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Abstract
Soil aggregate stability is a key factor in soil resistance to water erosion, which is a

threat to soils in a large part of northern Tunisia. The analysis of the spatial variability of soil
aggregate  stability  provides  both  agronomic  and  environmentally  useful  information.
However, extensive measurements of soil aggregate stability remain tedious and expensive. 

This study explores two different approaches as alternative to measurements of soil
aggregate stability. One approach estimated aggregate stability via laboratory measurements
of  soil  elementary  properties  using  multiple  linear  regressions  known  as  pedotransfer
functions. The second approach, which is methodologically innovating, was based on the
geological pattern as a proxy for aggregate stability using regression-kriging analysis. A set
of 113 soil samples from an 800 km² agricultural region that included the Lebna watershed
(Cap Bon, Tunisia) were collected from the soil surface layer (0-10 cm depth). Samples were
analyzed for elementary properties (i.e., soil texture, total carbon and nitrogen, iron, CaCO3,
salinity,  CEC and pH) and for soil aggregate stability according to  the normalized method
(ISO/DIS  10930,  2012),  which  considers  three  indexes  (MWD)  calculated  for  three
contrasted wetting conditions and disruptive energies.

Most soils in the study area were non-salted with an alkaline pH and relatively low
organic carbon content.  Of the soils,  35% were clay soils,  and 55% had a balanced soil
texture. The average of the three soil  aggregate stability indexes (MWDmean) ranged from
0.38 to 2.80 mm, and this property showed large variability from instable soils to very stable
ones. Analysis of pedotransfer functions determined that the best predictor variables for soil
aggregate stability were silt, organic matter and iron. Geostatistical analyses at the regional
scale showed spatially structured soil aggregate stability (variograms with sills reaching a 5
km distance). Using geological information as ancillary data, the prediction of soil aggregate
stability with regression-kriging was similar to that of pedotransfer functions. A regression-
kriged map of soil aggregate stability associated with a map of prediction uncertainties was
developed. The resulting maps and methods of this study can be useful in the development
of management options that minimize water erosion risks in the studied area.

Keywords: Soil Aggregate Stability, Spatial Organization, Pedotransfer function, Regression-
kriging analysis, Tunisia.
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1. Introduction
Soil  is  a  key  component  of  the  biosphere  that  determines  the  biogeochemical,

hydrological  and  erosional  cycles and  delivers  various  essential  ecosystems  goods  and
services  (Brevik  et  al.,  2015;  Keesstra  et  al.,  2016).  However,  soils  are  often  threat  by
several  degradation  factors  among them soil  erosion  which  is  a  clear  indication  of  land
degradation  in  the  Mediterranean (García-Ruiz  et  al.,  2013;  García-Ruiz  et  al.,  2017;
Montanarella  et  al.,  2016).  Therefore  preventing  and  combating  soil  erosion  is  a  major
environmental  and  economical  challenge  in  this  region  where  climate  change  is  already
perceptible (Den Biggelaar et al., 2004; Giorgi and Lionelle, 2008; Raclot et al., 2016). In
Tunisia, the problem of soil erosion is more pronounced in the north part of the country in
which the landscape is hilly and high-energy storms are frequent on bare soils during the
autumn season (Jebari,  2009).  Indeed,  Kefi  et  al.  (2012)  show that  25% of  the Tunisian
septentrional area had an estimated annual soil loss rate that exceeded 30 t ha-1.

Aggregate stability is an intrinsic property of soils that is an empirical measurement
(Le Bissonnais, 1996) of the ability of a soil aggregate to retain cohesion and not disintegrate
under the action of water (Lal, 1991). Aggregate stability is particularly important to consider
when issues are  examined that  relate to soil  fertility  and natural  resources conservation
(Cammeraat  and  Imeson,  1998; Amezketa,  1999;  Bronick  and  Lal,  2005).  Indeed,  soil
aggregate  stability  is  used to evaluate  the sensitivity  of  soil  to  crusting  and erosion (Le
Bissonnais,  1996; Cerdà,  2000;  Barthès  and  Roose,  2002),  the  conditions  for  seed
germination and rooting of crops (Lynch and Bragg, 1985) and the soil capacity to sequester
organic carbon (Fenton et al., 2005). Therefore, the capacity to provide spatial predictions of
this property is fundamental for landscape managers.

Research  on  soil  aggregate  stability  is  an  essential  requirement  considering  the
importance  of  water  erosion  damages  on  site  and  off  site  (Keesstra  et  al.,  2016;
Montanarella  et  al.,  2016).  Indeed,  soil  aggregate  stability  is  a  definitive  variable  to
understand  soil  erosion  processes  in  agricultural  and  forest  soils  (Cerdà,  2000;  García-
Orenes et al., 2012; Haregeweyn et al., 2013) since soil aggregate stability seemed to reflect
better  the  actual  vulnerability  of  topsoils  to  physical  degradation (Stanchi  et  al.,  2015).
Moreover, soil aggregate stability studies serve as early warning signs of vulnerability and
resilience of soils and can be very useful for evaluating the impacts of land use and erosion
control management (Cammeraat and Imeson, 1998; Cerdà, 2000).

