Arthur Soulié 
email: soulie@math.unistra.fr
  
THE LONG-MOODY CONSTRUCTION AND POLYNOMIAL FUNCTORS

Keywords: Mathematics Subject Classification: 18D10, 18A25, 20C07, 20C99, 20J99, 20F36, 20F38, 57M07, 57N05 braid groups, functor categories, Long-Moody construction, polynomial functors

published or not. The documents may come    

The Long-Moody construction and polynomial functors

Introduction

Linear representations of the Artin braid group on n strands B n is a rich subject which appears in diverse contexts in mathematics (see for example [START_REF] Birman | Braids: a survey[END_REF] or [START_REF] Marin | On the representation theory of braid groups[END_REF] for an overview). Even if braid groups are of wild representation type, any new result which allows us to gain a better understanding of them is a useful contribution.

In 1994, as a result of a collaboration with Moody in [START_REF] Long | Constructing representations of braid groups[END_REF], Long gave a method to construct from a linear representation ρ : B n+1 → GL (V) a new linear representation LM (ρ) : B n → GL (V ⊕n ) of B n (see [17, Theorem 2.1]). Moreover, the construction complicates in a sense the initial representation. For example, applying it to a one dimensional representation of B n+1 , the construction gives a mild variant of the unreduced Burau representation of B n . This method was in fact already implicitly present in two previous articles of Long dated 1989 (see [START_REF] Long | On the linear representation of braid groups[END_REF][START_REF] Long | On the linear representation of braid groups[END_REF]). In the article [START_REF] Bigelow | Generalized Long-Moody representations of braid groups[END_REF] dating from 2008, Bigelow and Tian consider the Long-Moody construction from a matricial point of view. They give alternative and purely algebraic proofs of some results of [START_REF] Long | Constructing representations of braid groups[END_REF], and they slightly extend some of them. In a survey on braid groups (see the Open Problem 7 in [START_REF] Birman | Braids: a survey[END_REF]), Birman and Brendle underline the fact that the Long-Moody construction should be studied in greater detail.

Our work focuses on the study of the Long-Moody construction LM from a functorial point of view. More precisely, we consider the category Uβ associated with braid groups. This category is an example of a general construction due to Quillen (see [START_REF] Grayson | Higher algebraic K-theory: II (after Daniel Quillen)[END_REF]) on the braid groupoid β. In particular, the category Uβ has natural numbers N as objects. For each natural number n, the automorphism group Aut Uβ (n) is the braid group B n . Let K-Mod be the category of K-modules, with K a commutative ring, and Fct (Uβ, K-Mod) be the category of the functors from Uβ to K-Mod. An object M of Fct (Uβ, K-Mod) gives by evaluation a family of representations of braid groups {M n : B n → GL (M (n))} n∈N , which satisfies some compatibility properties (see Section 1.1). Randal-Williams and Wahl use the category Uβ in [START_REF] Randal | Homological stability for automorphism groups[END_REF] to construct a general framework to prove homological stability for braid groups with twisted coefficients. Namely, they obtain the stability for twisted coefficients given by objects of Fct (Uβ, K-Mod).

In Proposition 2.21, we prove that a version of the Long-Moody construction is functorial. We fix two families of morphisms {a n : B n → Aut (F n )} n∈N and {ς n : F n → B n+1 } n∈N , satisfying some coherence properties (see Section 2.1). Once this framework set, we show:

Theorem A (Proposition 2.21) .

There is a functor LM a,ς : Fct (Uβ, K-Mod) → Fct (Uβ, K-Mod), called the Long- Moody functor with respect to coherent families of morphisms {a n } n∈N and {ς n } n∈N , which satisfies for σ ∈ B n and M ∈ Obj (Fct (Uβ, K-Mod))

LM a,ς (M) (σ) = LM (M n ) (σ) .

Among the objects in the category Fct (Uβ, K-Mod) the strong polynomial functors play a key role. This notion extends the classical one of polynomial functors, which were first defined by Eilenberg and Mac Lane in [START_REF] Eilenberg | On the groups H(Π, n). II. Methods of computation[END_REF] for functors on module categories, using cross effects. This definition can also be applied to monoidal categories where the monoidal unit is a null object. Djament and Vespa introduce in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] the definition of strong polynomial functors for symmetric monoidal categories with the monoidal unit being an initial object. Here, the category Uβ is neither symmetric, nor braided, but pre-braided in the sense of [START_REF] Randal | Homological stability for automorphism groups[END_REF]. However, we show that the notion of strong polynomial functor extends to the wider context of pre-braided monoidal categories (see Definition 3.4). We also introduce the notion of very strong polynomial functor (see Definition 3.16). Strong polynomial functors turn out inter alia to be very useful for homological stability problems. For example, in [START_REF] Randal | Homological stability for automorphism groups[END_REF], Randal-Williams and Wahl prove their homological stability results for twisted coefficients given by a specific kind of strong polynomial functors, namely coefficient systems of finite degree (see [START_REF] Randal | Homological stability for automorphism groups[END_REF]Section 4.4]).

We investigate the effects of Long-Moody functors on very strong polynomial functors. We establish the following theorem, under some mild additional conditions (introduced in Section 4.1.1) on the families of morphisms {a n } n∈N and {ς n } n∈N , which are then said to be reliable.

Theorem B (Corollary 4.27) .

Let M be a very strong polynomial functor of Fct (Uβ, K-Mod) of degree n and let {a n } n∈N and {ς n } n∈N be coherent reliable families of morphisms. Then, considering the Long-Moody functor LM a,ς with respect to the morphisms {a n } n∈N and {ς n } n∈N , LM a,ς (M) is a very strong polynomial functor of degree n + 1.

Thus, iterating the Long-Moody functor on a very strong polynomial functor of Fct (Uβ, K-Mod) of degree d, we generate polynomial functors of Fct (Uβ, K-Mod), of any degree bigger than d. For instance, Randal-Williams and Wahl define in [START_REF] Randal | Homological stability for automorphism groups[END_REF]Example 4.3] a functor Bur t : Uβ → C t ±1 -Mod encoding the unreduced Burau representations. Similarly, we introduce a functor TYM t : Uβ → C t ±1 -Mod corresponding to the representations considered by Tong, Yang and Ma in [START_REF] Tong | A new class of representations of braid groups[END_REF]. These functors Bur t and TYM t are very strong polynomial of degree one (see Proposition 3.25), and moreover, we prove that the functor Bur t is equivalent to a functor obtained by applying the Long-Moody construction. Thus, the Long-Moody functors will provide new examples of twisted coefficients corresponding to the framework of [START_REF] Randal | Homological stability for automorphism groups[END_REF].

This construction is extended in the forthcoming work [START_REF] Soulié | The generalized Long-Moody functors[END_REF] for other families of groups, such as automorphism groups of free groups, braid groups of surfaces, mapping class groups of orientable and non-orientable surfaces or mapping class groups of 3-manifolds. The results proved here for (very) strong polynomial functors will also hold in the adapted categorical framework for these different families of groups.

The paper is organized as follows. Following [START_REF] Randal | Homological stability for automorphism groups[END_REF], Section 1 introduces the category Uβ and gives first examples of objects of Fct (Uβ, K-Mod). Then, in Section 2, we introduce the Long-Moody functors, prove Theorem A and give some of their properties. In Section 3, we review the notion of strong polynomial functors and extend the framework of [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] to pre-braided monoidal categories. Finally, Section 4 is devoted to the proof of Theorem B and to some other properties of these functors. In particular, we tackle the Open Problem 7 of [START_REF] Birman | Braids: a survey[END_REF].

Notation 0.1. We will consider a commutative ring K throughout this work. We denote by K-Mod the category of K-modules. We denote by Gr the category of groups. We take the convention that the set of natural numbers N is the set of nonnegative integers {0, 1, 2, . . .}.

Let Cat denote the category of small categories. Let C be an object of Cat. We use the abbreviation Obj (C) to denote the objects of C. For D a category, we denote by Fct (C, D) the category of functors from C to D. If 0 is initial object in the category C, then we denote by ι A : 0 → A the unique morphism from 0 to A. The maximal subgroupoid G r (C) is the subcategory of C which has the same objects as C and of which the morphisms are the isomorphisms of C. We denote by G r : Cat → Cat the functor which associates to a category its maximal subgroupoid.

The category Uβ

The aim of this section is to describe the category Uβ associated with braid groups that is central to this paper. On the one hand, we recall some notions and properties about Quillen's construction from a monoidal groupoid and pre-braided monoidal categories introduced by Randal-Williams and Wahl in [START_REF] Randal | Homological stability for automorphism groups[END_REF]. On the other hand, we introduce examples of functors over the category Uβ.

We recall that the braid group on n ≥ 2 strands denoted by B n is the group generated by σ 1 , ..., σ n-1 satisfying the relations:

• ∀i ∈ {1, . . . , n -2}, σ i σ i+1 σ i = σ i+1 σ i σ i+1 ;

• ∀i, j ∈ {1, . . . , n -1} such that | ij |≥ 2, σ i σ j = σ j σ i . B 0 and B 1 both are the trivial group. The family of braid groups is associated with the following groupoid.

Definition 1.1. The braid groupoid β is the groupoid with objects the natural numbers n ∈ N and morphisms (for n, m ∈ N):

Hom β (n, m) = B n if n = m ∅ if n = m.
Remark 1.2. The composition of morphisms • in the groupoid β corresponds to the group operation of the braid groups. So we will abuse the notation throughout this work, identifying σ • σ = σσ for all elements σ and σ of B n with n ∈ N (with the convention that we read from the right to the left for the group operation).

Quillen's bracket construction associated with the groupoid β

This section focuses on the presentation and the study of Quillen's bracket construction Uβ (see [9, p.219]) on the braid groupoid β. It associates to β a monoidal category whose unit is initial. The category Uβ has further properties: Quillen's bracket construction on β is a pre-braided monoidal category (see Section 1.1.2) and β is its maximal subgroupoid. For an introduction to (braided) strict monoidal categories, we refer to [START_REF] Mac | Categories for the working mathematician[END_REF]Chapter XI].

Notation 1.3. A strict monoidal category will be denoted by (C, , 0), where C is the category, is the monoidal product and 0 is the monoidal unit.

Generalities

In [START_REF] Randal | Homological stability for automorphism groups[END_REF], Randal-Williams and Wahl study a construction due to Quillen in [9, p.219], for a monoidal category S acting on a category X in the case S = X = G where G is a groupoid. It is called Quillen's bracket construction.

Our study here is based on [20, Section 1] taking G = β.

Definition 1.4. [18, Chapter XI, Section 4] A monoidal product : β × β -→ β is defined by the usual addition for the objects and laying two braids side by side for the morphisms. The object 0 is the unit of this monoidal product. The strict monoidal groupoid (β, , 0) is braided, its braiding is denoted by b β -,-. Namely, the braiding is defined for all natural numbers n and m such that n + m ≥ 2 by:

b β n,m = (σ m • • • • • σ 2 • σ 1 ) • • • • • (σ n+m-2 • • • • • σ n • σ n-1 ) • (σ n+m-1 • • • • • σ n+1 • σ n )
where {σ i } i∈{1,...,n+m-1} denote the Artin generators of the braid group B n+m .

We consider the strict monoidal groupoid (β, , 0) throughout this section. • Morphisms: for n and n two objects of β, the morphisms from n to n in the category Uβ are given by:

Hom Uβ n, n = colim β Hom β -n, n .
In other words, a morphism from n to n in the category Uβ, denoted by [nn, f ] : n → n , is an equivalence class of pairs (nn, f ) where nn is an object of β, f : (nn) n → n is a morphism of β, in other words an element of B n . The equivalence relation ∼ is defined by (nn, f ) ∼ (nn, f ) if and only if there exists an automorphism g ∈ Aut β (nn) such that the following diagram commutes.

(n -n) n g id n f / / n (n -n) n f : :
• For all objects n of Uβ, the identity morphism in the category Uβ is given by [0, id n ] : n → n.

• Let [nn, f ] : n → n and [nn , g] : n → n be two morphisms in the category Uβ. Then, the composition in the category Uβ is defined by:

n -n , g • n -n, f = n -n, g • (id n -n f ) .
The relationship between the automorphisms of the groupoid β and those of its associated Quillen's construction Uβ is actually clear. First, let us recall the following notion. Definition 1.6. Let (G, , 0) be a strict monoidal category. It has no zero divisors if for all objects A and B of G, A B ∼ = 0 if and only if A ∼ = B ∼ = 0.

