
HAL Id: hal-01470940
https://hal.science/hal-01470940v2

Preprint submitted on 25 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Emptiness of zero automata is decidable
Mikolaj Bojańczyk, Hugo Gimbert, Edon Kelmendi

To cite this version:
Mikolaj Bojańczyk, Hugo Gimbert, Edon Kelmendi. Emptiness of zero automata is decidable. 2017.
�hal-01470940v2�

https://hal.science/hal-01470940v2
https://hal.archives-ouvertes.fr

Emptiness of zero automata is decidable∗

Mikołaj Bojańczyk1, Hugo Gimbert2, and Edon Kelmendi2

1 Institute of Informatics, University of Warsaw, Poland

bojan@mimuw.edu.pl

2 LaBRI, Université de Bordeaux, CNRS, France

{hugo.gimbert, edon.kelmendi}@labri.fr

Abstract

Zero automata are a probabilistic extension of parity automata on infinite trees. The satisfiability

of a certain probabilistic variant of mso, called tmso + zero, reduces to the emptiness problem

for zero automata. We introduce a variant of zero automata called nonzero automata. We prove

that for every zero automaton there is an equivalent nonzero automaton of quadratic size and

the emptiness problem of nonzero automata is decidable, with complexity np ∩ co-np. These

results imply that tmso + zero has decidable satisfiability.

1998 ACM Subject Classification F.4.3 Formal Languages, F.4.1 Mathematical Logic

Keywords and phrases tree automata, probabilistic automata, monadic second-order logic

1 Introduction

In this paper, we prove that emptiness is decidable for two classes of automata, namely zero

and nonzero automata. Zero automata were introduced as a tool for recognizing models of

a probabilistic extension of MSO on infinite trees [1]. Nonzero automata, introduced in this

paper, are equivalent to zero automata, but have simpler semantics.

Both zero and nonzero automata are probabilistic extensions of parity automata on

infinite trees. Here we focus on the case of binary trees. The automaton performs a random

walk on the infinite binary input tree: when the automaton is in a state q on a node

labelled with a, it selects non-deterministically a transition (q, a, r0, r1) and moves with

equal probability 1
2

either to the left node in state r0 or to the right node in state r1.

The set of branches of the infinite binary tree is equipped with the uniform probability

measure, which is used to define the acceptance condition. There are two variants of the

acceptance condition, one for zero automata and one for nonzero automata

A nonzero automaton is equipped with a total order ≤ on its set of states Q and three

accepting subsets of states F∀, F1 and F>0. A run is accepting if:

a) on every branch the limsup state (i.e. the maximal state seen infinitely often) is in F∀,

b) with probability 1 the limsup state is in F1,

c) every time the run visits a state in F>0 there is nonzero probability that all subsequent

states are in F>0.

Condition (a) is the classical parity condition for tree automata and condition (b) is equi-

valent to the qualitative condition from [4]. Condition (c) seems to be new. Conditions (a)

and (b) are used to define the acceptance condition of zero automata as well, the difference

between zero and nonzero automata lies in condition (c).

∗ The research of M. Bojańczyk is supported by the ERC grant LIPA under the Horizon 2020 framework.
H. Gimbert and E. Kelmendi are supported by the French ANR project "Stoch-MC" and "LaBEX CPU"
of Université de Bordeaux.

23:2 Emptiness of zero automata is decidable

The paper [1] introduced a variant of mso on infinite trees with a probabilistic quantifier,

called tmso+zero, inspired by probabilistic mso from [8]. In the case where zero is the unary

predicate which checks whether a set of branches has probability 0, the contribution of [1] was

a proof that for every formula of this logic one can compute a zero automaton which accepts

the same trees. The logic is powerful enough to formulate properties like "every node in the

tree has a descendant node labelled with b and the set of branches with infinitely many b

has probability 0". As argued in [1], the motivation for this logic is twofold. First, it extends

various probabilistic logics known in the literature, e.g. qualitative probabilistic ctl* [7],

or qualitative probabilistic ctl* extended with ω-regular path properties [2]. Second, the

logic, although less general that mso, represents a robust class of languages of infinite trees

that goes beyond classical mso, and thus falls under the scope of the programme of searching

for decidable extensions of mso.

The emptiness problem for zero automata was not solved in [1], thus leaving open the

logic’s decidability. A step toward an emptiness algorithm was made in [9], where it was

shown that for subzero automata – the special case of zero automata where only conditions

(a) and (b) are used – one can decide if the recognised language contains a regular tree. In

this paper we prove that zero and nonzero automata have decidable emptiness, and therefore

also the logic from [1] has decidable satisfiability.

The main results of this paper are:

i) For every zero automaton there is an equivalent nonzero automaton of quadratic size.

ii) A nonzero automaton with F∀ = Q is nonempty if and only if its language contains a

regular tree of size |Q|. This is decidable in polynomial time.

iii) The emptiness problem of nonzero automata is in np ∩ co-np.

To prove iii) we provide a reduction of the emptiness problem to the computation of the

winner of a parity game called the jumping game. For that we rely on ii): the states of the

jumping game are regular runs of a nonzero automaton where F∀ = Q. According to i) the

emptiness problem for zero automata is in np ∩ co-npas well.

The plan of the paper is as follows. In Section 2 we introduce zero and nonzero automata

and state our main result iii) (Theorem 3). In Section 3 we show i) (Lemma 5). In Section 4

we focus on the special case where Q = F∀ and show ii) (Theorem 10). In Section 5 we

introduce jumping games and combine the previous results to provide a proof of iii).

2 Zero and nonzero automata

This section introduces trees and nonzero and zero automata.

Trees, branches and subtrees.

The automata of this paper describe properties of infinite binary labelled trees. A node in

a tree is a sequence in {0, 1}∗. A tree over an alphabet Σ is a function t : {0, 1}∗ → Σ.

We use standard terminology for trees: node, root, left child, right child, leaf, ancestor and

descendant. A branch is a sequence in {0, 1}ω, viewed as an infinite sequence of left or right

turns. A branch visits a node if the node is a prefix of the branch.

A subtree is a non-empty and ancestor-closed set of nodes. A subtree is leaf-free if each

of its nodes has at least one child in the subtree. A branch of a subtree is a branch which

visits only nodes of the subtree.

M. Bojańczyk, H. Gimbert and E. Kelmendi 23:3

Probability measure over branches.

We use the coin-flipping measure on {0, 1}ω: each bit is chosen independently at random,

with 0 and 1 having equal probability, and every Borel subset of {0, 1}ω is measurable. The

probability of a subtree is the probability of the set of branches of the subtree. The inner

regularity of the coin-flipping measure (see e.g. [6, Theorem 17.10]) implies:

◮ Lemma 1. The probability of a measurable set E is the supremum of the probabilities of

the subtrees whose every branch belongs to E.

Nonzero automata

Intuitively, a nonzero automaton is a nondeterministic parity tree automaton which has the

extra ability to check whether the set of branches satisfying the parity condition has zero or

nonzero probability.

◮ Definition 2. The syntax of a nonzero automaton is a tuple

Q
︸︷︷︸

states

Σ
︸︷︷︸

input alphabet

δ ⊆ Q × Σ × Q2

︸ ︷︷ ︸

transitions

,

with all components finite, together with a total order ≤ on Q and three subsets

F∀, F1, F>0 ⊆ Q .

