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Abstract. 

As global solar radiation forecasting is a very important challenge, several methods are devoted to this goal 

with different levels of accuracy and confidence. In this study we propose to better understand how the 

uncertainty is propagated in the context of global radiation time series forecasting using machine learning. 

Indeed we propose to decompose the error considering four kinds of uncertainties: the error due to the 

measurement, the variability of time series, the machine learning uncertainty and the error related to the horizon. 

All these components of the error allow to determinate a global uncertainty generating prediction bands related 

to the prediction efficiency. We also have defined a reliability index which could be very interesting for the grid 

manager in order to estimate the validity of predictions. We have experimented this method on a multilayer 

perceptron which is a popular machine learning technique.We have shown that the global error and its 

components are essential to quantify in order to estimate the reliability of the modeloutputs.The described 

method has been successfully applied to four meteorological stations in Mediterranean area.  
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1 Introduction 

Solar radiation is one of the principal energy sources for physical, biological and chemical processes, 

occupying the most important role in many engineering applications[1]. The process of converting sunlight to 

electricity without combustion allows to create power without pollution. The major problem of such energy 

source is its intermittence and its stochastic character which make difficult their management into an electrical 

network[2].Thereby, the development of forecasting models is necessary to ideally use this technology[3]. By 

considering their effectiveness, it will be possible for example to identify the most optimal locations for 

developing a solar power project or to maintain the grid stability and security of a power management system[4]. 

Thus the solar energy forecasting is a process used to predict the amount of solar energy available for various 

time horizons[5]. Several methods have been developed by experts around the world and the mathematical 

formalism of Times Series (TS[6]) has been often used for the short term forecasting (among 6 hours ahead) 

[5,7]. TS is a set of ordered numbers that measures some activities over time[8]. It is the historical record of 

global horizontal irradiance with measurements taken at equally spaced intervals with a consistency in the 

activity and the method of measurement. Some of the best predictors found in literature are Autoregressive and 

moving average[9–11], Bayesian inferences [12,13], Markov chains [14,15], k-Nearest-Neighbors 

predictors[16], support vector machine[3,17], regression tree[18,19], orartificial neural network (ANN) [20,21]. 

All these approaches are related to the machine learning application[22]. The most often used is the last 

presented method: the artificial neural network and particularly the multilayer perceptron (MLP[23]). In the 

present study, we focus on this prediction method, the goal being to detail the uncertainties related to the global 

radiation prediction[24].  

The paper is organized as follow: Section 2 describes the data and material needed to conduct our 

experiments. In the section 3, we propose to define the different component of the errorgenerated throughthe 

MLP used. These uncertainties can be decomposed into several components that will be explained and 

developed. In section 4,the results of the error decomposition will be exposed for fivemeteorological sites in 

order to quantify the reliability of the predictions. The last section will allow to draw conclusions about the 

present study. 
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2 Data and material  

In this work, measured hourly horizontal global radiation data from meteorological ground stations are used to 

forecast global horizontal solar irradiation (GHI) for a specific horizon[11]. All the measurements used are 

obtained from the French Meteorological Organization (Météo-France) data base and from measurement realized 

in the frame of the Tilos H2020 project (http://www.tiloshorizon.eu).Four sites are studied: Ajaccio, Bastia, 

Montpellier and Marseille in France.As for all experimental acquisitions, missing values are observed, here, this 

represents less than 2% of the data. A classical cleaning approach is then operated in order to identify and 

remove this data[16]. 

2.1 Data 

In Corsica Island, the data used to build the models are GHI measured in the meteorological stations of 

Ajaccio (41°55’N, 8°44’E, 4m asl) and Bastia (42°42’N, 9°27’E, 10m asl). They are located near the 

Mediterranean Sea and nearby mountains (1000 m altitude at 40km from the sites). The data representing the 

global horizontal solar radiation were measured on an hourly basis from 1998 to 1999 (exactly two years). The 

two last studied stations are Montpellier (43.6°N and 3.9°E, 2 masl) and Marseille (43.4°N and 5.2°E, 5 masl) 

concerning the years 2008 and 2009. All these stations are equipped with pyranometers (CM 11 from 

Kipp&Zonen). The choice of these particular places is explained by their closed geographical and orographical 

configurations. These stations are located near the Mediterranean Sea and mountains. This specific geographical 

configuration of the four French meteorological stations makes cloudness difficult to forecast. Mediterranean 

climate is characterized by hot summers with abundant sunshine and mild, dry and clear winters. Irradiance 

nighttime values are not being used, the first morning data forecast are operated with the day before evening 

data. 
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2.2 Prediction methodology 

We chose to develop error propagation in the GHI prediction for the most common used predictor: the MLP. 

The base of this model is the time series approach (TS). A TS x(t) can be defined by a linear or non-linear model 

called fn (see Equation 1 where t = n,n-1,…,p+1,p with n, the number of observations and p the number of 

parameters of the model ; n ≫ p; h is the horizon of prediction and 𝜖𝑡+  the committed error) [25].  

𝑥(𝑡 + ) = 𝑓𝑛(𝑥(𝑡), 𝑥(𝑡 − 1)… . , 𝑥(𝑡 − 𝑝 + 1)) + 𝜖𝑡+       Eq1 

To estimate the 𝑓𝑛model, a stationarity hypothesis is often necessary. This condition usually implies a stable 

process [26,27]. This notion is directly linked to the fact that whether certain feature such as mean or variance 

change over time or remain constant. Previous studies [3,28,29]show that the use of clear sky index (CSI) allows 

to make stationary the time series and so to correctly use the MLP forecasting. 