The braid groupoid (β, , 0) has no zero divisors. Moreover, by Definition 1.1, Aut β (0) = {id 0 }. Hence, we deduce the following property from [START_REF] Randal | Homological stability for automorphism groups[END_REF]Proposition 1.7].

Proposition 1.7. The groupoid β is the maximal subgroupoid of Uβ.

In addition, Uβ has the additional useful property. Proposition 1.8. [START_REF] Randal | Homological stability for automorphism groups[END_REF]Proposition 1.8 (i)] The unit 0 of the monoidal structure of the groupoid (β, , 0) is an initial object in the category Uβ.

Remark 1.9. Let n be a natural number and φ ∈ Aut β (n). Then, as an element of Hom Uβ (n, n), we will abuse the notation φ = [0, φ]. This comes from the canonical functor:

β → Uβ φ ∈ Aut β (n) → [0, φ] .
Finally, we are interested in a way to extend an object of Fct (β, K-Mod) to an object of Fct (Uβ, K-Mod). This amounts to studying the image of the restriction Fct (Uβ, K-Mod) → Fct (β, K-Mod). Proposition 1.10. Let M be an object of Fct (β, K-Mod). Assume that for all n, n , n ∈ N such that n ≥ n ≥ n, there exists an assignment M (

[n -n, id n ]) : M (n) → M (n ) such that: M n -n , id n • M n -n, id n = M n -n, id n (1) 
Then, we define a functor M :

Uβ → K-Mod (assigning M ([n -n, σ]) = M (σ) • M ([n -n, id n ]) for all [n -n, σ] ∈ Hom Uβ (n, n )) if and only if for all n, n ∈ N such that n ≥ n: M n -n, id n • M (σ) = M (ψ σ) • M n -n, id n (2) 
for all σ ∈ B n and all ψ ∈ B n -n .

Remark 1.11. Note that for n = n, M ([nn, id n ]) = Id M(n) .

Proof of Proposition 1.10. Let us assume that relation (2) is satisfied. We have to show that the assignment on morphisms is well-defined with respect to Uβ. First, let us prove that our assignment conforms with the defining equivalence relation of Uβ (see Definition 1.5). For n and n natural numbers such that n ≥ n, let us consider

[n -n, σ] and [n -n, σ ] in Hom Uβ (n, n ) such that there exists ψ ∈ B n -n so that σ • (ψ id n ) = σ. Since M is a functor over β, M ([n -n, σ]) = M (σ ) • (M (ψ id n ) • M ([n -n, id n ])).
According to the relation (2) and since M satisfies the identity axiom, we deduce that

M ([n -n, σ]) = M (σ ) • M (ψ id n ) • M ([n -n, id n ]) = M ([n -n, σ ]
). Now, we have to check the composition axiom. Let n, n and n be natural numbers such that n ≥ n ≥ n, let ([nn, σ]) and ([nn , σ ]) be morphisms respectively in Hom Uβ (n, n ) and in Hom Uβ (n , n ). By our assignment and composition in Uβ (see Definition 1.5) we have that:

M n -n , σ • M n -n, σ = M σ • M n -n , id n • M (σ) • M n -n, id n .
According to the relation (2), we deduce that:

M n -n , σ • M n -n, σ = M σ • M n -n , id n • M (σ) • M n -n, id n . = M σ • M (id n -n σ) • M n -n , id n • M n -n, id n .
Hence, it follows from relation (1) that:

M n -n , σ • M n -n, σ = M σ • (id n -n σ) • M n -n, id n = M n -n , σ • n -n, σ .
Conversely, assume that the functor M : Uβ → K-Mod is well-defined. In particular, composition axiom in Uβ is satisfied and implies that for all n, n ∈ N such that n ≥ n, for all σ ∈ B n :

M n -n, id n • M (σ) = M n -n, id n -n σ .
It follows from the defining equivalence relation of Uβ (see Definition (1.5)) that for all ψ ∈ B n -n :

M n -n, id n • M (σ) = M n -n, ψ σ .
We deduce from the composition axiom that relation (2) is satisfied. Proposition 1.12. Let M and M be objects of Fct (Uβ, K-Mod) and η : M → M a natural transformation in the category Fct (β, K-Mod). Then, η is a natural transformation in the category Fct (Uβ, K-Mod) if and only if for all n, n ∈ N such that n ≥ n:

η n • M n -n, id n = M n -n, id n • η n . ( 3 
)
Proof. The natural transformation η extends to the category Fct (Uβ, K-Mod) if and only if for all n, n ∈ N such that n ≥ n, for all [nn, σ] ∈ Hom Uβ (n, n ):

M n -n, σ • η n = η n • M n -n, σ .
Since η is a natural transformation in the category Fct (β, K-Mod), we already have

η n • M (σ) = M (σ) • η n .
Hence, this implies that the necessary and sufficient relation to satisfy is relation (3).

Pre-braided monoidal category

We present the notion of a pre-braided category, introduced by Randal-Williams and Wahl in [START_REF] Randal | Homological stability for automorphism groups[END_REF]. This is a generalization of that of a braided monoidal category.

Definition 1.13. [20, Definition 1.5] Let (C, , 0) be a strict monoidal category such that the unit 0 is initial. We say that the monoidal category (C, , 0) is pre-braided if:

• The maximal subgroupoid G r (C, , 0) is a braided monoidal category, where the monoidal structure is in- duced by that of (C, , 0).

• For all objects A and B of C, the braiding associated with the maximal subgroupoid b

C A,B : A B -→ B A satisfies: b C A,B • (id A ι B ) = ι B id A : A -→ B A.
Recall that the notation ι B : 0 → B was introduced in Notation 0.1.

Since the groupoid (β, , 0) is braided monoidal and it has no zero divisors, we deduce from [20, Proposition 1.8] the following properties.

Proposition 1.14. The category Uβ is pre-braided monoidal. The monoidal structure (Uβ, , 0) is defined on objects as that of (β, , 0) and defined on morphisms letting for [n

-n, f ] ∈ Hom Uβ (n, n ) and [m -m, g] ∈ Hom Uβ (m, m ): m -m, g n -n, f = m -m n -n , (g f ) • id m -m b β m,n -n -1
id n .

In particular, the canonical functor β → Uβ is monoidal.

Remark 1.15. The category (Uβ, , 0) is pre-braided monoidal, but not braided. Indeed, as Figure 1 shows, the pre- braiding defined on Uβ is not a braiding: Figure 1 shows that b β 1,2 • (ι 1 id 2 ) = id 2 ι 1 whereas these two morphisms should be equal if b β -,-were a braiding.

Examples of functors associated with braid representations

Different families of representations of braid groups can be used to form functors over the pre-braided category Uβ to the category K-Mod. Namely, considering {M n : B n → K-Mod} n∈N representations of braid groups, or equivalently an object M of Fct (β, K-Mod), we are interested in the situations where Proposition 1.10 applies so as to define an object of Fct (Uβ, K-Mod). 

Tong-Yang-Ma results

In 1996, in the article [START_REF] Tong | A new class of representations of braid groups[END_REF], Tong, Yang and Ma investigated the representations of B n where the i-th generator is sent to a matrix of the form Id i-1 ⊕ T ⊕ Id n-i-1 , with T a m × m non-singular matrix and m ≥ 2. In particular, for m = 2, they prove that there exist up to equivalence only two non trivial representations of this type. We give here their result and an interpretation of their work from a functorial point of view, considering the representations over the ring of Laurent polynomials in one variable C t ±1 . Notation 1.16. Let gr denote the full subcategory of Gr of finitely generated free groups. The free product * : gr × gr → gr defines a monoidal structure over gr, with 0 the unit, denoted by (gr, * , 0).

Let (N, ≤) denote the category of natural numbers (natural means non-negative) considered as a poset. For all natural numbers n, we denote by γ n the unique element of Hom (N,≤) (n, n + 1). For all natural numbers n and n such that n ≥ n, we denote by γ n,n : n → n the unique element of Hom (N,≤) (n, n ), composition of the morphisms

γ n -1 • γ n -2 • • • • • γ n+1 • γ n .
The addition defines a strict monoidal structure on (N, ≤), denoted by ((N, ≤) , +, 0). Definition 1.17. Let B -: (N, ≤) → Gr and GL -: (N, ≤) → Gr be the functors defined by:

• Objects: for all natural numbers n, B -(n) = B n the braid group on n strands and

GL -(n) = GL n C t ±1
the general linear group of degree n.

• Morphisms: let n be a natural number. We define

B -(γ n ) = id 1 -: B n → B n+1 (where is the monoidal product introduced in Example 1.4). We define GL -(γ n ) : GL n C t ±1 → GL n+1 C t ±1 assigning GL -(γ n ) (ϕ) = id 1 ⊕ ϕ for all ϕ ∈ GL n C t ±1 .
Notation 1.18. For all natural numbers n ≥ 2, for all i ∈ {1, . . . , n -1}, we denote by incl n i : B 2 ∼ = Z → B n the inclusion morphism induced by: incl n i (σ 1 ) = σ i . Theorem 1.19. [22, Part II] Let η : B --→ GL -be a natural transformation. Assume that for all natural numbers n ≥ 2, for all i ∈ {1, . . . , n -1}, the following diagram is commutative:

B n η n / / GL n C t ±1 B 2 η 2 / / incl n i O O GL 2 C t ±1 . id i-1 ⊕-⊕id n-i-1 O O
Here, two such natural transformations η and η are said to be equivalent if there exists a natural equivalence µ : GL --→ GLsuch that µ • η = η or if η = η * where -* denotes the dual representation. Then, η is equivalent to one of the following natural transformations.

1. The trivial natural transformation, denoted by id: for every generator

σ i of B n , id n (σ i ) = Id GL n (C[t ±1 ]) .
2. The unreduced Burau natural transformation, denoted by bur: for all generators σ i of B n ,

bur n,t (σ i ) = Id i-1 ⊕ B (t) ⊕ Id n-i-1 , with B (t) = 0 t 1 1 -t .
3. The natural transformation denoted by tym: for every generator

σ i of B n if n ≥ 2, tym n,t (σ i ) = Id i-1 ⊕ TYM (t) ⊕ Id n-i-1 ,
with TYM (t) = 0 t 1 0 . We call it the Tong-Yang-Ma representation.

The unreduced Burau representation (see [START_REF] Kassel | Braid groups[END_REF]Section 3.1] or [START_REF] Birman | Braids: a survey[END_REF]Section 4.2] for more details about this family of representations) is reducible but indecomposable, whereas the Tong-Yang-Ma representation is irreducible (see [START_REF] Tong | A new class of representations of braid groups[END_REF]Part II]). We can also consider a natural transformation using the family of reduced Burau representations (see [START_REF] Kassel | Braid groups[END_REF]Section 3.3] for more details about the associated family of representations): these are irreducible subrepresentations of the unreduced Burau representations. Definition 1.20. Let GL --1 : (N, ≤) → Gr be the functor defined by:

• Objects: for all natural numbers n, GL --1 (n) = GL n-1 C t ±1 the general linear group of degree n -1.

• Morphisms: let n be a natural number. We define

GL --1 (γ n ) : GL n-1 C t ±1 → GL n C t ±1 assigning GL -(γ n ) (ϕ) = id 1 ⊕ ϕ for all ϕ ∈ GL n-1 C t ±1 .
Definition 1.21. The reduced Burau natural transformation, denoted by bur : B -→ GL --1 is defined by:

• For n = 2, one assigns bur (σ 1 ) to be the automorphism of C t ±1 defined by the multiplication by -t.

• For all natural numbers n ≥ 3, we define for every Artin generator σ i of B n with i ∈ {2, . . . , n -2}:

bur n,t (σ i ) = Id i-2 ⊕ B (t) ⊕ Id n-i-2
with

B (t) =   1 0 0 1 -t t 0 0 1   and bur n,t (σ 1 ) = -t t 0 1 ⊕ Id n-3 ; bur n,t (σ n-1 ) = Id n-3 ⊕ 1 0 1 -t .
Let us use these natural transformations to form functors over the category Uβ. Indeed, a natural transformation η : B -→ GL -(or GL --1 ) provides in particular: For all natural numbers n ≥ n ≥ n, for all Artin generators σ i ∈ B n and all ψ j ∈ B n -n , our assignments give: Analogously, we can form a functor from the reduced Burau representations. Let Bur t : β -→ C t ±1 -Mod be the functor defined on objects by Bur t (0) = 0 and Bur t (n) = C t ±1 ⊕n-1 for all nonzero natural numbers n, and by Bur t (σ i ) = bur n,t (σ i ) for morphisms for every Artin generator σ i of B n for all numbers n ≥ 2.