A run of the automaton on an input tree t : {0, 1}∗ → Σ is an infinite binary tree

r : {0, 1}∗ → Q whose root is labelled by the maximal state of Q, also called the initial

state and which is consistent with the transition relation in the usual sense, i.e. ∀v ∈

{0, 1}∗, (r(v), t(v), r(v0), r(v1)) ∈ ∆. Define the limsup of a branch of the run to be the

maximal state that appears infinitely often on the branch.

The run is accepting if it is surely, almost-surely and nonzero accepting:

surely accepting: every branch has limsup in F∀.

almost-surely accepting: the set of branches with limsup in F1 has probability 1.

nonzero accepting: for every node v with state in F>0, the set of branches which visit

v and visit only F>0-labelled nodes below v has nonzero probability.

The emptiness problem

The emptiness problem asks whether an automaton has an accepting run. Our main result:

◮ Theorem 3. The emptiness problem of nonzero automata is decidable in np ∩ co-np.

Proof. This is a corollary of a series of intermediary results. In section 4 we focus on the

special case where F∀ = Q and provide an polynomial time algorithm to decide emptiness

in this special case (Theorem 10). In section 5 we reduce the emptiness problem for nonzero

automata to the computation of the winner in a parity game called the jumping game

(Lemma 17) and give an np ∩ co-npalgorithm to compute the winner of the jumping game

(Lemma 18). ◭

Zero automata

Nonzero automata are a variant of zero automata introduced in [1]. A zero automaton differs

slightly from a nonzero automaton in that it uses a notion of “seed state” for the nonzero

acceptance condition. On top of F∀, F1 and F>0 there is a subset Qseed ⊆ Q. A run is

accepting if it is surely, almost-surely and zero accepting:

CVIT 2016

23:4 Emptiness of zero automata is decidable

zero accepting: for every node v with state q ∈ Qseed, there is nonzero probability that

the run visits only states ≤ q below v and has limsup in F>0.

In the next section, we show that every zero automaton can be transformed in an equi-

valent nonzero automaton of quadratic size (Lemma 5). Combined with Theorem 3,

◮ Corollary 4. The emptiness problem of zero automata is in np ∩ co-np.

According to [1], this implies that tmso + zero has decidable satisfiability when zero is the

unary predicate checking that a set of branches has probability 0.

An example: the dense but not very dense language

A tree over alphabet {a, b} is dense but not very dense if:

1. every node has a descendant with label a; and

2. there is zero probability that a branch visit infinitely many nodes with letter a.

This language is non-empty, contains no regular tree and is recognised by a nonzero auto-

maton. This automaton has three states, totally ordered as follows:

s
︸︷︷︸

searching for a

< n
︸︷︷︸

not searching for a

< f
︸︷︷︸

just found a

.

The automaton begins in state f in the root. When the automaton reads a node with label

b, then it sends s to some child and n to the other child, regardless of its current state.

Choosing which child gets s and which child gets n is the only source of nondeterminism in

this automaton. When the automaton sees letter a, it sends f to both children regardless

of its current state. The acceptance condition is:

F∀ = {n, f} F1 = {n} F>0 = ∅ .

3 From zero to nonzero automata

In this section we show that nonzero automata are as expressive as zero automata.

◮ Lemma 5. For every zero automaton one can compute a nonzero automaton of quadratic

size which accepts the same trees.

The rest of the section is dedicated to the proof of Lemma 5, which is a direct corollary

of Lemma 7 and Lemma 8 below.

Without loss of generality, we assume that in every zero automaton F>0 ⊆ F1 ⊆ F∀.

Changing F1 for F1 ∩ F∀ and F>0 for F>0 ∩ F1 does not modify the set of accepting runs

of a zero automaton, since all branches should have limsup in F∀ and if the limsup is equal

with nonzero probability to some q ∈ F>0 then necessarilly q ∈ F1. By contrast, for nonzero

automata there is no obvious reason for the same remark to hold.

We make use of an intermediary acceptance condition. Let r be a run. We say that a

path from a node v to a node w is seed-consistent if whenever the path visits a seed state s,

subsequent states are ≤ s.

Strong zero acceptance condition: for every node v labelled by a seed state, there

is a seed-consistent path from v to a strict descendant w of v such that the state r(w)

of w is in F>0 and there is nonzero probability that the run

visits only states ≤ r(w) below w,

M. Bojańczyk, H. Gimbert and E. Kelmendi 23:5

has limsup r(w),

in case r(w) 6∈ Qseed, visits no seed state below w,

in case r(w) ∈ Qseed, visits no seed state other than r(w) below w.

Actually, the strong zero and zero acceptance conditions coincide (proof in appendix):

◮ Lemma 6. A run is zero accepting if and only if it is strongly zero accepting.

Construction of the nonzero automaton

Intuitively, every zero automaton can be simulated by a nonzero automaton which guesses

on the fly a run of the zero automaton and checks simultaneously that the guessed run is

strongly zero accepting. Whenever the automaton visits a node v with a seed state then it

enters in the next step a path-finding state and guesses a seed-consistent path to a node w

which is a witness of the strong zero condition. Once on the node w the automaton enters

a subtree-guessing state and starts guessing a leaf-free subtree of the run, whose nodes

are labelled by states ≤ r(w), whose branches have limsup r(w) and which has nonzero

probability.

There are some verifications to do in order to certify that the guessed run is strongly zero

accepting. The surely accepting condition is used to prevent the automaton to stay forever

in the path-finding mode and also to check that every branch of the subtree has limsup

r(w). The nonzero condition is used to check that the subtree has nonzero probability. To

perform these verifications, the nonzero automaton stores some data in its control state.

In path-finding mode the automaton records the smallest seed state seen so far in order to

check on-the-fly that the path from v to w is seed-consistent. In subtree-guessing mode the

automaton keeps track of the state r(w).

The set of states of this automaton is denoted R, every state in R has as a first component

a control state Q of the zero automaton. Precisely, R is the union of three sets:

normal states: Q

path-finding states: {(q, s) | q ∈ Q, s ∈ Qseed, q ≤ s},

subtree-guessing states: {(q, f, ∗) | q ∈ Q, f ∈ F>0, q ≤ f, (q 6∈ Qseed ∨ q = f)}.

We equip R with any order ≺ such that

the projection on the first component Π1 : (R, ≺) → (Q, <) is monotonic,

(q, s) ≺ q for every q ∈ Q and s ∈ Qseed with q ≤ s.

The zero, almost-surely and surely accepting conditions are defined respectively as:

G>0 = the set of subtree-guessing states,

G1 = F1 ∪ {(f, f, ∗) | f ∈ F>0},

G∀ = F∀ ∪ {(f, f, ∗) | f ∈ F>0} .

The transitions of the automaton can be informally described as follows. The nonzero

automaton guesses on the fly a run ρ : {0, 1}∗ → Q of the zero automaton by storing the

value of ρ(v) as the first component of its own control state on the node v. The nonzero

automaton stays in the set of normal states as long as the run does not enter a seed state.