2.2.1 Stationary process 

In previous studies[30,31], it was demonstrated that the clear sky index calculated with the simplified Solis 

model [32] is the most reliable for our locations. The Solis model generates a clear sky hourly irradiation (CS) 

expressed by Eq. (2), the use of this model requires fitting parameter (g), extraterrestrial radiation (I0),  solar 

elevation (h) and total measured atmospheric optical depth (): 

𝐶𝑆 𝑡 = 𝐼0  𝑡 . 𝑒𝑥𝑝  
−𝜏

𝑠𝑖𝑛𝑔  𝑡  
 . 𝑠𝑖𝑛( 𝑡 )       Eq2 

The simplified “Solis clear sky” model is based on radiative transfer calculations and the Lambert-Beer 

relation[32] . The expression of the atmospheric transmittance is valid with polychromatic radiations, however 

when dealing with global radiation, the Lambert-Beer relation is only an approximation because of the back 

scattering effects. According to[33] this model remains a good fitting function of the global horizontal radiation. 

The new computed time series (CSI) can be directly used with the MLP forecasting and is described by the 

equation 3: 

𝐶𝑆𝐼(𝑡) = 𝐺𝐻𝐼(𝑡)/𝐶𝑆 𝑡          Eq 3 
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2.2.2 MLPprediction 

Although a large range of different architectures of ANN is available [34], MultiLayer Perceptron (MLP) 

remains the most popular [35]. In particular, feed-forward MLP networks with two layers (one hidden layer and 

one output layer) are often used for modeling and forecasting time series. Several studies [20,36,37]validated 

this approach based on ANN for the non-linear modeling of time series. To forecast the time series, a fixed 

number p of past values are set as inputs of the MLP, the output is the prediction of a future value [38]. 

Considering the initial time series equation (Equation 1), this equation can be adapted to the non-linear case of 

one hidden layer MLP with b related to the biases, f and g to the activation function of the output and hidden 

layer, and to the weights. The number of hidden nodes (H) and the number of the input node (In) allow to 

detail this transformation. The number of layer 1 and 2 is given in superscript. (Equation 4):  

𝐶𝑆𝐼 (𝑡 + 1) = 𝑓( 𝑦𝑖
𝐻
𝑖=1 𝜔𝑖

2 + 𝑏2)with𝑦𝑖 = 𝑔( 𝐶𝑆𝐼(𝑡 − 𝑗 + 1)𝐼𝑛
𝑗=1 𝜔𝑖𝑗

1 + 𝑏𝑖
1)   Eq 4 

     

In the presented study, the MLP has been computed with the Matlab© software and its Neural Network 

toolbox. The characteristics chosen and related to previous work are the following: one hidden layer, the 

activation functions are the continuously and differentiable hyperbolic tangent (hidden) and linear (output), the 

Levenberg-Marquardt learning algorithm with a max fail parameter before stopping training equal to 5 (early 

stopping tool allowing the stop the learning when the error increases consecutively 5 times). This algorithm is an 

approximation to the Newton’s method. The prediction of the GHI is obtained using the equation: 

𝐺𝐻𝐼  𝑡 + 1 = 𝐶𝑆𝐼  𝑡 + 1 .𝐶𝑆(𝑡 + 1)        Eq 5 

To customize the input layer of the MLP we choose the use of the mutual information to determine In as 

described in [3,39,40]. According the results obtained in these papers, we use H equal to In for all the 

experiments conducted in this study.Furthermore in order to improve the learning of the MLP, it is a common 

practice to filter out the data removing night hours. Indeed we consider only periods between sunrise and sunset 

[41,42]. We have chosen to apply a selection criterion based on the solar zenith angle (SZA): solar radiation data 

for which the solar zenith angle is greater than 80° have been removed [3]. This transformation is equivalent to a 
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filtering related to the solar elevation angle lower than 10°. All the simulations are related to the Matlab software 

and NNtoolbox use.  

 

3 Error decomposition 

In these section, we propose to decompose the error considering four kinds of uncertainties: the error due to the 

measurement, the error due to the variability of the time series, the error related to the machine learning 

uncertainty and the error related to the horizon. 

3.1 Error due to the measurement (𝝈𝒎𝒆𝒂𝒔) 

In experimental sciences, there is no perfect measure. Experiments can only be marred with significant errors 

more or less depending on the selected protocol or the quality measuring instruments [24]. Assess the uncertainty 

measurement is a complex task that is the subject of a complete branch called metrology. The uncertainty 

associated with a measurement result allows to provide a quantitative indication of the quality of this result [43]. 

In thissection, we will show that it is possible to quantify the impact of a measurement error (or precision) on the 

MLP output. A MLP with 2 inputs and 2 hidden neurons (H=2 and In=2) is considered here in order to 

understand the methodology[2]. The output of this MLP can be defined with the following formula:  

𝐶𝑆𝐼 (𝑡 + 1) =  (𝑔( 𝐶𝑆𝐼(𝑡 − 𝑗 + 1)𝐼𝑛
𝑗=1 𝜔𝑖𝑗

1 + 𝑏𝑖
1))𝐻

𝑖=1 𝜔𝑖
2 + 𝑏2 = 𝜔1

2 tanh 𝐶𝑆𝐼(𝑡)𝜔11
1 + 𝐶𝑆𝐼(𝑡 −

1)𝜔121+𝑏11+𝜔22tanh𝐶𝑆𝐼(𝑡)𝜔211+𝐶𝑆𝐼(𝑡−1 𝜔221+𝑏21+𝑏2     Eq 6 

In order to calculate the uncertainty propagation of a MLP related to measurement error, we propose to use two 

methods: (i) the classical variables differentiationand (ii) the differentiation of log(𝐶𝑆𝐼 (𝑡 + 1)). 