• a functor N : β -→ C t ±1 -Mod; • morphisms N ([n -n, id n ]) : N (n) → N (n )
TYM t (ψ σ) • TYM t n -n, id n = Id j-1 ⊕ TYM (t) ⊕ Id (n -n)-j-1 ⊕ Id n -n+i-1 ⊕ TYM (t) ⊕ Id n -i-1 • ι C[t ±1 ] ⊕n -n ⊕ id C[t ±1 ] ⊕n . Remark that Id j-1 ⊕ TYM (t) ⊕ Id (n -n)-j-1 • ι C[t ±1 ] ⊕(n -n) = ι C[t ±1 ] ⊕(n -n) .
∈ B n -n , Bur t ([n -n, id n ]) • Bur t (σ) = Bur t (ψ σ) • Bur t ([n -n, id n ]).
For all natural numbers n and n such that n ≥ n, we assign Bur

t ([n -n, id n ]) : C t ±1 ⊕n-1 → C t ±1 ⊕n -1 to be the embedding ι C[t ±1 ] ⊕n -n ⊕ id C[t ±1 ]
⊕n-1 (where these morphisms are introduced in Notation 1.22). Repeating mutadis mutandis the work done for the functor TYM, the assignment for Bur t implies that for all natural numbers n ≥ n ≥ n, for all σ ∈ B n and all

ψ ∈ B n -n , Bur t ([n -n, id n ]) • Bur t (σ) = Bur t (ψ σ) • Bur t ([n -n, id n ]
). According to Proposition 1.10, our assignment defines a functor Bur t : Uβ -→ C t ±1 -Mod, called the reduced Burau functor.

Lawrence-Krammer functor:

The family of Lawrence-Krammer representations was notably used to prove that braid groups are linear (see [START_REF] Bigelow | Homological representations of the Iwahori-Hecke algebra[END_REF][START_REF] Kohno | Homological representations of braid groups and kz connections[END_REF][START_REF] Krammer | Braid groups are linear[END_REF]). For this paragraph, we assign K = C t ±1 q ±1 the ring of Laurent polynomials in two variables and consider the functor GL -of Definition 1.17 with this assignment. Let LK : Uβ → C t ±1 q ±1 -Mod be the assignment:

• Objects: for all natural numbers n ≥ 2, LK (n) = 1≤j<k≤n

V j,k , with for all 1 ≤ j < k ≤ n, V j,k is a free C t ±1 q ±1 -module of rank one. Hence, LK (n) ∼ = C t ±1 q ±1 ⊕n(n-1)/2 as C t ±1 q ±1 -modules. Moreover, one assigns LK (1) = 0 and LK (0) = 0.

• Morphisms:

-Automorphisms: for all natural numbers n, for every Artin generator

σ i of B n (with i ∈ {1, . . . , n -1}), for all v j,k ∈ V j,k (with 1 ≤ j < k ≤ n), LK (σ i ) v j,k =                    v j,k if i / ∈ {j -1, j, k -1, k}, tv i,k + t 2 -t v i,i+1 + (1 -t) v i+1,k if i = j -1, v i+1,k if i = j = k -1, tv j,i + (1 -t) v j,i+1 -t 2 -t qv i,i+1 if i = k -1 = j, v j,i+1 if i = k, -qt 2 v i,i+1 if i = j = k -1.
-General morphisms: let n, n ∈ N, such that n ≥ n. For all natural numbers j and k such that

1 ≤ j < k ≤ n, we define the embedding V n,n j,k : V j,k ∼ -→ V j+(n -n),k+(n -n) → 1≤j<k≤n V j,k of free C t ±1 q ±1 -modules. Then we define LK ([n -n, id n ]) : 1≤j<k≤n V j,k → 1≤j<k≤n V j,k to be the embed- ding 1≤j<k≤n V n,n j,k .
Since we consider a family of representations of B n (see [START_REF] Krammer | Braid groups are linear[END_REF]), the assignment LK defines an object of Fct β, C t ±1 -Mod .

Let n, n and n be natural numbers such that n ≥ n ≥ n. It follows directly from our definitions of LK ([nn, id n ]), LK ([nn , id n ]) and LK ([nn, id n ]) that relation (1) of Proposition 1.10 is satisfied.

According to the definition of LK (σ l ) with σ l an Artin generator of B n -n , for all v j,k ∈

V j,k with 1 + (n -n) ≤ j < k ≤ n , LK (σ l ) v j,k = v j,k . Hence for all ψ ∈ B n -n : LK (ψ id n ) • LK n -n, id n = LK n -n, id n .
Note also that for all l ∈ {1, . . . , n -1}, for all v j,k ∈ V j,k with 1 + (nn) ≤ j < k ≤ n , it follows from the assignment of LK that:

LK (id n -n σ l ) v (n -n)+j,(n -n)+k = LK (σ n -n+l ) v (n -n)+j,(n -n)+k = LK n -n, id n LK (σ l ) v j,k .
Therefore, this implies that for all

σ ∈ B n , LK ([n -n, id n ]) • LK (σ) = LK (id n -n σ) • LK ([n -n, id n ]).
Hence, LK satisfies the relation (2) of Proposition 1.10. Hence, the assignment defines a functor LK : Uβ → C t ±1 q ±1 -Mod, called the Lawrence-Krammer functor.

Functoriality of the Long-Moody construction

The principle of the Long-Moody construction, corresponding to Theorem 2.1 of [START_REF] Long | Constructing representations of braid groups[END_REF], is to build a linear representation of the braid group B n starting from a representation B n+1 . We develop a functorial version of this construction, which leads to the notion of Long-Moody functors (see Section 2.2). Beforehand, we need to introduce various tools, which are consequences of the relationships between braid groups and free groups (see Section 2.1). Finally, in Section 2.3, we investigate examples of functors which are recovered by Long-Moody functors.

Braid groups and free groups

This section recalls some relationships between braid groups and free groups. We also develop tools which will be used throughout our work of Sections 2.2 and 4.

We consider the free group on n generators, which we denote by F n = g 1 , . . . , g n .

Notation 2.1. We denote by e F n the unit element of the free group on n generators F n , for all natural numbers n.

Recall that the category of finitely generated free groups is monoidal using free product of groups (see Notation 1.16). The object 0 being null in the category gr, recall that ι F n : 0 → F n denotes the unique morphism from 0 to F n as in Notation 0.1.

Definition 2.2.

Let n be a natural number. We consider ι F 1 * id F n : F n → F n+1 . This corresponds to the identification of F n as the subgroup of F n+1 generated by the n last copies of F 1 in F n+1 . Iterating this morphism, we obtain for all natural numbers n ≥ n the morphism ι

F n -n * id F n : F n → F n .
Let {ς n : F n → B n+1 } n∈N be a family of group morphisms from the free group F n to the braid group B n+1 , for all natural numbers n. We require these morphisms to satisfy the following crucial property. Condition 2.3. For all elements g ∈ F n , for all natural numbers n ≥ n, the following diagram is commutative in the category Uβ:

1 n ς n (g) / / id 1 [n -n,id n ] 1 n id 1 [n -n,id n ] 1 n ς n e F n -n * g / / 1 n .
Remark 2.4. Condition 2.3 will be used to prove that the Long-Moody functor is well defined on morphisms with respect to the tensor product structure in Theorem 2.21. Moreover, it will also be used in the proof of Propositions 4.14 and 4.18.

Lemma 2.5. Condition 2.3 is equivalent to assume that for all natural numbers n, for all elements g ∈ F n , the morphisms {ς n } n∈N satisfy the following equality in B n+2 :

b β 1,1 -1 id n • (id 1 ς n (g)) = ς n+1 e F 1 * g • b β 1,1 -1 id n . (4) 
Proof. Let n and n be natural numbers such that n ≥ n. The equality (4) implies that for all 1 ≤ k ≤ nn, the following diagram in the category β is commutative :

1 n id n -(n+k) ς n+k-1 e F k-1 * g / / id n -(n+k) b β 1,1 -1 id (k-1)+n 1 n id n -(n+k) b β 1,1 -1 id (k-1)+n 1 n id n -(n+k) ς n+k (eF k * g) / / 1 n .
Hence composing squares, we obtain that the following diagram is commutative in the category β:

1 • • • (1 1) n id n -n-1 b β 1,1 -1 id n / / id n ς n (g) 1 • • • 1 (1 n) id n -1 ς n+1 (eF 1 * g) id n -n-2 b β 1,1 -1 id 1+n / / • • • b β 1,1 -1 id n -1 / / 1 n ς n (eF 1 * g) 1 • • • 1 n id n -n-1 b β 1,1 -1 id n / / 1 • • • 1 (1 n) id n -n-2 b β 1,1 -1 id 1+n / / • • • b β 1,1 -1 id n -1 / / 1 n .
By definition of the braiding (see Definition 1.1), we deduce that the composition of horizontal arrows is the mor-

phism b β 1,n -n -1 id n in β. Recall from Proposition 1.14 that id 1 [n -n, σ] = n -n, (id 1 σ) • b β 1,n -n -1 id n .
Hence Condition 2.3 is satisfied if we assume that the equality ( 4) is satisfied for all natural numbers n.

Conversely, assume that Condition 2.3 is satisfied. Condition 2.3 with n = n + 1 ensures that:

1, b β 1,1 -1 id n • (id 1 ς n (g)) = 1, ς n e F 1 * g • b β 1,1 -1 id n .
Since Aut Uβ (1) = B 1 is the trivial group, we deduce from the defining equivalence relation of Uβ (see Definition 1.5) the equality in B n+2 :

b β 1,1 -1 id n • (id 1 ς n (g)) = ς 1+n e F 1 * g • b β 1,1 -1 id n .
Remark 2.6. It follows from Lemma 2.5 that, for i ≥ 2, ς n (g i ) is determined by ς k (g 1 ) for k ≤ n by the equalities (4).

Example 2.7. The family ς n,1 , based on what is called the pure braid local system in the literature (see [START_REF] Long | Constructing representations of braid groups[END_REF]Remark p.223]), is defined by the following inductive assignment for all natural numbers n ≥ 1.

ς n,1 : F n -→ B n+1 g i -→ σ 2 1 if i = 1 σ -1 1 • σ -1 2 • • • • • σ -1 i-1 • σ 2 i • σ i-1 • • • • • σ 2 • σ 1 if i ∈ {2, . . . , n} .
We assign ς 0,1 to be the trivial morphism.

Proposition 2.8. The family of morphisms {ς n,1 } n∈N satisfies Condition 2.3.

Proof. Relation (4) is trivially satisfied for n = 0. Let n ≥ 1 be a fixed natural number. By definition 1.4, we have

b β 1,1 -1 = σ -1 1 .
Moreover, for all i ∈ {2, . . . , n}, we have ς n+1 e F 1 * g i-1 = ς n+1 (g i ) and

id 1 ς n,1 (g i-1 ) = σ -1 2 • • • • • σ -1 i-1 • σ 2 i • σ i-1 • • • • • σ 2 .
We deduce that:

b β 1,1 -1 id n • (id 1 ς n,1 (g i-1 )) • b β 1,1 id n = ς n,1 (g i ) .
Hence Relation (4) of Lemma 2.5 is satisfied for all natural numbers.

Example 2.9. Let us consider the trivial morphisms ς n, * : F n → 0 Gr → B n+1 for all natural numbers n. The relation of Lemma 2.5 being easily checked, this family of morphisms {ς n, * :

F n → B n+1 } n∈N satisfies Condition 2.3.

Action of braid groups on automorphism groups of free groups:

There are several ways to consider the group B n as a subgroup of Aut (F n ). For instance, the geometric point of view of topology gives us an action of B n on the free group F n (see for example [START_REF] Birman | Braids, links, and mapping class groups[END_REF] or [START_REF] Kassel | Braid groups[END_REF]) identifying B n as the mapping class group of a n-punctured disc Σ n 0,1 : fixing a point y on the boundary of the disc Σ n 0,1 , each free generator g i can be taken as a loop of the disc based y turning around punctures. Each element σ of B n , as an automorphism up to isotopy of the disc Σ n 0,1 , induces a well-defined action on the fundamental group π 1 Σ n 0,1 ∼ = F n called Artin representation (see Example 2.15 for more details).