On a node v labelled by s ∈ Qseed, the nonzero automaton starts looking for a path to

a descendant node w that satisfies the strong zero condition. For that in the next step

the automaton enters either a path-finding or a subtree-guessing state. While in a path-

finding state, the automaton guesses on the fly a seed-consistent path. Whenever the run

is in a nonzero state f ∈ F>0 the nonzero automaton can enter the subtree-guessing state

CVIT 2016

23:6 Emptiness of zero automata is decidable

(f, f, ∗), or not. While in subtree-guessing mode the second component is constant, and the

automaton control state is of type (q, f, ∗) with q ≤ f and q 6∈ Qseed unless q = f ∈ Qseed.

From a subtree-guessing state the automaton may switch back any time to a normal state.

Formally, for every transition q → r0, r1 of the zero automaton, there is a transition

q′ → r′
0, r′

1

in the nonzero automaton if the first component of q′ is q and

r′
0 =







r0 whenever q′ is not path-finding

(r0, r0, ∗) whenever

{

q ∈ Qseed, q′ = q and r0 ∈ F>0 and r0 ≤ q

or q′ = (q, s) and r0 ∈ F>0 and r0 ≤ s,

(r0, f, ∗) whenever q′ = (q, f, ∗) and r0 ≤ f and (r0 6∈ Qseed ∨ r0 = f).

The possible values of r′
1 are symmetric. There are also left path-finding transitions: for

every seed states s, s′ ∈ Qseed such that q ≤ s and r0 ≤ s there are transitions

q′ → (r0, s′), r1 where q′ =

{

q or (q, q) if q = s

(q, s) otherwise
and s′ =

{

s if r0 6∈ Qseed

r0 if r0 ∈ Qseed.

There may also be a symmetric right path-finding transition (q, s) → r0, (r1, s′) when the

symmetric conditions hold.

The next two lemmas relate the accepting runs of the zero and the nonzero automata,

their proofs can be found in the appendix.

◮ Lemma 7. Let d : {0, 1}∗ → R be an accepting run of the nonzero automaton. Then its

projection r = Π1(d) on the first component is an accepting run of the zero automaton.

◮ Lemma 8. If the zero automaton has an accepting run r : {0, 1}∗ → Q then the nonzero

automaton has an accepting run d : {0, 1}∗ → R such that r = Π1(d).

4 Emptiness of F∀-trivial automata is in NP

A run of a nonzero automaton needs to satisfy simultaneously three conditions, which cor-

respond to the accepting sets F∀, F1, F>0. For a subset

I ⊆ {F∀, F1, F>0}

define I-automata to be the special case of nonzero automata where only the acceptance

conditions corresponding to I need to be satisfied. These are indeed special cases: ignoring

F>0 can be achieved by making it empty, ignoring F1 can be achieved by making it equal

to F∀, and ignoring F∀ can be achieved by making it equal to all states Q.

Generalising parity automata, with standard and qualitative semantics

A {F∀}-automaton is a parity automaton. Thus solving emptiness for nonzero automata

is at least as hard as emptiness for parity automata on trees, which is polynomial time

equivalent to solving parity games, in np ∩ conp or in quasi-polynomial time [3].

A {F1}-automaton is the same as a parity automaton with qualitative semantics as

introduced in [4]. Emptiness for such automata can be solved in polynomial time using

standard linear programming algorithms for Markov decision processes.

M. Bojańczyk, H. Gimbert and E. Kelmendi 23:7

Subzero automata

A {F1, F∀}-automaton is the same as a subzero automaton as considered in [9]. In [9], it was

shown how to decide if a subzero automaton accepts some regular tree. Since some subzero

automata are nonempty but accept no regular trees, see e.g. the example in [1], the result

from [9] does not solve nonemptiness for subzero automata.

F∀-trivial automata

In a {F1, F>0}-automaton, the surely accepting condition is trivial, i.e. F∀ = Q. We call

such automata F∀-trivial. The acceptance of a run of a F∀-trivial automaton depends only

on the probability measure on Qω induced by the run, individual branches do not matter.

◮ Definition 9 (Positional run). A run is positional if whenever the states of two nodes

coincide then the states of their left children coincide and the states of their right children

coincide.

◮ Theorem 10. If a F∀-trivial automaton has an accepting run, then it has a positional

accepting run. Emptiness of F∀-trivial automata can be decided in polynomial time.

The proof of this theorem relies on the notion of acceptance witnesses.

◮ Definition 11 (Transition graph and acceptance witness). Let D be a set of transitions.

The transition graph of D, denoted GD, is the directed graph whose vertices are all

states appearing in one of the transitions in D, denoted QD, and whose edges are induced

by the transitions in D: for every (q, a, l, r) ∈ D both (q, l) and (q, r) are edges of GD.

The set D is an acceptance witness if it satisfies the four following conditions:

i) QD contains the initial state of the automaton and GD has no dead-end,

ii) the maximum of every bottom strongly connected component (BSCC) of GD is in F1,

iii) every BSCC of GD is either contained in F>0 or does not intersect F>0,

iv) from every state in F>0 ∩ QD there is a path in F>0 ∩ QD to a BSCC contained in F>0.

◮ Lemma 12. If a F∀-trivial automaton has an acceptance witness, it has a positional

accepting run.

Proof. The proof is by induction on ND = |D| − |QD|. Since GD has no dead-end, every

state in QD is the source of a transition in D thus ND ≥ 0.

If ND = 0 then for every state q ∈ QD there is a unique transition δq = (q, aq, lq, rq). Let

ρ be the positional run whose root has the initial state and every node with vertex q ∈ QD

has children lq and rq, which is well-defined according to property i). We show that ρ is an

accepting run. The graph GD can be seen as a Markov chain, with probability either 1 or
1
2

on every edge, depending on the outdegree. The probability measure on Qω
D produced by

the random walk on ρ coincide with the probability measure on Qω
D produced by this finite

Markov chain: indeed both measures coincide on finite cylinders q0 · · · qnQω
D. Basic theory

of finite homogenous Markov chain implies that almost-surely every branch of the run ends

up in one of the BSCCs of GD and visits all its states infinitely often. Thus property ii)

ensures that the run ρ is almost-surely accepting. Properties iii) and iv) guarantee that the

run is moreover nonzero-accepting.

Assume now that ND > 0. We show that there is a strictly smaller acceptance witness

D′ (D. Let q ∈ QD which is the source of several transitions in D, then D′ is obtained

by removing from D all these transitions except one. To choose which transition δ to keep,

we pick up the shortest path q = q0 . . . qn in GD of length ≥ 1 which leads to the maximal

CVIT 2016

23:8 Emptiness of zero automata is decidable

state of one of the BSCCs of GD. Moreover if q ∈ F>0 we require the whole path to stay in

F>0. By definition of GD there is at least one transition in D whose origin is q and one of

the two successors is q1. To get D′ we delete all other transitions with source q from D.

Clearly property i) is preserved by this operation. To address properties ii)-iv), we show

that every BSCC B′ of GD′ is either a BSCC of GD or contained in the BSCC B of GD

whose maximum is qn, in which case max B = max B′ = qn. There are two cases. If B′

does not contain qn then it does not contain q either (because q = q0 . . . qn is still a path in

GD′). Since the only difference between GD and GD′ are the outgoing transitions from q

then B′ is actually a BSCC of GD. If B′ contains qn then B′ ⊆ B (because there are less

edges in GD′ than in GD) and since qn = max B then max B = max B′.

