankings we are able to provide a
meaningful qualitative description for the entire population. In this
work we focus on distance-based methods for clustering that are at-
tractive because they do not make specific assumptions (contrary to
probabilistic methods [2, 10], such as Mallows models, that assume a
specific generative model for the rankings). A distance-based cluster-
ing method partitions the elements into clusters, so that the within-
cluster distance is minimized; each cluster can then be associated
with a representative element of the partition (the centroid). When
considering rankings as elements to be clustered, the issue is to de-
fine a meaningful sound distance measure that can be used; in fact
several alternative possibilities exist.

Another, related, problem is that of ranking aggregation. Several
methods for aggregation of rankings have been proposed, notably in
the social choice theory community. A motivation of this work is to
study which aggregation methods can be formulated as the minimiza-
tion of some distance measure between rankings. Distance-based
clustering associates elements (in this case rankings of objects from
the most to the least preferred) to clusters; in each cluster a represen-

1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6
2 CNRS, UMR 7606, LIP6, 4 Place Jussieu, 75005 Paris, France; email:

paolo.viappiani@lip6.fr

tative ranking (centroid) is computed using some aggregation rule.
Rankings are assigned to the cluster whose centroid is the closest.

When a distance measure is defined, a natural aggregation method
is looking for the ranking that minimizes the sum of the distances
with all input rankings. An interesting question is whether common
aggregation methods have a corresponding distance that they mini-
mize implicitly. If such connection can be made, clustering can often
be made more efficient, as often ranking aggregation techniques are
computationally less demanding than explicit minimization of dis-
tance.

2 Distance-based Clustering

We have a set of n items or objects and a set of m users or agents. A
ranking π is a permutation on the set of available objects. Formally π
is a function from {1, ..., n} to {1, ..., n} associating each item with
its position (rank). As usual, the set of possible rankings is denoted
as Sn. A ranking can be expressed alternatively in an explicit form of
a tuple 〈π−1(1), ..., π−1(n)〉, with π−1(r) being the r-th most pre-
ferred item; for example 〈2, 1, 3〉 is the ranking for which item 2 is
the most preferred, then item 1 is preferred, and finally item 3 is the
least preferred (this corresponds to π(1)=2, π(2)=1 and π(3)=3).

In this paper we consider to have a number of rankings π1,...,πm,
associated with different users or agents, and we want to partition
them into different clusters. Let f : i→ r assign rankings to clus-
ters and d be a distance. Distance-based clustering is the problem
of, given a number m of rankings, partitioning them in k clusters
(or classes) so to minimize the within-cluster sum of distances with
respect to some “central” rankings π̄∗1 , .., π̄∗k of each cluster.

(f∗, π̄∗1 , .., π̄
∗
k) = arg min

f,π̄∗
1 ,...,π̄

∗
k

k∑

z=1

m∑

j=1

d(π̄z, πj) (1)

The problem of clustering is frequently tackled in the literature
with an iterative algorithm that proceeds in two steps. In the assign-
ment step, each observation is assigned to the cluster whose “mean”
yields the least within-cluster distance. In the update step, we calcu-
late the new means to be the centroids of the observations in the new
clusters. When items are vectors and the Euclidean distance is used,
the problem is that of k-means clustering and the iterative algorithm
described above is often called as well k-means 3.

Here, following [8] we adopt the same idea for clustering a set of
rankings. We proceed in a iterative way. As in traditional k-means,
we maintain a set of centroids (initialized randomly) and we asso-
ciate each ranking with the cluster whose centroid is closest. Then,

3 Also sometimes called Lloyd’s algorithm.
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we recompute the centroids for each of the clusters. We alternate be-
tween these two actions until further application of this methodology
does not change the clusters anymore. The algorithm assumes that a
suitable distance d on rankings is given. The algorithm’s pseudocode
is outlined below (Algorithm 1).

Algorithm 1: Distance-based clustering of rankings.
Data: π1, ..., πm (population of rankings given by m users), k

(number of clusters)
Randomly initialize the centroids π̄1, ..., π̄k ;
while there are changes in cluster assignments do

Assign each ranking π to the cluster whose distance to the
centroid is lower
f(πi) := arg minr=1,..,k d(πi, π̄

r) i=1, ..,m;
Find the centroid of each cluster
π̄r := minπ∈Sn

∑
πt:f(πt)=r d(π, πt) r = 1, ..., k;

end

A well known fact is the following:

Observation 1. Algorithm 1 converges to a local optimum.

This observation is easily proved by showing that both main steps
of the algorithm cannot increase the total distances of each data point
to the centroid of its cluster. Since the distance-based clustering ap-
proach returns a local optimum, the algorithm may be run for a num-
ber of times (typically 10 or 20) and store the clustering assignment
associated with the lowest sum of distances to the closest centroid.

Algorithm 1 requires the specification of a suitable distance mea-
sure. Rankings are particular “objects”, and there are many different
ways to define a distance between two rankings; some common dis-
tances are reviewed below in Section 3.2. Note however, that rank ag-
gregation is often treated as a separate problem, especially in social
choice literature, notably in voting methods (an aggregate ranking is
obtained without considering an underlying distance measure).

The main contribution of this paper is to study the connection be-
tween rank aggregation (in particular, scoring rules) and ranking dis-
tances. We will propose new distances that allow to assign different
degrees of importance to positions and to items. Since these distances
are easy to aggregate (in our terminology, distances that characterize
a scoring rule), clustering can be computed very efficiently.

3 Distance and Aggregation
There are a number of ways that can be used to aggregate several
rankings into a single one. Some aggregation rules are devised from
social choice: the Condorcet method, sorting the items by their Borda
score or a generic scoring rule. There are as well many commonly
used distance measures for rankings, such as Kendall-tau, foot rule
or Spearman.

From a theoretical point of view, the interest is to study if, for a
given common aggregation rule (such as plurality), there is a distance
measure that it is (implicitly) minimized. In this paper we establish
a connection between scoring rules (often used in social choice) and
their associated distance measures.

3.1 Aggregation methods
In general terms an aggregation rule is a mapping g(σ1, ..., σm) from
a set of input rankings σ1, ..., σm to a single “best” ranking summa-
rizing the whole population. As there might be ties in the underlying

computations, we allow g to return more than one ranking, so tech-
nically g outputs a set of rankings, to be considered equally good.

Many ways of aggregating rankings arise from the field of social
choice, where one needs to make a decision for a group of people, ag-
gregating several (usually different) preferences, expressed as a vote
in a ballot. Here we focus on rank aggregation using scoring rules.

A scoring rule associates each position r ∈ {1, ..., n} with a score
w(r). Items are evaluated by summing up the score they are awarded
in each ranking v(i)=

∑m
j=1 w(πj(i)). In order to form an aggregate

ranking, items are sorted according to their total score v(i): the rank-
ing π∗SR obtained by a scoring rule is such that π∗SR(i)<π∗SR(j) iff
v(i)≥ v(j) (when ties exist in the overall score, a tie-breaking rule
needs to be used).

Borda count (or Borda rule) is a particular type of scoring rule
considering weights defined as w(r) = n−r+1 (the item ranked
first gets a score of n points, an item in the second position gets
n−1, and so on). We denote with π∗Borda the ranking obtained by
following Borda rule. Borda weights are such that Borda counts for
element i are v(i)=

∑m
u=1 n−σu(i)+1 = m(n+ 1)−∑m

u=1 σu(i).
The optimal ranking π∗Borda according to Borda count is such that i
precedes j in π∗Borda, formally expressed as π∗Borda(i)<π∗Borda(j),
iff v(i) ≥ v(j). It is immediate to show that this is equivalent to∑m
u=1σu(i) ≤∑m

u=1σu(j) (an item i is ranked higher than another
item j if the overall sum of its positions in the input rankings is less
than that of j).

Plurality (sorting items by the number of times that they are
ranked first) can be represented as a scoring rule with weights
(1, 0, ..., 0); veto, sorting items in decreasing order with respect to
the number of times they are ranked in the last position, is repre-
sented by weights (1, ..., 1, 0), and top-k, that can be modelled as a
scoring rule with a weight of 1 in the first k positions and then 0.

We propose a new aggregation method, that we call Biased Borda
count, parametrized by z1, .., zn, where one item receives a contri-
bution n−ziσu(i) + 1 to its score for each ranking σu:

vBB(i) = m(n+ 1)− zi
m∑

u=1

σu(i). (2)

This allows to “tweak” Borda in order to give some advantage to
some items, or penalize others. Obviously when zi = 1 for all i,
biased Borda coincides with Borda. The optimal ranking π∗BB with
respect to the biased Borda count is such that i precedes j, π∗(i) <
π∗(j), iff v(i) > v(j), or equivalently zi

∑m
u=1(n−σu(i) + 1) >

zj
∑m
u=1(n−σu(j) + 1), thus if

zi

m∑

u=1

σu(i) < zj

m∑

u=1

σu(j). (3)

Its interpretation is that an item i is ranked than another item j if the
overall sum of its positions in the input rankings, weighted by zi, is
less than that of j, weighted by zj .

A similar extension can be made considering a scoring rule, in-
stead of Borda, obtaining a biased scoring rule.

3.2 Distance Measures for Rankings

Distance measures characterize how different two rankings are; dif-
ferent distances might pose more strength on specific aspects: pe-
nalizing the displacements in different ways. For a given distance
measure d the total distance from a given ranking π to the a set of
rankings σ1, ..., σm is D(π;σ1, ..., σm) =

∑m
u=1 d(π, σu).
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A distance function between rankings naturally leads to a way
to generating an aggregate ranking; the ranking minimizing this
score is chosen as aggregated ranking for the population: π∗ =
arg minπ D(π, σ1, ..., σm).

We recall hereafter the usual definition of metric and common gen-
eralizations relaxing some of the properties. Note that, while the term
distance is often used as a synonym for metric, in the following, we
use the former to loosely mean any function that quantifies the dif-
ference between elements (rankings in our case), and we explicitly
state which distances are metric.

Definition 1. A function d : X × X → R is a metric on X iff it
satisfies the following properties:

• d(x, y)≥0 (non negativity),
• d(x, y)=0 iff x=y (identity of the indiscernibles),
• d(x, y)=d(y, x) (symmetry) and
• d(x, y)+d(y, z) ≥ d(x, z) (triangular inequality).

Moreover we have the following relaxations:

• A pseudometric d relaxes the identity of the indiscernibles
(d(x, x) = 0 but it may holds that d(x, y)=0 for y 6= x);

• A quasimetric relaxes symmetry;
• A semimetric relaxes the triangular inequality;
• A function satisfying non-negativity and d(x, x) = 0 is a premet-

ric.

We are interested in distance measures on rankings; ranking dis-
tances d are defined on the Sn (the set of permutation of n elements).
Common distance measures for rankings are Kendall tau, footrule4

and Spearman, that we now recall. We then introduce new distance
measures that can express richer notions of similarity/diversity, as
giving more weights to the first positions or to the last.

Kendall-tau counts the number of disagreements in terms or pairs
between two rankings.

dKT (π, σ)= |{(i, j) : i>j, (π(i)−π(j))(σ(i)−σ(j))<0}| (4)

Kendall tau can also be defined as the minimum number of pair-
wise adjacent transpositions required to bring a ranking into an-
other one [3]. The ranking minimizing the Kendall-tau distance
with a set of other rankings, is called Kemeny ranking; π∗KT =
arg minπ

∑m
u=1 dKT (π, σu). Kendall-tau is connected to the Con-

dorcet property: if a Condorcert winner (the item that is pairwise pre-
ferred to all other items by the majority of users) exists, minimization
of Kendall tau returns such ranking.

Another well known distance measure is footrule. Given two
rankings π and σ, the displacement for element i is the quantity
|π(i)−σ(i)|. The footrule distance measures the total displacement
of all elements, computed as

dF (π, σ) =

n∑

j=1

|π(i)− σ(i)|. (5)

In this paper we focus on Spearman distance, because as it will
discussed below in Section 4, it is connected to the aggregation using
Borda count. The Spearman distance is defined as taking the squares
of the differences:

dS(π, σ) =

n∑

j=1

[π(j)− σ(j)]2. (6)

4 Also known as Spearman’s foortule.

An interesting observation, that we will use several times in our
proofs, is that Spearman can be expressed as follows:

dS(π, σ) =
n(n+ 1)(2n+ 1)

3
− 2

n∑

i=1

π(i)σ(i).

In the literature, Sperman distance is often used to measure the
correlation between two rankings. Spearman’s rank correlation ρS is
defined as ρS = 1− 6dS(π1,π2)

n(n2−1)
, so that it lies between −1 and 1.

The traditional definition of Spearman distance treats all positions
in the same way. Following [4, 9], in order to allow to put more em-
phasis on some ranks we define a generalization of Spearman dis-
tance, that we call positional Spearman, giving different weights to
rank positions, computed as

dPS(π, σ) =

n∑

i=1

[w(π(i))− w(σ(i))]2 (7)

parametrized by a vector w.
It is easy to verify that footrule and Kendall-tau distance are met-

rics. Spearman distance, however, does not satisfy the triangular in-
equality; therefore it is a semimetric. It can be turned into a metric
if we take the root of sum of the squares of the distances between
positions. We observe that this can also be stated for the proposed
positional Spearman ranking distance.