In the sequel, we fix a family of group actions of B n on the free group F n : let {a n : B n → Aut (F n )} n∈N be a family of group morphisms from the braid group B n to the automorphism group Aut (F n ). For the work of Sections 2.2 and 4, we need the morphisms a n : B n → Aut (F n ) to satisfy more properties. Condition 2.10. Let n and n be natural numbers such that n ≥ n. We require

ι F n -n * id F n • (a n (σ)) = (a n (σ σ)) • ι F n -n * id F n as morphisms F n → F n
for all elements σ of B n and σ of B n -n , ie the following diagrams are commutative:

F n a n (σ) / / ι F n -n * id Fn F n ι F n -n * id Fn F n ι F n -n * id Fn / / ι F n -n * id Fn F n F n a n (id n -n σ) / / F n F n . a n (σ id n ) = =
Remark 2.11. Condition 2.10 will be used to define the Long-Moody functor on morphisms in Theorem 2.21. Moreover, it will also be used for the proof of Propositions 4.14 and 4.18.

We will also require the families of morphisms {ς n : F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N to satisfy the following compatibility relations. Condition 2.12. Let n be a natural number. We assume that the morphism given by the coproduct ς n * (id 1 -) :

F n * B n → B n+1 factors across the canonical surjection to F n a n B n .
In other words, the following diagram is commutative:

F n / / ς n " " F n a n B n B n ? _ o o id 1 - | | B n+1 .
where the morphism F n a n B n → B n+1 is induced by the morphism F n * B n → B n+1 and the group morphism id 1 -: B n → B n+1 is induced by the monoidal structure. This is equivalent to requiring that, for all elements σ ∈ B n and g ∈ F n , the following equality holds in B n+1 :

(id 1 σ) • ς n (g) = ς n (a n (σ) (g)) • (id 1 σ) . ( 5 
)
Remark 2.13. Condition 2.12 is essential in the definition of the Long-Moody functor on objects in Theorem 2.21.

We fix a choice for these families of morphisms {ς n : F n → B n+1 } n∈N and {a n :

B n → Aut (F n )} n∈N .
Definition 2.14. The families {ς n : F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N are said to be coherent if they satisfy conditions 2.3, 2.10 and 2.12.

Example 2.15. A classical family is provided by the Artin representations (see for example [4, Section 1]). For n ∈ N, a n,1 : B n → Aut (F n ) is defined for all elementary braids σ i where i ∈ {1, . . . , n -1} by:

a n,1 (σ i ) : F n -→ F n g j -→      g i+1 if j = i g -1 i+1 g i g i+1 if j = i + 1 g j if j / ∈ {i, i + 1}.
It clearly follows from their definitions that the morphisms {a n,1 : Proof. Let i be a fixed natural number in {1, . . . , n -1}. We prove that the equality (5) of Condition 2.12 is satisfied for all Artin generator σ i and all generator g j of the free group (with j ∈ {1, . . . , n}). First, it follows from the braid relation σ i σ i+1 σ i = σ i+1 σ i σ i+1 that:

B n → Aut (F n )} n∈N satisfy Condition 2.
σ -1 1+i • σ -1 i • σ -2 1+i • σ 2 i • σ 2 1+i • σ i • σ 1+i = σ -1 i • σ 2 1+i • σ i , 13 
and we deduce that:

σ -1 1+i • ς n,1 (a n,1 (σ i ) (g 1+i )) • σ 1+i = ς n,1 (g 1+i ) . Also, the braid relation σ i+1 • σ i • σ i+1 = σ i • σ i+1 • σ i implies that σ -1 i+1 • σ -1 i • σ 2 i+1 • σ i • σ i+1 = σ 2
i and a fortiori:

σ -1 1+i • ς n,1 (a n,1 (σ i ) (g i )) • σ 1+i = ς n,1 (g i ) .
Finally, for a fixed j / ∈ {i, i + 1}, the commutation relation σ i σ j = σ j σ i and the braid relation

σ i σ i+1 σ i = σ i+1 σ i σ i+1 give directly: ς n,1 g j = σ -1 1+i • ς n,1 a n,1 (σ i ) g j • σ 1+i .
Corollary 2.17. The families of morphisms {a n,1 :

B n → Aut (F n )} n∈N and {ς n,1 : F n → B n+1 } n∈N are coherent.
Example 2.18. Consider the family of morphisms {ς n, * : F n → B n+1 } n∈N of Example 2.9 and any family of mor- phisms {a n :

B n → Aut (F n )} n∈N . Then Condition 2.
12 is always satisfied. As a consequence, these families of morphisms {ς n, * : F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N are coherent if and only if the family of mor- phisms {a n : B n → Aut (F n )} n∈N satisfies Condition 2.10.

The Long-Moody functors

In this section, we prove that the Long-Moody construction of [17, Theorem 2.1 ] induces a functor

LM : Fct (Uβ, K-Mod) → Fct (Uβ, K-Mod) .
We fix families of morphisms {ς n : F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N , which are assumed to be co- herent (see Definition 2.14).

We first need to make some observations and introduce some tools. Let F be an object of Fct (Uβ, K-Mod) and n be a natural number. A fortiori, the K-module F (n + 1) is endowed with a left K [B n+1 ]-module structure. Using the morphism ς n :

F n → B n+1 , F (n + 1) is a K [F n ]-module by restriction.
Let us consider the augmentation ideal of the free group F n , denoted by

I K[F n ] . Since it is a (right) K [F n ]- module, one can form the tensor product I K[F n ] K[F n ]
F (n + 1). Also, for all natural numbers n and n such that Proof. For any group morphism H → Aut (G), the group ring K [G] is canonically an H-module and so is the augmentation ideal I G , as a submodule of K [G].

n ≥ n, the morphism ι F n -n * id F n : F n → F n canonically induces a morphism ι I K [ F n -n ] * id I K[Fn ] : I K[F n ] → I K[F n ] . In addition, the augmentation ideal I K[F n ] is a K [B n ]-module too:
Remark 2.20. If the family of morphisms {a n : B n → Aut (F n )} n∈N is coherent with respect to the family of mor- phisms {ς n : F n → B n+1 } n∈N , the relation of Condition 2.10 remains true mutatis mutandis, for all natural num- bers n and n , considering the induced morphisms a n :

B n → Aut I K[F n ] and ι I K [ F n -n ] * id I K[Fn ] : I K[F n ] → I K[F n ] .
In the following theorem, we define an endofunctor of Fct (Uβ, K-Mod) corresponding to the Long-Moody con- struction. It will be called the Long-Moody functor with respect to {ς n : F n → B n+1 } n∈N and {a n :

B n → Aut (F n )} n∈N .
Theorem 2.21. Recall that we have fixed coherent families of morphisms {ς n : F n → B n+1 } n∈N and {a n :

B n → Aut (F n )} n∈N .
The following assignment defines a functor LM a,ς : Fct (Uβ, K-Mod) → Fct (Uβ, K-Mod).

• Objects: for F ∈ Obj (Fct (Uβ, K-Mod)), LM a,ς (F) : Uβ → K-Mod is defined by:

-Objects: ∀n ∈ N, LM a,ς (F) (n) = I K[F n ] K[F n ] F (n + 1).
-Morphisms: for n, n ∈ N, such that n ≥ n, and [nn, σ] ∈ Hom Uβ (n, n ), assign:

LM a,ς (F) n -n, σ i K[F n ] v = a n (σ) ι I K [ F n -n ] * id I K[Fn ] (i) K[F n ] F id 1 n -n, σ (v) ,
for all i ∈ I K[F n ] and v ∈ F (n + 1).

• Morphisms: let F and G be two objects of Fct (Uβ, K-Mod), and η : F → G be a natural transformation. We define LM a,ς (η) : LM a,ς (F) → LM a,ς (G) for all natural numbers n by:

(LM a,ς (η)) n = id I K[Fn ] K[F n ] η n+1 .
In particular, the Long-Moody functor LM a,ς induces an endofunctor of the category Fct (β, K-Mod).

Notation 2.22. When there is no ambiguity, once the morphisms {ς n : F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N are fixed, we omit them from the notation LM a,ς for convenience (especially for proofs).

Proof. For this proof, n, n and n are natural numbers such that n ≥ n ≥ n.

1. First let us show that the assignment of LM defines an endofunctor of Fct (β, K-Mod). The two first points generalize the proof of [17, Theorem 2.1]. Let F, G and H be objects of Fct (β, K-Mod).

(a) We first check the compatibility of the assignment LM (F) with respect to the tensor product. Consider

σ ∈ B n g ∈ F n , i ∈ I K[F n ] and v ∈ F (n + 1). Since (id 1 σ) • ς n (g) = ς n (a n (σ) (g)) • (id 1 σ
) by Condition 2.12, we deduce that:

LM (F) (σ) i K[F n ] F (ς n (g)) (v) = a n (σ) (i) K[F n ] F (id 1 σ) (F (ς n (g)) (v)) = a n (σ) (i) K[F n ] (F (ς n (a n (σ) (g))) • F (id 1 σ)) (v) = a n (σ) (i • g) K[F n ] F (id 1 σ) (v) = LM (F) (σ) i • g K[F n ] (v) .
(b) Let us prove that the assignment LM (F) defines an object of Fct (β, K-Mod). According to our assign- ment and since a n and id 1are group morphisms, it follows from the definition that LM (F) (id

B n ) = id LM(F)(n)
. Hence, it remains to prove that the composition axiom is satisfied. Let σ and σ be two elements of B n , i ∈ I K[F n ] and v ∈ F (n + 1). From the functoriality of F over β and the compatibility of the monoidal structure with composition, we deduce that F (id

1 (σ )) • F (id 1 (σ)) = F (id 1 (σ • σ)).
Since a n is a group morphism, we have:

a n σ • σ (i) = a n σ (a n (σ) (i)) .
Hence, it follows from the assignment of LM that:

LM (F) σ • σ i K[F n ] v = a n σ • σ (i) K[F n ] F id 1 σ • σ (v) = a n σ (a n (σ) (i)) K[F n ] F id 1 σ • F (id 1 (σ)) (v) = LM (F) σ • LM (F) (σ) i K[F n ]
v .

(c) It remains to check the consistency of our definition of LM on morphisms of Fct (β, K-Mod). Let η : F → G be a natural transformation. Hence, we have that:

G (id 1 σ) • η n+1 = η n +1 • F (id 1 σ) .
Hence, it follows from the assignment of LM that:

LM (G) (σ) • LM (η) n = LM (η) n • LM (F) (σ)
Therefore LM (η) is a morphism in the category Fct (β, K-Mod). Denoting by id F : F → F the identity natural transformation, it is clear that LM (id F ) = id LM(F) . Finally, let us check the composition axiom. Let η : F → G and µ : G → H be natural transformations. Let n be a natural number, i ∈ I K[F n ] and v ∈ F (n). Now, since µ and η are morphisms in the category Fct (β, K-Mod):

LM (µ • η) n i K[F n ] v = i K[F n ] (µ n+1 • η n+1 ) (v) = LM (µ) n • LM (η) n i K[F n ] v .
2. Let us prove that the assignment LM lifts to define an endofunctor of Fct (Uβ, K-Mod). Let F, G and H be objects of Fct (Uβ, K-Mod).

(a) First, let us check the compatibility of the assignment LM (F) with respect to the tensor product. In fact, this compatibility being already done for automorphisms (see 1a), the remaining point to prove is the compatibility of

LM (F) ([n -n, id n ]). Let g ∈ F n , i ∈ I K[F n ] and v ∈ F (n + 1). It follows from Condition 2.3 that in B n+1 : id 1 n -n, id n -n ς n (g) = ς n e F n -n * g • id 1 n -n, id n . Since ι I K [ F n -n ] * id I K[Fn ] (i • g) = e I K [ F n -n ] * i • e F n -n * g , we deduce that: LM (F) n -n, id n i K[F n ] F (ς n (g)) (v) = ι I K [ F n -n ] * id I K[Fn ] (i) K[F n ] F id 1 n -n, id n (F (ς n (g)) (v)) = ι I K [ F n -n ] * id I K[Fn ] (i • g) K[F n ] F id 1 n -n, id n (v) = LM (F) n -n, id n i • g K[F n ]
v .

(b) Let us prove that the assignment LM (F) defines an object of Fct (Uβ, K-Mod) using Proposition 1.10.

Recall the compatibility of the monoidal structure with respect to composition and that F is an object of Fct (Uβ, K-Mod). Consider [nn, σ] ∈ Hom Uβ (n, n ). It follows from our assignment, that:

LM (F) n -n, σ = LM (F) (σ) • LM (F) n -n, id n .
Moreover, the composition of morphisms introduced in Definition 2.2 implies that:

LM (F) n -n, id n = LM (F) n -n , id n • LM (F) n -n, id n .
Hence, the relation (1) of Proposition 1.10 is satisfied. Let σ ∈ B n and

ψ ∈ B n -n . Since (ι n -n * id n ) • (a n (σ)) = (a n (ψ σ)) • (ι n -n * id n ) by Condition 2.
10, we deduce that:

LM (F) (ψ σ) • LM (F) n -n, id n = LM (F) n -n, id n • LM (F) (σ) .
Hence the relation (2) of Proposition 1.10 is also satisfied. Therefore, according to Proposition 1.10, since LM (F) is an object of Fct (β, K-Mod), the assignment LM (F) defines an object of Fct (Uβ, K-Mod).