As a consequence property ii) and iii) are preserved. And property iv) is preserved as

well: in case q 6∈ F>0 then there is nothing to prove and in case q ∈ F>0 then q = q0 . . . qn

is still a path in GD′ , with all vertices in F>0. Moreover the set of vertices from which qn is

accessible is the same in GD and GD′ thus qn is in a BSCC of GD′ . ◭

A strong version of the converse implication of Lemma 12 holds:

◮ Lemma 13. If a F∀-trivial automaton has an accepting run, it has an acceptance witness.

Proof. We fix an accepting run ρ on some input tree t. To extract an acceptance witness

from ρ, we make use of the notion of end-component introduced in [5].

◮ Definition 14 (End-component). The transition of a node v is d(v) = (ρ(v), t(v), ρ(v0), ρ(v1)).

For every branch b, we denote ∆∞(b) the set of transitions labelling infinitely many nodes

of the branch. For every subset D ⊆ ∆ we denote BD the set of branches b such that

∆∞(b) = D. A set of transitions D ⊆ ∆ is an end-component of the run if BD has nonzero

probability.

Call a branch b even if for every transition δ = (q, a, l, r) ∈ ∆∞(b), not only the state q

but also the states l and ρ appear infinitely often on the branch in the run ρ. Almost-surely

every branch is even, because each time a branch visits a node with transition δ it proceeds

left or right with equal probability 1
2
. As a consequence,

◮ Lemma 15. Let D be an end-component of the run. Then the transition graph of D has

no dead-end, is strongly connected and its maximal state is in F1.

Proof. Denote GD the transition graph of D, with states QD. Since D is an end-component

then BD has non-zero probability, and since almost every branch is even then BD contains

at least one even branch b. The set of states appearing infinitely often on b is exactly QD.

By removing a prefix long enough of b so that only states in QD occur on the remaining

suffix then one obtains a path in GD which visits every state in QD infinitely often. Thus

GD has no dead-end and is strongly connected. Moreover every even branch in BD has

limsup max QD and since the run is almost-surely accepting then max QD ∈ F1. ◭

Let D be the collection of all end-components of the run ρ. We define two subsets of

D, denoted respectively D0 and D1, which collect the end-components whose states are

respectively included in F>0 and disjoint from F>0. Let D0 ⊆ ∆ (resp. D1 ⊆ ∆) be the

union of all end-components in D0 (resp. in D1). These transitions are easy to reach:

◮ Lemma 16. Every node v has a descendant w whose transition belongs to D0 ∪ D1.

Moreover if the state of v is in F>0 then w can be chosen such that the path v to w is

labelled by F>0 and the transition is in D0.

M. Bojańczyk, H. Gimbert and E. Kelmendi 23:9

Proof. Let v be a node and Sv the set of branches which visit v and, in case v is labelled

by F>0, visit only F>0-labelled nodes below v. Since the run is accepting then Sv has

positive probability. By definition of end-components, almost-every branch is in
⋃

D∈D
BD.

Thus there exists an end-component D such that BD ∩ Sv has positive probability. As a

consequence, v has a descendant w whose transition is in D. Since almost-every branch is

even and BD ∩Sv has positive probability then there is at least one branch in BD ∩Sv which

visits infinitely often all states appearing in QD. In case v is labelled by F>0, this implies

that QD ⊆ F>0 thus D ∈ D0, and terminates the proof of the second statement. In case v

has no descendant labelled by F>0 this implies that QD ∩ F>0 = ∅ thus D ∈ D1, and the

first statement holds in this case. In the remaining case, v has a descendant v′ labelled with

F>0, which itself has a descendant w whose transition belongs to some D ∈ D0, thus the

first statement holds for v. ◭

We terminate the proof of Lemma 13. Let G0 (resp. G1) the transition graph of D0 (resp.

D1) and denote Q0 (resp Q1) the set of states of G0 (resp. G1).

Let D be the set of all transitions appearing in the run. According to Lemma 16, in the

transition graph GD, Q0 ∪ Q1 is accessible from every state q ∈ QD and moreover Q0 is

accessible from every state q ∈ QD ∩ F>0 following a path in QD ∩ F>0.

We say that an edge (q, r) of GD is progressive if q 6∈ Q0 ∪ Q1 and either (q ∈ F>0 and

r ∈ F>0 and (q, r) decrements the distance to Q0 in GD) or (q 6∈ F>0 and (q, r) decrements

the distance to Q0 ∪ Q1 in GD). Every state in QD \ (Q0 ∪ Q1) is the source of at least one

progressive edge.

We denote D+ the union of D0 and D1 plus all the transitions δ = (q, a, r0, r1) ∈ D such

that either (q, r0) or (q, r1) is progressive. Then D+ has all four properties of Lemma 12.

Denote G+ the transition graph associated to D+. Property i) holds because every state in

QD, including the initial state, is either in Q0 ∪ Q1 or is the source of a progressive edge.

Remark that the BSCCs of G+ are exactly the BSCCs of G0 and G1. Since both G0 and

G1 are unions of strongly connected graphs, they are equal to the union of their BSCCs.

The BSCCs of G0 and G1 are still BSCCs in G+ because no edges are added inside them

(progressive edges have their source outside G0 and G1). Following the progressive edges

leads to G0 or G1 from every state in G+, thus there are no other BSCCs in G+.

This implies property ii) because, according to Lemma 15, both graphs G0 and G1 are

the union of strongly connected graphs whose maximal states are in F1. This also implies

property iii) since Q0 ⊆ F>0 and Q1 ∩ F>0 = ∅. Property iv) is obvious for states in Q0

because Q0 is a union of BSCCs included in F>0. Property iv) holds as well for states in

(QD ∩F>0)\Q0, the path to Q0 is obtained following the progressive edges in F>0 ×F>0. ◭

Proof of Theorem 10. According to Lemma 13 and Lemma 12, non-emptiness of a F∀-

trivial automaton is equivalent to the existence of an acceptance witness, which implies the

existence of a positional accepting run. Guessing a subset of transitions and checking it is

an acceptance witness can be done in non-deterministic polynomial time.

Actually it is possible to check the existence of an acceptance witness in polynomial time.

Using standard algorithms for Markov decision processes, one can compute the set R0 (resp.

R1) of states q such that there exists an almost-surely accepting run with root state q and

whose states are labelled by F>0 (resp. by Q \ F>0) (see [4, Corollary 18] for more details).

We transform the F∀-trivial automaton A into another F∀-trivial automaton A′ as fol-

lows. In A′ every state q in R0 ∪ R1 is turned into an absorbing state: for every letter a

there is a transition (q, a, q, q) and no other transition with source q. Moreover we change

the almost-sure condition and set it equal to R0 ∪R1. The positive condition is not modified.