Using the classical variables differentiation, we obtained the following formula for the measurement error: 

𝜎𝑚𝑒𝑎𝑠 1
2  𝐶𝑆𝐼 (𝑡 + 1) =  

𝜕𝐶𝑆𝐼 (𝑡+1)

𝜕(𝐶𝑆𝐼(𝑡)
 

2

𝜎2 𝐶𝑆𝐼(𝑡) +  
𝜕𝐶𝑆𝐼 (𝑡+1)

𝜕𝐶𝑆𝐼 (𝑡−1)
 

2

𝜎2 𝐶𝑆𝐼(𝑡 − 1) = 𝑢.𝜎2 𝐶𝑆𝐼(𝑡) +

𝑣.𝜎2 𝐶𝑆𝐼(𝑡 − 1)           Eq 7 

With𝑢 = (𝜔1
2𝜔11

1 (tanh 𝐶𝑆𝐼(𝑡)𝜔11
1 + 𝐶𝑆𝐼(𝑡 − 1)𝜔12

1 +𝑏1
1 2 − 1) + 𝜔2

2𝜔21
1 (tanh 𝐶𝑆𝐼(𝑡)𝜔21

1 + 𝐶𝑆𝑖(𝑡 −

1)𝜔221+𝑏212−1 )2          

 Eq 8 
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and𝑣 = (𝜔1
2𝜔12

1 (tanh 𝐶𝑆𝑖(𝑡)𝜔11
1 + 𝐶𝑆𝐼(𝑡 − 1)𝜔12

1 +𝑏1
1 2 − 1) + 𝜔2

2𝜔22
1 (tanh 𝐶𝑆𝑖(𝑡)𝜔21

1 + 𝐶𝑆𝐼(𝑡 −

1)𝜔221+𝑏212−1 )2          

 Eq 9 From the two parameters u and v, and considering that𝜎2 𝐶𝑆𝐼(𝑡 − 1)  𝑒𝑡 𝜎2 𝐶𝑆𝐼(𝑡) are equivalent and equal to 

the pyranometer uncertainty (𝜎2 𝐶𝑆𝐼 ), the global error is: 

𝜎𝑚𝑒𝑎𝑠 1
2  𝐶𝑆𝐼 (𝑡 + 1) = 𝜎2 𝐶𝑆𝐼 ((𝜔1

2𝜔11
1 ℑ1 + 𝜔2

2𝜔21
1 ℑ2)2 + (𝜔1

2𝜔12
1 ℑ1 + 𝜔2

2𝜔22
1 ℑ2)2)   Eq 10 

Considering thatℑ𝑛 = tanh 𝐶𝑆𝐼(𝑡)𝜔𝑛1
1 + 𝐶𝑆𝐼(𝑡 − 1)𝜔𝑛2

1 +𝑏𝑛
1 2 − 1  𝑓𝑜𝑟 𝑛 ∈  1,𝐻    Eq 11 

It follows that the uncertainty of a MLP related to measurement error is: 

𝜎𝑚𝑒𝑎𝑠 1 𝐶𝑆𝐼 (𝑡 + 1) = 𝜎 𝐶𝑆𝐼  (𝜔1
2𝜔11

1 ℑ1 + 𝜔2
2𝜔21

1 ℑ2)2 + (𝜔1
2𝜔12

1 ℑ1 + 𝜔2
2𝜔22

1 ℑ2)2 1/2  Eq 12 

The maximum value will be reached when the output of the hidden nodes will be equal to 1(ℑ𝑖 = 1 ∀𝑖). In this 

case, we obtain:  

𝜎𝑚𝑒𝑎𝑠 1,𝑚𝑎𝑥  𝐶𝑆𝐼 
𝑡+1 = 𝜎 𝐶𝑆𝐼  (𝜔1

2𝜔11
1 + 𝜔2

2𝜔21
1 )2 + (𝜔1

2𝜔12
1 + 𝜔2

2𝜔22
1 )2 1/2    Eq 13 

Note that this formalism is applied only because the orthogonality hypothesisof the inputs have been done 

(inputs independent) without this approximation the computing is impossible. The generalization for Hhidden 

neurons andIninput nodes gives: 

0 ≤ 𝜎𝑚𝑒𝑎𝑠 1 𝐶𝑆𝐼 (𝑡 + 1 = 𝜎(𝐶𝑆𝐼)  ( 𝜔𝑖
2𝜔𝑖𝑗

1 ℑ𝑖
𝐻
𝑖=1 )2𝐼𝑛

𝑗=1  
1/2

≤ 𝜎 𝐶𝑆𝐼   ( 𝜔𝑖
2𝜔𝑖𝑗

1𝐻
𝑖=1 )2𝐼𝑛

𝑗=1  
1/2

  Eq 14 

 

The second method is based on the differentiation of log(𝐶𝑆𝐼 (𝑡 + 1)). This method is simpler but less efficient 

and does not take into account the error compensation. In the casewe use the following formulas to determine the 

uncertainty (𝜎𝑚𝑒𝑎𝑠 2): 

𝑑 log 𝐶𝑆𝐼 (𝑡 + 1)  =
𝜎𝑚𝑒𝑎𝑠 2(𝐶𝑆𝐼 (𝑡+1))

𝐶𝑆𝐼 (𝑡+1)
=

𝜎 𝐶𝑆𝐼 (𝜔1
2ℑ1 𝜔11

1 +𝜔12
1  +𝜔2

2ℑ2(𝜔21
1 +𝜔22

1 ))

𝐶𝑆𝐼 (𝑡+1)
   Eq 15 

thus: 

𝜎𝑚𝑒𝑎𝑠 2(𝐶𝑆𝐼 (𝑡 + 1)) = 𝜎 𝐶𝑆𝐼 (𝜔1
2ℑ1 𝜔11

1 + 𝜔12
1  + 𝜔2

2ℑ2(𝜔21
1 + 𝜔22

1 ))    Eq 16 

= 𝜎 𝐶𝑆𝐼 (𝜔1
2𝜔11

1 ℑ1 + 𝜔2
2𝜔21

1 ℑ2 + 𝜔1
2𝜔12

1 ℑ1 + 𝜔2
2𝜔22

1 ℑ2)  