Soil  aggregate  stability  is  studied  by  examining  the  process  of  aggregate
disintegration or the factors that stabilize aggregates. The primary mechanisms of aggregate
breakdown  are  slaking,  breakdown  by  differential  swelling,  mechanical  breakdown  by
raindrop  impact  and  physicochemical  dispersion  (Le  Bissonnais,  1996).  The  relative
importance of  these mechanisms depends on the patterns  of  rain  and the physical  and
chemical properties of soils. Stabilizing factors are primarily related to soil  characteristics,
which may be affected by agricultural practices. Aggregate stability generally increases with
the content of clay and organic matter in soil, but a significant universal equation adapted to
all  types of  soils  and conditions  has not  been established (Le Bissonnais  and Arrouays,
1997;  Le  Bissonnais  et  al.,  2007;  Chenu  et  al.,  2011;  Mamedov  et  al.,  2016).  Other
parameters  such as soil  microorganisms and their  activities  and cations  (Ca2+ and Fe2+,
among others)  are also  involved  in  soil  aggregation  and stabilization  (Bragg and Lynch,
1985; Wuddivira and Camps-Roach, 2007). 

The spatial distribution of soil structure and stability is a key element in water and soil
functions,  and  therefore,  the  determination  is  relevant  to  understand  and  manage  soil
processes to sustain agro-ecosystems (Shukla et al.,  2007; Van Es et al.,  1999). Spatial
variability is inherent due to geologic and pedologic soil forming factors, but a part of this
variability may be induced by tillage and other management practices. However, information
on the spatial variation of aggregate stability in a given region remains limited (Mohammadi
and  Motaghian,  2011)  compared  with  that  for  other  soil  properties  such  as  soil  water
retention parameters (Makitalo, 2002; Iqbal et al., 2005), texture (Jung et al., 2006; Ließ et
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al., 2012) and organic carbon content (Stutter et al., 2009; Hoffmann et al., 2014; Hu et al.,
2014). 

The first objective of this work was to determine the degree of spatial organization of
levels of soil aggregate stability at the scale of an 800 km² agricultural region. The second
objective was to assess two different approaches to predict soil aggregate stability: i) one
approach used pedotransfer  functions  consisting  of  multiple  linear  regressions based on
conventional  soil  properties,  and ii)  the other  approach was regression-kriging based on
ancillary spatial data, which in this study, were the geological substrate data. The second
approach tested here is, to our knowledge, applied for the first time to soil aggregate stability
studies.  Assessment of  the two approaches was performed using a leave-one-out  cross-
validation (LOOCV) technique applied to a sample collection of 113 soil samples from an
agricultural region located on the Cap Bon Peninsula in the northeast of Tunisia. 

2. Materials and methods
2.1. Site description and sampling

Soil samples were collected in a hilly, rural area covering approximately 40 x 20 km
between the southeastern flank of the Djebel Abderrahmane anticline and the east coast of
the  Cap  Bon  Peninsula  in  northeast  Tunisia  (36°24'-53'  N,  10°20'-58'  E;  Fig.  1a).  The
elevation of the study area ranges from 250 m at the foot slope of the djebel (west of the
study area) to 20 m near the coast (east of the study area). The area includes most of the
Lebna watershed,  which drains into the Lebna reservoir.  The climate is  at  the boundary
between Mediterranean sub-humid inferior  and Mediterranean semi-arid  superior  with  an
average annual rainfall ranging from 650 mm in the west to 450 mm in the east of the study
area,  a  mean  annual  temperature  of  approximately  18°C  and  an  interannual  potential
evapotranspiration of approximately 1200 mm. 

The primary soil types are regosols and eutric regosols predominantly associated with
sandstone  outcrops,  calcisols  associated  with  sandy  Pliocene  deposits,  and  vertisols
predominantly formed on marl outcrops and in lowlands.

Except for some nearby sandstone outcrop areas and a small endorheic salt zone
(sebkhas), which are covered by sparse natural vegetation and used for grazing, most of the
area  is  cultivated  with  rain  fed  cereals,  legumes  and  olive  trees.  Irrigated  horticulture
conducted by pumping groundwater or supplied by water dams covers small areas located
near the coastal plain at the far east of the study site.