CVIT 2016

23:10 Emptiness of zero automata is decidable

We claim that A has an accepting run if and only if A′ has one. Assume A has an

accepting run. Then it has an acceptance witness D. According to ii), every BSCC B of D

is included either in R0 (if B ⊆ F>0) or in R1 (if B ∩ F>0 = ∅). Thus D can be turned into

an acceptance witness of A′ by exchanging any transition (q, a, l, r) with q ∈ R0 ∪ R1 into

the absorbing transition (q, a, q, q). Conversely, assume A′ has an accepting run ρ′. Then

by definition of R0 and R1 every state q ∈ R0 ∪ R1 is an acceptance witness of some almost-

surely accepting run ρq with root q and all nodes in F>0 or out of F>0. Then we can build

an accepting run of A by modifying ρ′ as follows: for every node labelled by q ∈ R0 ∪ R1

with no ancestor labelled by R0 ∪R1 we replace the subtree by ρq. Since almost-surely every

path reaches R0 ∪ R1 then the new run is almost-surely and positively accepting.

The criteria for D to be an acceptance witness of A′ are simple: QD should contain the

initial state and moreover:

a) GD has no dead-end,

b) from every state in QD there is a path in QD to R1 ∪ R0.

c) from every state in F>0 ∩ QD there is a path in F>0 ∩ QD to R0.

Notice that properties a), b) and c) are closed by union: if both D1 and D2 have these three

properties then D1 ∪ D2 as well. And the largest set of transitions Dmax with properties a)

b) and c) is easy to compute in polynomial time: start with Dmax equal to all transitions

and as long as possible remove:

any transition leading to a dead-end,

all transitions inside a BSSC disjoint from R0 and R1,

all transitions (q, a, q0, q1) such that q ∈ F>0 and R0 is not reachable from q by a path

in F>0 ∩ QDmax
.

An invariant of this process is that all transitions of any acceptance witness are preserved.

Finally, A′ has an accepting run if and only if QDmax
contains the initial state. ◭

5 Emptiness of nonzero automata is in np ∩ co-np

In this section we show how to decide the emptiness of nonzero automata. The main

ingredient are jumping games.

Call a run {F1, F>0}-accepting if it satisfies the almost-surely and the nonzero acceptance

condition, but it does not necessarily satisfy the surely accepting condition, and the root

may not be labelled by the initial state either.

The jumping game.

For a run ρ, define its profile Π to be following set of state pairs:

Π = {(q, m) : some non-root node in ρ has state q

and m is the maximal state of its strict ancestors} .

The jumping game is a parity game played by two players, Automaton and Pathfinder.

Positions of Automaton are states of the automaton and positions of Pathfinder are profiles

of {F1, F>0}-accepting runs. The game is an edge-labelled parity game, i.e. the priorities

are written on the edges. The edges originating in Automaton positions are of the form

q
q

→ Π such that Π is the profile of some {F1, F>0}-accepting run with root state q.

The edges originating in Pathfinder positions are of the form

Π
m
→ q such that (q, m) ∈ Π.

M. Bojańczyk, H. Gimbert and E. Kelmendi 23:11

We say that Automaton wins the jumping game if he has a winning strategy from the

position which is the initial state of the automaton. If the play ever reaches a dead-end,

i.e. a state which is not the root of any {F1, F>0}-accepting run, then the game is over and

Automaton loses. Otherwise Automaton wins iff the limsup of the states is in F∀.

Lemmas 17 and 18 below establish that nonemptiness of a nonzero automaton is equi-

valent to Automaton winning the jumping game, and this can be decided in np.

ρ accepting

m1

q1

m2

q2

m3

lim sup ∈ F∀

q0

ρq0

dq0

P ≥ 1
2

lim sup ∈ F1

q1
q2

q3

dq0

dq1

dq3

dq2

lim sup ∈ F∀

Figure 1 The left picture illustrates how an accepting run is turned into a winning strategy for

Automaton in the jumping game, the two other pictures illustrate the converse transformation.

◮ Lemma 17. The automaton is nonempty if and only if Automaton wins the jumping game.

Proof. The proof transforms an accepting run ρ of the nonzero automaton into a winning

strategy σ of Automaton, and back, this is illustrated by Fig. 1.

Assume first that the nonzero automaton has an accepting run ρ. Automaton can win

the jumping game by playing profiles of runs obtained as subtrees of ρ rooted at deeper and

deeper depths. For a start, Automaton plays the profile Π0 of ρ. Then Pathfinder chooses

some pair (q1, m1) ∈ Π0, by definition of profiles this corresponds to some non-root node

v1 of ρ labelled by q1, m1 is the maximal state of the strict ancestors of v1. At each step

n > 0, Pathfinder chooses a pair (qn, mn) ∈ Πn corresponding to some node vn+1 whose

vn is a strict ancestor, then Automaton plays the profile Πn+1 of the subtree ρn rooted in

vn. Since ρ is accepting then a fortiori ρn is {F1, F>0}-accepting. The nodes v1, v2, . . . and

their ancestors form a branch of ρ, whose limsup is in F∀ because ρ is surely accepting. This

limsup is equal to lim supn mn thus Automaton wins the play.

Conversely, we use a positional winning strategy of Automaton to build an accepting

run of the nonzero automaton. Denote W the set of states winning for Automaton. With

every state q in W we associate the profile Πq chosen by the positional winning strategy of

Automaton and a {F1, F>0}-accepting run ρq with profile Πq.

We show the existence of a leaf-free subtree dq of ρq such that:

a) the set of branches of dq has probability ≥ 1
2
,

b) every branch of dq has limsup in F1,

c) for every node v of dq with state in F>0, the set of branches of dq which visit v and visit

only F>0-labelled nodes below v has nonzero probability.

Since ρq is almost-surely accepting, then according to Lemma 1, there is a subtree dq of

ρq whose set of branches has probability ≥ 1
2

and all of them have limsup in F1 (while in the

CVIT 2016

23:12 Emptiness of zero automata is decidable

run ρq there may be a non-empty set of branches with limsup in F∀ \ F1, with probability

zero). Since we are only interested in branches of dq, we can assume that dq is leaf-free.

This guarantees properties a) and b) but not c). For every node v, define Lv the set of

branches that visit v, have limsup in F1 and visit only F>0-labelled nodes below v. Since ρq

is {F1, F>0}-accepting, for every node v of ρq with state in F>0, Lv has nonzero probability

and according to Lemma 1 again, there exists a leaf-free subtree d′
v whose every branch

belongs to Lv. We extend the definition domain of dq with d′
v. This preserves properties a)

and b) (because d′
v itself has property b)) and guarantees property c).

Now we combine together the partial runs (dq)q∈W in order to get an infinite graph.

Since dq is leaf-free, every node can have either both children in dq or only one child in dq.

In case one child is missing, we plug instead the partial run dr, where r is the state of the

missing child in ρ. This is well-defined because r ∈ W : in a parity game, all states visited

when playing a wining strategy are winning, and after Automaton plays the profile Πq the

next state of the game maybe any state appearing in ρq, including r.

The unravelling of this infinite graph, starting from the initial state, is an accepting run

of the automaton. Each time a branch enters a subtree dq, there is probability ≥ 1
2

to stay

in dq forever. Thus almost every branch of the unravelling eventually stays in one of the

subtrees (dq)q∈W , thus has limsup in F1 according to property b). As a consequence the

unravelling is almost-surely accepting.

Still, with probability 0, some branches switch infinitely often from a subtree to another.