For H hidden neurons and In input nodes, we obtain the following generalization: 

𝜎𝑚𝑒𝑎𝑠 2 𝐶𝑆𝐼 (𝑡 + 1 = 𝜎(𝐶𝑆𝐼)   𝜔𝑖
2𝜔𝑖𝑗

1 ℑ𝑖
𝐻
𝑖=1

𝐼𝑛
𝑗=1        Eq 17 

Combining Eq (16) and (14), we see that𝜎𝑚𝑒𝑎𝑠 1(𝐶𝑆𝐼 (𝑡 + 1)) ≤ 𝜎𝑚𝑒𝑎𝑠 2(𝐶𝑆𝐼 (𝑡 + 1)). In orderto take into 

account compensation only present in meas1 case computing, we think it is preferable to use the first form and in 

the following we use the uncertainty of the measurement with the equation 18(with Hthe number of hidden 

neuronsand Inthe number of input nodes): 
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0 ≤ 𝜎𝑚𝑒𝑎𝑠 (𝐺𝐻𝐼 (𝑡 + 1)) = 𝜎 𝐺𝐻𝐼 ( 𝜔𝑖
2  𝜔𝑖𝑗

1𝐼𝑛
𝑗=1 ℑ𝑖

𝐻
𝑖=1 ) ≤ 𝜎 𝐺𝐻𝐼 ( 𝜔𝑖

2  𝜔𝑖𝑗
1𝐼𝑛

𝑗=1 )𝐻
𝑖=1   Eq 18 

 

3.2 Error due to the quick fluctions of the time series  

We choose to define the error due to the variability of the time series. Indeed, the quick fluctuations of the series 

are very difficult to predictand generate error in the prediction. One of the possibility to define this kind of 

uncertainty will be called the inherent error and the second one the variability error.  

3.2.1 Inherent error (𝝈𝒊𝒏𝒉) 

TheCartier and Perrin theorem [6], which is stated in the language of nonstandard analysis, allows to understand 

the existence of trends for time series[47]. The time series GHI(t) may then be decomposed as a sum where 

𝐺𝐻𝐼𝑡𝑟𝑒𝑛𝑑  𝑡  is the trend and 𝐺𝐻𝐼𝑓𝑙𝑢𝑐 (𝑡) is a “quickly fluctuating” function around 0 also called theinherent noise 

of the time series. 

𝐺𝐻𝐼 𝑡 = 𝐺𝐻𝐼𝑡𝑟𝑒𝑛𝑑  𝑡 + 𝐺𝐻𝐼𝑓𝑙𝑢𝑐 (𝑡)        Eq 19 

The nature of those quick fluctuations is left unknown and nothing prevents us from assuming that 𝐺𝐻𝐼𝑓𝑙𝑢𝑐 (𝑡)is 

random and/or fractal. The forecast of the trend is possible on a “short” time interval under the assumption of a 

lack of abrupt changes, whereas the forecast ofthe fluctuationterm at a given time instant is meaningless and 

should be abandoned. Based on this kind of time series definition, an ideal prediction can be obtained from a 

trend estimation𝐺𝐻𝐼𝑡𝑟𝑒𝑛𝑑  𝑡 . In our case, we choose to compute it with a classical non-linear fit based on cubic 

spline data interpolation based on a tridiagonal linear system[48]. It is solved for the information needed to 

describe the coefficients of the various cubic polynomials which make up the interpolating spline. Considering 

the Cartier Perrin theorem the perfect predictor describes the trend while the quick fluctuations are not modelled 

and the related error is the lowest error than a predictor can generate. The inherent error is so computed with the 

equation 20: 

𝜎𝑖𝑛 = 𝐺𝐻𝐼  𝑡 + 1 .𝑛𝑅𝑀𝑆𝐸(𝐺𝐻𝐼𝑡𝑟𝑒𝑛𝑑  𝑡 − 𝐺𝐻𝐼 𝑡 )with 𝑛𝑅𝑀𝑆𝐸 =
 𝐸  𝐺𝐻𝐼 −𝐺𝐻𝐼 2 

𝐸 𝐺𝐻𝐼 
   Eq 20 
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3.2.2 Variability error (𝝈𝒗𝒂𝒓) 

The knowledge of the volatility of the series at time t provides an a priori information about the variability, and 

so, about the expected error obtained with machine learning predictions [51]. Indeed, it is possible to define the 

volatility[49] via 𝑉𝑜𝑙1 𝑡 =  𝐶𝑆𝐼 𝑡 − 𝐶𝑆𝐼 (𝑡) . It is also possible de define another form of volatility (Vol2(t)) 

integrating the logarithm in order to define the log return which has the nice property of log-normality[50]. 

These parameters are constructed in order to take into account the intermittency in the CSI series represented by 

𝐺𝐻𝐼𝑓𝑙𝑢𝑐  in the equation 19 

𝑉𝑜𝑙2(𝑡) =  log 𝐶𝑆𝐼 𝑡  − log 𝐶𝑆𝐼 𝑡 − 1          Eq 21 

In the following, Vol2 will be used to compute the volatility. Note that in order to take into account the daily 

seasonality of the series which would modify the results, the volatility is computed with the CSI and not with the 

GHI.In previous studies[6,50], it has been shown that volatility is linked to the error of prediction (𝑛𝑅𝑀𝑆𝐸 =

𝑓 𝑉𝑜𝑙2 𝑡  ). With this argument, the error variability (𝜎𝑣𝑎𝑟 )is defined by equation 22 where g is a non-linear 

function depending on the considered site. 