Soil  samples were collected from the soil  surface layer  (0-10 cm) of  113 plots  in
October 2009. Each sample was composed of five subsamples collected at random locations
within a 10x10 m square. The coordinates of each sample location were recorded using a
Garmin GPS instrument ensuring an accuracy of 5 m for geolocalization. In the laboratory,
soil samples were air-dried and divided into two aliquots. The first aliquot was sieved through
a 2 mm mesh and was used for elementary soil analyses, whereas from the second aliquot,
only 3-5 mm aggregates were retained to assess soil aggregate stability. 

2.2. Soil properties measured
Ten physicochemical properties of the soils were measured in triplicate on the 2 mm-

sieved samples using classical physico-chemical soil analysis (Baize and Jabiol, 1995): clay,
silt,  and  sand  content  measured  according  to  the  pipette  method  with  Na-
hexametaphosphate  NF  X  31-107;  calcium  carbonate  (CaCO3)  content  determined  by
volumetric  method  according  to  the  NF  ISO  10693;  free  iron  (Fe)  content  determined
according  to  the  Mehra-Jackson  method  (ICP-AES);  organic  carbon  (OC)  content
determined by dry combustion with an elemental analyser according to the NF ISO 10694;
organic nitrogen (N) content measured by Kjeldahl method according to the NF ISO 11261;
cation exchange capacity (CEC) determined by Metson Method according to the NF X 31-
130; electrical conductivity (EC) and pH(H2O) were carried out on a soil : water suspension
(1:5) according to the NF ISO 11265 and to the NF ISO 10390, respectively. 
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Aggregate  stability  was determined according to the normalized method (ISO/DIS
10930, 2012), based on Le Bissonnais (1996). This method combines three disruptive tests
that use different wetting conditions and energies: fast wetting, slow wetting and mechanical
breakdown. These tests were performed in triplicate on the 3-5 mm aggregates that were
recovered by double-sieving of soil samples between 3 and 5 mm sieves.

For the fast wetting test, 5 g of 3-5 mm calibrated aggregates was rapidly immersed
in  50 mL of  deionized  water  for  10 min.  For  the  slow wetting  test,  a  similar  amount  of
aggregates were capillary rewetted with water on a tension table at a potential of -0.3 kPa for
30 min. For the mechanical breakdown test, aggregates were hand-agitated in 200 mL of
deionized water after pre-wetting in ethanol for 30 min.

After each test, the residual aggregates were collected, dried at 105°C and gently dry-
sieved using a column of six sieves ranging from 2 to 0.05 mm. The mass proportion of each
fraction size of stable aggregates was calculated, and the results were expressed as a mean
weight diameter index (MWD) corresponding to the sum of the mass fraction remaining on
each sieve multiplied by the mean inter-sieve size. MWD was calculated for each treatment
(MWDFW, MWDMB and MWDSW, respectively, for fast wetting, mechanical breakdown and slow
wetting). The average of these three indexes was also calculated (MWDmean). MWD values
ranged  between  0.025  and  3500  mm,  with  larger  MWD  values  representing  greater
aggregate stability. Five classes of aggregate stability are defined by Le Bissonnais (1996)
based on the MWD: very instable soils (MWD<0.4 mm), instable soils (0.4 mm<MWD<0.8
mm), moderately stable soils (0.8 mm<MWD<1.3 mm), stable soils (1.3 mm<MWD<2.0 mm)
and very stable soils (MWD>2.0 mm).

2.3. Ancillary data
Ancillary data consisted of geological substrate information derived from the collection

of standard 1/50000 geological maps of Tunisia that are available for most of the country.
The dominant geological material in the study site (Fig. 1b, geological unit 2) is composed of
marls intercalated with Serravalian-Tortonian sandstone beds (Bensalem, 1989). Toward the
coast  in  the  east,  soft-sandy  layers  and  thin  layers  of  hard  calcareous  sandstone  with
Pliocene  marine origin  alternate (Fig.  1b,  geological  unit  1),  which have some parts  still
encrusted with limestone explaining the presence of a sub-horizontal plateau at an altitude of
approximately 100 m primarily in the northeast of the area (Fig. 1b, geological unit 3). The
other geological units of the geological maps refer to recent and old terrestrial deposits near
the wadis (Fig. 1b, geological unit 5) and recent coastal deposits (Fig. 1b, geological unit 4).

2.4. MWD spatial structure estimation
Assuming a second-order stationary spatial variable, the magnitude and organization

of  spatial  variability  of  MWD variables  were first  determined using anisotropic  variogram
(semi-variance)  analysis  as  proposed  by  Mohammadi  and  Motaghian  (2011).  The
significance of organization (i.e., spatial correlation) in MWD was tested by comparing the
experimental semi-variogram with the semi-variogram envelope based on permutations of
the data values across the locations (number of simulations Nsim  = 100), simulating a non-
spatially  correlated variable  (Mantel  test).  In  this  empirical  test,  a spatial  correlation  was
considered significant at a 95% level for the lower distance, which was with the experimental
semi-variogram below the envelope.