Observation 2. The positional ranking distance dPS is a semimet-
ric.

4 Connection between Aggregation Methods and
Distance Minimization

Table 1. Distance measures and associated scoring functions.

Aggregation method Distance measure Properties

Plurality dPL premetric

Top-k dTK premetric

Veto dV premetric

Borda Spearman semimetric

Scoring rule (distinct weights) positional Spearman semimetric

biased Borda item-weighting non negativity,
Spearman symmetry

The general aggregation problem is that of finding the ranking
(permutation of items) that minimizes a given distance measure with
respect to several other rankings σ1, ..., σm given as input.

π∗ = arg min
π
D(π;σ1, ..., σm) = arg min

π

m∑

j=1

d(π, σj) (8)

Definition 2. A distance function d(π, σ) on rankings characterizes
a ranking aggregation g(σ1, ..., σm) iff it holds

arg min
π∈Sn

D(π;σ1, ..., σm) = g(σ1, ..., σm).

with D(π;σ1, ..., σm) =
∑m
u=1 d(π, σu).
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In case the aggregation function returns multiple rankings (for
example, due to ties in the score obtained with Borda count), then
all such rankings should achieve the same minimal value D∗ =
minπD(π;σ1, ..., σm), and, conversely, if there are several rank-
ings associated with minimum sum-of-distances D∗, these must be
returned by g.

We now establish theoretical connections between distance min-
imization and some well known aggregation methods. In particu-
lar, we establish connections between the newly proposed positional
Spearman distance (see above in Section 3.2) and aggregation us-
ing scoring rules, and between a distance giving different weights to
items and aggregation using biased Borda (defined above in Section
3.1).

First of all, it is interesting to note that rank aggregation with
Borda count and minimization of Spearman produce the same ag-
gregated ranking.

Observation 3. [11] The Spearman distance characterizes the
Borda rule: π∗Borda = arg minπ∈Sn

∑m
u=1 dS(π, σu). 5

We have noted before that Spearman distance, as defined in Equa-
tion 6, is not a metric, as triangular inequalities does not hold. One
might wonder if it is possible to “tweak” the Spearman distance to
find a metric (satisfying the triangular inequality) with this property.
We prove, however, that this is not possible.

Observation 4. There is no metric characterizing Borda rule.

We now extend this result to scoring rules assigning arbitrary
weights to positions. We derive a novel connection between scoring
rules and our proposed positional Spearman distance. Note, however,
that the scoring vector must be an injective function (also called one-
to-one) in order for the result to hold.

Observation 5. Assume a scoring rule such that all weights are dif-
ferent; w(r) 6= w(s) if r 6= s with r, s ∈ {1, ..., n}. The positional
Spearman distance with weights w characterizes the scoring rule
with the same weights; π∗SR = arg minπ∈Sn

∑m
u=1 dPS(π, σu).

The previous observations only holds for scoring rules with dis-
tinct weights. Why identical weights might be problematic can be
seen with an example: consider, for instance, w = (3, 2, 2, 1) where
the the second and third position are associated with the same weight;
two rankings that differs only by the fact that items on the sec-
ond and third position are inverted are associated with null distance:
dPS(〈1, 2, 3, 4〉, 〈1, 3, 2, 4〉)=0.

This means that the association fails, notably, for plurality, veto
and top-k, that can be represented, respectively, as scoring rules with
weights (1, 0, ..., 0), (0, ..., 0, 1) and with a weight vector with 1 in
the first k positions and then 0s everywhere. We therefore look for
an alternative characterization for these rules, in order to define some
distance measures that they implicitly minimize.

Using plurality in our framework for clustering basically means to
put together rankings based on the first preferred item. If the number
of clusters is lower than the number of different items placed first in
any ranking, aggregation will be made by ordering items according
to the number of “votes” (number of rankings placing an item first);
when assigning rankings to clusters, a ranking with item i in the first
position will be assigned to the cluster whose centroid put item i in
the highest position.

5 Proofs are provided in the appendix.

The following premetric dPL captures this behavior

dPL(π, σ)=π(σ−1(1))− 1. (9)

Note that dPL is not symmetric. Furthemore, for a given π there are
many π′ such that d(π, π′) = 0; in fact, any σ such that σ−1(1) =
π−1(1): for example dPL(〈1,2,3〉,〈1,3,2〉) = 0. Therefore dPL is
neither a metric nor a semimetric. It holds dPL(π, π) = 0 for any π
and dPL(π, σ) ≥ 0 (for any π, σ), but the triangular inequality does
not hold; thus dPL is a premetric.

Given a set of input rankings π1, .., πm, the sum of the distances
to a centroid π is

∑m
t=1 dPL(π, πt) =

∑m
t=1 π(π−1

t (1)) − 1 (for
each input ranking πt, we consider its best ranked element π−1

t (1)
and look for its position according to π).

We can prove that the ranking obtained by aggregating ranking
σ1, ..., σm using plurality is the one that minimizes the sum of dis-
tances DPL(π;σ1, ..., σm) =

∑m
t=1 dPL(π, σt).

Observation 6. The distance dPL characterizes plurality as a
method for aggregation of rankings.

One can wonder if there is another distance that can characterize
plurality, with additional properties such as symmetry. In fact, we
show that this is not possible.

Observation 7. There is no semimetric and no quasi metric (hence
there is no metric) characterizing plurality.

For veto, we can define a premetric, analogous to the one we de-
fined for plurality, but that looks for the position of the lowest ranked
items.

Observation 8. The pseudo-distance dV T characterizes the veto
rule.

dV T (π, σ)=n−π(σ−1(n)). (10)

We now consider aggregation with respect to the top-k elements.

Observation 9. The following premetric characterizes the top-k ag-
gregation rule.

dtopk(π, σ)=

k∑

r=1

π(σ−1(r))− n(n+ 1)

2
(11)

The constant addend −n(n+1)
2

is used in order to satisfy
d(π, π) = 0, i.e. to obtain a premetric. Note that dtopk is the same
as dPL when = 1. From the fact that top-k aggregation subsumes
plurality, and from Observation 7, it immediately follows:

Observation 10. There is no semimetric and no quasi metric (hence
there is no metric) characterizing top-k.

In order to characterize biased Borda, we introduce another kind
of generalization of Spearman, allowing to give different weights zi
to different items. Item-weighting Spearman is defined as:

dIS(π, σ) =

n∑

i=1

π(i)2+σ(i)2−2ziπ(i)σ(i) = Cn−2

n∑

i=1

ziπ(i)σ(i)

(12)
where Cn = n(n+1)(2n+1)

3
is regarded as a constant6, as it depends

only on n. The role of the zi is to tune the impact of position dif-
ferences, weighting more items that are deemed important. Note that
dIS(π, σ) = dS(π, σ) if all weights zi are set to 1.

We now establish the connection between this new distance mea-
sure and the biased Borda aggregation rule presented before.

6 In fact another constant might be used, we use Cn in order to yield Spear-
man distance values if the zi are set to 1.
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Observation 11. Item-weighted Spearman characterizes the biased
Borda rule.

Note that dIS is not even a premetric, as dIS(π, π) can (and will
often) yield a value different than zero. dIS is symmetric and non-
negative. A much “nicer” distance function is the following

d̂IS(π, σ) =

n∑

i=1

zi[π(i)− σ(i)]2

that is a semimetric (notice that d̂IS(π, σ)=dIS(π, σ)−dIS(π, π)−
dIS(σ, σ)); however, we could not find a characterization for this
distance, and its optimization seems to be rather hard.

The theoretical results are summarized in Table 1.

5 Application to Clustering

Table 2. Computation times for distance-based clustering (randomly gener-
ated rankings; 10 runs).

k = 5 (number of clusters)

m n aggregator distance time iterations

100 10 plurality dPL 0.01 2.3
Borda Spearman 0.35 9.3
scoring rule positional Spearman 0.31 7.8
biased Borda item-w Spearman 0.48 8.7

100 20 plurality dPL 0.02 2.8
Borda Spearman 0.43 6.7
scoring rule positional Spearman 0.45 6.4
biased Borda item-w Spearman 0.81 8.0

2000 10 plurality dPL 0.16 2.5
Borda Spearman 3.96 5.7
scoring rule positional Spearman 7.10 8.4
biased Borda item-w Spearman 9.41 7.7

2000 20 plurality dPL 0.17 2.4
Borda Spearman 36.55 28.5
scoring rule positional Spearman 17.85 13.0
biased Borda item-w Spearman 28.06 14.1

k = 10 (number of clusters)

m n aggregator distance time iterations

100 10 plurality dPL 0.02 2.5
Borda Spearman 0.60 8.6
scoring rule positional Spearman 0.62 8.0
biased Borda item-w Spearman 0.75 6.8

100 20 plurality dPL 0.03 2.7
Borda Spearman 0.96 7.3
scoring rule positional Spearman 1.09 7.2
biased Borda item-w Spearman 1.65 7.6

2000 10 plurality dPL 0.40 2.6
Borda Spearman 12.19 7.6
scoring rule positional Spearman 17.20 10.7
biased Borda item-w Spearman 20.07 9.2

2000 20 plurality dPL 0.34 2.7
Borda Spearman 93.53 35.0
scoring rule positional Spearman 58.49 19.7
biased Borda item-w Spearman 62.78 15.0

The theoretical connection between aggregation rules and distance
minimization (Section 4) can be used to perform clustering in an ef-
ficient way. Given the theoretical observations provided in the previ-
ous section, rank aggregation minimizing Spearman and its proposed
generalization (positional Spearman and item-weighting Spearman)
consist in a scoring rule (Borda count in the case of classic Spear-
man).

With plurality, veto and top-k, from a practical point of view, the
aggregation is very easy and intuitive: for plurality, we sort the items
according to the number of times they are top-ranked. Similarly, for
veto we rank items according to the number of times they are not last
in a user ranking, and similarly for top-k.

This contrasts with the computational effort required by the min-
imization of Kemeny or Footrule. The optimization of Footrule dis-
tance measure can be formulated as an assignment problem; where

the “cost” of placing item i at place r is the total number of dis-
placements compared to the input rankings. Footrule aggregation
can therefore be computed rather efficiently with linear programming
techniques. Minimization of Kendall tau is NP-hard; see for instance
[6] for complexity results A good proxy for Kemeny is the use of
footrule: it is known that dKT ≤ dF ≤ 2dKT [3]; therefore the min-
imization of Footrule can provide a ranking that is also good with
respect to Kendall.

Table 3. Computation times for distance-based clustering (sushi dataset; 20
runs).

k aggregator distance time iterations

2 plurality dPL 0.21 3.00
Borda Spearman 6.99 10.10
scoring rule positional Spearman 4.71 6.05
biased Borda item-w Spearman 5.99 5.55

3 plurality dPL 0.30 3.00
Borda Spearman 13.26 13.15
scoring rule positional Spearman 8.58 7.05
biased Borda item-w Spearman 13.75 8.20

5 plurality dPL 0.47 3.00
Borda Spearman 19.92 11.70
scoring rule positional Spearman 16.08 7.95
biased Borda item-w Spearman 30.34 10.85

10 plurality dPL 0.98 3.00
Borda Spearman 49.17 14.15
scoring rule positional Spearman 37.55 9.50
biased Borda item-w Spearman 71.43 12.95

In the first experiment7 we consider synthetic ranking data of
different sizes, in order to assess the computation time. Clustering
with these distance-based techniques is very efficient. Table 2 re-
ports computation times (in seconds) and the number of iterations
before convergence (averaged over 10 runs; the weight vector z for
Biased Borda and item-weighting Spearman is randomly sampled at
each run) for different combinations of aggregators/distances, dif-
ferent number of clusters and different values of m and n. Interest-
ingly convergence seems to be slower (leading to higher computation
times) for clustering based on item-weighting Spearman (aggrega-
tion with biased Borda count), but not always. Table 3 reports similar
statistics for the sushi dataset.

In the second set of experiments, we consider real data. In the sushi
dataset8 5000 users have been asked to rank a sets of items (sushis).
[8] from the most to least preferred.

First of all we consider the median aggregate ranking consider-
ing the whole user population. Using Borda rule, the central ranking
among the overall population is the following

〈8,3,1,6,2,5,9,4,7,10〉

(Sushi n.8 is the most preferred, followed by sushi n.3, then sushi
n.1, ...). Instead, using plurality, we derive the following ranking

〈8,5,2,6,1,3,4,7,9,10〉

where sushi 8 is again ranked first, followed this time by sushi n.
5 and 2 that gain several positions (compared to using Borda), as
they are often ranked first by several users (sushi n. 5 is ranked first
by 747 users; sushi n. 2 by 550), at the expense of sushi 1 and 3
(ranked first by 458 and 404 respectively). We then perform rank
aggregation using a scoring rule with the following weights w1 =
(20,15,10,7,5,4,3,2,1,0). This weight vector is a convex sequence,

7 All experiments are programmed in MATLAB and executed on a MacBook
Pro (late 2013 version) with processor Intel Core i7 with 8 GB of memory.

8 Available at http://www.kamishima.net/sushi/.
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satisfying wi −wi−1 ≥ wi+1 −wi for all positions i = 2, ..., n−1,
meaning that the difference between adjacent positions towards the
bottom is lower than difference towards the top). With this weight we
obtain the following aggregate ranking.