𝜎 𝑣𝑎𝑟 = 𝐺𝐻𝐼  𝑡 + 1 .𝑔 𝑉𝑜𝑙2 𝑡          Eq 22 

3.3 Error related to the machine learning uncertainty 

Another type of error that can be generated during the prediction is related to machine learning approach 

itself[44]. Indeed, in supervised learning applications and statistical learning theory, the out-of-sample error is a 

measure of how accurately an algorithm is able to predict outcome values for new data. Because learning 

algorithms are evaluated on finite samples [45], the evaluation of a learning algorithm may be sensitive to 

sampling error [46]. As a result, measurements of prediction error on the current data may not provide much 

information about predictive ability on new data. Generalization error can be minimized by avoiding overfitting 

in the learning algorithm. In the next subsection, the various kind of uncertainties generated under a classical 

MLP prediction of GHI will be described.  
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3.3.1 Sampling error (𝝈𝒔𝒂𝒎𝒑) 

The MLP parameters are determined in using the pairs of input and output examples contained in the training 

data. In fact, this property is related to all the machine learning method. Once the model is fitted, the model can 

be evaluated on a test data set. In our context, 𝒟 =  𝐱i , 𝑦𝑖 i=1
n represents the training data set. The vector xi 

contains the ppast values of the clear sky index (taken as inputs of the model) for training sample i and yi refers 

to the corresponding value of the clear sky index for the considered horizon h (in the case of horizon 1 hour, 

yi=CSI(ti+1)) The column vector inputs for all n training cases can be aggregated in the so-called n×p design 

matrix X and the corresponding model’s outputs (or targets) are collected in the vector y so we can write 

D={X,y}. To overcome the problem of sampling phase, often, a k-fold methodology is used[50]. In k-fold cross-

validation, the original sample is randomly partitioned into k equal sized subsamples [52]. k-fold cross validation 

should be employed to estimate the accuracy of the model induced from a classification algorithm, because the 

accuracy resulting from the training data of the model is generally too optimistic [53]. The cross-validation 

process is then repeated k-1 times (the folds), with as a result each of the k subsamples used exactly once as the 

validation data. The k results from the folds can then be averaged (or otherwise combined) to produce a single 

estimation and the standard deviation (𝜎𝑠𝑎𝑚𝑝 ) of the results can be computed.  

𝜎𝑠𝑎𝑚𝑝 (𝑡 + 1) =  
1

𝑘
.  𝐺𝐻𝐼𝑘 (𝑡 + 1) −  𝐺𝐻𝐼 (𝑡 + 1)  

2𝑘
𝑖=1  

1/2

     Eq 23 

3.3.2 Initialization learning error (𝝈𝒊𝒏𝒊) 

With MLP, there are a lot of methods to initialize weights before to use a back propagation method. The most 

often used is certainly therandom initializationrun a lot of time, in orderto consider only the initialization which 

minimize the error of prediction under a test sample. The problem is that a global minimum is maybe not 

reached. Gradient-based minimization of the cost function during the learning phase is relatively fast, but for 

complex problems, the training may find local minima of the error function that are far from the global 

minimum[55]. In order to take into account the phenomenon, we propose to define the standard deviation of the 

outputs related to 50 trainings which 50 random initializations (arbitrary choice). With this approach, we propose 
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that more is important the number of local minimum, less it is evident to find the global minimum. With this 

assumption, the initialization learning error is described by the equation 24(for l=50 random initializations). 

𝜎𝑖𝑛𝑖 (𝑡 + 1) =  
1

𝑙
.  𝐺𝐻𝐼𝑙 (𝑡 + 1) −  𝐺𝐻𝐼 (𝑡 + 1)  

2𝑙
𝑖=1  

1/2

      Eq 24 

3.4 Horizon error (𝝈𝒉𝒐𝒓) 

It is obvious to understand that more the prediction horizon is important less the prediction is efficient. The 

prevailing view is that the evidence for long-horizon GHI predictability is significantly stronger than that for 

short horizons. All researchers plotting an GHI time series autocorrelation observed that the link between GHI (t) 

and GHI(t+i) (with i>1) decreases when GHI is made stationary without seasonal effect. This lack of correlation 

is more generally explained by the Hurst exponent or the Lyapunov horizon [55]. To overcome this problem, we 

propose to compute 𝜎𝑜𝑟 ()considering the observed error for each horizon in a test sample, as described in 

equation 25. 

𝜎𝑜𝑟 () = 𝐺𝐻𝐼  𝑡 +  .
𝑛𝑅𝑀𝑆𝐸 (𝐺𝐻𝐼 𝑡+ 

𝑛𝑅𝑀𝑆𝐸 (𝐺𝐻𝐼 𝑡+1 
= 𝐺𝐻𝐼  𝑡 +  .𝛼()     Eq 25 

3.5 Global error of prediction (𝝈𝒕𝒐𝒕) 

In our assumption, all the previous  terms are independentrandom variables that are normally distributed (and 

therefore also jointly so), then their sum is also normally distributed and the global form of the standard 

deviation 𝜎𝑡𝑜𝑡 (𝑡 + 1)becomes (in this equation the quick fluctuations are taken into account with 𝜎𝑣𝑎𝑟 , but it is 

also possible to consider 𝜎𝑖𝑛 ): 

𝜎𝑡𝑜𝑡 (𝑡 + 1) =   𝜎𝑚𝑒𝑎𝑠  
2 +  𝜎𝑠𝑎𝑚𝑝 (𝑡 + 1) 

2
+  𝜎𝑖𝑛𝑖 (𝑡 + 1) 2 +  𝜎𝑣𝑎𝑟 (𝑡 + 1) 2   Eq 26

  

Considering that there is a persistence of the variability for a short horizon, 𝜎𝑣𝑎𝑟  𝑡 = 𝜎𝑣𝑎𝑟 (𝑡 + 1) 
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thus: 

𝜎𝑡𝑜𝑡 (𝑡 + 1) =   𝜎𝑚𝑒𝑎𝑠  
2 +  𝜎𝑠𝑎𝑚𝑝 (𝑡 + 1) 

