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Introduction

Solar radiation is one of the principal energy sources for physical, biological and chemical processes, occupying the most important role in many engineering applications [START_REF] Hoff | Modeling PV fleet output variability[END_REF]. The process of converting sunlight to electricity without combustion allows to create power without pollution. The major problem of such energy source is its intermittence and its stochastic character which make difficult their management into an electrical network [START_REF] Voyant | Multi-horizon solar radiation forecasting for Mediterranean locations using time series models[END_REF].Thereby, the development of forecasting models is necessary to ideally use this technology [START_REF] Lauret | A benchmarking of machine learning techniques for solar radiation forecasting in an insular context[END_REF]. By considering their effectiveness, it will be possible for example to identify the most optimal locations for developing a solar power project or to maintain the grid stability and security of a power management system [START_REF] Mellit | Artificial intelligence techniques for sizing photovoltaic systems: A review[END_REF].

Thus the solar energy forecasting is a process used to predict the amount of solar energy available for various time horizons [START_REF] Lorenz | Benchmarking of different approaches to forecast solar irradiance[END_REF]. Several methods have been developed by experts around the world and the mathematical formalism of Times Series (TS [START_REF] Join | Solar energy production: Short-term forecasting and risk management[END_REF]) has been often used for the short term forecasting (among 6 hours ahead) [START_REF] Lorenz | Benchmarking of different approaches to forecast solar irradiance[END_REF][START_REF] Wolff | Statistical Learning for Short-Term Photovoltaic Power Predictions[END_REF]. TS is a set of ordered numbers that measures some activities over time [START_REF] Gooijer | 25 years of time series forecasting[END_REF]. It is the historical record of global horizontal irradiance with measurements taken at equally spaced intervals with a consistency in the activity and the method of measurement. Some of the best predictors found in literature are Autoregressive and moving average [START_REF] Abrahart | Neural Network vs. ARMA Modelling: constructing benchmark case studies of river flow prediction[END_REF][START_REF] Mora-López | Multiplicative ARMA models to generate hourly series of global irradiation[END_REF][START_REF] Voyant | Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation[END_REF], Bayesian inferences [START_REF] Lauret | Bayesian neural network approach to short time load forecasting[END_REF][START_REF] Pole | Applied Bayesian forecasting and time series analysis[END_REF], Markov chains [START_REF] Logofet | The mathematics of Markov models: what Markov chains can really predict in forest successions[END_REF][START_REF] Kumar | Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India[END_REF], k-Nearest-Neighbors predictors [START_REF] Paoli | Forecasting of preprocessed daily solar radiation time series using neural networks[END_REF], support vector machine [START_REF] Lauret | A benchmarking of machine learning techniques for solar radiation forecasting in an insular context[END_REF][START_REF] Kr̈omer | Support Vector Regression of multiple predictive models of downward short-wave radiation[END_REF], regression tree [START_REF] Tso | Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks[END_REF][START_REF] Lahouar | Day-ahead load forecast using random forest and expert input selection[END_REF], orartificial neural network (ANN) [START_REF] Mellit | Artificial intelligence techniques for sizing photovoltaic systems: A review[END_REF][START_REF] Sm | An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation[END_REF].

All these approaches are related to the machine learning application [START_REF] Aler | A Study of Machine Learning Techniques for Daily Solar Energy Forecasting Using Numerical Weather Models[END_REF]. The most often used is the last presented method: the artificial neural network and particularly the multilayer perceptron (MLP [START_REF] Costa | Improving generalization of MLPs with sliding mode control and the Levenberg-Marquardt algorithm[END_REF]). In the present study, we focus on this prediction method, the goal being to detail the uncertainties related to the global radiation prediction [START_REF] Ahlburg | Error measures and the choice of a forecast method[END_REF].

The paper is organized as follow: Section 2 describes the data and material needed to conduct our experiments. In the section 3, we propose to define the different component of the errorgenerated throughthe MLP used. These uncertainties can be decomposed into several components that will be explained and developed. In section 4,the results of the error decomposition will be exposed for fivemeteorological sites in order to quantify the reliability of the predictions. The last section will allow to draw conclusions about the present study.

Data and material

In this work, measured hourly horizontal global radiation data from meteorological ground stations are used to forecast global horizontal solar irradiation (GHI) for a specific horizon [START_REF] Voyant | Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation[END_REF]. All the measurements used are obtained from the French Meteorological Organization (Météo-France) data base and from measurement realized in the frame of the Tilos H2020 project (http://www.tiloshorizon.eu).Four sites are studied: Ajaccio, Bastia, Montpellier and Marseille in France.As for all experimental acquisitions, missing values are observed, here, this represents less than 2% of the data. A classical cleaning approach is then operated in order to identify and remove this data [START_REF] Paoli | Forecasting of preprocessed daily solar radiation time series using neural networks[END_REF].

Data

In Corsica Island, the data used to build the models are GHI measured in the meteorological stations of Ajaccio (41°55'N, 8°44'E, 4m asl) and Bastia (42°42'N, 9°27'E, 10m asl). They are located near the Mediterranean Sea and nearby mountains (1000 m altitude at 40km from the sites). The data representing the global horizontal solar radiation were measured on an hourly basis from 1998 to 1999 (exactly two years). The two last studied stations are Montpellier (43.6°N and 3.9°E, 2 masl) and Marseille (43.4°N and 5.2°E, 5 masl) concerning the years 2008 and 2009. All these stations are equipped with pyranometers (CM 11 from Kipp&Zonen). The choice of these particular places is explained by their closed geographical and orographical configurations. These stations are located near the Mediterranean Sea and mountains. This specific geographical configuration of the four French meteorological stations makes cloudness difficult to forecast. Mediterranean climate is characterized by hot summers with abundant sunshine and mild, dry and clear winters. Irradiance nighttime values are not being used, the first morning data forecast are operated with the day before evening data.