〈8,3,6,5,1,2,4,9,7,10〉
We investigate which clusters are produced with distance-based

clustering with different distances. Since our distance-based clus-
tering approach returns a local optimum, we repeat the algorithm
a number of times (typically 10 or 20) and store the clustering as-
signment associated with the lowest sum of distances to the closest
centroid. We now want to show that the clustering methods proposed
in this work allow greater flexibility (than currently used methods)
as, by using our propose distance measures, it is possible to repre-
sent the higher importance of some items or to some positions; the
resulting clusters will then display the desired characteristics.

We obtain the following centroids with Borda:

〈8, 3, 1, 9, 4, 6, 7, 10, 5, 2〉,
〈5, 8, 6, 3, 2, 1, 4, 9, 7, 10〉,
〈1, 7, 2, 4, 10, 9, 3, 6, 8, 5〉,
〈8, 2, 3, 1, 9, 4, 6, 7, 5, 10〉

associated to clusters of size 1110, 2214, 500 and 1176.
We obtain the following centroids when clustering with the scor-

ing rule associated to positional Spearman with weights w1

〈6, 8, 1, 3, 4, 9, 2, 7, 5, 10〉,
〈5, 8, 6, 1, 2, 3, 4, 9, 7, 10〉,
〈8, 3, 1, 9, 4, 7, 2, 6, 5, 10〉,
〈2, 8, 1, 7, 3, 4, 9, 6, 5, 10〉

Clusters of size 1658, 1021, 855 and 1466, respectively. The sec-
ond cluster is very similar to the second cluster retrieved by Borda
(apart from positions of sushi 1, 2, 3), but its size (i.e. number of
sushi assigned to this cluster) is about an half. Compared to Borda,
the new centroids display more agreement at the bottom (sushi n.10
is always ranked last), but at the same time there is a greater variabil-
ity in the first positions (the top element in each centroid is different).

Table 4. Difference between clusterings measured by the Rand index ob-
tained with different aggregators/distances (sushi dataset; k=5).

Pl Borda s. rule w1 s. rule w2 s. rule w3

Plurality − 0.46 0.50 0.47 0.41
Borda − − 0.27 0.29 0.33
Scoring rule w1 − − − 0.12 0.21
Scoring rule w2 − − − − 0.14
Scoring rule w3 − − − − −

We now analyze how different weight parameters induce differ-
ent clusterings. In Table 4 we compute the Rand index (measuring
the fraction of pair of rankings whose assignment agrees in the two
clustering) between each pair of clusterings obtained9 with plurality,
Borda, and scoring distances with the following weight vectors

w1 = (20, 15, 10, 7, 5, 4, 3, 2, 1, 0),

w2 = (20, 12, 8, 6, 5, 4, 3, 2, 1, 0),

w3 = (512, 256, 128, 64, 32, 16, 8, 4, 2, 1).

all with the associated distance measures.
9 In each run of the clustering algorithm, computations are repeated 10 times

and the best local minimum is picked.

6 Discussion
Clustering rank data can be seen as unsupervised preference learning.
A key element is rank aggregation, the problem of combining the
ranked preferences of different experts or users into a single ‘con-
sensus’ ranking; it can be thought of as the unsupervised analogue
to regression. This paper deals with clustering methods that itera-
tively use aggregation to compute a centroid for each cluster, and
then assign rankings to the cluster whose centroid is closest (accord-
ing to some distance measure between rankings). The question about
the connection between common aggregation methods for rankings
(such as scoring rules) and distance measures naturally arises.

In this paper we provided a taxonomy of distance measures to be
used for clustering preference rankings, that are associated with scor-
ing rules as aggregation method. We extended the result about the
connection between Borda rule and minimization of Spearman dis-
tances to scoring rules and a new measure that give weights to po-
sitions. We consider the case of plurality, veto and top-k. We also
introduced a new aggregation rule, biased Borda, giving more ad-
vantage to specific items, and show how it can be characterized.

The clustering methods proposed in this work allow greater flex-
ibility (than currently used methods) as, by using our proposed dis-
tance measures, it is possible to represent the higher importance of
some items or to some positions; the resulting clusters will then dis-
play the desired characteristics.

In future works, we plan to extend the empirical analysis of clus-
tering with real data; we will also consider methods to deal with par-
tial rankings (rankings defined on a subset of items): this is crucial in
order to deal with real applications.

Moreover we are planning to consider interactive elicitation of dis-
tance weights, posing questions of the kind “Are rankings π1 and
π2 more similar than rankings σ1 and σ2?” to the user in order to
learn the distance function interactively. This idea is briefly men-
tioned next.

6.1 Handling Parameter Uncertainty
The proposed new measures for representing distances between rank-
ings are more expressive (than traditional distance measures) as they
can model different degrees of importance associated to ranking po-
sitions. However, in practical situations it might not be so obvious
how to assign the parameters employed by positional Spearman and
item-weighting Spearman. We are currently considering situations in
which limited information is known about the weights, but we still
may need to perform clustering.

The idea is to reason about the set of feasible parameters given
the current information, represented by constraints, and cast the
setting into a robust optimization problem (in similar ways as in
utility-based recommender systems [13]). For positional Spearman,
it is natural to state that weights are decreasing with rank positions:
w(1) ≥ w(2) ≥ ... ≥ w(n). Another reasonable constraint10 is to
require w(1), ..., w(n) to constitute a convex sequence: w(r) ≤
w(r−1)+w(r+1)

2
for each position r = 2,...,n− 1. Additional infor-

mation might be provided by a user expressing that two rankings
π1, π2 are more similar to each other than another pair of rankings
σ1, σ2; the semantics is that the distance between π1 and π2 is lower
than between σ1 and σ2. This information can be encoded by con-
straints on the feasible parameters. With positional Spearman this
gives quadratic constraints on the feasible weights w(1), ..., w(n):

10 This is the case, for instance, of the scoring rules used in common racing
competitions.

106



dPS(π1, π2) ≤ dPS(σ1, σ2)↔
n∑

i=1

w(π1(i))w(π2(i)) ≥
n∑

i=1

w(σ1(i))w(σ2(i)).

In the case of item-weighting, the information about a pair of
rankings being more similar than another pair, dIS(π1, π2) ≤
dIS(σ1, σ2), is encoded linear constraints:

n∑

i=1

ziπ1(i)π2(i) ≥
n∑

i=1

zjσ1(i)σ2(i).

We plan to investigate strategies to generate clusters of rank data
without precise weight information, where only a number of state-
ments comparing the degree of similarity between pairs is given,
handling such constraints.

6.2 Related Works
Axiomatic treatment of the median ranking from a point of view
of social choice is given in [1]. While our work focuses on non-
parametric distance models, other common approach relies on proba-
bilistic models [2], including Babington-Smith and Mallows models
[10].

The idea of looking aggregation techniques in term of minimiza-
tion of distance measure is known as distance rationalizability in
social choice [5]. The difference is that in our clustering application,
we are interested in an aggregation that produces a ranking, while
in social choice most of the emphasis is on the winner, the elected
candidate.

Other works also considered extending common distances in some
ways. In [12] methods of ranking aggregation are extended in order
to exploit similarity information between ranked items. Local Ke-
menization [4] computes a locally optimal ranking where swapping
two adjacent items cannot further reduce Kendall tau distance.

Kamishima and Akaho [7] provide some efficient strategies for
clustering rankings, also accounting for partial rankings. The gener-
alized distance functions presented in [9] are a rich generalization of
Footrule and Kendall whose expressivity is similar to the distances
proposed here (moreover, they can define a specific weight for swap-
ping two particular items). Here, we focus on Spearman distance and
its generalization; this turns out to be advantageous because of the
connection with scoring rules.
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A Proofs
The following observation is used a number of times.

Observation 12. Given a set of distinct numbers x1, ..xn and a set
y1, .., yn ordered such that y1≤y2≤ ...≤yn (with possible ties), the
permutation π of x maximizing

∑n
i=1 π

−1(i) yi =
∑n
i=1 xiyπ(i) is

the permutation 〈x(1), ..., x(n)〉 such that x(1) < x(2) < ... < x(n)

(the permutation sorting the elements of x in increasing order).
The permutation π of x minimizing the some formula, is
〈x(n), ..., x(1)〉 (the permutation sorting the elements of x in decreas-
ing order).

We now provide proofs for the properties stated in the paper.

Proof that Spearman distance characterizes Borda count.
Borda weights wi = n− i+1 are such that Borda counts for ele-
ment i are v(i) =

∑m
u=1 n−σj(i)+1 = n(m + 1)−∑m

j=1 σj(i).
The optimal ranking π∗ according to Borda count is such that i pre-
cedes j in π∗ (π∗(i) < π∗(j) iff v(i) ≥ v(j), or equivalently iff∑m
u=1σu(i) ≤∑m

u=1σu(i).
We are interested in the ranking π∗ that minimizes the sum of

the Spearman distance with a number of input ranking σ1, .., σm:
π∗ = arg minπ

∑m
u=1 dS(π, σu).

Let Cn =
∑n
i=1 i

2 = n(n+1)(2n+1)
6

. The Spearman distance be-
tween two rankings π and σ can be rewritten as follows

dS(π, σ)=

n∑

i=1

[π(i)− σ(i)]2 =

n∑

i=1

π(i)2+σ(i)2−2π(i)σ(i) =

=
n(n+ 1)(2n+ 1)

3
− 2

n∑

i=1

π(i)σ(i) = 2
(
Cn −

n∑

i=1

π(i)σ(i)
)
.

The sum of the Spearman distances between π and σ1, .., σm is then

DS(π;σ1, ..., σm) =

m∑

u=1

dS(π, σu)=2
(
mCn−

m∑

u=1

n∑

i=1

π(i)σu(i)
)
.

(13)
Therefore the ranking with minimum total Spearman distance with
respect to a set of rankings σ1, .., σm is

arg min
π
DS(π;σ1, ..., σm) = arg max

π

n∑

i=1

m∑

u=1

π(i)σu(i) =

= arg max
π

n∑

i=1

π(i)

m∑

u=1

σu(i).
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The result follows by applying Observation 12 to the last expression;
the aggregated ranking π will be such that i precedes j, π(i) < π(j),
if
∑m
u=1σu(i) ≤ ∑m

u=1σu(i), thus this is the same ranking as ag-
gregation using Borda count.
Proof that there is no metric that characterizes Borda count.

Let d be a semimetric (satisfying non negativity, identity of the indis-
cernibles and symmetry) between rankings. We prove that if d char-
acterizes Borda rule, then it cannot satisfy the triangular inequality.
Consider the following population of rankings: σ1 = 〈1, 2, 3〉 and
σ2 = 〈3, 1, 2〉. Application of Borda gives the following scores to
items: v(1) = 5, v(2) = 3, v(3) = 4 yielding the optimal ranking
π∗ = 〈1, 3, 2〉.

If d characterizes Borda rule, then it must hold that
D(π∗;σ1, σ2) < D(π;σ1, σ2), for any π ∈ Sn, π 6= π∗.
In particular, π∗ must compare favorably with respect to σ1:∑
u=1,2 d(π∗, σu) <

∑
u=1,2 d(σ1, σu). Note that since d is a

semimetric, we must have d(π∗,σ1) = d(σ1,π
∗) and d(σ1,σ1) = 0;

it then follows that d(σ1, π
∗) + d(π∗, σ2) < d(σ1, σ2), so the

triangular inequality is not satisfied.
Proof that dPL characterizes plurality. Let α1

i be the num-
ber of input rankings among σ1, ..., σm for which i is ranked
first; α1

i = |{σ : σ(i) = 1}|. It follows
∑m
t=1 dPL(π, σt) =

∑m
t=1 π(σ−1

t (1))−1 =
∑m
t=1

[(
∑n
i=1π(i) I[σt(i) = 1]

)
−1

]
=

∑n
i=1π(i)

∑m
t=1I[σt(i) = 1] −m=

∑n
i=1α

1
iπ(i) −m (where I is

the indicator function). Therefore we have

π∗ = arg min
π∈Sn

m∑

t=1

dPL(σt, π) = arg min
π∈Sn

n∑

i=1

α1
iπ(i).

By using Observation 12, it follows that the permutation π∗ mini-
mizing the sum of the distances must be such that π(i) < π(j) if
fi > fj . This means that the item that is ranked first from the high-
est number of input rankings, will be placed first in the aggregated
ranking. The next item in the aggregate ranking will be the one that
is ranked first from the second highest number of input rankings, and
so on. This is exactly the result of aggregation when using plurality.
Proof that no semimetric characterizes plurality. Consider a

population of two rankings σ1 = 〈1, 2, 3〉 and σ2 = 〈2, 3, 1〉. Ac-
cording to plurality, the best rankings obtained by aggregating σ1 and
σ2 are σ1 itself and the ranking 〈2, 1, 3〉 (as they both rank items 1
and 2 - each mostly preferred exactly one time in σ1, σ2 - before item
3 - that is never maximally preferred). Now, consider a premetric d
and assume that it characterizes plurality. Since σ2 is not a optimal
ranking according to plurality, the sum of the distances between σ1

and the population must be strictly lower than the sum of the dis-
tances from σ2

d(σ1, σ1) + d(σ1, σ2) < d(σ2, σ2) + d(σ2, σ1)

from which (since d(π, π) = 0, d being a premetric) it follows
d(σ1, σ2) < d(σ2, σ1), hence any d characterizing plurality cannot
be symmetric.