2
+  𝜎𝑖𝑛𝑖 (𝑡 + 1) 2 +  𝜎𝑣𝑎𝑟 (𝑡) 2    Eq 27 

with𝜎𝑚𝑒𝑎𝑠 = 𝜎 𝐶𝑆𝐼   ( 𝜔𝑖
2𝜔𝑖𝑗

1𝑁𝑐
𝑖=1 )2𝑁𝑒

𝑗=1  
1/2

,𝜎𝑠𝑎𝑚𝑝  and 𝜎𝑖𝑛𝑖 are computed respectively with k-fold and 50 

random initializations and 𝜎 𝑣𝑎𝑟 = 𝐺𝐻𝐼  𝑡 + 1 .𝑔 𝑉𝑜𝑙2 𝑡  . For an easier computing, it is also possible to use 

𝜎𝑖𝑛  replacing 𝜎𝑣𝑎𝑟 (𝑡) with a less robust result(Equation 20) but not dependent on the instant of the prediction. 

𝜎𝑡𝑜𝑡 (𝑡 + 1) =   𝜎𝑚𝑒𝑎𝑠  
2 +  𝜎𝑠𝑎𝑚𝑝 (𝑡 + 1) 

2
+  𝜎𝑖𝑛𝑖 (𝑡 + 1) 2 +  𝜎𝑖𝑛 

2    Eq 28 

It is possible to define a prediction band taking into account all the uncertainties (Eq 29). 

𝐺𝐻𝐼  𝑡 + 1 = 𝐺𝐻𝐼 
𝑀𝐿𝑃 𝑡 + 1 ± 𝜎𝑡𝑜𝑡 (𝑡 + 1)       Eq 29 

Such prediction intervals wereoften proposed in the literature [6,56,57]; they refer to machine learning 

method 𝜎𝑀𝐿(𝑡 + 1) 2 =  𝜎𝑠𝑎𝑚𝑝 (𝑡 + 1) 
2

+  𝜎𝑖𝑛𝑖 (𝑡 + 1) 2[56,57] or to volatility and 𝜎𝑣𝑎𝑟 (𝑡)[6] but rarely both 

to the two kinds of uncertainty and never concerning 𝜎𝑚𝑒𝑎𝑠 .Note that in the case of other machine learning 

methods used the term 𝜎𝑖𝑛𝑖  can be equal to zero (e.g. support vector regression, regression tree etc.). The ideal 

case would be to systematically propose a confidence interval of prediction related to the three sorts of 

uncertainty (with 𝜎𝑇𝑆 = 𝜎𝑣𝑎𝑟  𝑡  𝑜𝑟 𝜎𝑖𝑛  considering the desired reliability). 

𝜎𝑡𝑜𝑡 (𝑡 + 1) =   𝜎𝑚𝑒𝑎𝑠  
2 +  𝜎𝑀𝐿(𝑡 + 1) 2 +  𝜎𝑇𝑆(𝑡) 2      Eq 30 

Now, considering the horizon of prediction, we define the new global uncertainty with the equation 30 with 

𝜎𝑜𝑟 = 𝐺𝐻𝐼  𝑡 +  .𝛼(). 

𝜎𝑡𝑜𝑡 (𝑡 + ) =   𝜎𝑚𝑒𝑎𝑠  
2 +  𝜎𝑀𝐿(𝑡 + 1) 2 +  𝜎𝑇𝑆 

2 +  𝜎𝑜𝑟 () 2     Eq 31 

4 Results 

 

All the previous uncertainty estimations will be computed for the 4 sites: Ajaccio, Bastia, Montpellier, Marseille. 

In the end of this section we will be able to propose a global prediction interval for all predictions and locations.  
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4.1 Computing of 𝝈𝒎𝒆𝒂𝒔 

Performance ratio or performance index calculations are more relevant when there are based on accurate 

independent data from a pyranometer than when they are based on a reference cell with lower accuracy and the 

same inherent flaws as the panel itself. Thepyranometerused for the five meteorological stations measures global 

horizontal solar irradiance with 1% accuracy. In Eq 12, 𝜎 𝐺𝐻𝐼 can be taken as 1%.𝐺𝐻𝐼  𝑡 + 1 . The term 

 𝜔𝑖
2  𝜔𝑖𝑗

1𝐼𝑛
𝑗=1

𝐻
𝑖=1  for the 5 sites and for 50 simulations (i.e. for 50 MLP configurations for each site), is 

(considering an average value with 95% confident interval)  𝜔𝑖
2  𝜔𝑖𝑗

1𝐼𝑛
𝑗=1

𝐻
𝑖=1 = 1.02 ∓ 0.3. For each sites the 

result are very close and contribute a little bit to the global uncertainty. Note that the number of inputs or of 

hidden nodes don’t modify (or weakly) the result concerning 𝜎𝑚𝑒𝑎𝑠  𝐺𝐻𝐼  𝑡 + 1  . The uncertainty related to the 

error measurement is calculated using Eq 18 and we obtained the following result:   

𝜎𝑚𝑒𝑎𝑠  𝐺𝐻𝐼  𝑡 + 1  = 1.02%.𝐺𝐻𝐼  𝑡 + 1 ≈ 1%.𝐺𝐻𝐼  𝑡 + 1      Eq 3 

As for all the sites, the value of 𝜎𝑚𝑒𝑎𝑠  is consistent, in the next we consider only the equation 31 for each 

location. 