(c) Finally, let us check the consistency of our assignment for LM on morphisms. Let η : F → G be a natural transformation. We already proved in 1c that LM (η) is a morphism in the category Fct (β, K-Mod).

Since η is a natural transformation between objects of Fct (Uβ, K-Mod), we have that:

G id 1 n -n, id n • η n+1 = η n +1 • F id 1 n -n, id n .
Hence, it follows from the assignment of LM that:

LM (G) n -n, id n • LM (η) n = LM (η) n • LM (F) n -n, id n .
Hence the relation (3) of Proposition 1.12 is satisfied, and we deduce from this last proposition that LM (η) is a morphism in the category Fct (Uβ, K-Mod). The verification of the composition axiom repeats mutatis mutandis the one of 1c.

Recall the following fact on the augmentation ideal of the free group F n where n ∈ N.

Proposition 2.23. [25, Chapter 6, Proposition 6.2.6] The augmentation ideal

I K[F n ] is a free K [F n ]-module with basis the set {(g i -1) | i ∈ {1, . . . , n}}.
This result allows us to prove the following properties.

Proposition 2.24. The functor LM a,ς : Fct (Uβ, K-Mod) → Fct (Uβ, K-Mod) is reduced and exact. Moreover, it com- mutes with all colimits and all finite limits. Similarly, the fact that the functor LM a,ς commutes with all colimits is a formal consequence of the commutation with all colimits of the tensor products

I K[F n ] K[F n ]
for all natural numbers n. The commutation result for finite limits is a property of exact functors (see for example [18, Chapter 8, section 3]).

Remark 2.25. Let F be an object of Fct (Uβ, K-Mod) and n a natural number. For all k ∈ {1, . . . , n}, we denote

F (n + 1) k = K [(g k -1)] K[F n ]
F (n + 1) with g k a generator of F n . We define an isomorphism

Λ n,F : I K[F n ] K[F n ] F (n + 1) -→ n k=1 F (n + 1) k ∼ = (F (n + 1)) ⊕n (g k -1) K[F n ] v -→   0, . . . , 0, k-th v , 0, . . . , 0   .
Thus, for η : F → G a natural transformation, with Λ:

∀n ∈ N, Λ n ((LM (η)) n ) = η ⊕n n+1 .
Hence, we can have a matricial point of view on this construction (see [START_REF] Long | Constructing representations of braid groups[END_REF]Theorem 2.2]). Similarly, the study of Bigelow and Tian in [START_REF] Bigelow | Generalized Long-Moody representations of braid groups[END_REF] is performed from a purely matricial point of view. Notation 2.27. We denote by X : Uβ → K-Mod the constant functor such that X (n) = K for all natural numbers n.

Case of trivial

We have the following remarkable property.

Proposition 2.28. Let F be an object of Fct (Uβ, K-Mod) and {a n : B n → Aut (F n )} n∈N a family of morphisms which satisfies Condition 2.10. Then, as objects of Fct (Uβ, K-Mod), LM a,ς * (F) ∼ = LM a,ς * (X)

⊗ K F (1 -).
Proof. Remark 2.25 shows that there is an isomorphism of K-modules of the form:

LM a,ς * (F) (n) Λ n,F / / (F (n + 1)) ⊕n Λ n,X ⊗ K id F(1 n) -1 / / LM a,ς * (X) (n) ⊗ K F (1 n) .
It is straightforward to check that this isomorphism is natural if ς is trivial.

Evaluation of the Long-Moody functor

A first step to understand the behaviour of a Long-Moody endofunctor is to investigate its effect on the constant functor X. This is indeed the most basic functor to study. Moreover, as Proposition 2.28 shows, the evaluation on this functor is the fundamental information to understand a given Long-Moody endofunctor when we consider the family of morphisms {ς n, * :

F n → B n+1 } n∈N of Example 2.9.
Fixing coherent families of morphisms {ς n : F n → B n+1 } n∈N and {a n :

B n → Aut (F n )} n∈N , we consider the Long-Moody functor LM a,ς : Fct (β, K-Mod) → Fct (β, K-Mod) .
For a fixed natural number n, using the isomorphism Λ n of Remark 2.25, we observe that LM a,ς (X) (n) ∼ = K ⊕n . Notation 2.29. Let y be an invertible element of K. Let yX : β → K-Mod be the functor defined for all natural numbers n by yX (n) = K and such that:

• if n = 0 or n = 1, then yX (id) = id K ;

• if n ≥ 2, for every Artin generator σ i of B n , (yX) (σ i ) : K → K is the multiplication by y.

For an object F of Fct (β, K-Mod), we denote the functor yX ⊗ K F : β → K-Mod by yF.

Computations for LM 1

Let us assume that K = C t ±1 . Let us consider the coherent families of morphisms {ς n,1 :

F n → B n+1 } n∈N (in- troduced in Example 2.7) and {a n,1 : B n → Aut (F n )} n∈N (introduced in Example 2.15
). We denote by LM 1 the as- sociated Long-Moody functor. We are interested in the behaviour of the functor t -1 LM 1 (tX) : β -→ C t ±1 -Mod on automorphisms of the category Uβ. Indeed, adding a parameter t is necessary to recover functors specifically associated with the category Uβ, such as Bur t (see Section 1.2). Let us fix n a natural number and σ i an Artin generator of B n .

Beforehand, let us understand the action a n,1 :

B n -→ Aut I K[F n ] induced by a n,1 : B n → Aut (F n ). We compute: a n,1 (σ i ) : I K[F n ] -→ I K[F n ] g j -1 -→        g i+1 -1 if j = i g -1 i+1 g i g i+1 -1 = [g i -1] g i+1 + [g i+1 -1] 1 -g -1 i+1 g i g i+1 if j = i + 1 g j -1 if j / ∈ {i, i + 1} .
Hence, we have the following result.

Proposition 2.30. As objects of Fct (β, K-Mod), t -1 LM 1 (tX) = Bur t 2 .

Proof. Using the isomorphism Λ n of Remark 2.25, we obtain that for σ i an Artin generator of B n :

t -1 LM 1 (tX) (σ i ) = Id i-1 ⊕ 0 t 2 1 1 -t 2 ⊕ Id n-i-1 = Bur t 2 (σ i ) .
Recovering of the Lawrence-Krammer functor: Let us first introduce the following result due to Long in [START_REF] Long | Constructing representations of braid groups[END_REF]. We assume that K = C t ±1 q ±1 . For this paragraph, we assume that 1 + qt = 0, q has a square root, q 2 = 1 and q 3 = 1.

Notation 2.31. We denote by X : β -→ C t ±1 q ±1 -Mod the constant functor such that X (n) = C t ±1 q ±1 for all natural numbers n. Generally speaking, for F an object of Fct (β, K-Mod) the representation of B n induced by F will be denoted by F |B n . Proposition 2.32. [17, special case of Corollary 2.10] Let n be a natural number such that n ≥ 4. Then, the Lawrence-Krammer representation LK |B n is a subrepresentation of q -1 LM 1 q t -1 LM 1 (tX)

|B n .

We first need to introduce new tools. Let n and m be two natural numbers. Let w n = (w 1 , . . . , w n ) ∈ C n such that w i = w j if i = j. We consider the configuration space:

Y w n ,m = (z 1 , . . . , z m ) | z i ∈ C, z i = w k for 1 ≤ k ≤ n, z i = z j if i = j .
The two following results due to Long will be crucial to prove Proposition 2.32. Proposition 2.33. [START_REF] Long | Constructing representations of braid groups[END_REF]Corollary 2.7] Let n be a natural number and ρ : B n+1 → GL (V) be a representation of B n with V a C t ±1 q ±1 -module. Then, the representation defined by Long in [17, Theorem 2.1], which we denote by LM, is a group morphism:

q -1 LM (qρ) : B n → GL H 1 Y w n ,1 , E ρ
for E ρ a flat vector bundle associated with ρ (see [17, p. 225-226]). Lemma 2.34. [START_REF] Long | Constructing representations of braid groups[END_REF]Lemma 2.9] For all natural numbers m, there is an isomorphism of abelian groups:

H m+1 Y w n ,m+1 , E X |Bn ∼ = H 1 Y w n ,1 , H m Y w n+1 ,m , E X |Bn .
In particular, for m = 1,

H 2 Y w n ,2 , E X |Bn ∼ = H 1 Y w n ,1 , H 1 Y w n+1 ,2 , E X |Bn .
Proof of Proposition 2.33. By Proposition 2.33, we can write as a representation:

q -1 LM q t -1 LM (tX) : B n → GL H 1 Y w n ,1 , E t -1 LM(tX) .
A fortiori by Lemma 2.34,

q -1 LM q t -1 LM tX |B n is an action of B n on H 2 Y w n ,2 , E X |Bn .
In particular, for m = 2 and n ≥ 4, according to [14, Theorem 5.1], the representation of B n factoring through the Iwahori-Hecke algebra H n (t) corresponding to the Young diagram (n -2, 2) is a subrepresentation of q -1 LM q t -1 LM tX |B n . Moreover, this representation is equivalent to the Lawrence-Krammer representation by [1, Section 5]. By the definition of the Long-Moody construction (see [START_REF] Long | Constructing representations of braid groups[END_REF]Theorem 2

.1]), q -1 LM q t -1 LM tX |B n is the representa- tion q -1 (τ 1 LM 1 ) q t -1 LM 1 (tX) |B n .
We denote by LK ≥4 : β -→ C t ±1 q ±1 -Mod the subfunctor of the Lawrence-Krammer defined in Example 1.2 which is null on the objects such that n < 4. The result of Proposition 2.32 implies that: Proposition 2.35. The functor LK ≥4 is a subfunctor of q -1 (τ 1 LM 1 ) q t -1 LM 1 (tX) ≥4 .

Computations for other cases

Let us introduce examples of Long-Moody functors which arise using other actions a n : B n → Aut (F n ).

Wada representations

In 1992, Wada introduced in [START_REF] Wada | Group invariants of links[END_REF] a certain type of family of representations of braid groups. We give here a functorial approach to this work. Definition 2.36. Let Aut -: (N, ≤) → Gr be the functor defined by:

• Objects: for all natural numbers n, Aut -(n) = Aut (F n ) the automorphism group of the free group on n generators;

• Morphisms: let n be a natural number. We define

Aut -(γ n ) : Aut (F n ) → Aut (F n+1 ) assigning Aut -(γ n ) (ϕ) = id 1 * ϕ for all ϕ ∈ Aut (F n )
, using the monoidal category (gr, * , 0) recalled in Notation 1.16.

Definition 2.37. Let us consider two different non-trivial reduced words W (g 1 , g 2 ) and V (g 1 , g 2 ) on F 2 , such that:

• the assignments g 1 → W (g 1 , g 2 ) and g 2 → V (g 1 , g 2 ) define a automorphism of F 2 ;

• the assignment (W,

V) : B 2 -→ Aut (F 2 ): [(W, V) (σ 1 )] g j = W (g 1 , g 2 ) if j = 1 V (g 1 , g 2 ) if j = 2 is a morphism. Two morphisms (W, V) : B 2 -→ Aut (F 2 ) and (W , V ) : B 2 → Aut (F 2 ) are said to be swap-dual if W (g 1 , g 2 ) = V (g 2 , g 1 ) and V (g 1 , g 2 ) = W (g 2 , g 1 ), backward-dual if W (g 1 , g 2 ) = W g -1 1 , g -1 2 -1 and V (g 1 , g 2 ) = V g -1 1 , g -1 2 -1 , inverse if (W , V ) = (W, V) -1 .
Definition 2.38. [START_REF] Wada | Group invariants of links[END_REF] Let W (g 1 , g 2 ) and V (g 1 , g 2 ) be two words on F 2 . A natural transformation W : B -→ Aut -is said to be of Wada-type if for all natural numbers n, for all i ∈ {1, . . . , n -1}, the following diagram is commutative (we recall that incl n i was introduced in Notation 1.18 and Aut -(γ 2,i ) in Definition 2.36):

B n W n / / Aut (F n ) B 2 (W,V) / / incl n i O O Aut (F 2 ) . Aut -(γ2,i) * idF n-i-1
O O Remark 2.39. Note that therefore a Wada-type natural transformation is entirely determined by the choice of (W, V).