2.5. MWD prediction using pedotransfer functions
Multiple linear regression models were used to build pedotransfer functions, which

established relationships between aggregate stability indexes and elementary soil properties.
The choice of the soil properties used in pedotransfer functions was performed according to
the stepwise methodology using the  Akaike Information Criterion (AIC) to evaluate models
(Akaike, 1973). The AIC evaluates the trade-off between the goodness of fit of the model and
the  complexity  of  the  model,  and  therefore,  determines  the  number of  parameters
(predictors) in the model. The preferred model has the minimum AIC value.
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2.6.  MWD  prediction  using  regression-kriging  approach  based  on  geological  substrate
information

According to the geostatistical  spatial  prediction modeling  framework proposed by
Hengl et al. (2004), regression-kriging was used for the spatial prediction of MWD. In the first
regression step, geological units derived from 1/50000 geological maps were tested as a
proxy to predict the MWD variability. An MWD prediction for each of the geological units was
first  derived  from  an  ANOVA analysis.  In  the  second  step,  a  second-order  stationary
geostatistical  analysis  was  conducted  on  the  residuals,  i.e.,  the  difference  between  the
measured MWD and the predicted value of MWD from the fitted ANOVA model, to explore
whether all the spatial organization of MWD was encapsulated in the geological class units.
To  ensure  proper  residual  variogram  modeling,  each  residual  variable  was  checked  for
normality and anisotropy. In the same way, we also checked that a similar variogram model
whatever the geological  class unit  (second-order stationary)  could be assumed using the
following specific simulation test. In this test, an envelope of an empirical variogram was built
from simulated residuals values (the exact LU decomposition method) on sample locations
from the isotropic variogram modeling resulting from the 113 residuals initial values. Similar
to the previous simulation test, a non-significant difference in a variogram was assumed for
one geological class unit when the actual empirical variogram points built from residuals in
that  geological  class  unit  were  within  the  95%  simulation  envelope.  By  comparing  the
experimental semi-variograms with semi-variogram envelopes based on permutations (Nsim =
100), the significance of spatial structure (empirical variograms) was also tested. After this
step of spatial structure exploration, admissible models were fitted to variograms of residuals
by ordinary least squares minimization. As a final step, a predicted grid and contour map of
each MWD (i.e.,  MWDFW,  MWDMB,  MWDSW and MWDmean) were created by combining the
results of the linear ANOVA predictions and the ordinary kriging of the residuals.

2.7. Performance assessment of MWD prediction
For  the  two  methods  tested,  a  similar  leave-one-out  cross-validation  (LOOCV)

process was applied to validate MWD predictions.  Prediction performance was assessed
using the statistical  criteria of  the root  mean squared error  (RMSE),  the normalized root
mean squared error (CVRMSE) and the coefficient  of efficiency (CE, Nash and Sutcliffe,
1970), which were calculated using the following formulas:

where n is the number of observations (113, in this study) and Ō is the overall mean
of observed values.

Small values of RMSE and CVRMSE indicated good performance of the model. The
CE is a measure of the deviation between model output and the observed values relative to
the scattering of the measured values. The value of CE will  be 1 when simulated values
match the observed values perfectly. We also analyzed the calibration regression coefficients
established using the entire data set (n=113) as an additional  criteria of MWD prediction
performance related to pedotransfer functions.

All statistical analyses were conducted using the R statistical software package with
the geoR and gstat modules (R Core Team, 2013).
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3. Results
3.1. Soil elementary properties

Soil elementary properties showed high variability over the study area (Table 1). Most
of the soils were non-salted with an alkaline pH and relatively low organic carbon content
(Table 1). Sampled soils were clustered into three textural classes: clay soils (35%), soils
with balanced texture (55%) and sandy soils (10%) (Fig. 2). Moreover, the clay and sand
contents were significantly correlated with CEC, Fe content and pH (Table 2).

3.2. Soil aggregate stability
The three aggregate stability indexes also showed high variability over the study area

(Fig.  3),  and  four  of  the  five  classes  of  stability  defined  by  Le  Bissonnais  (1996)  were
represented.  The MWDFW  values were lower  than those of  the other  two tests,  which  is
consistent  with literature reports that  rapid penetration of  water inside the soil  aggregate
induces more slaking because of the effect of the created pressure. MWDFW values varied
from 0.35 to 2.82 mm with an average of 0.90 ± 0.46 mm. 

The MWDSW values ranged from 0.51 to 3.06 mm with an average of 1.80 ± 0.64 mm.
In this procedure, soil aggregates were slowly wetted, which prevents slaking, and therefore,
the MWDSW values were higher than those of the MWDFW.