Proof that dV T characterizes veto The proof is analogous
to the case of plurality. Let αni be the number of input rank-
ings (users) σ1, ..., σm in which i is ranked in the last posi-
tion.

∑m
t=1 dV T (π, σt) = nm − ∑m

t=1π(σ−1
t (n)) = nm −∑m

t=1

∑
i=1π(i) I[σt(i) =n] =nm−∑n

i=1α
n
i π(i) (where I is the

indicator function). Therefore

arg min
π∈Sn

m∑

t=1

dV T (σt, π) = arg max
π∈Sn

n∑

i=1

αni π(i)

and the proof follows by applying Observation 12 (similarly as in
the case of dPL); since we are maximizing, the objective is attained
according to an increasing order of αni , in accordance with the veto
rule.

Proof that dtopk characterizes top-k aggregation. The proof
analogous to the case of plurality. Let α<ki be the number of input
rankings (users) σ1, ..., σm in which i is ranked among the top-k
|{σ : σ(i) ≤ k|}. ∑m

t=1 dtopk(π, σt) =
∑m
t=1

∑k
r=1 π(σ−1(r))−

1=
∑n
i=1π(i)

∑m
t=1 I[σt(i) ≤ k] −mk=

∑n
i=1π(i)α<ki −mk.

Then we have

arg min
π∈Sn

m∑

t=1

dV T (σt, π) = arg min
π∈Sn

n∑

i=1

α<ki π(i)

and the proof follows by applying Observation 12 as in the case of
dPL.

Proof that the positional Spearman distance characterizes scor-
ing rules. The optimal ranking π∗ according to a scoring rule with
weights w is such that i precedes j in π∗ iff v(i)≥ v(j), or equiva-
lently iff

∑m
u=1 w(σu(i)) ≥∑m

u=1 w(σu(j)).
The positional Spearman distance (taking into account weights as-

sociated to positions) between two rankings π and σ can be rewritten
as follows

dPS(π,σ)=

n∑

i=1

[w(π(i))−w(σ(i))]2 =2Zwn −2

n∑

i=1

w(π(i))w(σ(i))

where we let Zwn be
∑n
i=1w(i)2; note that, for any permutation π,

it holds the
∑n
i=1w(π(i))2 = Zwn , with Zwn depending only on the

weights w and the number of items n. Proceeding as before in the
case of standard Spearman, the ranking with minimum total distance
is

arg min
π

m∑

u=1

dPS(π, σu)=arg max
π

n∑

i=1

m∑

u=1

w(π(i))w(σj(i))=

(14)

=arg max
π

n∑

i=1

w(π(i))

m∑

u=1

w(σj(i)).

(15)

The result follows by applying Observation 12 to Equation 15, sim-
ilarly as before, but this time the assumption that w is injective is
crucial for obtaining the result.

Proof that item-weighting Spearman distance characterizes the
biased Borda count. The sum of distances is obtained as

m∑

u=1

dIS(π, σu) = mCn − 2

n∑

i=1

π(i) zi

m∑

u=1

σu(i)

therefore

arg min
π

m∑

u=1

dIS(π, σu) = arg max
π

n∑

i=1

π(i) zi

m∑

u=1

σu(i).

Using the argument used in the previous proofs (Observation 12), the
optimal ranking π∗ minimizing this sum of distances, is such that i
precedes j, π∗(i) < π∗(j), iff zi

∑m
u=1 σu(i) < zj

∑m
u=1 σu(j),

that is exactly what characterizes the biased Borda rule (Equation 3).
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An interactive approach for multiple criteria selection
problem

Anıl Kaya1, Özgür Özpeynirci2 and Selin Özpeynirci3

Abstract. In this study, we develop an interactive algorithm for the
multiple criteria selection problem that aims to find the most pre-
ferred alternative among a set of known alternatives evaluated on
multiple criteria. We assume the decision maker (DM) has a quasi-
concave value function that represents his/her preferences. The in-
teractive algorithm selects the pairs of alternatives to be asked to the
DM based on the estimated likelihood that an alternative is preferred
to another one. After the DM selects the preferred alternative, a con-
vex cone is generated based on this preference information and the
alternatives dominated by the cone are eliminated. Then, the algo-
rithm updates the likelihood information for the unselected pairwise
questions. We present the algorithm on an illustrative example prob-
lem.

1 Introduction

The multiple criteria selection problem aims to identify the most pre-
ferred alternative among a set of alternatives that are evaluated on
multiple criteria. This problem appears in many real life situations
such as selecting the best house to buy for an individual or select-
ing the best supplier to purchase the raw materials for a company
(see for example [2]). We propose an interactive algorithm assuming
that the decision maker (DM) has an underlying quasi-concave value
function that is not known explicitly. As mentioned in [13], quasi-
concave utility functions are more general compared to other utility
functions like pseudoconcave, concave or linear and they require less
restrictive assumptions regarding the DM’s behaviour. Also there are
MCDM methods assuming a concave value function (see for exam-
ple [1]).

The algorithm developed in this study interacts with the DM by
asking pairwise comparison questions and eliminates the inferior al-
ternatives using the convex cones generated by the gathered prefer-
ence information. There are interactive approaches in the literature
utilizing the convex cones; including [8],[13], [10], and [12]. Taner
and Köksalan [18] conduct detailed experiments on question selec-
tion and cone generation procedures.

In this study, we develop an interactive algorithm that picks the
alternatives to be used in the pairwise comparisons based on a like-
lihood approach. For each pair of alternatives and for each possible
response of the DM, the algorithm computes (i) the likelihood of this
response (ii) the number of alternatives that will be eliminated by this

1 İzmir University of Economics, Department of Logistics Management
email: anll.k@hotmail.com

2 İzmir University of Economics, Department of Logistics Management
email: ozgur.ozpeynirci@ieu.edu.tr

3 İzmir University of Economics, Industrial Engineering Department email:
selin.ozpeynirci@ieu.edu.tr

response of DM by solving a number of mathematical programming
problems.

The outline of the paper is as follows: in the next section, we re-
view the related literature and provide the necessary background. In
Section 3, we discuss the likelihood computations using mathemati-
cal programming problems. In Section 4, we present the interactive
algorithm. Section 5 presents the application of the interactive algo-
rithm on an illustrative problem and Section 6 concludes the paper.

2 Literature Review and Background

In this section, we present the review of the multiple criteria decision
making (MCDM), convex cone method in MCDM and interactive al-
gorithms. MCDM methods aim to solve decision problems involving
multiple criteria. Generally, there is not a unique optimal solution for
MCDM problems that optimizes all objectives simultaneously. We
refer to [17], [16] and [4] for a detailed discussion on MCDM the-
ory, methods and applications.

Suppose there are m decision alternatives evaluated on p criteria.
For each criteria, we assume a higher score is better. We also assume
there is one decision maker (DM) who owns the problem and answers
the pairwise comparison questions.

2.1 Convex Cone Approach

Korhonen, Wallenius and Zionts [12] develop an algorithm that gen-
erate cones depending on the responses of the decision maker who
has a quasi-concave increasing utility function. They propose to use
quasi-concave utility function since it represents the human nature
well. Their algorithm generates convex cones and eliminates inferior
alternatives based on Theorem 1.

Theorem 1. (Korhonen, Wallenius and Zionts [12]) Assume a quasi-
concave and nondecreasing function f(x) defined in a p-dimensional
Euclidean space Rp. Consider distinct points xi ∈ Rp, i = 1, ...,m,
and any point x? ∈ Rp and assume that f(xk) < f(xi), i 6= k.
Then, if ε ≥ 0 in the following linear programming problem

Max ε

s.t.
m∑
i=1
i6=k

µi(xk − xi)− ε ≥ x? − xk

µi ≥ 0, ∀i

It follows that f(xk) ≥ f(x?).
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Suppose, in Figure 1, DM prefers x1 to x2. We use this preference
information to generate a convex cone which corresponds to Region
A. Any alternative in this region is dominated by the cone, will be
inferior and eliminated.

Figure 1. The Illustration of Cone, Source: [12]

The algorithm of Korhonen, Wallenius and Zionts [12] picks a ref-
erence alternative and asks DM to compare this alternative with the
adjacent alternatives. The algorithm stops if the reference alternative
is preferred to all adjacent alternatives, otherwise it moves to another
alternative.

Köksalan, Karwan and Zionts [8] construct and use dummy al-
ternatives in order to reduce the number of questions. They combine
the approach of Korhonen, Wallenius and Zionts [12] with the idea of
using dummy alternatives in cone generators. The proposed dummy
alternatives are convex combinations of the existing alternatives. In
the method of Köksalan, Karwan and Zionts [8], instead of compar-
ing x1 and x2, xd and x2 are compared (Figure 2). If DM prefers x1
to x2, the alternatives in Region A are eliminated. However, if DM
prefers xd to x2, the alternatives in Regions A and B are eliminated.

Figure 2. Cones with dummy alternatives, Source: [12]

Köksalan and Taner [10] make improvements to reduce required
number of pairwise questions. They develop variations of the dummy
alternatives. They use dummy alternatives that are dominated alter-
natives as cone generator. Instead of comparing x1 and x2, x1 and
xd are compared in Figure 3. If DM prefers x1 to x2, alternatives in
Region A will be eliminated. If DM prefers x1 to xd, alternatives in
Regions A and B will be eliminated.

Figure 3. Cones with dummy alternatives, Source: [10]

Köksalan [7] develop an approach to reduce the total number of
required questions. The decision maker has a quasiconcave utility
function. He uses two different utility functions, one is quadratic and
the other is Tchebyshev utility function. He uses the ideal point as
an evaluation criterion. The alternatives selected as cone generator
are closest to an ideal point in Euclidean distance. In each iteration,
he uses alternatives that maximize utility functions, change with the
least preferred cone generator.

Taner and Köksalan [18] conduct experiments to see the effect of
cones. They use two different utility functions: quadratic and linear
utility function. They estimate utility functions using the decision
maker’s preferences. They select alternatives that have high rankings.
Their approach has two variations: finding the best alternative and
finding the worst alternative.

Karsu [5] reviews the theory of convex cones approach. She pro-
vides a discussion of interactive algorithms utilizing convex cones
and discusses further research directions.

2.2 Interactive Algorithms

Interactive algorithms gather information from the DM when needed
throughout the algorithm. In the following steps, they use this infor-
mation to make a decision. The preferences of DM provide informa-
tion about the value function.

An extensive literature is available on interactive algorithms for
multiple criteria sorting problems. Köksalan and Ulu [11] propose
an interactive approach, assuming an underlying additive linear
utility function for the sorting problem. They use the preferences
of the DM to assign alternatives to different categories. Köksalan
and Özpeynirci [9] propose an interactive approach that combines
UTADIS and [11], assuming an underlying additive utility function.
They find the priority of categories to classify all the alternatives. DM

2
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assigns alternatives to their categories, if it is feasible and they place
all alternatives based on DM’s past preferences. Buğdacı et al. [3]
propose an interactive probabilistic sorting method. They calculate
the probability for each unassigned alternative. They find the criti-
cal probability level. Unassigned alternative probability is compared
with the critical probability level to assign alternatives to classes.

There are several studies that develop interactive algorithms for
selection problem using the convex cones approach. Malakooti [13]
and [14] propose heuristic and exact algorithms, respectively, to iden-
tify and eliminate inefficient alternatives, hence reducing the pair-
wise comparisons required. Karsu et al. [6] propose an interactive
ranking method using convex cones.

In this study, we use an iterative algorithm, where, in each iter-
ation, we calculate the likelihood that an alternative is preferred to
another one for each pair. According to some function of these like-
lihood information, we select the pair to be demonstrated to the DM
for comparison. According to DM’s answer, we update the likelihood
information in the next iteration.

3 Likelihood Computation Method
In this section we present our approach to compute the likelihood
that DM will prefer an alternative to another. We first estimate the
minimum and maximum value of each alternative given the gathered
preference information through the iterations of the algorithm. We
then present the computation of the likelihoods based on ranges de-
fined by the minimum and maximum values.

3.1 Estimating Value Ranges
In order to calculate the likelihood that DM prefers an alternative to
another one, we first compute the minimum and the maximum values
each alternative may have. During the computations, we assume that
DM has a linear value function. We solve the following model two
times for each alternative: one for minimizing and one for maximiz-
ing the estimated value.

In this model, the parameter xiq is the score of alternative i in cri-
terion q. The decision variable wq represents the weight of criterion
q and µi is a decision variable representing the estimated value of
alternative i for a linear value function.

Second constraint set presents the gathered preference informa-
tion. After DM responses that she prefers alternative i to alternative
k, a new constraint is added to this set.

Maximum/Minimum V alue Model:

Max/Min Z = µi

s.t.

µi =

p∑

q=1

xiqwq, ∀i

µi ≥ µk, i � k
p∑

q=1

wq = 1

µi ≥ 0, ∀i
wq ≥ 0, ∀q

We denote the maximum and minimimum values of the above model
for alternative i as fmax(i) and fmin(i), respectively.