Wada conjectured a classification of these type of representations. This conjecture was proved by Ito in [START_REF] Ito | The classification of Wada-type representations of braid groups[END_REF].

Theorem 2.40. [START_REF] Ito | The classification of Wada-type representations of braid groups[END_REF] There are seven classes of Wada-type natural transformation W up to the swap-dual, backward-dual and inverse equivalences, listed below.

1. (W, V) 1,m (g 1 , g 2 ) = g 2 , g m 2 g 1 g -m 2
where m ∈ Z;

2. (W, V) 2 (g 1 , g 2 ) = (g 1 , g 2 ); 3. (W, V) 3 (g 1 , g 2 ) = g 2 , g -1 1 ; 4. (W, V) 4 (g 1 , g 2 ) = g 2 , g -1 2 g -1 1 g 2 ; 5. (W, V) 5 (g 1 , g 2 ) = g -1 2 , g -1 1 ; 6. (W, V) 6 (g 1 , g 2 ) = g -1 2 , g 2 g 1 g 2 ; 7. (W, V) 7 (g 1 , g 2 ) = g 1 g -1 2 g -1 1 , g 1 g 2 2 .
Remark 2.41. Note that the action given by the first Wada representation with m = 1 is a generalization of the Artin representation.

Notation 2.42. The actions given by the k-th Wada-type natural transformation will be denoted by a n,k : B n → Aut (F n ). In particular, for k = 1 with m = 1, we recover the Artin representation (see Example 2.15).

For all 1 ≤ k ≤ 8, it clearly follows from their definitions that the families of morphisms a n,k : B n → Aut (F n ) n∈N satisfy Condition 2.10. Hence, for 1 ≤ k ≤ 8, we consider a family of morphisms ς n,k : F n → B n+1 assumed to be coherent with respect to the morphisms a n,k : B n → Aut (F n ) n∈N (in the sense of Definition 2.14). Such mor- phisms ς n,k always exist because we could at least take the family of morphisms {ς n, * : F n → B n+1 } (see Example 2.18). We denote by LM k : Fct (β, K-Mod) → Fct (β, K-Mod) the corresponding Long-Moody functor defined in Theorem 2.21 for k ∈ {1, . . . , 8}.

Let us imitate the procedure of Section 2.3.1. We assume that K = C t ±1 . Let n be a fixed natural number. Let us consider the case of k = 2. Using the isomorphism Λ n of Remark 2.25, we obtain the functor LM 2 (X) : β → C t ±1 -Mod, defined for σ i ∈ B n by:

LM 2 (F) (σ i ) = (F (σ i )) ⊕n .
For k = 3, using Λ n , we compute that the functor t -1 LM 3 (tX) : β → C t ±1 -Mod is defined for σ i ∈ B n by:

t -1 LM 3 (tX) (σ i ) = Id i-1 ⊕ 0 -ς n,3 (g i ) 1 0 ⊕ Id n-i-1 .
Hence, the functor t -1 LM 3 (tX) is very similar to the one associated with the Tong-Yang-Ma representations (recall Definition 1.2). We deduce that the identity natural equivalence gives t -1 LM 3 (tX) ∼ = TYM -ς n,3 (g i ) as objects of Fct (β, K-Mod).

For the actions given by the Wada-type natural transformation 4, 5, 6 and 7 in Theorem 2.40, the produced functors t -1 LM i (tX) : β -→ C t ±1 -Mod are mild variants of what is given by the case i = 1.

Strong polynomial functors

We deal here with the concept of a strong polynomial functor. This type of functor will be the core of our work in Section 4. We review (and actually extend) the definition and properties of a strong polynomial functor due to Djament and Vespa in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] and also a particular case of coefficient systems of finite degree used by Randal-Williams and Wahl in [START_REF] Randal | Homological stability for automorphism groups[END_REF].

In [7, Section 1], Djament and Vespa construct a framework to define strong polynomial functors in the category Fct (M, A), where M is a symmetric monoidal category, the unit is an initial object and A is an abelian category.

Here, we generalize this definition for functors from pre-braided monoidal categories having the same additional property. In particular, the notion of strong polynomial functor will be defined for the category Fct (Uβ, K-Mod). The keypoint of this section is Proposition 3.2, in so far as it constitutes the crucial property necessary and sufficient to extend the definition of strong polynomial functor to the pre-braided case.

Strong polynomiality

We first introduce the translation functor, which plays the central role in the definition of strong polynomiality. Definition 3.1. Let (M, , 0) be a strict monoidal small category, let D be a category and let x be an object of M. The monoidal structure defines the endofunctor x -: M -→ M. We define the translation by x functor τ x : Fct (M, D) → Fct (M, D) to be the endofunctor obtained by precomposition by the functor x -.

The following proposition establishes the commutation of two translation functors associated with two objects of M. It is the keystone property to define strong polynomial functors. Proposition 3.2. Let (M, , 0) be a pre-braided strict monoidal small category and D be a category. Let x and y be two objects of M. Then, there exists a natural isomorphism between functors from Fct (M, D) to Fct (M, D):

τ x • τ y ∼ = τ y • τ x .
Proof. First, because of the associativity of the monoidal product and the strictness of M, we have that τ x • τ y = τ x y and τ y • τ x = τ y x . We denote by b M -,-the pre-braiding of M. The key point is the fact that as b M -,-is a braiding on the maximal subgroupoid of M (see Definition id M instead to define an isomorphism between τ x y (F) and τ y x (F). In fact, a category only needs to be equipped with natural (in x and y) isomorphisms x y ∼ = y x to satisfy the conclusion of Proposition 3.2.

Let us move on to the introduction of the evanescence and difference functors, which will characterize the (very) strong polynomiality of a functor in Fct (M, A). Recall that, if M is a small category and A is an abelian category, then the functor category Fct (M, A) is an abelian category (see [START_REF] Mac | Categories for the working mathematician[END_REF]Chapter VIII]).

From now until the end of Section 3, we fix (M, , 0) a pre-braided strict monoidal category such that the monoidal unit 0 is an initial object, A an abelian category and x denotes an object of M. Definition 3.4. For all objects F of Fct (M, A), we denote by i x (F) : τ 0 (F) → τ x (F) the natural transformation induced by the unique morphism ι x : 0 → x of M. This induces i x : Id Fct(M,A) → τ x a natural transformation of Fct (M, A). Since the category Fct (M, A) is abelian, the kernel and cokernel of the natural transformation i x exist. We define the functors κ x = ker (i x ) and δ x = coker (i x ). The endofunctors κ x and δ x of Fct (M, A) are called respectively evanescence and difference functor associated with x.

The following proposition presents elementary properties of the translation, evanescence and difference functors. They are either consequences of the definitions, or direct generalizations of the framework considered in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] where M is symmetric monoidal. Proposition 3.5. Let y be an object of M. Then the translation functor τ x is exact and we have the following exact sequence in the category of endofunctors of Fct (M, A):

0 -→ κ x Ω x -→ Id i x -→ τ x ∆ x -→ δ x -→ 0. ( 6 
)
Moreover, for a short exact sequence 0 -→ F -→ G -→ H -→ 0 in the category Fct (M, A), there is a natural exact sequence in the category Fct (M, A):

0 -→ κ x (F) -→ κ x (G) -→ κ x (H) -→ δ x (F) -→ δ x (G) -→ δ x (H) -→ 0. ( 7 
)
In addition:

1. The translation endofunctor τ x of Fct (M, A) commutes with limits and colimits.

2. The difference endofunctors δ x and δ y of Fct (M, A) commute up to natural isomorphism. They commute with colimits.

3. The endofunctors κ x and κ y of Fct (M, A) commute up to natural isomorphism. They commute with limits.

4. The natural inclusion κ x • κ x → κ x is an isomorphism.

5. The translation endofunctor τ x and the difference endofunctor δ y commute up to natural isomorphism.

6. The translation endofunctor τ x and the endofunctor κ y commute up to natural isomorphism.

7. We have the following natural exact sequence in the category of endofunctors of Fct (M, A):

0 -→ κ y -→ κ x y -→ τ x κ y -→ δ y -→ δ x y -→ τ y δ x -→ 0. ( 8 
)
Proof. In the symmetric monoidal case, this is [7, Proposition 1.4]: the numbered properties are formal consequences of the commutation property of the translation endofunctors given by Proposition 3.2. Hence, the proofs carry over mutatis mutandis to the pre-braided setting.

Using Proposition 3.5, we can define strong polynomial functors.

Definition 3.6. We recursively define on n ∈ N the category P ol strong n (M, A) of strong polynomial functors of degree less than or equal to n to be the full subcategory of Fct (M, A) as follows:

1. If n < 0, P ol strong n (M, A) = {0};
2. if n ≥ 0, the objects of P ol strong n (M, A) are the functors F such that for all objects x of M, the functor δ x (F) is an object of P ol strong n-1 (M, A).

For an object F of Fct (M, A) which is strong polynomial of degree less than or equal to n ∈ N, the smallest d ∈ N (d ≤ n) for which F is an object of P ol strong d (M, A) is called the strong degree of F. Remark 3.7. By Proposition 1.14, the category (Uβ, , 0) is a pre-braided monoidal category such that 0 is initial object. This example is the first one which led us to extend the definition of [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. Thus, we have a well-defined notion of strong polynomial functor for the category Uβ.

The following three propositions are important properties of the framework in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] adapted to the pre-braided case. Their proofs follow directly from those of their analogues in [7, Propositions 1.7, 1.8 and 1.9]. Proposition 3.8. [7, Proposition 1.7] Let M be another pre-braided strict monoidal category such that such that its monoidal unit is an initial object and α : M → M be a strong monoidal functor. Then, the precomposition by α provides a functor P ol strong n (M, A) → P ol strong n (M , A). Proposition 3.9. [7, Proposition 1.8] The category P ol strong n (M, A) is closed under the translation endofunctor τ x , under quotient, under extension and under colimits. Moreover, assuming that there exists a set E of objects of M such that:

∀m ∈ Obj (M) , ∃ {e i } i∈I ∈ Obj (E) where I is finite, m ∼ = i∈I e i ,
then, an object F of Fct (M, A) belongs to P ol strong n (M, A) if and only if δ e (F) is an object of P ol strong n-1 (M, A) for all objects e of E. Corollary 3.10. Let n be a natural number. Let F be a strong polynomial functor of degree n in the category Fct (M, A). Then a direct summand of F is necessarily an object of the category P ol strong n (M, A).

Proof. According to Proposition 3.9, the category P ol strong n (M, A) is closed under quotients.

Remark 3.11. The category P ol strong n (M, A) is not necessarily closed under subobjects. For example, we will see in Section 3.3 that for M = Uβ and A = C t ±1 -Mod, the functor Bur t is a subobject of τ 1 Bur t (see Proposition 3.28), Bur t is strong polynomial of degree 2 (see Proposition 3.28) whereas τ 1 Bur t is strong polynomial of degree 1 (see Proposition 3.29). If we assume that the unit 0 is also a terminal object of M, then κ x is the null endofunctor, δ x is exact and commutes with all limits. In this case, the category P ol strong n (M, A) is closed under subobjects. Remark 3.12. If we consider M = Uβ, then each object n (ie a natural number) is clearly 1 n . Hence, because of the last statement of Proposition 3.9, when we will deal with strong polynomiality of objects in Fct (Uβ, A), it will suffice to consider τ 1 . Proposition 3.13. [7, Proposition 1.9] Let F be an object of Fct (M, A). Then, the functor F is an object of P ol strong 0 (M, A) if and only if it is the quotient of a constant functor of Fct (M, A).

Finally, let us point out the following property of the strong polynomial degree with respect to the translation functor.

Lemma 3.14. Let d and k be natural numbers and F be an object of Fct (Uβ, K-Mod) such that τ k (F) is an object of P ol strong d (Uβ, K-Mod). Then, F is an object of P ol d+k (Uβ, K-Mod).

Proof. We proceed by induction on the degree of polynomiality of τ k (F). First, assuming that τ k (F) belongs to P ol strong 0 (Uβ, K-Mod), we deduce from the commutation property 6 of Proposition 3.5 that τ k (δ 1 F) = 0. It follows from the definition of τ k (F) (see Definition 3.1) that for all n ≥ 2, δ 1 (F) (n) = 0. Hence

δ 1 • • • δ 1 δ 1 k + 1 times (F) ∼ = 0
and therefore F is an object of P ol k (Uβ, K-Mod). Now, assume that τ k (F) is a strong polynomial functor of degree

d ≥ 0. Since (τ k • δ 1 ) (F) ∼ = (δ 1 • τ k ) (F) by the commutation property 6 of Proposition 3.5, (τ k • δ 1 ) (F) is an object of P ol strong d-1 (Uβ, K-Mod).
The inductive hypothesis implies that δ 1 (F) is an object of P ol strong d+k (Uβ, K-Mod). Remark 3.15. Let us consider the atomic functor A n (with n > 0), which is strong polynomial of degree n (see Example 3.21). Then τ k (A n ) ∼ = A ⊕n n-k is strong polynomial of degree nk, for k a natural number such that k ≤ n. This illustrates the fact that d + k is the best boundary for the degree of polynomiality in Lemma 3.14.