Such a branch enters the n-th subtree dn in its root state qn, follow a path in dn with

maximal state mn+1 and exits dn to enter dn+1 in state qn+1. Since dn is a subtree of ρn,

then (qn+1, mn+1) is in the profile Πqn
and q0

q0

→ Πq0

m1→ q1 → Πq1

m2. . . is a play consistent

with the winning strategy of Automaton. Since the strategy of Automaton is winning then

lim supn mn+1 ∈ F∀. Hence the unravelling is surely accepting.

Moreover the unravelling is nonzero accepting as well according to c). ◭

◮ Lemma 18. Deciding whether Automaton wins the jumping game is in np ∩ co-np.

Proof. The jumping game is a parity game thus the winner of the jumping game can be

found by guessing a positional strategy for either Automaton or Pathfinder and checking

that this strategy is winning. However, since there are exponentially many profiles, this

algorithm is in nexptime ∩ co-nexptime rather than in np ∩ co-np.

To overcome this difficulty, we use winning witnesses which are condensed versions of

winning positional strategies of Automaton and Pathfinder. A winning witness is a pair

(W, s) with W ⊆ Q and s : W → 2W ×W .

Under extra-conditions, some of these witnesses are proofs that Automaton or Pathfinder

is the winner of the jumping game. A sequence m0, m1, . . . ∈ W ∗ is generated by (W, s) if

there exists q0, q1, . . . ∈ W ∗ such that ∀n, (qn+1, mn+1) ∈ σ(qn). For every state q, denote

Rq the set of profiles of {F1, F>0}-accepting runs with root state q. Then (W, s) is a winning

witness for Automaton if:

(α) Every sequence generated by (W, s) has its limsup in F∀ and ∀q ∈ W, s(q) 6= ∅.

(β) For every state q ∈ W there exists a profile Π ∈ Rq such that Π ⊆ s(q).

And (W, t) is a winning witness for Pathfinder if:

(γ) No sequence generated by (W, t) has its lim sup in F∀.

(δ) For every state q ∈ W and every profile Π ∈ Rq, t(q) ∩ Π 6= ∅.

◮ Lemma 19. Let (WA, WP) be the partition of Q between states winning for Automaton or

Pathfinder in the jumping game. Then there exists winning witnesses (WA, s) and (WP , t)

for Automaton and Pathfinder.

M. Bojańczyk, H. Gimbert and E. Kelmendi 23:13

Proof. We start with the direct implication. In a parity game, a play consistent with a

winning strategy never exits the set of winning vertices, thus Automaton and Pathfinder

have positional winning strategies σ : WA → 2WA×WA and τ : 2WP ×WP → WP . Then

(WA, σ) is a winning witness for Automaton: property (α) holds because σ is winning and

property (β) holds because, by definition of the jumping game, ∀q ∈ WA, σ(q) ∈ Rq. The

winning witness (WP , t) for Pathfinder is defined by

t(q) = {(q′, m) | ∃Π ∈ Rq, Π
m
→ q′ is consistent with τ} .

Then (WP , t) is a winning witness for Pathfinder: property (γ) holds because τ is winning

and property (δ) holds by definition of t.

We show the converse implication. Let (WA, s) be a winning witness for Automaton.

Then according to (β), for every q ∈ WA there exists a profile σ(q) ∈ Rq such that σ(q) ⊆

s(q). Then σ is a strategy in the jumping game and according to (α) the strategy σ is

winning on WA. From a winning witness (WP , t) for Pathfinder we extract a positional

strategy τ winning on WP . Let q ∈ WP and Π a profile in Rq. According to (δ) there exists

(q, m) ∈ Π ∩ t(q), and τ plays the move Π
m
→ q . Then τ is winning according to (γ). ◭

Now we show how to check in polynomial time whether a pair (W, s) is a winning witness

for Automaton or Pathfinder. Checking properties (α) or (γ) consists in solving a one-player

parity game which can be done in polynomial time.

To check properties (β) or (δ), we modify the automaton to store in its state space the

maximal state of the strict ancestors of the current node. The new state space is Q×({⊥}∪Q)

and for every m ∈ {⊥} ∪ Q, every transition q →a (q0, q1) in the original automaton gives

rise to a transition (q, m) →a ((q0, m′), (q1, m′)) in the modified automaton with m′ = q

if m = ⊥ and m′ = max{m, q} otherwise. This extra component has no incidence on the

acceptance condition. This transformation guarantees that for every state q ∈ Q and every

subset Π ⊆ Q × Q,

(⋆) Π ∈ Rq if and only if the modified automaton has a {F1, F>0}-accepting run ρ with root

state (q, ⊥) and Π is the set of states appearing on non-root nodes of ρ.

According to (⋆), property (β) is equivalent to checking that for every q ∈ W , the modified

automaton restricted to states in {(q, ⊥)} ∪ s(q) has a {F1, F>0}-accepting run, which can

be done in polynomial time according to Theorem 10.

And according to (⋆), property (δ) is equivalent to checking that for every q ∈ W , the

modified automaton restricted to states in {(q, ⊥)}∪Q×Q\s(q) has no {F1, F>0}-accepting

run, which can be done in polynomial time according to Theorem 10. ◭

Example: the everywhere positive language

A tree t on the alphabet {a, b} is everywhere positive if for every node v,

1. there is positive probability to see only the letter t(v) below v,

2. there is positive probability to see finitely many times the letter t(v) below v.

This language is non-empty and contains no regular tree. The language of everywhere

positive trees with root state a is recognized by a nonzero automaton with six states

{sb < sa < nb < na < fb < fa} .

On a node labelled by letter a, the automaton can perform a transition from any of the

three states {sb, nb, fa}, meaning intuitively "searching for b", "not searching for b" and "just

CVIT 2016

23:14 Emptiness of zero automata is decidable

found a". From these states the automaton can choose any pair of successor states which

intersects {sb, fb}. Transitions on letter b are symmetrical. The acceptance condition is:

F∀ = {na, nb, fa, fb} F1 = F∀ F>0 = {na, sa, nb, sb} .

Due to space constraints, we can not provide a full description of the jumping game (see

the appendix for more details). Automaton can win by playing only the moves sa/na →

{(fa, fa), (nb, fa), (sb, fa), (na, na), (sa, na)} and fa → {(nb, fa), (sb, fa)} and their symmet-

ric counterparts from states {sb, nb, fb}. This forces Pathfinder to take only edges labelled

by the states {fa, na, fb, nb}. These states dominate the states {sa, sb} thus the limsup of

the corresponding plays is in F∀ and this is a winning strategy for Automaton.

Conclusion

We have shown that the emptiness problem for zero and nonzero automata is decidable and

in np ∩ co-np. As a consequence, the satisfiability for the logic MSO + zero from [1] is

decidable (in non-elementary time), when zero is the unary predicate that checks a set of

branches has probability 0.

As shown by Stockmeyer, the satisfiability problem for first-order logic on finite words

cannot be solved in elementary time. Therefore any translation from a logic stronger than

first-order logic on finite words (such as tmso+zero on infinite trees) to an automaton

model with elementary emptiness (such as nonzero automata) is necessarily nonelementary.

This does not make the relatively low np ∩ co-np complexity of nonzero automata any

less interesting. One can imagine other logics than TMSO+zero, either less expressive or

maybe even equally expressive but less succint, which will have a relatively low complexity

by virtue of a translation into nonzero automata. One natural direction is the study of

temporal logics.