Prediction methodology

We chose to develop error propagation in the GHI prediction for the most common used predictor: the MLP.

The base of this model is the time series approach (TS). A TS x(t) can be defined by a linear or non-linear model called f n (see Equation 1where t = n,n-1,…,p+1,p with n, the number of observations and p the number of parameters of the model ; n ≫ p; h is the horizon of prediction and 𝜖 𝑡+ the committed error) [START_REF] Voyant | Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation[END_REF].

𝑥(𝑡 + ) = 𝑓 𝑛 (𝑥(𝑡), 𝑥(𝑡 -1) … . , 𝑥(𝑡 -𝑝 + 1)) + 𝜖 𝑡+ Eq1

To estimate the 𝑓 𝑛 model, a stationarity hypothesis is often necessary. This condition usually implies a stable process [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF][START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF]. This notion is directly linked to the fact that whether certain feature such as mean or variance change over time or remain constant. Previous studies [START_REF] Lauret | A benchmarking of machine learning techniques for solar radiation forecasting in an insular context[END_REF][START_REF] Voyant | Predictability of PV power grid performance on insular sites without weather stations : use of artificial neural networks[END_REF][START_REF] Voyant | Hybrid methodology for hourly global radiation forecasting in Mediterranean area[END_REF]show that the use of clear sky index (CSI) allows to make stationary the time series and so to correctly use the MLP forecasting.

Stationary process

In previous studies [START_REF] Paoli | Solar Radiation Forecasting Using Ad-Hoc Time Series Preprocessing and Neural Networks[END_REF][START_REF] Paoli | Use of Exogenous Data to Improve Artificial Networks Dedicated to Daily Global Radiation Forecasting[END_REF], it was demonstrated that the clear sky index calculated with the simplified Solis model [START_REF] Ineichen | A broadband simplified version of the Solis clear sky model[END_REF] is the most reliable for our locations. The Solis model generates a clear sky hourly irradiation (CS) expressed by Eq. ( 2), the use of this model requires fitting parameter (g), extraterrestrial radiation (I 0 ), solar elevation (h) and total measured atmospheric optical depth ():

𝐶𝑆 𝑡 = 𝐼 0 𝑡 . 𝑒𝑥𝑝 -𝜏 𝑠𝑖𝑛 𝑔 𝑡 . 𝑠𝑖𝑛 ( 𝑡 ) Eq2
The simplified "Solis clear sky" model is based on radiative transfer calculations and the Lambert-Beer relation [START_REF] Ineichen | A broadband simplified version of the Solis clear sky model[END_REF] . The expression of the atmospheric transmittance is valid with polychromatic radiations, however when dealing with global radiation, the Lambert-Beer relation is only an approximation because of the back scattering effects. According to [START_REF] Mueller | Rethinking satellite-based solar irradiance modelling: The SOLIS clear-sky module[END_REF] this model remains a good fitting function of the global horizontal radiation.

The new computed time series (CSI) can be directly used with the MLP forecasting and is described by the equation 3:

𝐶𝑆𝐼(𝑡) = 𝐺𝐻𝐼(𝑡)/𝐶𝑆 𝑡 Eq 3

MLPprediction

Although a large range of different architectures of ANN is available [START_REF] Benghanem | ANN-based modelling and estimation of daily global solar radiation data: A case study[END_REF], MultiLayer Perceptron (MLP) remains the most popular [START_REF] Kalogirou | Artificial neural networks in renewable energy systems applications: a review[END_REF]. In particular, feed-forward MLP networks with two layers (one hidden layer and one output layer) are often used for modeling and forecasting time series. Several studies [START_REF] Mellit | Artificial intelligence techniques for sizing photovoltaic systems: A review[END_REF][START_REF] Diazrobles | A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile[END_REF][START_REF] Zhang | Forecasting with artificial neural networks: The state of the art[END_REF]validated this approach based on ANN for the non-linear modeling of time series. To forecast the time series, a fixed number p of past values are set as inputs of the MLP, the output is the prediction of a future value [START_REF] Crone | Stepwise Selection of Artificial Neural Networks Models for Time Series Prediction[END_REF].

Considering the initial time series equation (Equation 1), this equation can be adapted to the non-linear case of one hidden layer MLP with b related to the biases, f and g to the activation function of the output and hidden layer, and to the weights. The number of hidden nodes (H) and the number of the input node (In) allow to detail this transformation. The number of layer 1 and 2 is given in superscript. (Equation 4):

𝐶𝑆𝐼 (𝑡 + 1) = 𝑓( 𝑦 𝑖 𝐻 𝑖=1 𝜔 𝑖 2 + 𝑏 2 )with𝑦 𝑖 = 𝑔( 𝐶𝑆𝐼(𝑡 -𝑗 + 1) 𝐼𝑛 𝑗 =1 𝜔 𝑖𝑗 1 + 𝑏 𝑖 1 )
Eq 4

In the presented study, the MLP has been computed with the Matlab© software and its Neural Network toolbox. The characteristics chosen and related to previous work are the following: one hidden layer, the activation functions are the continuously and differentiable hyperbolic tangent (hidden) and linear (output), the Levenberg-Marquardt learning algorithm with a max fail parameter before stopping training equal to 5 (early stopping tool allowing the stop the learning when the error increases consecutively 5 times). This algorithm is an approximation to the Newton's method. The prediction of the GHI is obtained using the equation:

𝐺𝐻𝐼 𝑡 + 1 = 𝐶𝑆𝐼 𝑡 + 1 . 𝐶𝑆(𝑡 + 1) Eq 5
To customize the input layer of the MLP we choose the use of the mutual information to determine In as described in [START_REF] Lauret | A benchmarking of machine learning techniques for solar radiation forecasting in an insular context[END_REF][START_REF] Huang | Effective feature selection scheme using mutual information[END_REF][START_REF] Jiang | Mutual information algorithms[END_REF]. According the results obtained in these papers, we use H equal to In for all the experiments conducted in this study.Furthermore in order to improve the learning of the MLP, it is a common practice to filter out the data removing night hours. Indeed we consider only periods between sunrise and sunset [START_REF] Badescu | Modeling solar radiation at the earth's surface: recent advances[END_REF][START_REF] Paulescu | Weather Modeling and Forecasting of PV Systems Operation[END_REF]. We have chosen to apply a selection criterion based on the solar zenith angle (SZA): solar radiation data for which the solar zenith angle is greater than 80° have been removed [START_REF] Lauret | A benchmarking of machine learning techniques for solar radiation forecasting in an insular context[END_REF]. This transformation is equivalent to a filtering related to the solar elevation angle lower than 10°. All the simulations are related to the Matlab software and NNtoolbox use.

Error decomposition

In these section, we propose to decompose the error considering four kinds of uncertainties: the error due to the measurement, the error due to the variability of the time series, the error related to the machine learning uncertainty and the error related to the horizon.

Error due to the measurement (𝝈 𝒎𝒆𝒂𝒔 )

In experimental sciences, there is no perfect measure. Experiments can only be marred with significant errors more or less depending on the selected protocol or the quality measuring instruments [START_REF] Ahlburg | Error measures and the choice of a forecast method[END_REF]. Assess the uncertainty measurement is a complex task that is the subject of a complete branch called metrology. The uncertainty associated with a measurement result allows to provide a quantitative indication of the quality of this result [START_REF] Hopson | Assessing the Ensemble Spread-Error Relationship[END_REF].

In thissection, we will show that it is possible to quantify the impact of a measurement error (or precision) on the MLP output. A MLP with 2 inputs and 2 hidden neurons (H=2 and In=2) is considered here in order to understand the methodology [START_REF] Voyant | Multi-horizon solar radiation forecasting for Mediterranean locations using time series models[END_REF]. The output of this MLP can be defined with the following formula:

𝐶𝑆𝐼 (𝑡 + 1) = (𝑔( 𝐶𝑆𝐼(𝑡 -𝑗 + 1) 𝐼𝑛 𝑗 =1 𝜔 𝑖𝑗 1 + 𝑏 𝑖 1 )) 𝐻 𝑖=1 𝜔 𝑖 2 + 𝑏 2 = 𝜔 1 2 tanh 𝐶𝑆𝐼(𝑡)𝜔 11 1 + 𝐶𝑆𝐼(𝑡 - 1)𝜔121+𝑏11+𝜔22tanh𝐶𝑆𝐼(𝑡)𝜔211+𝐶𝑆𝐼(𝑡-1 𝜔221+𝑏21+𝑏2 Eq 6
In order to calculate the uncertainty propagation of a MLP related to measurement error, we propose to use two methods: (i) the classical variables differentiationand (ii) the differentiation of log(𝐶𝑆𝐼 (𝑡 + 1)).

Using the classical variables differentiation, we obtained the following formula for the measurement error: From the two parameters u and v, and considering that𝜎 2 𝐶𝑆𝐼(𝑡 -1) 𝑒𝑡 𝜎 2 𝐶𝑆𝐼(𝑡) are equivalent and equal to the pyranometer uncertainty (𝜎 2 𝐶𝑆𝐼 ), the global error is:

𝜎 𝑚𝑒𝑎𝑠 1 2 𝐶𝑆𝐼 (𝑡 + 1) = 𝜕𝐶𝑆𝐼 (𝑡+1) 𝜕(𝐶𝑆𝐼(𝑡) 2 𝜎 2 𝐶𝑆𝐼(𝑡) + 𝜕𝐶𝑆𝐼 (𝑡+1) 𝜕𝐶𝑆𝐼 (𝑡-1) 2 𝜎 2 𝐶𝑆𝐼(𝑡 -1) = 𝑢.
𝜎 𝑚𝑒𝑎𝑠 1 2 𝐶𝑆𝐼 (𝑡 + 1) = 𝜎 2 𝐶𝑆𝐼 ((𝜔 1 2 𝜔 11 1 ℑ 1 + 𝜔 2 2 𝜔 21 1 ℑ 2 ) 2 + (𝜔 1 2 𝜔 12 1 ℑ 1 + 𝜔 2 2 𝜔 22 1 ℑ 2 ) 2 ) Eq 10 Considering thatℑ 𝑛 = tanh 𝐶𝑆𝐼(𝑡)𝜔 𝑛1 1 + 𝐶𝑆𝐼(𝑡 -1)𝜔 𝑛2 1 +𝑏 𝑛 1 2 -1 𝑓𝑜𝑟 𝑛 ∈ 1, 𝐻 Eq 11
It follows that the uncertainty of a MLP related to measurement error is:

𝜎 𝑚𝑒𝑎𝑠 1 𝐶𝑆𝐼 (𝑡 + 1) = 𝜎 𝐶𝑆𝐼 (𝜔 1 2 𝜔 11 1 ℑ 1 + 𝜔 2 2 𝜔 21 1 ℑ 2 ) 2 + (𝜔 1 2 𝜔 12 1 ℑ 1 + 𝜔 2 2 𝜔 22 1 ℑ 2 ) 2 1/2 Eq 12
The maximum value will be reached when the output of the hidden nodes will be equal to 1(ℑ 𝑖 = 1 ∀𝑖). In this case, we obtain:

𝜎 𝑚𝑒𝑎𝑠 1,𝑚𝑎𝑥 𝐶𝑆𝐼 𝑡+1 = 𝜎 𝐶𝑆𝐼 (𝜔 1 2 𝜔 11 1 + 𝜔 2 2 𝜔 21 1 ) 2 + (𝜔 1 2 𝜔 12 1 + 𝜔 2 2 𝜔 22 1 ) 2 1/2 Eq 13
Note that this formalism is applied only because the orthogonality hypothesisof the inputs have been done