Very strong polynomial functors

Let us introduce a particular type of strong polynomial functor, related to coefficient systems of finite degree (see Remark 3.17 below). We recall that we consider a pre-braided strict monoidal category (M, , 0) such that the monoidal unit 0 is an initial object and an abelian category A. Definition 3.16. We recursively define the category V P ol n (M, A) of very strong polynomial functors of degree less than or equal to n to be the full subcategory of P ol strong n (M, A) as follows: A) is an object of V P ol n (M, A) if for all objects x of M, κ x (F) = 0 and the functor δ x (F) is an object of V P ol n-1 (M, A).

1. If n < 0, V P ol n (M, A) = {0}; 2. if n ≥ 0, a functor F ∈ P ol strong n (M,
For an object F of Fct (M, A) which is very strong polynomial of degree less than or equal to n ∈ N, the smallest d ∈ N (d ≤ n) for which F is an object of V P ol d (M, A) is called the very strong degree of F. Remark 3.17. A certain type of functor, called a coefficient system of finite degree, closely related to the strong polynomial one, is used by Randal-Williams and Wahl in [START_REF] Randal | Homological stability for automorphism groups[END_REF]Definition 4.10] for their homological stability theorems, generalizing the concept introduced by van der Kallen for general linear groups [START_REF] Van Der Kallen | Homology stability for linear groups[END_REF]. Using the framework introduced by Randal-Williams and Wahl, a coefficient system in every object x of M of degree n at N = 0 is a very strong polynomial functor. Remark 3.18. As we force κ x to be null for all objects x of M, the category V P ol n (M, A) is closed under kernel functors of the epimorphisms. In particular, this category is closed under direct summands. However, V P ol n (M, A) is not necessarily closed under subobjects. For instance, as for Remark 3.11, we have that the functor Bur t is strong polynomial of degree 2 (see Proposition 3.28), the functor τ 1 Bur t is very strong polynomial of degree 1 (see Proposition 3.29), but Bur t is a subobject of τ 1 Bur t (see Proposition 3.28).

Proposition 3.19. The category V P ol n (M, A) is closed under the translation endofunctor τ x , under kernel of epimorphism and under extension. Moreover, assuming that there exists a set E of objects of M such that:

∀m ∈ Obj (M) , ∃ {e i } i∈I ∈ Obj (E) (where I is finite), m ∼ = i∈I e i ,
then, an object F of Fct (M, A) belongs to V P ol n (M, A) if and only if κ e (F) = 0 and δ e (F) is an object of V P ol n-1 (M, A) for all objects e of E.

Proof. The first assertion follows from the fact that for all objects x of M, the endofunctor τ x commutes with the endofunctors δ x and κ x (see Proposition 3.5). For the second and third assertions, let us consider two short exact sequences of Fct (M, A):

0 -→ G -→ F 1 -→ F 2 -→ 0 and 0 -→ F 3 -→ H -→ F 4 -→ 0 with F i a
very strong polynomial functor of degree n for all i. Let x be an object of M. We use the exact sequence (7) of Proposition 3.5 to obtain the two following exact sequences in the category Fct (M, A):

0 -→ κ x (G) -→ 0 -→ 0 -→ δ x (G) -→ δ x (F 1 ) -→ δ x (F 2 ) -→ 0; 0 -→ 0 -→ κ x (H) -→ 0 -→ δ x (F 3 ) -→ δ x (H) -→ δ x (F 4 ) -→ 0.
Therefore, κ x (G) = κ x (H) = 0 and the result follows directly by induction on the degree of polynomiality. For the last point, we consider the long exact sequence (8) of Proposition 3.5 applied to an object F of V P ol n (M, A) to obtain the following exact sequence in the category Fct (M, A):

0 -→ κ y (F) -→ κ x y (F) -→ τ x κ y (F) -→ δ y (F) -→ δ x y (F) -→ τ y δ x (F) -→ 0.
Hence, by induction on the length of objects as monoidal product of {e i } i∈I , we deduce that κ m (F) = 0 for all objects m of M if and only if κ e (F) = 0 for all objects e of E. Moreover, since V P ol n (M, A) is closed under extension and by the translation endofunctor τ y , the result follows by induction on the degree of polynomiality n. Proposition 3.20. Let F be an object of Fct (M, A). The functor F is an object of V P ol 0 (M, A) if and only if it is isomorphic to τ k F for all natural numbers k.

Proof. The result follows using the long exact sequence (6) of Proposition 3.5 applied to F.

The following example show that there exist strong polynomial functors which are not very strong polynomial in any degree.

Example 3.21. Let us consider the categories Uβ and K-Mod, and n a natural number. Let K be considered as an object of K-Mod and 0 be the trivial K-module. Let A n be an object of Fct (Uβ, K-Mod), defined by: • Objects: ∀m ∈ N, A n (m) = K if n = m 0 otherwise .

• Morphisms: let [ji, f ] with f ∈ B n be a morphism from i to j in the category Uβ. Then:

A n ( f ) = id K if i = j = n 0 otherwise.
The functor A n is called an atomic functor in K of degree n. For coherence, we fix A -1 to be the null functor of Fct (Uβ, K-Mod). Then, it is clear that i p (A n ) is the zero natural transformation. On the one hand, we deduce the following natural equivalence κ 1 (A n ) ∼ = A n and a fortiori A n is not a very strong polynomial functor. On the other hand, it is worth noting the natural equivalence δ 1 (A n ) ∼ = τ 1 (A n ) and the fact that τ 1 (A n ) ∼ = A n-1 . Therefore, we recursively prove that A n is a strong polynomial functor of degree n.

Remark 3.22. Contrary to P ol strong n (M, A), a quotient of an object F of V P ol n (M, A) is not necessarily a very strong polynomial functor. For example, for M = Uβ and A = K-Mod, let us consider the functor A 0 defined in Example 3.21, which we proved to be a strong polynomial functor of degree 0. Let A be the constant object of Fct (Uβ, K-Mod) equal to K. Then, we define a natural transformation α : A → A 0 assigning:

∀n ∈ N, α n = id K if n = 0 t K otherwise.
Moreover, it is an epimorphism in the category Fct (Uβ, K-Mod) since for all natural numbers n, coker (α n ) = 0 K-Mod . We proved in Example 3.21 that A 0 is not a very strong polynomial functor of degree 0 whereas A is a very strong polynomial functor of degree 0 by Proposition 3.20.

Finally, let us remark the following behaviour of the translation functor with respect to very strong polynomial degree. Lemma 3.23. Let d and k be a natural numbers and F be an object of V P ol d (M, K-Mod). Then the functor τ k (F) is very strong polynomial of degree equal to that of F. Proof. We proceed by induction on the degree of polynomiality of F. First, if we assume that F belongs to V P ol 0 (M, K-Mod), then according to Proposition 3.20, τ k (F) ∼ = F is a degree 0 very strong polynomial func- tor. Now, assume that F is a very strong polynomial functor of degree n ≥ 0. Using the commutation properties 5 and 6 of Proposition 3.5, we deduce that (κ

1 • τ k ) (F) ∼ = (τ k • κ 1 ) (F) = 0 and (δ 1 • τ k ) (F) ∼ = (τ k • δ 1 ) (F).
Since the functor δ 1 (F) is a degree n -1 very strong polynomial functor, the result follows from the inductive hypothesis.

Remark 3.24. The previous proof does not work for strong polynomial functors since the initial step fails. Indeed, considering the atomic functor A 1 , which is strong polynomial of 1 (see Example 3.21), then τ 2 (A 0 ) = 0.

Examples of polynomial functors over Uβ

The different functors introduced in Section 1.2 are strong polynomial functors.

Very strong polynomial functors of degree one: Let us first investigate the polynomiality of the functors Bur t and TYM t .

Proposition 3.25. The functors Bur t and TYM t are very strong polynomial functors of degree 1.

Proof. For the functor Bur t , the proof is mutatis mutandis the same as the one for the dual version considered in [START_REF] Randal | Homological stability for automorphism groups[END_REF]Example 4.15]. We will thus focus on the case of the functor TYM t . Let n be a natural number. By Remark 3.12, it is enough to consider the application i

1 TYM t ([0, id n ]) = ι C[t ±1 ] ⊕n -n ⊕ id C[t ±1 ]
⊕n . This map is a monomorphism and its cokernel is C t ±1 . Hence κ 1 TYM t is the null functor of Fct Uβ, C t ±1 -Mod . Let n be a natural number such that n ≥ n and let [nn, σ] ∈ Hom Uβ (n, n ). By naturality and the universal property of the cokernel, there exists a unique endomorphism of C t ±1 such that the following diagram commutes, where the lines are exact. It is exactly the definition of δ 1 TYM t ([nn, σ]).

0 / / C t ±1 ⊕n ι C [ t ±1 ] ⊕id C [ t ±1 ] ⊕n / / TYM([n -n,σ]) C t ±1 ⊕n+1 π n+1 / / τ 1 (TYM)([n -n,σ]) C t ±1 / / ∃! 0 0 / / C t ±1 ⊕n ι C [ t ±1 ] ⊕id C [ t ±1 ] ⊕n / / C t ±1 ⊕n +1 π n +1 / / C t ±1 / / 0. For all (a, b) ∈ C t ±1 ⊕ C t ±1 ⊕n = C t ±1 ⊕n+1 , τ 1 (TYM t ) ([n -n, σ]) (a, b) = (a, TYM t ([n -n, σ]) (b)). Therefore, (π n +1 • τ 1 (TYM t ) ([n -n, σ])) (a, b) = a = π n+1 (a, b). Hence, id C[t ±1 ] also makes the diagram com- mutative and thus δ 1 TYM t ([n -n, σ]) = id C[t ±1 ]
. Hence, δ 1 TYM t is the constant functor equal to C t ±1 . A fortiori, because of Proposition 3.20, δ 1 TYM t is a very strong polynomial functor of degree 0.

The particular case of Bur t : Definition 3.26. Let T 1 : Uβ -→ C t ±1 -Mod be the subobject of the constant functor X (see Notation 2.27) such that T 1 (0) = 0 and T 1 (n) = C t ±1 for all non-zero natural numbers n.

Remark 3.27. It follows from Definition 3.26 that δ 1 T 1 ∼ = A 0 (where A 0 is introduced in Example 3.21). Therefore, T 1 is a strong polynomial functor of degree 1, but is not very strong polynomial. Nevertheless, it is worth noting that κ 1 T 1 = 0.

We deduce that in the canonical basis {e 1,2 , e 1,3 , . . . , e 1,n+1 } of 2≤l≤n+1 V 1,l :

δ 1 LK (σ i ) = Id i-1 ⊕ 0 t 1 1 -t ⊕ Id n-i-1 = B ur t (σ i ) .
So as to identify δ 1 LK, it remains to consider the action on morphisms of type [1, id n+1 ]. According to the definition of the Lawrence-Krammer functor, we have

τ 1 (LK) ([1, id n+1 ]) = LK σ -1 1 • LK ([1, id n+2 ]
) and:

LK (σ 1 ) (v 1,k ) = v 2,k if k ∈ {3, . . . , n + 2}, -qt 2 v if k = 2.
It follows that for all v i,l ∈ V i,l with 1 ≤ i < l ≤ n + 1:

π n+1 • τ 1 (LK) ([1, id n+1 ]) (v i,l ) = v 1,l+1 if i = 1 and l ∈ {2, . . . , n + 1}, 0 otherwise.
Hence, we deduce that for all 2

≤ l ≤ n + 1, δ 1 LK ([1, id n+1 ]) (v 1,l ) = v 1,l+1 = B ur t ([1, id n+1 ]) (v 1,l ).
Proposition 3.33. The functor LK is a very strong polynomial functor of degree 2.

Proof. Let n be a natural number. By Remark 3.12, we only have to consider the application i 1 LK ([0, id n ]). Since this map is a monomorphism with cokernel 1≤i≤n V i,n+1 , κ 1 LK is the null constant functor. Since the functor B ur t is very strong polynomial of degree one (following exactly the same proof as the one of Proposition 3.25), we deduce from Lemma 3.32 that LK is very strong polynomial of degree two.