3.2 Likelihood Estimation
In this section, we show how the estimated likelihood that each
alternative is preferred to another one is calculated. We utilize a
uniform probability distribution. Let P (i, k) be the likelihood that
alternative i is preferred to alternative k. Three cases are possible
considering fmax(i), fmin(i), fmax(k) and fmin(k).

Case 1: If fmax(i) ≥ fmax(k) ≥ fmin(i) ≥ fmin(k)

P (i, k) =
fmax(i)−

(
fmax(k)+fmin(i)

2

)
+fmin(i)−fmin(k)

fmax(i)−fmin(k)

Case 2: If fmax(i) ≥ fmax(k) and fmin(i) ≤ fmin(k)

P (i, k) =
fmax(i)−

(
fmax(k)+fmin(k)

2

)

fmax(i)−fmin(i)

Case 3: If fmin(i) ≥ fmax(k)

P (i, k) = 1

3.3 Model for Finding the Alternatives Eliminated
by Each Cone

Although we do not have DM’s preference information, we can still
compute the consequences of each possible answer of DM. For each
possible answer, we will generate a convex cone and this cone will
eliminate some alternatives. For this purpose we develop a mathe-
matical programming model. We assume Cone(xi, xk) is generated
when DM prefers alternative i to alternative k. The model checks if
Cone(xi, xk) dominates alternative t for all possible (i, k, t) triplets.

We develop a mathematical programming model, that finds the al-
ternatives eliminated by each cone (generated by a single pairwise
comparison). In this model, there are k, i, t = 1, . . . m alterna-
tives evaluated on q = 1, . . . , p criteria. The parameter xiq is the
score of alternative i on criterion q. We assume, for each criterion,
higher score is better. There are two types of decision variables; εikt
and µikt. The first type of decision variables are unrestricted in sign
where the second type is nonnegative. We present the model below:
Combined Cone Model:

Max Z =

m∑

i=1

m∑

k=1
i 6=k

m∑

t=1
t 6=i
t 6=k

εikt

s.t.

µikt(xkq − xiq)− εikt ≥ xtq − xkq,∀q, i, k, t
µikt ≥ 0,∀i, k, t

The objective function combines the objective functions of the in-
dividual models written for all possible (i, k, t) triplets as shown in
Theorem 1. The constraint set includes the constraints of the indi-
vidual models for all (i, k, t) triplets. If εikt ≥ 0 in the solution of
the model, xt which is dominated by Cone(xi, xk), is eliminated. If
εikt < 0 in the solution of the model, xt which is non-dominated, is
not eliminated by Cone(xi, xk). Note that this model can be decom-
posed into smaller models for each (i, k, t) triplets to check whether
Cone(xi, xk) dominates alternative t or not.

Let ε?ikt be the value of εikt at the optimal solution. We com-
pute NE(i, k), the number of alternatives that will be eliminated

3
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by Cone(xi, xk) as follow:

NE(i, k) =

m∑

t=1,t6=i,t 6=k
ε?ikt≥0

1

4 Interactive Algorithm
In this section, we discuss the interactive algorithm. We present the
steps of the algorithm and later discuss each step in detail.

Step 0. Eliminate the dominated alternatives.
Step 1. Solve combined cone model and compute initialNE(i, k)

values for each pair of alternatives (i, k).
Step 2. Find the minimum and the maximum scores of value func-

tions for each alternative (in case of infeasibility, remove the oldest
constraints one by one until feasibility is reached).

Step 3. Compute P (i, k) values and E[i, k], expected number
of alternatives to be eliminated by the cone that will be generated
depending on the response of the DM. This value is the weighted
average of the number of alternatives that will be eliminated by
Cone(xi, xk) and Cone(xk, xi) where the weights correspond to the
likelihood.

Step 4. Pick the alternative pair (i, k) with the highest E[i, k]
value and ask DM to compare these alternatives. Assume that DM
prefers alternative i to alternative k (otherwise swap i and k).

Step 5. Eliminate alternative k and other alternatives dominated by
Cone(xi, xk), add a new constraint to model and update NE(i, k)
values.

Step 6. If there is only one alternative left, go to Step 7 otherwise
go Step 2.

Step 7. Report the remaining alternative as the most preferred
alternative and stop.

In Step 1, the algorithm first solves the combined cone model and
computes NE(i, k) values for each pair.

In Step 2, the minimum and maximum values of each alternative
are determined by the mathematical model given in Section 3.1. We
compute these values assuming that DM has a linear value function,
however this assumption may not hold and the models may become
infeasible. In such a case, as suggested in [12], we start removing
constraints one by one starting from the oldest one until obtaining
feasibility.

In Step 3, we compute the P (i, k) values based on minimum and
maximum scores obtained in Step 2. We also compute E[i, k] val-
ues, the expected number of alternatives to be eliminated by asking
the DM to compare alternatives i and k using the following equation:

E[i, k] = P (i, k)×NE(i, k) + P (k, i)×NE(k, i)

In this equation, we assume that the DM will prefer alternative i
to alternative k with probability P (i, k) and NE(i, k) alternatives
will be eliminated in this case. With probability P (k, i), the DM will
prefer alternative k to alternative i and NE(k, i) alternatives will be
eliminated. Hence, E[i, k] gives us the expected number of alterna-
tives that will be eliminated as a result of comparing alternatives i
and k. In case the DM is indifferent between i and k, we select the
pair with the next highest expected number of eliminated alternatives
to be compared by the DM.

In Step 4, the algorithm picks the pair with the highest E[i, k]
value and asks the DM to prefer one alternative. Based on the gath-
ered information and computed likelihoods, this pair is expected to

eliminate the highest number of alternatives. Without loss of gener-
ality, let us assume DM prefers alternative i to alternative k.

In Step 5, the algorithm removes alternative k, generates
Cone(xi, xk) and eliminates alternatives dominated by this cone.
The following constraint representing the DMs response is added to
the mathematical models given in Section 3.1:

µi ≥ µk

The algorithm also updates NE(i, k) values since some of the
alternatives dominated by the corresponding cone may be already
eliminated by Cone(xi, xk). Note that, this update does not require
solving the combined model once again.

In Step 6, the algorithm checks the number of remaining alter-
natives and returns to Step 2 if there are more than one alternative.
Otherwise, it reports the remaining alternative as the most preferred
one in Step 7.

We assume there are m decision alternatives available. The algo-
rithm removes at least one alternative at each iteration and terminates
in at most m− 1 iterations. At each iteration, the algorithm requires
solving two LP problems for each remaining alternative and comput-
ing NE(i, k) and E[i, k] for each pair of remaining alternatives.

5 An Illustrative Example
In this section, we implement our algorithm on an example problem
presented in [12]. There are nine alternatives evaluated on three
criteria (u1, u2, u3). It is assumed that the DM has an underlying
quadratic value function as below:

−(u1 − 66)2 − (u2 − 80)2 − (u3 − 75)2

We use the value function only to simulate the DM’s response to
the pairwise comparisons. The scores of alternatives on each criteria
and the values are given in Table 1.

Table 1. Scores of the alternatives

Criteria
Alternatives u1 u2 u3 Value

1 66 30 -12 -10069
2 48 60 12 -4693
3 36 12 72 -5533
4 24 66 66 -2041
5 60 20 -20 -12661
6 15 -15 75 -11626
7 30 30 15 -7396
8 20 80 40 -3341
9 0 0 0 -16381

In Step 0, we eliminate alternatives 5 and 9 since they are
dominated by at least one of the alternatives. In Step 1, we obtain
the number of eliminated alternatives by each cone. In Step 2,
we find fmin(i) and fmax(i) values for all alternatives using the
mathematical programming model given in Section 3.1. We report
the initial values in Table 2. Note that the algorithm updates these
values throughout the iterations.

In Step 3, the algorithm computes P (i, k) and E[i, k] values and
in Step 4 it asks DM to compare the two alternatives with the high-

4
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Table 2. Estimated value intervals of the alternatives (Initial)

Estimated Values
Alternatives Minimum Maximum

1 0 66
2 17.5 54
3 22 66.5
4 24 66
6 0 65.8
7 17.3 30
8 20 73.3

est E[i, k] value. We report sample computation of these values at
an intermediate iteration of the algorithm in Tables 3 and 4. In Ta-
ble 3, we present three pairs of alternatives, each corresponding to
a different case discussed in Section 3.2. Note that, with the intro-
duction of DM preferences, the intervals of the estimated values are
tighter compared to those values reported in Table 2. In Table 4, we
present the computation of E[i, k] values for the pairs (3, 1), (1, 2)
and (4, 7).

Table 3. Sample computation of P (i, k) values

Utility Ranges Utility Ranges
i Min. Max. k Min. Max. Case Likelihood
3 31.2 66.5 1 0 49.1 1 0.865
1 0 49.1 2 17.5 49.1 2 0.321
4 40.1 66 7 17.3 28.9 3 1.000

Table 4. Sample computation of E[i, k] values

(i, k) NE(i, k) NE(k, i) P (i, k) P (k, i) E[i, k]
(3,1) 2 1 0.865 0.135 1.865
(1,2) 1 3 0.321 0.679 2.357
(4,7) 3 1 1.000 0.000 3.000

After we get the preference information from DM, we generate
the corresponding cone and eliminate alternatives dominated by this
cone. The algorithm returns to Step 2 and continues until only one
alternative is left, which is reported as the most preferred one.

6 Conclusion
In this study, we develop an interactive algorithm for the multiple cri-
teria selection problem. The interactive algorithm asks DM to make
pairwise comparisons and uses the responses of DM to eliminate al-
ternatives by generating convex cones. Moreover, the algorithm uti-
lizes the gathered information to detect the next pairwise comparison
question via a likelihood computation.

We present an illustrative example for explaining the steps of the
algorithm. As a further research, we plan to conduct computational
experiments to compare the performance of the presented algorithm,
its variations and other algorithms available in the literature.

A commonly used performance metric for such interactive algo-
rithms is the average number of pairwise questions asked to DM in
order to select the most preferred alternative. In general, the perfor-
mance of a new algorithm is measured relative to other algorithms
(available in the literature or variants of the new one) in terms of av-
erage questions asked. The comparison of our interactive algorithm

with the algorithms existing in the literature is another further re-
search direction.
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FlowSort parameters elicitation: the case of interval
sorting

Dimitri Van Assche1, Yves De Smet2

Abstract. We consider the context of interval sorting i.e. the pos-
sible assignment of alternatives into several successive categories.
We address the problem of finding the parameters of the FlowSort
method using an existing categorization. This contribution consti-
tutes an extension of an approach we have developed in the con-
text of traditional sorting. It relies on the use of a dedicated Genetic
Algorithm based on variations of search parameters. We show how
to manage the problem of correct categorization prediction, which
is more difficult, since ranges of categories are now considered. The
method is tested on three different datasets for which an interval sort-
ing has been generated with a particular instantiation of FlowSort.

1 Introduction

Multi-criteria decision aid (MCDA) has been an active research field
for more than 40 years. In this context, possible decisions are si-
multaneously evaluated on multiple conflicting criteria. For instance,
in the common example of buying a new car, one typically tries to
minimize the cost and consumption while maximizing performances,
comfort, etc. Obviously no real car would be the best on all those
criteria. Therefore, the notion of optimal solution is most of time re-
placed by the idea of compromise solution [8].

In this paper, we will work with the well-known outranking
method PROMETHEE [1]. We focus on the sorting problem, i.e. the
assignment of alternatives into predefined categories. For instance,
sorting countries into risk categories on the basis of economical, fi-
nancial and political indicators. In this paper, we work with Flow-
Sort, which is a natural extension of PROMETHEE for sorting prob-
lems [7].

In the context of FlowSort, the decision maker needs to give cen-
tral, or limit, profiles defining each category and preference param-
eters characterizing each criterion. Here, we consider the problem
inside out: based on an existing categorization, one tries to find the
parameters of FlowSort, which allow to best replicate the existing
categorization.

Let us point out that we have recently proposed a first contribution
on the preference elicitation for FlowSort based on assignment ex-
amples [10]. This paper only considers traditional sorting problems:
each alternative is assumed to belong to a unique category. In be-
tween, we have slightly improved the performances of the Genetic
Algorithm we used. Furthermore, we propose an extension of this
first work to deal with interval sorting. The idea is that an alternative
may belong to different successive categories at the same time.

1 Computer & Decision Engineering (CoDE), Université libre de Bruxelles,
email: dvassche@ulb.ac.be

2 Computer & Decision Engineering (CoDE), Université libre de Bruxelles,
email: yvdesmet@ulb.ac.be

When describing the so-called ”sorting problematic”, researchers
usually refer to the assignment of alternatives into pre-defined cate-
gories. These are defined as ”single” classes ranked from the worst
to the best one. However, many methods, such as ELECTRE TRI
or FLOWSORT, provide as outputs not only precise assignments but
also interval assignments. In the context of ELECTRE TRI for in-
stance, it is due to the fact that pessimistic and optimistic rules do
not necessarily lead to the same outcome (same arguments can be
provided for FlowSort). When the learning set has been obtained by
the application of such methods, interval assignments are likely to
appear. Therefore, restricting the inference approach (which aim is to
replicate this input) to precise allocations seems to us a bit arbitrary.
Moreover, in the context of preferences elicitation, one may easily
imagine situations where a given decision maker provide statements
like “this action does not belong to the first class”, “this action be-
longs to C2 or C3 but, due to imprecisions or the lack of additional
information, I am not able to further refine this assertion”, etc. All
these pieces of information help us to characterize, at least partially,
the preferential model. As a consequence, the inference of parame-
ters that replicate interval assignments seems to be quite natural in a
multi-criteria context.