(inputs independent) without this approximation the computing is impossible. The generalization for Hhidden neurons andIninput nodes gives:

0 ≤ 𝜎 𝑚𝑒𝑎𝑠 1 𝐶𝑆𝐼 (𝑡 + 1 = 𝜎(𝐶𝑆𝐼) ( 𝜔 𝑖 2 𝜔 𝑖𝑗 1 ℑ 𝑖 𝐻 𝑖=1 ) 2 𝐼𝑛 𝑗 =1 1/2 ≤ 𝜎 𝐶𝑆𝐼 ( 𝜔 𝑖 2 𝜔 𝑖𝑗 1 𝐻 𝑖=1 ) 2 𝐼𝑛 𝑗 =1 1/2 Eq 14
The second method is based on the differentiation of log(𝐶𝑆𝐼 (𝑡 + 1)). This method is simpler but less efficient and does not take into account the error compensation. In the casewe use the following formulas to determine the uncertainty (𝜎 𝑚𝑒𝑎𝑠 2 ):

𝑑 log 𝐶𝑆𝐼 (𝑡 + 1) = 𝜎 𝑚𝑒𝑎𝑠 2 (𝐶𝑆𝐼 (𝑡+1)) 𝐶𝑆𝐼 (𝑡+1) = 𝜎 𝐶𝑆𝐼 (𝜔 1 2 ℑ 1 𝜔 11 1 +𝜔 12 1 +𝜔 2 2 ℑ 2 (𝜔 21 1 +𝜔 22 1 )) 𝐶𝑆𝐼 (𝑡+1)
Eq 15 thus:

𝜎 𝑚𝑒𝑎𝑠 2 (𝐶𝑆𝐼 (𝑡 + 1)) = 𝜎 𝐶𝑆𝐼 (𝜔 1 2 ℑ 1 𝜔 11 1 + 𝜔 12 1 + 𝜔 2 2 ℑ 2 (𝜔 21 1 + 𝜔 22 1 )) Eq 16 = 𝜎 𝐶𝑆𝐼 (𝜔 1 2 𝜔 11 1 ℑ 1 + 𝜔 2 2 𝜔 21 1 ℑ 2 + 𝜔 1 2 𝜔 12 1 ℑ 1 + 𝜔 2 2 𝜔 22 1 ℑ 2 )
For H hidden neurons and In input nodes, we obtain the following generalization:

𝜎 𝑚𝑒𝑎𝑠 2 𝐶𝑆𝐼 (𝑡 + 1 = 𝜎(𝐶𝑆𝐼) 𝜔 𝑖 2 𝜔 𝑖𝑗 1 ℑ 𝑖 𝐻 𝑖=1 𝐼𝑛 𝑗 =1

Eq 17

Combining Eq [START_REF] Paoli | Forecasting of preprocessed daily solar radiation time series using neural networks[END_REF] and ( 14), we see that𝜎 𝑚𝑒𝑎𝑠 1 (𝐶𝑆𝐼 (𝑡 + 1)) ≤ 𝜎 𝑚𝑒𝑎𝑠 2 (𝐶𝑆𝐼 (𝑡 + 1)). In orderto take into account compensation only present in meas1 case computing, we think it is preferable to use the first form and in the following we use the uncertainty of the measurement with the equation 18(with Hthe number of hidden neuronsand Inthe number of input nodes):

0 ≤ 𝜎 𝑚𝑒𝑎𝑠 (𝐺𝐻𝐼 (𝑡 + 1)) = 𝜎 𝐺𝐻𝐼 ( 𝜔 𝑖 2 𝜔 𝑖𝑗 1 𝐼𝑛 𝑗 =1 ℑ 𝑖 𝐻 𝑖=1 ) ≤ 𝜎 𝐺𝐻𝐼 ( 𝜔 𝑖 2 𝜔 𝑖𝑗 1 𝐼𝑛 𝑗 =1 ) 𝐻 𝑖=1
Eq 18

Error due to the quick fluctions of the time series

We choose to define the error due to the variability of the time series. Indeed, the quick fluctuations of the series are very difficult to predictand generate error in the prediction. One of the possibility to define this kind of uncertainty will be called the inherent error and the second one the variability error.

Inherent error (𝝈 𝒊𝒏𝒉 )

TheCartier and Perrin theorem [START_REF] Join | Solar energy production: Short-term forecasting and risk management[END_REF], which is stated in the language of nonstandard analysis, allows to understand the existence of trends for time series [START_REF] Chen | Computationally efficient bootstrap prediction intervals for returns and volatilities in ARCH and GARCH processes[END_REF]. The time series GHI(t) may then be decomposed as a sum where 𝐺𝐻𝐼 𝑡𝑟𝑒𝑛𝑑 𝑡 is the trend and 𝐺𝐻𝐼 𝑓𝑙𝑢𝑐 (𝑡) is a "quickly fluctuating" function around 0 also called theinherent noise of the time series.