Acknowledgments We thank Paulin Fournier, Henryk Michalewski and Matteo Mio for

helpful discussions.

References

1 Mikołaj Bojańczyk. Thin mso with a probabilistic path quantifier. In ICALP 2016, 2016.

2 Tomás Brázdil, Vojtech Forejt, and Antonín Kucera. Controller synthesis and verification

for mdps with qualitative branching time objectives. In ICALP 2008., pages 148–159, 2008.

3 C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding par-

ity games in quasipolynomial time. Technical report, CDMTCS, October 2016. URL:

https://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/index.php?download&paper_fi

4 Arnaud Carayol, Axel Haddad, and Olivier Serre. Randomization in automata

on infinite trees. ACM Trans. Comput. Log., 15(3):24:1–24:33, 2014. URL:

http://doi.acm.org/10.1145/2629336, doi:10.1145/2629336.

5 L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford University,

december 1997.

6 A.S. Kechris. Classical Descriptive Set Theory. Graduate Texts in Mathematics. Springer-

Verlag, 1995. URL: https://books.google.fr/books?id=lPvuAAAAMAAJ .

7 Daniel Lehmann and Saharon Shelah. Reasoning with time and chance. Information and

Control, 53(3):165–1983, 1982.

https://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/index.php?download&paper_file=631
http://doi.acm.org/10.1145/2629336
http://dx.doi.org/10.1145/2629336
https://books.google.fr/books?id=lPvuAAAAMAAJ

M. Bojańczyk, H. Gimbert and E. Kelmendi 23:15

8 Henryk Michalewski and Matteo Mio. Measure quantifier in monadic second or-

der logic. In LFCS 2016, Deerfield Beach, FL, USA, January 4-7, 2016. Proceed-

ings, pages 267–282, 2016. URL: http://dx.doi.org/10.1007/978-3-319-27683-0_19,

doi:10.1007/978-3-319-27683-0_19.

9 Henryk Michalewski, Matteo Mio, and Mikołaj Bojańczyk. On the regular

emptiness problem of subzero automata. CoRR, abs/1608.03319, 2016. URL:

http://arxiv.org/abs/1608.03319.

CVIT 2016

http://dx.doi.org/10.1007/978-3-319-27683-0_19
http://dx.doi.org/10.1007/978-3-319-27683-0_19
http://arxiv.org/abs/1608.03319

23:16 Emptiness of zero automata is decidable

Appendix

Proof of Lemma 6

Proof. Clearly every strongly zero accepting run is also zero accepting.

Conversely, assume a run r is zero accepting, then we show it is strongly zero accepting.

Let v be a node labelled by a seed state. Among all descendant nodes z of v, including v

itself, such that the path from v to z is seed-consistent and z is labelled by a seed state,

choose any z such that the seed state labelling z is minimal.

For every node w let Zw denote the set of branches which visit w and afterwards see

only states ≤ r(w) and have limsup r(w).

We first show that there exists a strict descendant w of z such that

a) r(w) ∈ F>0,

b) the path from z to w is labelled by states ≤ r(z) and

c) Zw has nonzero probability.

Since r is zero accepting and z is labelled by a seed state, there is at least one descendant

node w′ of z, labelled by a state in F>0, such that the path from z to w′ is labelled by states

≤ r(z) and Zw′ has nonzero probability. If w′ is a strict descendant of z then we set w = w′.

Otherwise we choose w as a strict descendant of w′, as follows. Denote W the set of strict

descendants of w′ which are labelled by r(w′) and the path from w′ to w is labelled by states

≤ r(z). Then Zw′ =
⋃

w∈W Zw thus by σ-additivity there exists a strict descendant w of w′

such that Zw also has non-zero probability.

To establish that the strongly zero accepting condition is satisfied for v, we choose a

witness w satisfying properties a) b) and c) and we prove two other properties of w:

d) the path from v to w is seed-consistent,

e) the only seed state that may be visited below w by a branch in Zw is r(w) itself.

Property d) holds because both paths from v to z and from z to w are seed-consistent

and the concatenation of two seed-consistent pathes on a Qseed-labelled node is itself a seed-

consistent path. The path from v to z is seed-consistent by choice of z. By hypothesis the

path from z to w is labelled by states ≤ r(z) and by minimality of r(z) it does not meet any

other seed state than r(z) thus it is seed consistent.

Property e) holds for a similar reason: if a branch in Zw visit a descendant z′ of w such

that r(z′) ∈ Qseed then by definition of Zw, r(z′) ≤ r(w). Since r(w) ≤ r(z), the path from

z to z′ is labelled by states ≤ r(z) and the minimality of r(z) it implies r(z) ≤ r(z′) thus

finally r(z′) = r(w) = r(z). ◭

Proof of Lemma 7

Proof. By hypothesis Π1 : (R, �) → (Q, ≤) is monotonic, thus if b is a branch of the infinite

binary tree then its limsup in r is the projection of its limsup in d.

Since F>0 ⊆ F1 ⊆ F∀ then the projection of G1 is F1 and the projection of G∀ is F∀ thus

r is both almost-surely and surely accepting.

We show that r is zero accepting. Let v a node such that r(v) is a seed state.

For a start, we show that there is a node w below v such that the path from v to w is

seed-consistent in r (thus in particular r(w) ≤ r(v)) and d(w) is the subtree-guessing state

(r(w), r(w), ∗). There are three cases, depending whether d(v) is a subtree-guessing, path-

finding or normal state. If d(v) is a subtree guessing state then according to the definition of

R, since r(v) ∈ Qseed then d(v) = (r(v), r(v), ∗) and we set w = v. If d(v) is a path-finding

M. Bojańczyk, H. Gimbert and E. Kelmendi 23:17

state then by design the automaton follows in either direction a path seed-consistent in r

as long as it does not enter a subtree-guessing state (r(w), r(w), ∗). Since there is no path-

finding state in G∀, for sure the automaton eventually enters such a state, otherwise d would

not be accepting. If d(v) is a normal state then according to the transition table either the

left or right child w′ ∈ {v0, v1} of v is in the path-finding state (r(w′), r(v)) or the subtree-

guessing state (r(w′), r(w′), ∗). In both cases r(w′) ≤ r(v). In the subtree-guessing case we

set w = w′ and we are done. In the pathfinding case, from w′ the automaton follows a path

seed-consistent in r until it eventually enters the subtree-guessing state (r(w), r(w), ∗). By

design of the transition table all states on the path from w′ to w are ≤ r(v) thus the path

from v to w is seed-consistent in r.

Since (r(w), r(w), ∗) ∈ G>0, the nonzero condition ensures that there is nonzero prob-

ability to continue the run r below w in the set of states G>0. According to the transition

table, in this case the states below w are labelled by {q ∈ Q | q ≤ r(w)} × {r(w)} × {∗}.

Since d is almost-surely accepting then by definition of G1, almost-surely the limsup of such

a path is (r(w), r(w), ∗). Since r(w) ∈ F>0 then the nonzero condition holds in v, with

witness w. ◭

Extended example: the everywhere positive language

A tree t on the alphabet {a, b} is everywhere positive if for every node v,

1. there is positive probability to see only the letter t(v) below v,

2. there is positive probability to see finitely many times the letter t(v) below v.