In section 2, we introduce PROMETHEE and FlowSort. In section
3, we describe the genetic algorithm we use to solve the related opti-
mization problem. Then, in section 4, we illustrate the algorithm and
its performances on different datasets for which a categorization has
been computed with a particular instantiation of FlowSort.

2 PROMETHEE and FlowSort

In this section, we briefly present PROMETHEE3 I and II as well as
FlowSort. For additionnal information, we refer the interested reader
to [3] for a detailed description of PROMETHEE and to [6] for Flow-
Sort.

Let A = {a1, a2..., an} be a set of n alternatives and let F =
{f1, f2..., fq} be a family of q criteria. The evaluation of alternative
ai for criterion l will be denoted by a real value fl(ai).

For each pair of alternatives, let’s compute dl(ai, aj), the differ-
ence of ai over aj on criterion l.

dl(ai, aj) = fl(ai)− fl(aj) (1)

A preference function, denoted Pl, is associated to each criterion
l. This function transforms the difference of alternatives’ evaluations
dl(ai, aj) into a preference degree of the first alternative over the
second one for criterion l. Without loss of generality, we consider
that criteria have to be maximized. Pl is defined as follows:

3 Preference Ranking Organization METHod for Enrichment of Evaluations
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Pl : R→ [0, 1] : x→ Pl(x) (2)

such that:

• ∀x ∈ R− : Pl(x) = 0,
• ∀x, y ∈ R+

0 : x ≤ y =⇒ Pl(x) ≤ Pl(y)

There are different kinds of preference functions. Henceforth, we
consider only the linear one (see figure 1) which is characterized by
two parameters: an indifference and a preference threshold: ql, pl.

πl(ai, aj) = Pl[dl(ai, aj)] =





0 if dl(ai, aj) ≤ ql
dl(ai,aj)−ql

pl−ql
if ql < dl(ai, aj) ≤ pl

1 if pl < dl(ai, aj)
(3)

6
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��

1

dlplql

Figure 1. Linear preference function

Once πl(ai, aj) has been computed for all pairs of alternatives, we
may define the aggregated preference degree of alternative ai over
aj using the weights wl associated to each criterion l. Weights are
assumed to be positive and normalized.

π(ai, aj) =

q∑

l=1

wl.πl(ai, aj) (4)

The last step consists in calculating the positive flow score denoted
φ+
A(ai) and the negative flow score denoted φ−A(ai) as follows:

φ+
A(ai) =

1

n− 1

∑

x∈A
π(ai, x) (5)

φ−A(ai) =
1

n− 1

∑

x∈A
π(x, ai) (6)

We define the net flow score of ai as the difference between the
positive flow and negative flows of ai:

φA(ai) = φ+
A(ai)− φ−A(ai) (7)

The PROMETHEE I ranking is obtained as the intersection of the
rankings induced by φ+ and φ−. For an interpretation of the net flow
scores, the interested reader is referred to [5]. Finally, a complete
order, called PROMETHEE II, can be derived from the order induced
by φ.

Based on PROMETHEE, FlowSort has been developed to address
sorting problems [6]. Let C = {c1, c2..., ck} be a set of k ordered

categories. We assume that ci � ci+1: ci is preferred to ci+1. There-
fore C1 is the best category and Ck is the worst one.

Categories are assumed to be represented by limit or central pro-
files. On the one hand, the idea of the limiting profiles is to define
couples of values for each criterion, defining the lower and upper
bounds of the considered category. Let us note that the profile defin-
ing the upper bound of category ci is the same as the one defining
the lower bound of category ci+1. On the other hand, central profiles
are defined using a single value for each criterion. This represents a
kind of mean profile of the category. A common property is that the
profiles of each category must dominate the profiles of the ones they
are preferred to. In this work, we have chosen to work with central
profiles.

Let’s define R = {r1, r2..., rk}, the set of central profiles repre-
senting the k categories. To identify the category of an alternative ai,
we define the subsetRi = R∪{ai}. Then, for each element x in the
subset Ri, we compute its net flow score φRi(x).

As in the nearest neighbor procedure, the category of alternative
ai is the one such that the profile has its net flow score the closest to
the net flow score of ai. More formally:

l∗(ai) = argmin
l=1,2...,k

|φRi(ai)− φRi(rl)| (8)

Let us note that (3 + k).q parameters have to be provided in order
to instantiate FlowSort:

• k.q values for the central profiles;
• 3.q values for the weights, indifference and preference thresholds.

In the case of the interval sorting problem, an alternative can be
sorted in multiple consecutive categories. In this case, we use an ex-
tension of PROMETHEE I instead of PROMETHEE II. The upper
and lower categories are determined using the positive and negative
flow scores. As in the regular FlowSort method, the category of ai
is determined as the category of the profile having its positive, resp.
negative, flow score the closest to the the one of the alternative ai.[6]

l∗+(ai) = argmin
l=1,2...,k

|φ+
Ri

(ai)− φ+
Ri

(rl)| (9)

l∗−(ai) = argmin
l=1,2...,k

|φ−Ri
(ai)− φ−Ri

(rl)| (10)

If both values are equal, the categorization is precise. Otherwise,
these values define the range of the categories.

3 Algorithms
The algorithms developed to learn the FlowSort parameters are the
same as those presented in [10]. This approach is based on a ded-
icated genetic algorithm. Henceforth we only present the specific
points that are dedicated to interval sorting i.e.:

• the definition of a distance measure in order to guide the optimiza-
tion process;

• the evaluation of the correctness of a particular solution.

Compared to the previous approach [10], we have also completely
changed the parameters optimization process. In [10], we have used
iRace4 in order to fine tune the parameters of the algorithm. For more
information on the iRace procedure, we refer the interested reader to
[2] [4]. We will describe the new procedure hereafter.

4 Iterated Race for Automatic Algorithm Configuration
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A distinctive feature of interval sorting is that we have to deal with
two pieces of information: the upper and lower categories for each al-
ternative. Let us note c+(ai) the upper category and c−(ai) the lower
one. We have chosen to use the L1 distance between the upper and
lower category given as input cr and the one given by the current
parametrization of FlowSort cf . Hence, s will denote the current pa-
rameters vector (in other words: a current solution). The distance is
used to induce a higher penalty if there is a big difference between the
prediction and the real category. Intuitively, the penalty associated to
s is defined as follows:

f(s) =
∑

a∈A
(|c+f (a)− c+r (a)|+ |c−f (a)− c−r (a)|) (11)

For the sake of simplicity, we denote c+f (a) = c+f (a, s). The same
applies to cr and c−. The optimization problem is to find a parame-
ters set that minimizes this distance.

The correctness defines how good a solution is with respect to the
real categorization. The correctness of a single alternative is defined
as the number of categories correctly predicted divided by the total
range covered by the predicted and the real categories. The correct-
ness of a solution s is defined as the sum of the correctness of all the
alternatives:

∑

a∈A

max(min(c+f (a), c
+
r (a))−max(c−f (a), c−r (a)),−1) + 1

max(c+f (a), c
+
r (a))−min(c−f (a), c−r (a)) + 1

(12)
The identification of the best possible solution regarding the cor-

rectness is based on a genetic algorithm. This algorithm has mainly
two kinds of exploration: diversification with the mutation operator
and intensification with the crossover operator. During the tests, we
have observed that the algorithm should ideally enforce diversifica-
tion after intensification and then go back to intensification, and so
on. As a consequence, the idea we have applied is to force the pa-
rameters variation of the algorithm during the optimization process.
There are 5 parameters: population size, mutation probability, gene
mutation probability, crossover probability, gene crossover probabil-
ity. The population size has been fixed to 1600 solutions. This value
has been set after a set of trial and errors, and seems to work well
in the considered examples. The 4 others parameters have values be-
tween 0 and 1. At each step of the optimization we change the val-
ues of those following a linear equation. When the value 0, or 1, is
reached the coefficient is reversed. We paid attention to chose differ-
ent coefficients, so that the period is different. This permits to have a
lot of different combinations of intensification and combinations.

In table 1, we show the values we have chosen for pmin and pmax

for each paramter.

parameter pmin pmin

mutation probability 0.1 0.9
gene mutation probability 0.25 0.99
crossover probability 0.1 0.9
gene crossover probability 0.25 0.99

Table 1. Values of pmin and pmax for each parameter.

With this new method, we have seen a slight improvement of the
results compared to our previous work. We were able to increase
the correctness of the prediction applied to the learning set. Unfortu-
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Figure 2. Varying parameters for the GA

nately, this did not really improve the prediction rate on the test set
using the parameters learned with the learning set.

4 Results
In [10], we have worked on 3 real datasets for the validation: CPU,
BC and CEV. They come from the website of Marburg University5.
These originally come from the UCI repository6 and the WEKA ma-
chine learning toolbox7. Let us point out that these datasets have also
been used by Sobrie [9] in the context of sorting but using a modified
version of ELECTRE TRI.

To the best of our knowledge, there is no dataset for interval sort-
ing. As a consequence, we decided to use the same 3 datasets but
generating an interval categorization by using a random instantia-
tion of FlowSort. Therefore we know an exact solution exists for the
model’s parameters. The properties of the datasets are in table 2.

dataset #inst. #crit. #cat. % imprecise cat.
CPU 209 6 4 40.67
BC 278 7 2 23.02
CEV 1728 6 4 16.43

Table 2. Datasets used for the tests

The testing procedure has been set as follows: each dataset has
been divided in a learning set and a test set. Different sizes of learning
set have been considered. Alternatives in the learning set have been
randomly selected. Nevertheless, we forced the algorithm to select
randomly at least one alternative from each category. For each learn-
ing and test set, the algorithm has been executed on the learning set
to elicit the parameters. Then the values found have been evaluated
on the test set. This operation has been executed 32 times for each
learning set. For robustness’ sake, the whole operation has been exe-
cuted 10 times for each value of the learning set size. The maximum
number of evaluations has been set to 2 500 000, and the population
size to 1600. Results are available in table 3.

The correctness represents the accuracy of the prediction in the
test set, and the learning set correctness represents the accuracy of

5 http://www.uni-marburg.de/fb12/kebi/research/repository/monodata -
September 2014

6 http://archive.ics.uci.edu/ml/ - September 2014
7 http://www.cs.waikato.ac.nz/ml/weka/datasets.html - September 2014
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Figure 3. Correctness of the test set wrt LS size - CPU dataset

learning set’s size dataset correctness learning set correctness

5%
CPU 0.7337± 0.0705 1.0000± 0.0000
BC 0.8827± 0.0337 0.9981± 0.0120

CEV 0.8498± 0.0224 0.9227± 0.0383

20%
CPU 0.8798± 0.0245 0.9880± 0.0160
BC 0.9463± 0.0209 0.9955± 0.0103

CEV 0.8809± 0.0173 0.8554± 0.0338

35%
CPU 0.9004± 0.0215 0.9642± 0.0243
BC 0.9579± 0.0210 0.9919± 0.0110

CEV 0.8868± 0.0154 0.8395± 0.0277

50%
CPU 0.9065± 0.0228 0.9581± 0.0214
BC 0.9747± 0.0163 0.9913± 0.0111

CEV 0.8944± 0.0168 0.8309± 0.0252

Table 3. Results of the algorithm - correctness

the model on the learning set. From a global point of view, we can
note that the correctness values are rather good. As expected, the cor-
rectness is increasing with the learning set’s size. One can note that
the learning set correctness is decreasing with the learning set size
too. This is because it is much more complicated to have a perfect so-
lution if the number of alternatives in the learning set increases. For
the dataset CEV, the results show that the algorithm does not reach
good level of learning set correctness (at least not as high as for the
two other ones). The reason probably lies in the fact that this spe-
cific dataset is much bigger. We have noticed that the performances
on the test set are better than on the learning set. Currently, we have
no explanation for this effect. This will be further deepened in future
works.

On figure 3, we show a boxplot of the evolution of correctness
with respect to the learning set size (for the CPU dataset). We can
note that a good level of correctness is already reached for a learning
size of 20%.

Due to the introduction of the varying parameters for the GA, we
did not need to fine tune the parameters anymore. The value of 1600
for the population size has been determined by trial and errors. Les us
stress that the new method increases the running time. Nevertheless,
it remains rather small. For instance, for the CPU dataset, the algo-
rithm runs in about 5 minutes on a Intel i7-2640m with 8GB RAM,
under Windows 8.1 with an implementation of the algorithm in Java
8. One advantage we have remarked during these first experiments is
that the algorithm seems to be less stuck in local optima.