𝐺𝐻𝐼 𝑡 = 𝐺𝐻𝐼 𝑡𝑟𝑒𝑛𝑑 𝑡 + 𝐺𝐻𝐼 𝑓𝑙𝑢𝑐 (𝑡)

Eq 19

The nature of those quick fluctuations is left unknown and nothing prevents us from assuming that 𝐺𝐻𝐼 𝑓𝑙𝑢𝑐 (𝑡)is random and/or fractal. The forecast of the trend is possible on a "short" time interval under the assumption of a lack of abrupt changes, whereas the forecast ofthe fluctuationterm at a given time instant is meaningless and should be abandoned. Based on this kind of time series definition, an ideal prediction can be obtained from a trend estimation𝐺𝐻𝐼 𝑡𝑟𝑒𝑛𝑑 𝑡 . In our case, we choose to compute it with a classical non-linear fit based on cubic spline data interpolation based on a tridiagonal linear system [START_REF] Voyant | Statistical parameters as a means to a priori assess the accuracy of solar forecasting models[END_REF]. It is solved for the information needed to describe the coefficients of the various cubic polynomials which make up the interpolating spline. Considering the Cartier Perrin theorem the perfect predictor describes the trend while the quick fluctuations are not modelled and the related error is the lowest error than a predictor can generate. The inherent error is so computed with the equation 20:

𝜎 𝑖𝑛 = 𝐺𝐻𝐼 𝑡 + 1 . 𝑛𝑅𝑀𝑆𝐸(𝐺𝐻𝐼 𝑡𝑟𝑒𝑛𝑑 𝑡 -𝐺𝐻𝐼 𝑡 )with 𝑛𝑅𝑀𝑆𝐸 = 𝐸 𝐺𝐻𝐼 -𝐺𝐻𝐼 2
𝐸 𝐺𝐻𝐼 Eq 20

Variability error (𝝈 𝒗𝒂𝒓 )

The knowledge of the volatility of the series at time t provides an a priori information about the variability, and so, about the expected error obtained with machine learning predictions [START_REF] Gneiting | Probabilistic Forecasting[END_REF]. Indeed, it is possible to define the volatility [START_REF] Wilks | Statistical Methods in the Atmospheric Sciences An Introduction[END_REF] via 𝑉𝑜𝑙1 𝑡 = 𝐶𝑆𝐼 𝑡 -𝐶𝑆𝐼 (𝑡) . It is also possible de define another form of volatility (Vol2(t))

integrating the logarithm in order to define the log return which has the nice property of log-normality [START_REF] Divya | Survey on Machine Learning Approaches for Solar Irradiation Prediction[END_REF].

These parameters are constructed in order to take into account the intermittency in the CSI series represented by 𝐺𝐻𝐼 𝑓𝑙𝑢𝑐 in the equation 19

𝑉𝑜𝑙2(𝑡) = log 𝐶𝑆𝐼 𝑡 -log 𝐶𝑆𝐼 𝑡 -1 Eq 21
In the following, Vol2 will be used to compute the volatility. Note that in order to take into account the daily seasonality of the series which would modify the results, the volatility is computed with the CSI and not with the GHI.In previous studies [START_REF] Join | Solar energy production: Short-term forecasting and risk management[END_REF][START_REF] Divya | Survey on Machine Learning Approaches for Solar Irradiation Prediction[END_REF], it has been shown that volatility is linked to the error of prediction (𝑛𝑅𝑀𝑆𝐸 = 𝑓 𝑉𝑜𝑙2 𝑡 ). With this argument, the error variability (𝜎 𝑣𝑎𝑟 )is defined by equation 22 where g is a non-linear function depending on the considered site.

𝜎 𝑣𝑎𝑟 = 𝐺𝐻𝐼 𝑡 + 1 . 𝑔 𝑉𝑜𝑙2 𝑡 Eq 22

Error related to the machine learning uncertainty

Another type of error that can be generated during the prediction is related to machine learning approach itself [START_REF] Join | Short-term solar irradiance and irradiation forecasts via different time series techniques: A preliminary study[END_REF]. Indeed, in supervised learning applications and statistical learning theory, the out-of-sample error is a measure of how accurately an algorithm is able to predict outcome values for new data. Because learning algorithms are evaluated on finite samples [START_REF] Andersson | Interpolation and approximation by monotone cubic splines[END_REF], the evaluation of a learning algorithm may be sensitive to sampling error [START_REF] Mcaleer | Realized Volatility: A Review[END_REF]. As a result, measurements of prediction error on the current data may not provide much information about predictive ability on new data. Generalization error can be minimized by avoiding overfitting in the learning algorithm. In the next subsection, the various kind of uncertainties generated under a classical MLP prediction of GHI will be described.

Sampling error (𝝈 𝒔𝒂𝒎𝒑 )

The MLP parameters are determined in using the pairs of input and output examples contained in the training data. In fact, this property is related to all the machine learning method. Once the model is fitted, the model can be evaluated on a test data set. In our context, 𝒟 = 𝐱 i , 𝑦 𝑖 i=1 n represents the training data set. The vector x i contains the ppast values of the clear sky index (taken as inputs of the model) for training sample i and y i refers to the corresponding value of the clear sky index for the considered horizon h (in the case of horizon 1 hour,

y i =CSI(t i +1
)) The column vector inputs for all n training cases can be aggregated in the so-called n×p design matrix X and the corresponding model's outputs (or targets) are collected in the vector y so we can write D={X,y}. To overcome the problem of sampling phase, often, a k-fold methodology is used [START_REF] Divya | Survey on Machine Learning Approaches for Solar Irradiation Prediction[END_REF]. In k-fold crossvalidation, the original sample is randomly partitioned into k equal sized subsamples [START_REF] Wiens | Three way k-fold cross-validation of resource selection functions[END_REF]. k-fold cross validation should be employed to estimate the accuracy of the model induced from a classification algorithm, because the accuracy resulting from the training data of the model is generally too optimistic [START_REF] Wong | Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation[END_REF]. The cross-validation process is then repeated k-1 times (the folds), with as a result each of the k subsamples used exactly once as the validation data. The k results from the folds can then be averaged (or otherwise combined) to produce a single estimation and the standard deviation (𝜎 𝑠𝑎𝑚𝑝 ) of the results can be computed. 