The MWDMB values obtained with the mechanical breakdown test were larger than
those of MWDFW; they varied from 0.38 to 2.80 mm with a mean of 1.24 ± 0.68 mm. In the
mechanical breakdown test, slaking does not occur because aggregate porosity is saturated
with  ethanol,  which  decreases  the  surface  tension  and  contact  angle,  favoring  water
penetration.  Therefore,  in  this  test,  the  abrasion  of  the  aggregates  against  one  another
during the mechanical stirring is the primary cause of aggregate breakdown.

The calculation of the average (MWDmean) of  the three tests (MWDFW,  MWDSW  and
MWDMB) provided an overall view of aggregate stability at different conditions of soil wetness.
The MWDmean values showed that soil  aggregate stability was highly variable in the study
area. The MWDmean values ranges from 0.46 to 2.52 mm with an average of 1.31 ± 0.50 mm.
Thus, most (69%) of the study area soils were moderately stable to stable, and no soil was
classified as very instable (MWDmean<0.4 mm).

Factors and MWD prediction performance related to pedotransfer functions
The Pearson correlations  were not  significant  between the soil  aggregate stability

indexes and four of the measured elementary soil properties (OC, N, CaCO3 and EC; Table
2). For the other six elementary soil properties (clay, silt, sand, CEC, pH and Fe), significant,
simple linear relationships were detected with the soil aggregate stability indexes. 

Multiple  linear  models  were  used  to  build  pedotransfer  functions  from  the
physicochemical analysis to estimate each soil aggregate stability index. Sand content and
CEC were excluded from the list of factors entering the multiple linear models because high
levels of multicollinearity were observed between clay, sand and CEC (Table 2). Similarly, N
was discarded because of collinearity with OC. 

The pedotransfer functions for each soil aggregate stability index were as follow:
[1] MWDFW=0.5227+0.0015Clay-0.0121OC (r= 0.624, AIC= -226);
[2] MWDSW=0.9535+0.0036Silt-0.0272OC+0.0011CaCO3+0.4300Iron  (r=  0.601,

AIC=-140);
[3] MWDMB=0.2620+0.0052Silt-0.0358OC+0.4784Iron (r= 0.731, AIC= -167);
[4] MWDmean= 0.5502+0.0031Silt-0.0214OC+0.4460Iron (r= 0.736, AIC= -235).

According to p-values,  silt,  organic  carbon and iron were significant  (p < 0.01) for
modeling  the  MWDmean,  MWDMB and  MWDSW.  Clay  was  only  significant  for  the  MWDFW
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pedotransfer function (p < 0.01). Last, pH and EC were also discarded because they had no
significant weight in the building of pedotransfer functions for any of the four soil aggregate
stability indexes.

When the entire data set was used in the calibration process (n=113), the regression
coefficient ranged from 0.61 to 0.74; thus, the prediction performances of the pedotransfer
functions  were  intermediate  but  significant.  The  best  goodness  of  fit  was  obtained  for
MWDmean and MWDMB. The pedotransfer prediction performance was also evaluated using an
LOOCV technique that confirmed a moderate to high prediction performance (Table 3) with
an RMSE ranging from 0.37 to 0.55, a CVRMSE from 0.28 to 0.43 and CE from 0.36 to 0.54
(Fig. 4).

3.4. Spatial organization of MWD
Experimental semivariograms and envelopes were obtained by permutation from the

different  measured MWD indexes (Fig.  5).  The results demonstrated a significant  spatial
correlation of the different soil aggregate stability indexes over a distance of approximately 5
km. This spatial correlation was higher for MWDFW and MWDmean than that for MWDSW and
MWDMB. 

3.5. Spatial prediction of MWD using the regression-kriging approach
The results of the analysis of variance conducted between MWD values and the five

units of the geological map at 1/50000 showed that significant MWD differences between
some geological units were detected regardless of the MWD test. Therefore, a large part of
the MWD spatial organization was encapsulated in the geological map. However, empirical
variograms on the residuals of this ANOVA model (Fig. 6) showed that a spatial organization
remained  in  the  residuals.  Therefore,  the  geological  information  did  not  encapsulate  the
entire spatial variability of MWD, which indicated that an additional kriging technique on the
residuals  might  improve  the  prediction.  The  additional  kriging  was  performed  using  the
regression-kriging approach, and a spherical model was selected as the variogram function
according to its fitting capacities on the overall behavior of the experimental variogram.

As determined for pedotransfer functions, prediction performances of the regression-
kriging  approach  were  evaluated  using  the  LOOCV technique.  Based  on  the  values  of
RMSE, CVRMSE and CE (Table 3),  the prediction performances using regression-kriging
models were as good as those obtained with pedotransfer functions.