5 Conclusion

In this paper, we have addressed the question of preference elicitation
in the context of interval sorting. To the best of our knowledge, this
is the first attempt to solve such kind of problems. Furthermore, we
have limited the analysis to a specific sorting method namely Flow-
Sort. The approach is based on an extension of a method previously
developed for sorting. It relies on the use of a dedicated genetic al-
gorithm based on parameters variations. This has been illustrated on
three real datasets. The validation was based on a learning set and
test set created by a random instantiation of FlowSort. First experi-
ments have shown that the algorithm runs quite fast and leads to good
prediction values. A number of research questions are still to be ad-
dressed. Among others, we could investigate how an exact method
could partly cover the elicitation process (typically the identification
of weight values). From an algorithmic point of view, a detailed anal-
ysis of the heuristic is still to be done. More precisely, quantitative
arguments have to be highlighted in order to confirm the added value
of parameters variations. The use of benchmark datasets (that are not
linked to a particular method like in this study) will certainly have
an impact on the prediction quality. Nevertheless, the existence (or
the creation) of such datasets is far from being obvious. Finally, the
comparison between different sorting methods will probably lead to
identify distinctive features that will be more appropriate to replicate
particular categorizations.
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2009, 2008.

[7] Philippe Nemery and Claude Lamboray. Flowsort: a flow-based sorting
method with limiting or central profiles. Top, 16(1):90–113, 2008.

[8] Bernard Roy and Philippe Vincke. Multicriteria analysis: survey and
new directions. European Journal of Operational Research, 8(3):207–
218, 1981.

[9] Olivier Sobrie, Vincent Mousseau, and Marc Pirlot. Learning a majority
rule model from large sets of assignment examples. In Algorithmic
Decision Theory, pages 336–350. Springer, 2013.

[10] Dimitri Van Assche and Yves De Smet. Flowsort parameters elicitation
based on classification examples. Technical Report TR/SMG/2014-
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Abstract. When modelling preferences following the out-
ranking approach, the sign of the majority margins do sharply
distribute validation and invalidation of pairwise outranking
situations. How can we be confident in the resulting out-
ranking digraph, when we acknowledge the usual imprecise
knowledge of criteria significance weights and a small major-
ity margin? To answer this question, we propose to model the
significance weights as random variables following more less
widespread distributions around an average weight value that
corresponds to the given deterministic weight. As the bipo-
larly valued random credibility of an outranking statement
results from a simple sum of positive or negative independent
and similarly distributed random variables, we may apply the
CLT for computing likelihoods that a given majority margin
is indeed positive, respectively negative.

Keywords: Multiple criteria decision aid; Uncertain cri-
teria weights; Stochastic outranking relations; Confidence of
the Condorcet outranking digraph.

Introduction

In a social choice problem concerning a very important issue
like amending a country’s Constitution, the absolute major-
ity of voters is often not seen as sufficient for supporting a
convincing social consensus. A higher majority of voters, two
third or even three forth of them, may be required to support
the bill in order to take effective decisions. Sometimes, even
unanimity is required; a condition that, however, may gen-
erate in practice many indecisive situations. A similar idea
is sometimes put forward in multiple criteria decision aiding
in order to model global compromise preferences when the
significance of the criterion are not known with sufficient pre-
cision. In his seminal work on the Electre I method (Roy
[1], concerning a best unique choice problematique, Roy is
clearly following this line of thought by proposing to choose a
sufficiently qualified majority of criterial support before con-
sidering an outranking statement to be significant.

Following the SMAA approach (Tervonen et al. [2]), we are
here proposing a different approach. The individual criteria
significance weights are considered to be random variables.
The bipolarly valued characteristic of the pairwise outranking
situations (Bisdorff [3, 4]) appear hence to be sums of random
variables of which we may assess the apparent likelihood of
obtaining a positive weighted majority margin for each out-

ranking situation. And depending on the seriousness of the
decision issue, we may hence recommend to accept only those
outranking statements that show a sufficiently high likelihood
of 90% or 95%, for instance. We could also, in the limit accept
only those statements which appear to be certainly supported
by a weighted majority of criterial significance.

The paper is structured as follows. A first section is con-
cerned with how to model the uncertainty we face for assess-
ing precise numerical criteria significance weights. The second
section illustrates how the likelihood of outranking situations
may be estimated. The third section introduces the concept
of confidence level of the valued outranking digraph, followed
by short last section devoted to an illustrative example of
confident best choice recommendation.

1 Modelling uncertain criteria significances

We have already extensively discussed some time ago (see Bis-
dorff [5]) the operational difficulty to numerically assess with
sufficient precision the actual significance that underlies each
criterion in a multiple criteria decision aid problem. Even,
when considering that all criteria are equi-significant, it is
not clear how precisely (how many decimals ?) such a numer-
ical equality should be taken into account when computing
the outranking characteristic values. In case of unequal sig-
nificance of the criteria, it is possible to explore the stability
of the Condorcet digraph with respect to the ordinal crite-
ria significance structure (Bisdorff [6, 7]). One may also use
indirect preferential observations for assessing via linear pro-
gramming computations apparent significance ranges for each
criterion (Dias [8]).

Here, we propose instead to consider the significance
weights of a family F of n criteria to be independent random
variables Wi, distributing the potential significance weights
of each criterion i = 1, ..., n around a mean value E(Wi) with
variance V (Wi).

Choosing a specific stochastic model of uncertainty may
be application specific. In the limited scope of this paper,
we will illustrate the consequence of this design decision on
the resulting outranking modelling with four slightly different
models for taking into account the uncertainty with which we
know the numerical significance weights: uniform, triangular,
and two models of Beta laws, one more widespread and, the
other, more concentrated. When considering that the poten-
tial range of a signficance weight is distributed between 0 and
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two times its mean value, we obtain the following random
variates:

1. A continuous uniform distribution on the range 0 to 2 ∗
E(Wi). Thus Wi ∼ U(0, 2E(Wi)) and V (Wi) = 1

3
E(Wi)

2;
2. A symmetric beta(a, b) distribution with, for instance, pa-

rameters a = 2 and b = 2. Thus, Wi ∼ Beta(2, 2)×2E(Wi)
and V (Wi) = 1

5
E(Wi)

2.
3. A symmetric triangular distribution on the same range

with mode E(Wi). Thus Wi ∼ T r(0, 2E(Wi), E(Wi)) with
V (Wi) = 1

6
E(Wi)

2;
4. A narrower beta(a, b) distribution with for instance param-

eters a = 4 and b = 4. Thus Wi ∼ Beta(4, 4) × 2E(Wi),
V (Wi) = 1

9
E(Wi)

2

It is worthwhile noticing that these four uncertainty models
all admit the same expected value, E(Wi), however, with a
respective variance which goes decreasing from 1/3, to 1/9 of
the square of E(Wi) (see Fig. 1).
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Figure 1. Four models of uncertain significance weights

We will limit in the sequel our attention to the triangular
random model and explore now, without loss of generality, the
resulting uncertainty we are going to model into the valued
outranking digraph.

2 Likelihood of “at least as good as”
situations

Let A = {x, y, z, ...} be a finite set of n potential decision
actions, evaluated on F = {1, ...,m}, a finite and coherent
family of m performance criteria. On each criterion i in F ,
the decision actions are evaluated on a real performance scale
[0;Mi], supporting an upper-closed indifference threshold indi
and a lower-closed preference threshold pri such that 0 6
indi < pri 6 Mi. The marginal performance of object x on
criterion i is denoted xi. Each criterion i is thus characterizing

jj

j

j j jx  − y

+1

0

−1

r(x  >= y )

−pr

−ind

Figure 2. Characteristic function of marginal “at least as good

as” statement

a marginal double threshold order <i on A (see Fig. 2):

r(x <i y) =





+1 if xi − yi > −indi
−1 if xi − yi 6 −pri
0 otherwise.

(1)

+1 signifies x is performing at least as good as y on criterion i,
−1 signifies that x is not performing at least as good as y on

criterion i.
0 signifies that it is unclear whether, on criterion i, x is per-

forming at least as good as y.

Each criterion i ∈ F contributes the random significance Wi

of his “at least as good as” characterization r(<i) to the global
characterization r̃(<) in the following way:

r̃(x < y) =
∑

i∈F

[
Wi · r(x <i y)

]
(2)

Thus, r̃(x < y) becomes a simple sum of positive or negative
independent random variables with known means and vari-
ances where r̃ > 0 signifies x is globally performing at least
as good as y, r̃ < 0 signifies that x is not globally performing
at least as good as y, and r̃ = 0 signifies that it is unclear
whether x is globally performing at least as good as y.

From the Central Limit Theorem (CLT), we know that
such a sum (Eq. 2) leads, with m getting large, to a Gaus-
sian distribution Y with E(Y ) =

∑
iE(Wi) × r(x < y) and

V (Y ) =
∑
i V (Wi) × |r(x < y)|. And the likelihood of vali-

dation, respectively invalidation of an “at least as good as”
situation, denoted lh(x < y), may be assessed as follows:

lh(x < y) =

{
1.0− P (Y 6 0.0) if E[r̃(x < y)] > 0,

P (Y 6 0.0) otherwise.
(3)

Example 2.1. Let us consider two decision alternatives x
and y being evaluated on a family of 7 equi-significant crite-
ria, such that four out of the seven criteria positively support
that x outranks y, and three criteria support that x does not
outrank y. In this case, r̃(x < y) = 4w − 3w = w where
Wi = w for i = 1, ..., 7 and the outranking situation is posi-
tively validated. Suppose now that the significance weights Wi

appear only more or less equivalent and let us model this nu-
merical uncertainty with independent triangular laws: Wi ∼
T r(0, 2w,w) for i = 1, ...7. The expected credibility of the out-
ranking situation, E(r̃(x < y)) = 4w − 3w = w, will remain
the same, however with a variance of 7× 1

6
w2. If we take a unit
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weight w = 1, we hence obtain a standard deviation of 1.08.
Applying the CLT we notice that, under the given hypothe-
ses, the likelihood lh(x < y) of obtaining a positive majority
margin will be about 1.00 − P ( r̃−1

1.08
6 0.0) ≈ 83%. A Monte

Carlo simulation with 10 000 runs empirically confirms the ef-
fective convergence to a Gaussian: r̃(x < y) N (1.03, 1, 089)
(see Figure 3), with an empirical probability of observing a
negative majority margin P (r̃(x < y) 6 0.0) of indeed about
17%.

Figure 3. Distribution of outranking credibility r̃(x < y)

Example 2.2. The second example concerns two decision
alternatives a1 and a2 that are evaluated on a family of 7
criteria, denoted gi of unequal significance weights wi for
i = 1, ..., 7 (see Tab. 1). The performances on the seven cri-
teria are measured on a rational scale from 0 (worst) to 100
points (best). Let us suppose that both decision alternatives
are evaluated as shown in Tab. 1. A performance difference
of 10 points or less is considered insignificant, whereas a dif-
ference of 20 points and more is considered to be significant.

Table 1. Pairwise comparison of two decision alternatives

gi g1 g2 g3 g4 g5 g6 g7
wi 7 8 3 10 1 9 7

a1 14.1 71.4 87.9 38.7 26.5 93.0 37.2
a2 64.0 87.5 67.0 82.2 80.8 80.8 10.6

a1 − a2 -49.9 -16.1 +20.9 -43.5 -54.3 +12.2 26.5
r(<i) −1 0 +1 −1 −1 +1 +1

The overall deterministic outranking credibility r(a1 < a2)
(see [4]) is given as follows:

r(a1 < a2) =

7∑

i=1

r(a1 <i a1)× wi (4)

= −7 + 0 + 3− 10− 1 + 9 + 7 = +1 (5)

The outranking situation “(a1 < a1)” is thus positively val-
idated (see Eq. 5). However, in case the given criteria sig-
nificance weights (see Tab. 1) are not known with certainty,
how confident can we be about the actual positiveness of

r̃(a1 < a2)? If we suppose now that the random significance
weights Wi are in fact independently following a triangu-
lar continuous law on the respective ranges 0 to 2wi, the
CLT approximation will make r̃(a1 < a2) tend to a Gaus-
sian distribution with mean equal to E(r̃(x < y)) = +1 and
standard deviation equal to

√∑
i 1/6E(Wi)2 = 6.94. The

likelihood of r(a1 < a2) > 0.0 equals thus approximately
1.0 − P ( z−1

6.94
6 0.0) = 1.0 − 0.443 ≈ 55.7%, a result we

can again empirically verify with a Monte Carlo sampling of
10 000 runs (see Fig. 4). Under the given modelling of the

Figure 4. Distribution of outranking credibility r̃(a1 < a2)

uncertainty in the setting of the criteria significance weights,
the credibility of the outranking situation between alterna-
tives a1 and a2 is neither convincingly positive, nor negative.
The given relational situation may, hence, neither confidently
be validated, nor, confidently invalidated.

3 Confidence level of outranking situations

Following the classic outranking difinition (see Roy [1], Bis-
dorff [4]), we may say from an epistemic point of view, that
decision action x outranks decision action y, denoted x % y),
if

1. a confident majority of criteria validates a global outrank-
ing situation between x and y, and

2. no considerably less performing is observed on a discordant
criterion.

Dually, decision action x does not outrank decision action y,
denoted (x 6% y), if

1. a confident majority of criteria invalidates a global out-
ranking situation between x and y, and

2. no considerably better performing situation is observed on
a concordant criterion.

On a criterion i, we characterize a considerably less performing
situation, called veto and denoted ≪i, as follows:

r(x≪i y) =





+1 if xi + vi 6 yi
−1 if xi − vi > yi
0 otherwise.