Initialization learning error (𝝈 𝒊𝒏𝒊 )

With MLP, there are a lot of methods to initialize weights before to use a back propagation method. The most often used is certainly therandom initializationrun a lot of time, in orderto consider only the initialization which minimize the error of prediction under a test sample. The problem is that a global minimum is maybe not reached. Gradient-based minimization of the cost function during the learning phase is relatively fast, but for complex problems, the training may find local minima of the error function that are far from the global minimum [START_REF] Ding | Nonlinear finite-time Lyapunov exponent and predictability[END_REF]. In order to take into account the phenomenon, we propose to define the standard deviation of the outputs related to 50 trainings which 50 random initializations (arbitrary choice). With this approach, we propose that more is important the number of local minimum, less it is evident to find the global minimum. With this assumption, the initialization learning error is described by the equation 24(for l=50 random initializations). 

Horizon error (𝝈 𝒉𝒐𝒓 )

It is obvious to understand that more the prediction horizon is important less the prediction is efficient. The prevailing view is that the evidence for long-horizon GHI predictability is significantly stronger than that for short horizons. All researchers plotting an GHI time series autocorrelation observed that the link between GHI (t) and GHI(t+i) (with i>1) decreases when GHI is made stationary without seasonal effect. This lack of correlation is more generally explained by the Hurst exponent or the Lyapunov horizon [START_REF] Ding | Nonlinear finite-time Lyapunov exponent and predictability[END_REF]. To overcome this problem, we propose to compute 𝜎 𝑜𝑟 ()considering the observed error for each horizon in a test sample, as described in equation 25. 

Global error of prediction (𝝈 𝒕𝒐𝒕 )

In our assumption, all the previous  terms are independentrandom variables that are normally distributed (and therefore also jointly so), then their sum is also normally distributed and the global form of the standard deviation 𝜎 𝑡𝑜𝑡 (𝑡 + 1)becomes (in this equation the quick fluctuations are taken into account with 𝜎 𝑣𝑎𝑟 , but it is also possible to consider 𝜎 𝑖𝑛 ):

𝜎 𝑡𝑜𝑡 (𝑡 + 1) = 𝜎 𝑚𝑒𝑎𝑠 2 + 𝜎 𝑠𝑎𝑚𝑝 (𝑡 + 1) 2 + 𝜎 𝑖𝑛𝑖 (𝑡 + 1) 2 + 𝜎 𝑣𝑎𝑟 (𝑡 + 1) 2 Eq 26

Considering that there is a persistence of the variability for a short horizon, 𝜎 𝑣𝑎𝑟 𝑡 = 𝜎 𝑣𝑎𝑟 (𝑡 + 1) thus:

𝜎 𝑡𝑜𝑡 (𝑡 + 1) = 𝜎 𝑚𝑒𝑎𝑠 2 + 𝜎 𝑠𝑎𝑚𝑝 (𝑡 + 1) 2 + 𝜎 𝑖𝑛𝑖 (𝑡 + 1) 2 + 𝜎 𝑣𝑎𝑟 (𝑡) 2 Eq 27

with𝜎 𝑚𝑒𝑎𝑠 = 𝜎 𝐶𝑆𝐼 ( 𝜔 𝑖 2 𝜔 𝑖𝑗 1 𝑁𝑐 𝑖=1 ) 2 𝑁𝑒 𝑗 =1
1/2 , 𝜎 𝑠𝑎𝑚𝑝 and 𝜎 𝑖𝑛𝑖 are computed respectively with k-fold and 50 random initializations and 𝜎 𝑣𝑎𝑟 = 𝐺𝐻𝐼 𝑡 + 1 . 𝑔 𝑉𝑜𝑙2 𝑡 . For an easier computing, it is also possible to use 𝜎 𝑖𝑛 replacing 𝜎 𝑣𝑎𝑟 (𝑡) with a less robust result(Equation 20) but not dependent on the instant of the prediction.

𝜎 𝑡𝑜𝑡 (𝑡 + 1) = 𝜎 𝑚𝑒𝑎𝑠 2 + 𝜎 𝑠𝑎𝑚𝑝 (𝑡 + 1) 2 + 𝜎 𝑖𝑛𝑖 (𝑡 + 1) 2 + 𝜎 𝑖𝑛 2 Eq 28
It is possible to define a prediction band taking into account all the uncertainties (Eq 29).

𝐺𝐻𝐼 𝑡 + 1 = 𝐺𝐻𝐼 𝑀𝐿𝑃 𝑡 + 1 ± 𝜎 𝑡𝑜𝑡 (𝑡 + 1) Eq 29

Such prediction intervals wereoften proposed in the literature [START_REF] Join | Solar energy production: Short-term forecasting and risk management[END_REF][START_REF] David | Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models[END_REF][START_REF] Trapero | Calculation of solar irradiation prediction intervals combining volatility and kernel density estimates[END_REF]; they refer to machine learning method 𝜎 𝑀𝐿 (𝑡 + 1) 2 = 𝜎 𝑠𝑎𝑚𝑝 (𝑡 + 1) 2 + 𝜎 𝑖𝑛𝑖 (𝑡 + 1) 2 [START_REF] David | Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models[END_REF][START_REF] Trapero | Calculation of solar irradiation prediction intervals combining volatility and kernel density estimates[END_REF] or to volatility and 𝜎 𝑣𝑎𝑟 (𝑡) [START_REF] Join | Solar energy production: Short-term forecasting and risk management[END_REF] but rarely both to the two kinds of uncertainty and never concerning 𝜎 𝑚𝑒𝑎𝑠 .Note that in the case of other machine learning methods used the term 𝜎 𝑖𝑛𝑖 can be equal to zero (e.g. support vector regression, regression tree etc.). The ideal case would be to systematically propose a confidence interval of prediction related to the three sorts of uncertainty (with 𝜎 𝑇𝑆 = 𝜎 𝑣𝑎𝑟 𝑡 𝑜𝑟 𝜎 𝑖𝑛 considering the desired reliability).