Experimental variograms frequently show a discontinuity at the origin known as the
nugget variance, which represents the random variability at the sampling scale and reflects
the variability at distances closer than the smallest sampling distance, measurement errors
or errors in location (Webster and Oliver, 2007). In our study, the nugget values were from
0.06 to 0.19, which suggested that a smallest sampling distance should be tested to capture
the local variation in MWD values. Sill values were from 0.13 to 0.33 and range values from
4000 to 8000 meters. 

As shown in Fig. 7a, globally, the spatial variability of predicted MWD values was very
similar regardless of the MWD considered, with higher values in the north and the eastern
part of the study area and lower MWD values in the western part as approaching the coast.
In Fig. 7b, the standard deviation is estimated on the predicted map for each MWD, which
should be of interest for decision makers.

4. Discussion
4.1. Level and variability of MWD in the study area

The soil aggregate stability values for agricultural fields on the Cap Bon Peninsula
were  similar  to  those  noted  by  Bouajila  and  Gallali  (2008)  for  many  cultivated  soils  of
northern Tunisia. However, the levels of aggregate stability observed in this study were lower
than those observed in Mediterranean fallow or scrubland soils (Blavet et al.,  2009). The
three aggregate stability tests used in this study simulate different wetting conditions and
energies  that  can occur  in  the field,  with  the following effects  on aggregate  stability  (Le
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Bissonnais, 1996): (i) slaking caused by the compression of air entrapped inside aggregates
during wetting, which is dependent on the rate of wetting, (ii) mechanical breakdown, which
is  dependent  on the energy applied  from raindrops,  and (iii)  physicochemical  dispersion,
which occurs in soils with high clay content and exchangeable sodium. In the fast and slow
wetting tests, the dominant breakdown mechanism is slaking at different intensities according
to the rate of aggregate wetting. In the fast wetting test, which corresponds to a rain of strong
intensity (>30 mm h-1) (Legout et al., 2005), more intense slaking is observed because of the
larger  compression  of  entrapped  air  inside  the  aggregates  when  suddenly  immersed  in
water.  In  the  mechanical  breakdown  test,  no  slaking  occurs  during  because  aggregate
porosity is saturated with ethanol, which decreases surface tension and the contact angle,
favoring water penetration. The mechanical breakdown test simulates the impact of raindrops
on  wet  aggregates  detaching  soil  particles.  The  fast  wetting  test  was  the  closest
approximation of  the erosion-prone conditions  in  the Lebna watershed,  because the test
assessed the response of bare and dry soils to intense wetting such as occurs with rainfall
storms in autumn. 

At  the scale of  our study area,  the large variability  within an area is  important  to
understand because soil aggregate stability is often used as a proxy for soil erodibility (Le
Bissonnais  1996;  Barthes  and  Roose,  2002).  Such  variation  in  levels  of  soil  aggregate
stability across a region is observed in other studies (Chenu et al., 2000; Odeh and Onus,
2008;  Cañasveras et al.,  2010;  Mohammadi and Motaghian,  2011),  and this variability  is
generally attributed to soil characteristics (Boix-Fayos et al., 2001), topography (Canton et
al.,  2009),  climate  (Algayer,  2012)  and  to  the  land  use/management  (Bird  et  al.,  2002;
Motaghian  and  Mohammadi,  2011).  The  wide  range  of  measured  values  of  aggregate
stability observed in our study could be related in particular to the wide range in soil texture
as shown in fig. 2. This textural variability was clearly related to the geological characteristics,
which  explained  much  of  the  MWD  spatial  organization.  However,  most  of  the  tested
samples corresponded to a relatively low level of aggregate stability: between 0.5 and 1.1
mm for more than 50% of the samples with the fast wetting test, which is the most relevant to
characterize the aggregate resistance to breakdown in the Mediterranean area because of
the high frequency of high intensity rainfall.

4.2. Factors involved in pedotransfer functions
We  examined  the  relationships  between  aggregate  stability  and  elementary  soil

properties (i.e., organic matter content, texture, and carbonates, among the others) because
these variables are measured routinely and statistically significant relations with aggregate
stability are reported in the literature (Wischmeier and Mannering, 1969; Amezketa, 1999;
Zhang and Horn, 2001). Therefore, these elementary soil  properties have been tested as
potential factors to explain the spatial distribution of aggregate stability.  Moreover,  several
studies show that the stability of aggregates is usually due to amorphous materials in the
soil,  primarily  clays  and organic  matter  (Chenu et  al.,  2000;  Le Bissonnais  et  al.,  2007;
Chenu et al., 2011).