. (6)
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where vi, with Mi > vi > pri, represents a lower-closed veto
discrimination threshold. A corresponding dual considerably
better performing situation, called counter-veto and denoted
≫i, is similarly characterized as:

r(x≫i y) =





+1 if xi − vi > yi
−1 if xi + vi 6 yi
0 otherwise.

. (7)

A global veto, or counter-veto situation is now defined as
follows:

r(x≪ y) = >i∈F r(x≪i y) (8)

r(x≫ y) = >j∈F r(x≫j y) (9)

where > represents the epistemic polarising ([9]) or symmetric
maximum ([10]) operator:

r > r′ =





max(r, r′) if r > 0 ∧ r′ > 0,

min(r, r′) if r 6 0 ∧ r′ 6 0,

0 otherwise.

(10)

We observe the following semantics:

1. r(x≪ y) = 1 iff there exists a criterion i such that r(x≪i

y) = 1 and there does not exist otherwise any criterion
j ∈ F such that r(x≫j y) = 1.

2. Conversely, r(x≫ y) = 1 iff there exists a criterion i such
that r(x≫i y) = 1 and there does not exist otherwise any
criterion j such that r(x≪j y) = 1.

3. r(x ≫ y) = 0 if either we observe no very large perfor-
mance differences or we observe at the same time, both a
very large positive and a very large negative performance
difference.

It is worthwhile noticing that r( 6≪)−1 is identical to r(≫),
both ≪ and ≫ being, by construction, codual relations one
to another.

The deterministic outranking characteristic r(%) may hence
be defined as follows:

r(x % y) = r(x < y) >i∈F
[
− r(x≪i y)

]
(11)

And in particular,

1. r(x % y) = r(x < y) if no very large positive or negative
performance differences are observed,

2. r(x % y) = 0 if a veto and a counter-veto situation are
conjointly occurring;

3. r(x % y) = 1 if r(x < y) > 0 and r(x≫ y) = 1,
4. r(x % y) = −1 if r(x < y) 6 0 and r(x≪ y) = 1.

When considering now the criteria significance weights to
be random variates, r(x % y) becomes a random variable via
the random characteristic r̃(x < y).

r̃(x % y) = r̃(x < y) >i∈F
[
− r(x≪i y)

]
(12)

In case 1. we are back to the unpolarised “at least as good
as” situation discussed in the previous section. In case 2.,
the resulting constant indeterminate outranking characteris-
tic value 0 is in fact independent of any criterion significance.
Only cases 3. and 4. are of interest here. If E(r̃(x < y)) > 0,

we are in case 3. where strictly negative characteristics will
be given the indeterminate characteristic 0, and the others,
a polarised +1 value. Similarly, if E(r̃(x < y)) 6 0 we are in
case 4., strictly positive characteristics r(x < y) > 0 will be
given the indeterminate value 0, and the others, the polarised
−1 value.

By requiring now a certain level α of likelihood for effec-
tively validating all pairwise outranking situations, we may
thus enforce the actual confidence we may have in the valued
outranking digraph. For any outranking situation (x % y) we
obtain:

r̂α(x % y) =

{
E
[
r̃(x % y)

]
if lh(x < y) > α,

0 otherwise.
(13)

If, for instance, we would require that an outranking situation
(x % y), to be validated, respectively invalidated, must admit
a likelihood lh(x < y) of α = 90% or more, any positively
or negatively polarising of the “at least as good as” state-
ment will only occur in case of sufficient likelihood. Noticing
that E

[
r̃(x % y)

]
= r(x % y), we safely preserve, hence, in

our stochastic modelling, all the nice structural properties of
the deterministic outranking relation (see Eq. 11), like weak
completeness and coduality, that is the dual of the outranking
relation (6%) corresponds to the asymmetric part (�) of its
converse relation (see Bisdorff [4]).

Example 3.1. We may illustrate our uncertainty modelling
approach with a small random performance tableau (see
Tab. 2) showing the evaluations of seven decision alternatives
on the same family of performance criteria we used for Ex-
ample 2.2. To operate with a full fledged outranking model,
we furthermore consider that a performance difference of 80
points and more will trigger a veto or counter-veto situation
(see [4]).

Table 2. Random performance tableau

gi wi a1 a2 a3 a4 a5 a6 a7

g1 7 14.1 64.0 73.4 36.4 30.6 85.9 97.8
g2 8 71.4 87.5 61.9 84.7 60.4 54.5 45.8
g3 3 87.9 67.0 25.2 34.2 87.3 43.1 30.4
g4 10 38.7 82.2 94.1 86.1 34.1 97.2 72.2
g5 1 26.5 80.8 71.9 21.3 56.4 88.1 15.0
g6 9 93.0 80.8 23.2 57.2 81.4 16.6 93.0
g7 7 37.2 10.6 64.8 98.9 69.9 24.7 13.6

Thresholds: indi = 10.0, pri = 20, and vi = 80 for i ∈ F .

When using the deterministic criteria significance weights
shown in Tab. 2, we obtain the bipolarly valued outranking
relation shown in Tab. 3. We recover there the weakly positive
credibility (r(a1 % a2) = +1/45) of the outranking situation
between alternative a1 and alternative a2 discussed in Exam-
ple 2.2. Notice also the slightly negative credibility (−5/45)
of the outranking situation between alternative a1 and a3.
Notice, furthermore the veto and counter-veto situations we
observe when comparing alternatives a1 and a7, a2 and a4, as
well as, a4 and a7. How confident are all these pairwise pref-
erential situations when the significance weights are not pre-
cisely given? Assuming that the criteria significance weights
wi are in fact random variates distributed following indepen-
dent triangular laws T (0, 2wi, wi) for i = 1, ..., 7, we obtain
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Table 3. Deterministic credibility of (x % y)

r(%)× 45 a1 a2 a3 a4 a5 a6 a7

a1 - +1 −5 −11 +22 +9 0
a2 +16 - +21 0 +25 +14 +22
a3 +21 +5 - −3 +21 +34 +13
a4 +21 +45 +29 - +19 +19 +45
a5 +28 −7 +10 −5 - +9 +2
a6 +6 +5 +31 −3 +7 - +20
a7 +45 +11 +1 0 +15 +13 -

Table 4. CLT likelihood of the (x < y) situations

lh a1 a2 a3 a4 a5 a6 a7

a1 - .56 .74 .94 1.0 .88 .92
a2 .99 - 1.0 1.0 1.0 .99 1.0
a3 1.0 .74 - .65 1.0 1.0 .95
a4 1.0 .74 1.0 - .99 1.0 .95
a5 1.0 .82 .90 .74 - .88 .62
a6 .83 .74 1.0 .65 .82 - 1.0
a7 .85 .95 .56 .78 .98 .97 -

the CLT likelihoods shown Tab. 4. If we, now, require for each
“at least as good as” situation (x < y) to admit a likelihood
of 90% and more for convincingly validating, respectively in-
validating, the corresponding outranking statement (x % y),
we obtain the result shown in Tab. 5.

Table 5. 90% confident outranking characteristics (×45)

r̂90%(x % y) a1 a2 a3 a4 a5 a6 a7

a1 - 0 0 −11 +22 0 0
a2 +16 - +21 0 +25 +14 +22
a3 +21 0 - 0 +21 +34 +13
a4 +21 0 +29 - +19 +19 +45
a5 +28 0 +10 0 - 0 0
a6 0 0 +31 0 0 - +20
a7 0 +11 0 0 +15 +13 -

We notice there that, for instance, the outranking situations
(a1 % a2) and (a1 6% a3), with likelihoods 56%, resp. 73% –
lower than 90%– are both put to doubt. Similarly, the +45 po-
larised outranking situation (a7 % a1) appears not confident
enough. Same happens to +45 polarised situation (a4 % a2).
Whereas situation (a4 % a7) remains confidently polarised to
+1. In total 16 pairwise outranking statements, out of the
potential 7× 6 statements, are thus considered not confident
enough. At required confidence level of 90%, their credibility
r̂90%(x % y) is put to the indeterminate value 0. It is worth-
while noticing that all outranking situations, showing a ma-
jority margin between ±9/45 (between 40 and 60%) are thus
not confident enough and consequently put to doubt (charac-
teristic value 0).

4 Exploiting the confident outranking
digraph

Many MCDA decision aiding problematiques like best choice,
ranking, sorting, or clustering recommendations based on
pairwise outranking situations, rely on majority cuts of the
corresponding valued outranking digraph (see [11, 12, 13]).

Example 4.1. The previous example 3.1 gives the hint how
we may appreciate the very confidence we may have in a given
majority when the criteria significance weights are not pre-
cisely given. We may, for instance, notice that alternative a4
gives apparently the only Condorcet winner in the determin-
istic outranking digraph and will hence be recommended in
the Rubis decision aid approach as best choice (see [13]). In
the 90% confident outranking digraph, however, alternatives
a2 and a4 both give two equivalent weak Condorcet winners,
and may, hence, be both recommended as potential Rubis
best choice candidates; a recommendation more convincingly
supported than the deterministic one, when considering in
fact the excellent performances of alternative a2 compared to
a4 (see Tab. 6).

Table 6. Pairwise comparison of alternatives a4 and a2

gi g1 g2 g3 g4 g5 g6 g7
wi 7 8 3 10 1 9 7

a4 36.5 84.7 34.2 86.1 21.3 57.2 98.9
a2 60.0 87.5 67.0 82.2 80.8 80.8 10.6

− -27.5 -2.8 -32.8 +3.8 -59.2 -23.6 +88.8
<j −1 +1 −1 +1 −1 −1 +1
≫j 0 0 0 0 0 0 +1[
r(a3 < a2) = +5 ∧ r(a4 ≫ a2) = +1

]
⇒ r(a4 % a2 = +45;[

lh.90(a4 < a2) = .74
]
⇒ r̂(a4 % a2) = 0.

Being confidently at least a s good as alternative a4 (lh(a2 <
a4) = 100%, see Tab. 4), alternative a2 shows four excellent
performances over 80.0, whereas alternative a4 only shows
three such high evaluations. The actual difference between
the deterministic and the confident best choice recommenda-
tion stems in fact from the not confident enough polarisation
of the counter-veto affecting the performance comparison be-
tween a4 and a2 (lh(a4 < a2) = 74% < α = 90%, see
Tab. 4). Hence, alternative a4 does no more appear alone as
the Condorcet winner. Both, alternatives a2 and a4 appear as
confident weak Condorcet winners, hence their joint recom-
mendation as confident best choice candidates.

Knowing a priori the distribution of the significance weight
of each criterion will genuinely be sufficient in practice for
computing, with the so given means and variances, the CLT
based likelihood of the fact that a bipolar outranking char-
acteristics r(x % y) is positively validating, respectively neg-
atively invalidating, the outranking situation “(s % y)”. The
quality of the CLT convergence will, however, depend, first,
on the number of effective criteria, i.e. non abstaining ones, in-
volved in each pairwise comparison and, secondly, on the more
or less differences in shape of the individual significance weight
distributions. Therefore, with tiny performance tableaux, less
than 25 decision actions and less than 10 criteria, we may
estimate more precisely the actual likelihood of all pairwise
outranking situations with a Monte Carlo (MC) simulation
consisting of a given number of independent runs. Indeed,
the present computational power available, even on modest
personal computers, allow us to sufficiently sample a given
outranking digraph construction.

Example 4.2. If we sample, for instance, 10 000 MC simu-
lations of the previous outranking relation (see Tab. 3), by
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keeping the same uncertainty modelling of the criteria signifi-
cances with random weights distributed like T (0, 2wi, wi), we
obtain same empirical likelihoods (see Tab. 7).

Table 7. Empirical likelihoods of (x < y) with a MC sampling of

10 000 runs

p-value a01 a02 a03 a04 a05 a06 a07

a01 - .55 .74 .95 1.0 .88 .92
a02 .99 - 1.0 1.0 1.0 .99 1.0
a03 1.0 .74 - .65 1.0 1.0 .96
a04 1.0 .75 1.0 - 1.0 1.0 .96
a05 1.0 .82 .90 .75 - .88 .61
a06 .83 .74 1.0 .65 .82 - 1.0
a07 .85 .96 .55 1.0 .99 .97 -

We may thus verify again the very accurate convergence (in
the order of ±1%) of the CLT likelihoods, a convergence we
already observed in Example 2.2, even with a small number
of criteria.

Conclusion

In this paper we illustrate some simple models for tackling
uncertain significance weights: uniform, triangular and beta
laws. Applying the Central Limit Theorem, we are able to
compute under these uncertainty models the actual likeli-
hood of any pairwise at least as good as situations. This op-
erational result, by adequately handling potential veto and
counter-veto situations, allows to enforce a given confidence
level on the corresponding outranking situations. On a small
illustrative best choice problem, we eventually show the prag-
matic decision aid benefit one may expect from exploiting a
confident versus a classic deterministic outranking digraph.
Acknowledging this operational benefit, one may finally be
tempted to extend the uncertainty modelling, as in the SMAA
approach, to the marginal performances. This is however,
not needed, as traditionally the performance discrimination
thresholds proposed in the outranking approach may well take
care of any imprecision and uncertainty at this level.
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