𝜎 𝑡𝑜𝑡 (𝑡 + 1) = 𝜎 𝑚𝑒𝑎𝑠 2 + 𝜎 𝑀𝐿 (𝑡 + 1) 2 + 𝜎 𝑇𝑆 (𝑡) 2 Eq 30 Now, considering the horizon of prediction, we define the new global uncertainty with the equation 30 with

𝜎 𝑜𝑟 = 𝐺𝐻𝐼 𝑡 + . 𝛼(). 𝜎 𝑡𝑜𝑡 (𝑡 + ) = 𝜎 𝑚𝑒𝑎𝑠 2 + 𝜎 𝑀𝐿 (𝑡 + 1) 2 + 𝜎 𝑇𝑆 2 + 𝜎 𝑜𝑟 () 2
Eq 31

Results

All the previous uncertainty estimations will be computed for the 4 sites: Ajaccio, Bastia, Montpellier, Marseille.

In the end of this section we will be able to propose a global prediction interval for all predictions and locations.

Computing of 𝝈 𝒎𝒆𝒂𝒔

Performance ratio or performance index calculations are more relevant when there are based on accurate independent data from a pyranometer than when they are based on a reference cell with lower accuracy and the same inherent flaws as the panel itself. Thepyranometerused for the five meteorological stations measures global horizontal solar irradiance with 1% accuracy. In Eq 12, 𝜎 𝐺𝐻𝐼 can be taken as 1%. 𝐺𝐻𝐼 𝑡 + 1 . The term

𝜔 𝑖 2 𝜔 𝑖𝑗 1 𝐼𝑛 𝑗 =1 𝐻 𝑖=1
for the 5 sites and for 50 simulations (i.e. for 50 MLP configurations for each site), is (considering an average value with 95% confident interval)

𝜔 𝑖 2 𝜔 𝑖𝑗 1 𝐼𝑛 𝑗 =1 𝐻 𝑖=1 = 1.02 ∓ 0.3.
For each sites the result are very close and contribute a little bit to the global uncertainty. Note that the number of inputs or of hidden nodes don't modify (or weakly) the result concerning 𝜎 𝑚𝑒𝑎𝑠 𝐺𝐻𝐼 𝑡 + 1 . The uncertainty related to the error measurement is calculated using Eq 18 and we obtained the following result:

𝜎 𝑚𝑒𝑎𝑠 𝐺𝐻𝐼 𝑡 + 1 = 1.02%. 𝐺𝐻𝐼 𝑡 + 1 ≈ 1%. 𝐺𝐻𝐼 𝑡 + 1 Eq 3
As for all the sites, the value of 𝜎 𝑚𝑒𝑎𝑠 is consistent, in the next we consider only the equation 31 for each location.

Computing of𝝈 𝒗𝒂𝒓 and 𝝈 𝒊𝒏𝒉

In a previous study realized for three insular sites (Corsica, Guadeloupe and Reunion) [START_REF] Divya | Survey on Machine Learning Approaches for Solar Irradiation Prediction[END_REF], it has been shown that the absolute log-return was correlated with the forecasting error obtained with a MLP prediction in Ajaccio as described in the figure 1. 𝜎 𝑖𝑛 estimates the uncertainty related to the studied time series and based on the definition of the 𝐺𝐻𝐼 𝑡𝑟𝑒𝑛𝑑 𝑡 (Eq 20), the values𝑛𝑅𝑀𝑆𝐸 𝐺𝐻𝐼 𝑡𝑟𝑒𝑛𝑑 𝑡 -𝐺𝐻𝐼 𝑡 for each station are shown in the table 1 . The values of the uncertainty are different for each sites and must be considered separately, for all cities the parameter 𝝈 𝟐 𝒔𝒂𝒎𝒑 + 𝝈 𝟐 𝒊𝒏𝒊 . In the figure 2 the profile of GHI and 𝝈 𝟐 𝒔𝒂𝒎𝒑 + 𝝈 𝟐 𝒊𝒏𝒊 is shown. We can see that when there is no cloud occurrence this parameter is very low but can reach 350Wh/m² for other conditions. In Fig. 3, the maximum and minimumoutput values predicted are reported for 50 trained MLPin summer for Ajaccio and compared to the measure. 

Site

Computing of 𝝈 𝒉𝒐𝒓

The estimation of this error component depends on the chosen time horizon as described in the section 3. 𝜎 𝑜𝑟 = 𝐺𝐻𝐼 𝑡 + (0.0439 * + 0.9561) Eq 33

In the next, for each site, we will use to (t) computed with the data related to the studied site.

Computing of 𝝈 𝒕𝒐𝒕

The previous components allows to calculate the global uncertainty and to propose two prediction bands: UB for upper band and LB lower band [START_REF] Mcaleer | Realized Volatility: A Review[END_REF].Thus, the quality of the prediction can be defined by the triplet {𝐺𝐻𝐼 𝑡 + ; 𝐿𝐵; 𝑈𝐵} [START_REF] Join | Short-term solar irradiance and irradiation forecasts via different time series techniques: A preliminary study[END_REF]. We can also estimate the reliability of the prediction considering that the prediction is efficient when UB-LB is very lower than 𝐺𝐻𝐼 𝑡 + and inefficient when UB-LB is equal or upper to 𝐺𝐻𝐼 𝑡 + value.