4.2 Computing of𝝈𝒗𝒂𝒓 and 𝝈𝒊𝒏𝒉 

In a previous study realized for three insular sites (Corsica, Guadeloupe and Reunion) [50], it has been shown 

that the absolute log-return was correlated with the forecasting error obtained with a MLP prediction in Ajaccio 

as described in the figure 1.  
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Figure 1. Link between volatility (absolute log return) and prediction error (nRMSE) for Ajaccio 

 

 

This relation allows to estimate for Ajaccio, the 𝜎 𝑣𝑎𝑟  parameter considering Eq 22. We obtain that for this site an 

exponential form of 𝜎 𝑣𝑎𝑟  𝑡 : 

𝜎 𝑣𝑎𝑟  𝑡 = 𝐺𝐻𝐼  𝑡 + 1 ∗ 0.0763exp(4.486. 𝑣𝑜𝑙2 𝑡 )      Eq 32 

 

For the other locations similar equations are obtained, but in the next, concerning the intrinsic variability of the 

series, we choose to consider 𝜎𝑖𝑛  because of the previous exponential fit, very large values of 𝜎 𝑣𝑎𝑟  𝑡  are 

observed when very quickly cloud occurrences are observed. The prediction band becomes in this case so large 

and inconsistent and we prefer in this example consider only 𝜎𝑖𝑛 . 

 

 

𝜎𝑖𝑛estimates the uncertainty related to the studied time series and based on the definition of the 𝐺𝐻𝐼𝑡𝑟𝑒𝑛𝑑  𝑡  (Eq 

20), the values𝑛𝑅𝑀𝑆𝐸 𝐺𝐻𝐼𝑡𝑟𝑒𝑛𝑑  𝑡 − 𝐺𝐻𝐼 𝑡   for each station are shown in the table 1 . 

Site 𝝈𝒊𝒏𝒉 𝒊𝒏 % 

Ajaccio 13.98 

Bastia 14.82 

Marseille 10.13 

Montpellier 12.28 

Average 12.80 

 

Table 1. Values of the 𝜎𝑖𝑛  uncertainty coefficient 

 

 

The value of 𝜎𝑖𝑛  could be approximated for all locations by 𝜎𝑖𝑛 = 12.2% ∗ 𝐺𝐻𝐼  𝑡 + 1 , but in order to 

customize the prediction band it is necessary choose value related to each site. 
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4.3 𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 𝐨𝐟  𝝈𝑴𝑳  (𝝈𝒔𝒂𝒎𝒑and 𝝈𝒊𝒏𝒊) 

The error components 𝜎𝑠𝑎𝑚𝑝  and 𝜎𝑖𝑛𝑖  are computed together. For each site, we compute50 times the weights 

learning phase and also we generate 50 different training sets (see k-fold methodology in section 3.4).  

SITE  
 𝝈𝟐

𝒔𝒂𝒎𝒑 + 𝝈𝟐
𝒊𝒏𝒊 

AJACCIO 55.8 

BASTIA 75.8 

MARSEILLE 72.6 

MONTPELLIER 57.4 
 

Table 2. Value of  𝝈𝟐
𝒔𝒂𝒎𝒑 + 𝝈𝟐

𝒊𝒏𝒊 for all the studied sites (in Wh/m²) 

 

 

The values of the uncertainty are different for each sites and must be considered separately, for all cities the 

parameter 𝝈𝟐
𝒔𝒂𝒎𝒑 + 𝝈𝟐

𝒊𝒏𝒊. In the figure 2 the profile of GHI and  𝝈𝟐
𝒔𝒂𝒎𝒑 + 𝝈𝟐

𝒊𝒏𝒊 is shown.  

 

 

Figure 2. GHI measured and uncertainties related to initialization and sampling for Ajaccio 
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We can see that when there is no cloud occurrence this parameter is very low but can reach 350Wh/m² for other 

conditions. In Fig. 3, the maximum and minimumoutput values predicted are reported for 50 trained MLPin 

summer for Ajaccio and compared to the measure.  

 

 

Figure 3. Representation of the sampling and initialization uncertainties on the GHI prediction for Ajaccio 

 

 

We have ran 50 simulations to take into account the initialization and the sampling effects and thus consider the 

upper and lower output for each step. The prediction becomes the average of all the outputs, the max and min 

value of prediction (related to the 50 trained MLP) are represented by the dashed lines. 

 

4.4 Computing of 𝝈𝒉𝒐𝒓 

The estimation of this error component depends on the chosen time horizon as described in the section 3.6. The 

impact of the horizon on the (t) (equation 23) is shown in figure 4.
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Figure 4. Correlation between horizon (in hour) and (t) 
 
 

Dash lines represent max and min values for all stations while black curve represent the average and red line 

represent the linear fit. From this equation 23 we can model the horizon uncertainty adding the term𝜎𝑜𝑟 () to 

the global error of prediction (linear fit). 

𝜎𝑜𝑟   = 𝐺𝐻𝐼  𝑡 +  (0.0439 ∗  + 0.9561)       Eq 33 

 

In the next, for each site, we will use to (t) computed with the data related to the studied site. 

 

 

4.5 Computing of 𝝈𝒕𝒐𝒕 

The previous components allows to calculate the global uncertainty and to propose two prediction bands: UB for 

upper band and LB lower band[46].Thus, the quality of the prediction can be defined by the triplet {𝐺𝐻𝐼  𝑡 +

 ; 𝐿𝐵;𝑈𝐵}[44]. We can also estimate the reliability of the prediction considering that the prediction is efficient 

when UB-LB is very lower than 𝐺𝐻𝐼  𝑡 +   and inefficient when UB-LB is equal or upper to 𝐺𝐻𝐼  𝑡 +   value. 