Soil organic carbon was not a leading indicator of aggregate stability in our study area
(Table 2), which could be partly explained by the low range of organic carbon content in most
of  the  sampled  soils  (98% of  soil  samples  were  in  the  range  0.2-2%).  Additionally,  the
aggregating role of organic matter can be offset by the effect of dissolved organic matter in
low  organic  matter  soils  (Goldberg  et  al.,  1990).  Simple  linear  correlations  showed  no
significant relationship between MWD and soil carbonate content, as also observed by Bird
et al. (2002). The absence of a correlation between soil  carbonates and aggregation was
most likely due to more efficient  aggregating factors such as clays and metal oxides (Le
Bissonnais and Singer, 1993). However, significant correlations were observed between soil
aggregate stability indexes and other soil properties (i.e., particle size, CEC, Fe and pH) in
this study, which are the types of relationships observed in other studies (Pons and Gerbaud,
2005; Cañasveras et al., 2010; Algayer, 2012). However, no single soil property had a strong
significant relationship with any of the soil aggregate stability  indexes (Table 2). Finally, for
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the  proposed  pedotransfer  functions,  the  prediction  performance  was intermediate  but
significant (r values ranging from 0.61 to 0.74; RMSE from 0.37 to 0.55; CVRMSE from 0.28
to 0.43;  and CE from 0.36 to 0.54).  Silt  and iron were the most  significant  properties in
building regressions and therefore determined a portion of the soil aggregate stability.

However, elementary soil properties did not explain the entire observed variability in
stability  of  soil  aggregates.  Based on a comparison of  results derived from pedotransfer
functions in other contexts (Le Bissonnais et al., 2007; Chenu et al., 2011), the soil properties
involved in pedotransfer functions are likely  site-specific,  and therefore,  the levels  of  soil
aggregate stability cannot be predicted satisfactorily by a universal pedotransfer function.
Interactions with other variables most likely explain this result, with these variables related to
the soil  as components of organic matter quality and microbial  activity;  in addition to the
effects of climate on soil moisture and wetting-drying cycles and those of land use and farmer
practices.

4.3. Importance of geological information for MWD prediction in Mediterranean area
In the study area, the pattern of the geological map at 1/50000 explained much of the

spatial  organization  of  topsoil  aggregate  stability.  Therefore,  the primary  driver  of  topsoil
aggregate stability in the study area was the nature of the substrates and surface deposits,
which could be used as a first order proxy for MWD. This conclusion was consistent with
results  from  the  pedotransfer  approach  because  most  factors  involved  in  pedotransfer
functions,  i.e.,  texture,  iron  content  and  organic  carbon  content,  directly  depended  on
information included in the geological map. In our study area, land use and management
primarily consist of rain fed cereals and leguminous crops managed in a traditional tillage
management  system  with  very  low  organic  inputs.  The  relative  homogeneity  in  farming
management might explain that the low effect of this factor on MWD values.

However, the geological substrate did not represent all the spatial organization of soil
aggregate stability in the studied area. Therefore, we applied a regression-kriging prediction
model  that  developed  a  soil  aggregate  stability  map  at  a  regional  scale,  in  addition  to
predicting uncertainties that included the effects of others variables that were not explicitly
integrated into the spatial organization model.

5. Conclusions
The spatial  organization of soil  aggregate stability was investigated in an  800 km²

agricultural region in Cap Bon, North Tunisia.  Low to moderate levels of aggregate stability
dominated the study site. Two different approaches for MWD prediction in the cultivated area
were  tested  and  compared.  The  first  one  is  based  on  classical  pedotransfer  functions
whereas the second one consists in an innovative regression-kriging approach, which aims
to  rapidly  map  MWD  on  large  area  by  using  existing  ancillary  data.  In  our  case,  the
regression-kriging approach was based on existing geological information as ancillary data
and provided prediction performances for the three MWD treatments that were as good as
those  using  the  pedotransfer  functions.  However,  compared  with  pedotransfer  functions,
which also provided an acceptable level of prediction, the regression-kriging approach has
advantages:  the  method  is  easier  and  cheaper  to  map  MWD  because  laboratory  soil
analyses  are  not  required,  and  MWD  map  prediction  can  be  established  with  related
uncertainties  that  can  be  very  useful  for  management  considerations.  For  example,  the
approach is used to evaluate interrill  erodibility parameters as a direct input in distributed
erosion models (e.g., Gumiere et al., 2010). Further investigations in similar conditions are
required to verify that the geological information remains the first order factor to map soil
aggregate stability in the Maghreb agricultural region dominated by rain fed crops. It is also
necessary  to  test  whether  MWD  prediction  performance  using  the  regression-kriging
approach can be improved by including additional ancillary data such as topography, land
use, land management, and biological activity in the first regression step of the method. 
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Table 1: Descriptive statistics for the primary physical and chemical characteristics of the 
sampled soils.