From this hypothesis, we can define the reliability as t(UB(t+1)-LB(t+1))𝐺𝐻𝐼 𝑡 +  Lower is this parameter, more efficient is the prediction.We construct a reliability index between 0 and 1 considering that if (UB(t+1)-LB(t+1))𝐺𝐻𝐼 𝑡 + > 1thent i.e. the prediction is not sureThe final prediction becomes: y = 0,043x + 0,956 R² = 0,952 We can see that 𝜎 𝑚𝑒𝑎𝑠 is the parameter the less interesting for the bands construction and that it is necessary to consider the coupling of 𝜎 𝑖𝑛 and 𝜎 𝑀𝐿 (related to 𝜎 𝑠𝑎𝑚𝑝 𝑎𝑛𝑑 𝜎 𝑖𝑛𝑖 )for a good prediction interval definition. For other sites the obtained curves are similar and no more information is observed.In the figure 6, the topcurve (same prediction configuration that previously) comparesthe average prediction 𝐺𝐻𝐼 𝑡 + (marks) versus the GHI measurement (line). The bottom curveshows the associated reliability index (t We see that when the variability is low (two first day from 3711 to 3726) the reliability is important (close to 70%) but when cloud occurs the value is much lower and can reach 0%.

Conclusions

In this paper we have shown that it is possible to computea prediction band in the context of global radiation time series forecasting using machine learning. We have defined for a popular machine learning technique, the multilayer perceptron, four kinds of uncertainties: the error due to the measurement, the variability of time series, the machine learning uncertainty (initialization and sampling) and the error related to the horizon. In literature, rarely both to the two kinds of uncertainty 𝜎 𝑖𝑛𝑖 and 𝜎 𝑀𝐿 are studied, and never 𝜎 𝑚𝑒𝑎𝑠 . We have also defined a reliability index which could be very interesting for the grid manager in order to estimate the validity of predictions. The described method has been successfully applied to four meteorological stations in Mediterranean area. In practice it is certainly not necessary to take into account all the proposed components.

The ranking of the different uncertainty terms is:𝜎 𝑚𝑒𝑎𝑠 (~1%)<𝜎 𝑀𝐿 ~5% < 𝜎 𝑖𝑛 (~10%)<𝜎 𝑜𝑟 5 -20% . For 8 Tables Table 1. Values of the 𝜎 𝑖𝑛 uncertainty coefficient Table 2. Value of 𝝈 𝟐 𝒔𝒂𝒎𝒑 + 𝝈 𝟐 𝒊𝒏𝒊 for all the studied sites (in Wh/m²) 
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 6 Figure 6. Comparisonfor the horizon h=1 for Ajaccio of GHI predictions (mark) and GHI measurement (line) on the top and associated reliability index in the bottom
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Table 1 .

 1 Values of the 𝜎 𝑖𝑛 uncertainty coefficientThe value of 𝜎 𝑖𝑛 could be approximated for all locations by 𝜎 𝑖𝑛 = 12.2% * 𝐺𝐻𝐼 𝑡 + 1 , but in order to customize the prediction band it is necessary choose value related to each site. 𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 𝐨𝐟 𝝈 𝑴𝑳 (𝝈 𝒔𝒂𝒎𝒑 and 𝝈 𝒊𝒏𝒊 )The error components 𝜎 𝑠𝑎𝑚𝑝 and 𝜎 𝑖𝑛𝑖 are computed together. For each site, we compute50 times the weights learning phase and also we generate 50 different training sets (see k-fold methodology in section 3.4).

	𝝈 𝒊𝒏𝒉 𝒊𝒏 %

Table 2 .

 2 Value of 𝝈 𝟐 𝒔𝒂𝒎𝒑 + 𝝈 𝟐 𝒊𝒏𝒊 for all the studied sites (in Wh/m²)

  𝜎 𝑖𝑛 = 𝐺𝐻𝐼 𝑡 + 1 . 𝑛𝑅𝑀𝑆𝐸(𝐺𝐻𝐼 𝑡𝑟𝑒𝑛𝑑 𝑡 -𝐺𝐻𝐼 𝑡 ), 𝜎 𝑜𝑟 () = = 𝐺𝐻𝐼 𝑡 + . 𝛼() and 𝐺𝐻𝐼 𝑚𝑖𝑛 /𝑚𝑎𝑥 𝑡 + are the min and max values of the 50 predictions generated with 50 simulations.The figure 5 shows for Ajaccio an example of the prediction bands, considering all the kind of uncertainty with horizon h=1hour. Line represents measurement and dashed lines the upper and lower bands concerning each kind of uncertainties.

	1,25					
	different training sets)					
	1,2					
	1,15 -LB= 𝜎 𝑚𝑒𝑎𝑠	2 + 𝐺𝐻𝐼 𝑚𝑖𝑛 𝑡 + -𝐺𝐻𝐼 𝑡 +	2 + 𝜎 𝑖𝑛	2 + 𝜎 𝑜𝑟 () 2	Eq 34
	1,1 -UB= 𝜎 𝑚𝑒𝑎𝑠 h	2 + 𝐺𝐻𝐼 𝑚𝑎𝑥 𝑡 + -𝐺𝐻𝐼 𝑡 +	2 + 𝜎 𝑖𝑛	2 + 𝜎 𝑜𝑟 () 2	Eq 35
	1,05 With 𝜎 𝑚𝑒𝑎𝑠 𝐺𝐻𝐼 𝑡 + 1 = 1%. 𝐺𝐻𝐼 𝑡 + 1 ,			
	1					
	1	2	3	4	5	6
			horizons			

an one time step horizon, consider only 𝜎 𝑀𝐿 and 𝜎 𝑖𝑛 seems to be sufficient, for a larger horizon (>3h) it is essential to add the horizon component𝜎 𝑜𝑟 . Note that for the predictors as SVM, ARMA, Gaussian process, regression tree (and derived) 𝜎 𝑀𝐿 is easily obtained computing only 𝜎 𝑠𝑎𝑚𝑝𝑙𝑒 . We are sure that it is possible to generalize the approach to other sites and other machine learning tools. Thereby in future, we will try to apply the methodology to other time granularities and predictor as SVM, regression tree or random forest. In order to increase the interest of the LB and UB methodology, it will be also possible to physically bounded the upper and lower bands using very performant clear sky modelling in order to obtain the global solar irradiation(maximum value of the band) and the diffuse part of the solar irradiation (minimum value of the band).
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