From this hypothesis, we can define the reliability as t(UB(t+1)-LB(t+1))𝐺𝐻𝐼  𝑡 +   Lower is this 

parameter, more efficient is the prediction.We construct a reliability index between 0 and 1 considering that if 

(UB(t+1)-LB(t+1))𝐺𝐻𝐼  𝑡 +  > 1thent i.e. the prediction is not sureThe final prediction becomes: 

y = 0,043x + 0,956
R² = 0,952

1

1,05

1,1

1,15

1,2

1,25

1 2 3 4 5 6


h


horizons
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-𝐺𝐻𝐼  𝑡 +  = 𝐺𝐻𝐼  𝑡 +   , average of 50 simulations (50 training and initialization weights, 50 

different training sets) 

-LB=  𝜎𝑚𝑒𝑎𝑠  
2 +  𝐺𝐻𝐼 

𝑚𝑖𝑛  𝑡 +  −  𝐺𝐻𝐼  𝑡 +    
2

+  𝜎𝑖𝑛 
2 +  𝜎𝑜𝑟 () 2  Eq 34 

-UB=  𝜎𝑚𝑒𝑎𝑠  
2 +  𝐺𝐻𝐼 

𝑚𝑎𝑥  𝑡 +  −  𝐺𝐻𝐼  𝑡 +    
2

+  𝜎𝑖𝑛 
2 +  𝜎𝑜𝑟 () 2  Eq 35 

With 𝜎𝑚𝑒𝑎𝑠  𝐺𝐻𝐼  𝑡 + 1  = 1%.𝐺𝐻𝐼  𝑡 + 1 , 𝜎𝑖𝑛 = 𝐺𝐻𝐼  𝑡 + 1 .𝑛𝑅𝑀𝑆𝐸(𝐺𝐻𝐼𝑡𝑟𝑒𝑛𝑑  𝑡 − 𝐺𝐻𝐼 𝑡 ), 𝜎𝑜𝑟 () =

= 𝐺𝐻𝐼  𝑡 +  .𝛼() and 𝐺𝐻𝐼 
𝑚𝑖𝑛 /𝑚𝑎𝑥  𝑡 +  are the min and max values of the 50 predictions generated with 50 

simulations.The figure 5 shows for Ajaccio an example of the prediction bands, considering all the kind of 

uncertainty with horizon h=1hour. Line represents measurement and dashed lines the upper and lower bands 

concerning each kind of uncertainties.  
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Figure 5. Uncertainty in the GHI predictions for the horizon h=1 for Ajaccio case 

 

We can see that 𝜎𝑚𝑒𝑎𝑠  is the parameter the less interesting for the bands construction and that it is necessary to 

consider the coupling of 𝜎𝑖𝑛  and 𝜎𝑀𝐿 (related to 𝜎𝑠𝑎𝑚𝑝  𝑎𝑛𝑑 𝜎𝑖𝑛𝑖 )for a good prediction interval definition. For 

other sites the obtained curves are similar and no more information is observed.In the figure 6, the topcurve 

(same prediction configuration that previously) comparesthe average prediction 𝐺𝐻𝐼  𝑡 +   (marks) versus the 

GHI measurement (line). The bottom curveshows the associated reliability index (t 
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Figure 6. Comparisonfor the horizon h=1 for Ajaccio of GHI predictions (mark) and GHI measurement (line) on 

the top and associated reliability index in the bottom 

 

We see that when the variability is low (two first day from 3711 to 3726) the reliability is important (close to 

70%) but when cloud occurs the value is much lower and can reach 0%.  

 

5 Conclusions 

In this paper we have shown that it is possible to computea prediction band in the context of global radiation 

time series forecasting using machine learning. We have defined for a popular machine learning technique, the 

multilayer perceptron, four kinds of uncertainties: the error due to the measurement, the variability of time series, 

the machine learning uncertainty (initialization and sampling) and the error related to the horizon. In literature, 

rarely both to the two kinds of uncertainty 𝜎𝑖𝑛𝑖  and 𝜎𝑀𝐿are studied, and never 𝜎𝑚𝑒𝑎𝑠 . We have also defined a 

reliability index which could be very interesting for the grid manager in order to estimate the validity of 

predictions. The described method has been successfully applied to four meteorological stations in 

Mediterranean area. In practice it is certainly not necessary to take into account all the proposed components. 

The ranking of the different uncertainty terms is:𝜎𝑚𝑒𝑎𝑠 (~1%)<𝜎𝑀𝐿 ~5% < 𝜎𝑖𝑛 (~10%)<𝜎𝑜𝑟  5 − 20% . For 
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an one time step horizon, consider only 𝜎𝑀𝐿  and 𝜎𝑖𝑛  seems to be sufficient, for a larger horizon (>3h) it is 

essential to add the horizon component𝜎𝑜𝑟 . Note that for the predictors as SVM, ARMA, Gaussian process, 

regression tree (and derived) 𝜎𝑀𝐿  is easily obtained computing only 𝜎𝑠𝑎𝑚𝑝𝑙𝑒 . We are sure that it is possible to 

generalize the approach to other sites and other machine learning tools. Thereby in future, we will try to apply 

the methodology to other time granularities and predictor as SVM, regression tree or random forest. In order to 

increase the interest of the LB and UB methodology, it will be also possible to physically bounded the upper and 

lower bands using very performant clear sky modelling in order to obtain the global solar irradiation(maximum 

value of the band) and the diffuse part of the solar irradiation (minimum value of the band). 
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8 Tables 

Table 1. Values of the 𝜎𝑖𝑛  uncertainty coefficient 

 

Table 2. Value of  𝝈𝟐
𝒔𝒂𝒎𝒑 + 𝝈𝟐

𝒊𝒏𝒊 for all the studied sites (in Wh/m²) 

 

9 Figures 

Figure 1. Link between volatility (absolute log return) and prediction error (nRMSE) for Ajaccio 

Figure 2. GHI measured and uncertainties related to initialization and sampling for Ajaccio 

Figure 3. Representation of the sampling and initialization uncertainties on the GHI prediction 

Figure 4. Correlation between horizon (in hour) and (t) 

Figure 5. Uncertainty in the GHI predictions for the horizon h=1 for Ajaccio 

Figure 6. Comparison for the horizon h=1 for Ajaccio of GHI predictions (mark) and GHI measurement (line) on 

the top and associated reliability index in the bottom  

 

 