This language is non-empty and contains no regular tree. The language of everywhere

positive trees with root state a is recognized by a nonzero automaton with six states

{sb < sa < nb < na < fb < fa} .

On a node labelled by letter a, the automaton can perform a transition from any of the

three states {sb, nb, fa}, meaning intuitively "searching for b", "not searching for b" and "just

found a". From these states the automaton can choose any pair of successor states which

intersects {sb, fb}. Transitions on letter b are symmetrical. The acceptance condition is:

F∀ = {na, nb, fa, fb} F1 = F∀ F>0 = {na, sa, nb, sb} .

We do not provide a full description of the jumping game but we provide a few examples

of moves available to player Automaton, as well as a positional winning strategy for player

Automaton.

Among the simplest moves of Automaton in the jumping game are the two moves

nb → {(nb, nb)(sb, nb)}

sb → {(nb, nb)(sb, nb)} .

These moves are legal because they are the profiles of the following {F1, F>0}-accepting

runs. Both runs are on the tree whose all nodes have letter a and everywhere in the tree

the automaton applies the same two transitions nb →b (nb, sb) and sb →b (nb, sb). In other

words, the automaton always looks for a letter b in the right direction (state sb), and does

not look for b in the left direction (state nb). Since the tree has no b then the quest for

a letter b is hopeless, and on are branches of the run that ultimately always turn right

(i.e. branches in {0, 1}∗1ω), the automaton ultimately stays in state sb and the branch has

CVIT 2016

23:18 Emptiness of zero automata is decidable

limsup sb, which is neither in F∀ nor in F1. But such branches happen with probability zero:

almost-every branch makes infinitely many turns left and right and has limsup nb, thus the

run is almost-surely accepting: This run is nonzero-accepting as well because every node

labelled by F>0 has all its descendants labelled by F>0.

Yet legal, these two moves are not good options for Automaton in the jumping game

because then Pathfinder can generate the play

sb
sb→ {(nb, nb)(sb, nb)}

nb→ sb
sb→ {(nb, nb)(sb, nb)}

sb→ sb
sb→ . . .

which has limsup nb = max{sb, nb} and is losing for Automaton since nb 6∈ F∀.

Automaton should use more elaborate moves in order to win the jumping game, in

particular the three moves

sa/na → {(fa, fa), (nb, fa), (sb, fa), (na, na), (sa, na)} (1)

fa → {(nb, fa), (sb, fa)} (2)

are interesting. Before explaining which these are legal moves, remark that these three moves

and their symmetric counterparts from states {sb, nb, fb} ensure the victory to Automaton,

because they force Pathfinder to take edges labelled by the states {fa, na, fb, nb}. These four

states dominate the states {sa, sb} and belong to F∀ thus the limsup of the corresponding

plays are in F∀, which ensures a win to Automaton.

We show that (1) and (2) are legal moves for Automaton in the jumping game, by provid-

ing positional runs of the extended automaton which generate the profiles {(nb, fa), (sb, fa)}

and {(fa, fa), (nb, fa), (sb, fa), (na, na), (sa, na)}.

We start with a brief description of the extended automaton. To save space, we write s∗

for the pair {sa, sb} and use a similar convention for n∗ and f∗ as well. With this convention,

the states are

{s∗, n∗, f∗} × {⊥, s∗, n∗, f∗} .

On the first component, the transitions of the extended automaton are identical to the

transitions of the original automaton. The second component is used to store the largest

state seen so far. It is initialized to ⊥ and then updated with the maximum of itself and the

origin state of the transition.

We give three examples of transitions of the extended automaton

The automaton starts the computation looking for an a and keeps looking for an a on

the left direction:

(sa, ⊥) →b (sa, sa)(na, sa) .

The automaton is not looking for an a but it finds an a in the left child and keeps looking

for an a in the right direction:

(na, sa) →b (fa, na)(sa, na) .

The automaton has already found b in the past, it is right now looking for an a, and

finds one a in both direction:

(sa, fb) →b (fa, fb)(fa, fb) .

M. Bojańczyk, H. Gimbert and E. Kelmendi 23:19

This last transition is a killer for the nonzero condition, because sa ∈ F>0 but fa 6∈ F>0.

Using this transition falsifies the condition "there is positive probability to see only the

letter b below v" is not satisfied. Actually this transition could be removed from the set of

transitions without changing the set of accepting runs.

To prove that the move fa → {(nb, fa), (sb, fa)} is valid, we consider the run on a tree

whose all nodes are labelled by a. The extended automaton first find an a in the root, in

state (fa, ⊥) and then looks hopelessly for a b in the right direction using the transitions

(fa, ⊥) →a (nb, fa)(sb, fa)

(nb/sb, fa) →a (nb, fa)(sb, fa) .

This run is almost-surely accepting because every branch which takes infinitely many turns

left has limsup (nb, fa), and this is almost-every branch. This run is nonzero-accepting

because every node labelled by F>0 has all its descendants labelled by F>0.

To prove that the move sa → {(fa, fa), (nb, fa), (sb, fa), (na, na), (sa, na)} is legal, con-

sider a tree whose root is labelled by b, all the nodes in the left subtree are labelled by b

as well while all the nodes in the left subtree are labelled by a. The extended automaton

starts on state (sa, ⊥) in the root. In the right subtree the automaton finds b on the right

child of the root (i.e. node 1) and then looks hopelessly for a in the right direction using

transitions na/sa →a (na, sa) (dual to the previous case fa → {(nb, fa), (sb, fa)}). In the

left subtree the automaton looks hopelessly for b in the right direction using transitions

nb/sb →b (nb, sb).

The transitions of this positional run are

(sa, ⊥) →a (fa, sa)(na, sa) (used once in the root)

(na, sa) →a (na, na)(sa, na) (used once in the right subtree)

(na/sa, na) →a (na, na)(sa, na) (used ∞ often in the right subtree)

(fa, sa) →a (nb, fa)(sb, fa) (used once in the left subtree)

(nb/sb, fa) →a (nb, fa)(sb, fa) (used ∞ often in the left subtree) .

This run is almost-surely accepting for the same reasons than in the previous case. It

is nonzero accepting because from the root node, whose state (sa, ⊥) is in F>0 there is

probability 1
2

to continue in the right subtree where all states are in F>0. And every non-

root node labelled by F>0 has all its descendants labelled by F>0.

The positional run for the move na → {(fa, fa), (nb, fa), (sb, fa), (na, na), (sa, na)} is

almost the same than for the move sa → {(fa, fa), (nb, fa), (sb, fa), (na, na), (sa, na)} except

the root has state (na, ⊥). The transitions of this positional run are

(na, ⊥) →a (fa, na)(na, na) (used once in the root)

(fa, na) →a (nb, fa)(sb, fa) (used once in the left subtree)

(nb/sb, fa) →a (nb, fa)(sb, fa) (used ∞ often in the left subtree)

(na/sa, na) →a (na, na)(sa, na) (used ∞ often in the right subtree) .

It is {F1, F>0}-accepting for the same reasons than in the previous case.

CVIT 2016

	Introduction
	Zero and nonzero automata
	From zero to nonzero automata
	Emptiness of F-trivial automata is in NP
	Emptiness of nonzero automata is in np co-np