Mean SD Median Min. Max.
EC mmhos.cm-1 0.27 0.26 0.19 0.04 1.66
Clay (g.kg-1) 329.0 186.7 294.0 46.0 747.0
Silt (g.kg-1) 163.6 61.4 179.0 39.0 332.0
Sand (g.kg-1) 507.4 229.6 520.0 41.0 909.0
OC (g.kg-1) 10.4 4.6 9.7 2.1 28.0
N (g.kg-1) 0.9 0.4 0.9 0.3 2.3
pHwater 8.3 0.3 8.3 6.7 9.0
CaCO3 (g.kg-1) 67.7 88.3 30.0 1.0 375.0
CEC cmol.kg-1 15.4 7.8 14.4 2.8 34.1

Fe (g.kg-1) 10.7 5.2 9.2 2.4 22.6

Table 2: Coefficients of correlation, r, between aggregate stability indexes and measured soil 
parameters.

MWDFW MWDSW MWDMB MWDmean EC Clay Silt Sand OC N pH CaCO3 CEC 

MWDSW 0.557**

MWDMB 0.504** 0.650**

MWDmean 0.765** 0.885** 0.876**

EC -0.062 -0.148 0.048 -0.060

Clay 0.611** 0.450** 0.584** 0.638** 0.048

Silt 0.295** 0.507** 0.591** 0.569** 0.106 0.614**

Sand -0.576** -0.502** -0.633** -0.671** -0.067
-
0.977**

-
0.767**

OC -0.093 -0.020 -0.096 -0.080 0.396** 0.047 0.343** -0.130

N -0.058 0.045 0.007 0.005 0.430** 0.149 0.443** -0.240* 0.942**

pH 0.166 0.308** 0.381** 0.352** 0.128 0.419** 0.443**
-
0.459** 0.039 0.132

CaCO3 -0.162 0.056 -0.080 -0.061 0.043 -0.113 0.232* 0.030 0.432** 0.384** 0.267*

CEC 0.581** 0.407** 0.513** 0.579** 0.062 0.973** 0.653**
-
0.966** 0.156 0.240* 0.389** -0.114

Fe 0.588** 0.505** 0.639** 0.678** 0.010 0.879** 0.565**
-
0.866** -0.028 0.099 0.324** -0.269* 0.828**

 Significant at the level of 0.05 (*) and 0.01 (**). 

Table 3: Comparison of prediction performance using RMSE, CVRMSE and CE criteria 
established through a leave-one-out cross-validation technique for the two tested methods. 

RMSE CVRMSE CE
Pedotransfer Regression-

kriging
Pedotransfer Regression-

kriging
Pedotransfer Regression-

kriging
MWDFW 0.39 0.40 0.43 0.44 0.29 0.24
MWDSW 0.55 0.49 0.31 0.27 0.27 0.42
MWDMB 0.49 0.52 0.40 0.42 0.47 0.41
MWDmean 0.37 0.36 0.28 0.27 0.47 0.50
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a b

Fig. 1: a) Location of the study area in the Cap Bon region in northeastern Tunisia and those 
of the 113 soil samples (white dots). b) Geological information derived from the Tunisian 
geologic map 1/50000 (Bensalem, 1989) categorized into 5 geological units (1: alternation of 
soft-sandy layers and the thin layers of hard calcareous sandstone with Pliocene marine 
origin; 2: marls intercalated with Serravalian-Tortonian sandstone beds; 3: geological unit 1 
encrusted with limestone; 4: recent coastal deposits; 5: recent and old terrestrial deposits 
near the wadis). X- and Y-axes are Lambert Tunisian coordinates in meters.
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Fig. 2: Distribution of soil samples (n = 113) inside the texture triangle (S: sand, C: clay, S: 
silt, L: loam).
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Fig. 3: Box plot of aggregate stability levels according to the three tests for the 113 soil 
samples.
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Fig. 4: Scatter plots of observed versus predicted MWD indexes using pedotransfer 
functions. Black line is the x=y line, gray lines are the confidence limits (±95%). r: regression 
coefficient, RMSE: root mean squared error, CVRMSE: normalized root mean squared error, 
CE: model efficiency.
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Fig. 5: Experimental semivariograms derived from MWD values for the 113 soil samples, and
the envelopes (confidence =95%) obtained by permutation (Nsim = 100) from the measured 
MWD.
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Fig. 6: Experimental semivariograms conducted on the residuals of the ANOVA prediction 
models of MWD indexes based on geological classes, and the confidence envelopes (95%) 
obtained by permutation (Nsim = 100).
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a)

b)

Fig. 7: Maps of a) the three MWD indexes and the average predicted by the regression-
kriging approach, i.e., a combination of ANOVA based on geological information and 
krigeage prediction on the residuals values, and b) the associated standard deviations of 
these predictions. X- and Y-axes are Lambert Tunisian coordinates in meters.
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