The Long-Moody functor applied to polynomial functors

Let us move on to the effect of the Long-Moody functors on (very) strong polynomial functors. For this purpose, it is enough by Remark 3.12 to consider the cokernel of the map i 1 LM. First, we decompose the functor τ 1 • LM (see Proposition 4.19) so as to understand the behaviour of the image of i 1 LM through this decomposition. This allows us to prove a splitting decomposition of the difference functor (see Theorem 4.23). This is the key point to prove our main results, namely Corollary 4.26 and Theorem 4.27. Finally, we give some additional properties of Long-Moody functors with respect to polynomial functors. Let {ς n : F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N be coherent families of morphisms (see Definition 2.14), with associated Long-Moody functor LM a,ς (see Theorem 2.21), which we fix for all the work of this section (in particular, we omit the "a, ς" from the notation).

Decomposition of the translation functor

We introduce two functors which will play a key role in the main result. First, let us recall the following crucial property of the augmentation ideal of a free product of groups, which follows by combining [START_REF] Daniel | Groups of cohomological dimension one[END_REF]Lemma 4.3] 

I K[G * H] ∼ = I K[G] ⊗ K[G] K [G * H] ⊕ I K[H] ⊗ K[H] K [G * H] .
[G * H] is a left K [G]-module (respectively left K [H]-module) via the morphism id G * ι H : G → G * H (respectively ι G * id H : H → G * H ).
Notation 4.3. Let n and n be natural numbers such that n ≥ n. We consider the morphism id

F n * ι F n -n : F n → F n .
This corresponds to the identification of F n as the subgroup of F n generated by the n first copies of F 1 in F n .

In addition, the group morphism id

F n * ι F n -n : F n → F n canonically induces a K-module morphism id I K[Fn ] * ι I K [ F n -n ] : I K[F n ] → I K[F n ] .
For F an object of Fct (Uβ, K-Mod), we consider the functor (τ 1 • LM) (F). For all natural numbers n, by Proposition 4.1, we have a K [F 1+n ]-module isomorphism:

I K[F 1+n ] K[F 1+n ] F (n + 2) ∼ = I K[F 1 ] K[F 1 ] K [F 1+n ] ⊕ I K[F n ] K[F n ] K [F 1+n ] K[F 1+n ] F (n + 2) . Now, by Remark 4.2, the K [F n+1 ]-module F (n + 2) is a K [F 1 ]-module via F ς 1+n id F 1 * ι F n : F 1 → Aut K-Mod (F (n + 2))
and

K [F n ]-module via F ς 1+n ι F 1 * id F n : F n → Aut K-Mod (F (n + 2)) .
Therefore, because of the distributivity of tensor product with respect to the direct sum, we have the following proposition.

Proposition 4.4. Let F ∈ Obj (Fct (Uβ, K-Mod)) and n be a natural number. Then, we have the following K-module isomorphism:

τ 1 LM (F) (n) ∼ = I K[F 1 ] K[F 1 ] F (n + 2) ⊕ I K[F n ] K[F n ] F (n + 2) . (9) 
Definition 4.5. For all natural numbers n and F ∈ Obj (Fct (Uβ, K-Mod)), we denote by

• υ (F) n the monomorphism of K-modules id

I K[F 1 ] * ι I K[Fn ] K[F 1+n ] id F(n+2) : I K[F 1 ] K[F 1 ] F (n + 2) → τ 1 LM (F) (n), • ξ (F) n the monomorphism of K-modules ι I K[F 1 ] * id I K[Fn ] K[F 1+n ] id F(n+2) : I K[F n ] K[F n ] F (n + 2) → τ 1 LM (F) (n),
associated with the direct sum of Proposition 4.4.

The aim of this section is in fact to show that this K-module decomposition leads to a decomposition of τ 1 LM (see Theorem 4.23) as a functor.

Additional conditions

We need two additional conditions so as to make the decomposition of Proposition 4.4 functorial. First, we require the morphisms {a n : B n → Aut (F n )} n∈N to satisfy the following property. Condition 4.6. Let n and n be natural numbers such that n ≥ n. We require a 1+n b

β 1,n -n -1 id n • ι F n -n * id F n+1 • id F 1 * ι F n = id F 1 * ι F n .
In other words, the following diagram is commutative: In addition, we will assume that the morphisms {a n : B n → Aut (F n )} n∈N satisfy the following condition. 

F 1 id F 1 * ι Fn id F 1 * ι F n / / F 1+n F 1+n ι F n -n * id F 1+n / / F n -n * F 1+n ∼ = F 1+n .
1,n -n -1 = σ -1 1 • σ -1 2 • • • • • σ -1 n -n . We consider the element e F n -n * g 1 * e F n = g n -n+1 ∈ F (n -n)+1+n . The definition of a n,1 gives that a 1+n ,1 (σ n -n ) (g n -n ) = g n -n+1
. Therefore, we have that:

a 1+n ,1 σ -1 n -n (g n -n+1 ) = g n -n .
Iterating this observation, we deduce that a 1+n b

β 1,n -n -1
id n (g n -n+1 ) = g 1 ∈ F 1+n . Hence, the family of morphisms {a n,1 : B n → Aut (F n )} n∈N satisfies Condition 4.6.

Similarly to Example 2.15 earlier, for all g ∈ F n -n and each Artin generator

σ i ∈ B n , a n (id n -n σ i ) (g * e F n ) = g * e F n .
Hence, the family of morphisms {a n,1 : B n → Aut (F n )} n∈N satisfies Condition 4.8.

From now until the end of Section 4, we fix coherent reliable families of morphisms {ς

n : F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N .

The intermediary functors

The functor τ 2 : Let us consider the factor I

K[F 1 ] K[F 1 ] F (n + 2) of τ 1 LM (F) (n) in the decomposition of Proposi- tion 4.4.
Notation 4.13. For all objects F of Fct (Uβ, K-Mod), for all natural numbers n, we denote I

K[F 1 ] K[F 1 ] F (n + 2) by Υ (F) (n). Recall the monomorphisms {υ (F) n : Υ (F) (n) → τ 1 LM (F) (n)} n∈N of Definition 4.5.
Proposition 4.14. Let F be an object of Fct (Uβ, K-Mod). For all natural numbers n and n such that n ≥ n, and for all [nn, σ] ∈ Hom Uβ (n, n ), assign:

Υ (F) n -n, σ = id I K[F 1 ] K[F 1 ] F id 2 n -n, σ .
This defines a subfunctor Υ (F) : Uβ → K-Mod of τ 1 LM (F), using the monomorphisms {υ (F) n } n∈N .

Proof. Let us check that the assignment Υ (F) is well defined with respect to the tensor product. Let n and n be natural numbers such that n ≥ n, and [nn, σ] ∈ Hom Uβ (n, n ) with σ ∈ B n . Recall from Proposition 1.14 that

id 2 [n -n, σ] = n -n, (id 2 σ) • b β 2,n -n -1
id n . On the one hand, by Condition 2.12, we have:

(id 2 σ) • ς 1+n (g 1 ) = ς 1+n (a 1+n (id 1 σ) (g 1 )) • (id 2 σ) .
Hence, it follows from Condition 4.8 that

(id 2 σ) • ς 1+n (g 1 ) = ς 1+n (g 1 ) • (id 2 σ) . ( 10 
)
On the other hand, Condition 4.6 gives that

g 1 = a 2+n b β 1,n -n -1 id n+1 (g n -n+1
)

and by Condition 4.8 we have

g 1 = a 2+n id 1 b β 1,n -n -1
id n (g 1 ) .

By the definition of the braiding b β -,-(see Definition 1.4), we deduce that:

ς 1+n (g 1 ) = ς 1+n a 2+n b β 2,n -n -1 id n (g n -n+1 ) .
Then, it follows from the combination of Conditions 2.3 and 2.12 that as morphisms in Uβ:

n -n, ς 1+n (g 1 ) • b β 2,n -n -1 id n = n -n, b β 2,n -n -1 id n • (id n -n ς 1+n (g 1 )) . (11) 
Hence, we deduce from the relations (10) and ( 11) that:

n -n, (id 2 σ) • b β 2,n -n -1 id n • (id n -n ς 1+n (g 1 )) = n -n, ς 1+n (g 1 ) • (id 2 σ) • b β 2,n -n -1 id n . A fortiori, F (id 2 [n -n, σ]) • F (ς 1+n (g 1 )) = F (ς 1+n (g 1 )) • F (id 2 [n -n, σ]).
Hence, our assignment is well defined with respect to the tensor product. Let us prove that the subspaces Υ (F) (n) are stable under the action of Uβ. Let i ∈ I K[F 1 ] and v ∈ F (n + 2). We deduce from the definition of the monoidal structure morphisms of Uβ (see Proposition 1.14) and from the definition of the Long-Moody functor (see Theorem 2.21) that, for all i ∈ I K[F 1 ] and for all v ∈ F (n + 2):

τ 1 LM (F) n -n, σ • υ (F) n i K[F 1 ] v =a 1+n (id 1 σ) a 1+n b β 1,n -n -1 id n ι I K [ F n -n ] * id I K[F 1 ] * ι I K[Fn ] (i) K[F n +1 ] F id 1 id 1 n -n, σ (v) .
It follows from Condition 4.6 that:

a 1+n b β 1,n -n -1 id n ι I K [ F n -n ] * id I K[F 1 ] * ι I K[Fn ] (i) = id I K[F 1 ] * ι I K [ F n ] (i) .
Since by Condition 4.8, a 1+n (id

1 σ) id I K[F 1 ] * ι I K [ F n ] (i) = id I K[F 1 ] * ι I K [ F n ] (i)
for all elements σ of B n , we deduce that:

τ 1 LM (F) n -n, σ • υ (F) n i K[F 1 ] v = υ (F) n • Υ (F) n -n, σ i K[F m ] v .
Therefore, the functorial structure of τ 1 LM (F) induces by restriction the one of Υ (F).

Now, we can lift this link between Υ (F) of τ 1 LM (F) to endofunctors of Fct (Uβ, K-Mod).

Proposition 4.15. Let F and G be two objects of Fct (Uβ, K-Mod), and η : F → G be a natural transformation. For all natural numbers n, assign :

(Υ (η)) n = id I K[F 1 ] K[F 1 ] η n+2 .
Then we define a subfunctor Υ : Fct (Uβ, K-Mod) → Fct (Uβ, K-Mod) of τ 1 LM using the monomorphisms {υ (F) n } n∈N .

Proof. The consistency of our definition follows repeating mutatis mutandis point (1c) of the proof of Theorem 2.21. It directly follows from the definitions of (Υ (η)) n , υ (G) n and τ 1 • LM (see Definition 2.2) that υ (G) n • (Υ) (η

) n = (τ 1 • LM) (η) n • υ (F) n .
In fact, we have an easy description of the functor Υ.

Proposition 4.16.

There is a natural equivalence Υ ∼ = τ 2 where τ 2 is the translation functor introduced in Definition 3.1.

Proof. Let F be an object of Fct (Uβ, K-Mod). By Proposition 2.23, for all natural numbers n, we have an isomor- phism:

χ n,F : I K[F 1 ] K[F 1 ] F (n + 2) ∼ = -→ F (n + 2) .
(g 1 -1) F (n + 2) of τ 1 • LM (F) (n) in the decomposition of Proposition 4.4. In fact, we are going to prove that these modules assemble to form a functor which identifies with LM (τ 1 F). We recall from Theorem 2.21 and Definition 3.1 the following fact.

K[F n ] v -→ v
Remark 4.17. The functor LM • τ 1 : Fct (Uβ, K-Mod) → Fct (Uβ, K-Mod) is defined by:

• for F ∈ Obj (Fct (Uβ, K-Mod)), ∀n ∈ N, (LM

• τ 1 ) (F) (n) = I K[F n ] K[F n ]
F (n + 2), where F (n + 2) is a left K [F n ]-module using F (id 1 ς n (-)) : F n → Aut K-Mod (F (n + 2)). For n, n ∈ N, such that n ≥ n, and [nn, σ] ∈ Hom Uβ (n, n ):

(LM • τ 1 ) (F) n -n, σ = a n (σ) ι I K [ F n -n ] * id I K[Fn ] K[F n ]
F id 1 id 1 nn, σ .

• Morphisms: let F and G be two objects of Fct (Uβ, K-Mod), and η : F → G be a natural transformation. The natural transformation (LM • τ 1 ) (η) : (LM • τ 1 ) (F) → (LM • τ 1 ) (G) for all natural numbers n is given by:

((LM • τ 1 ) (η)) n = id I K[Fn ] K[F n ] η n+2 .
Proposition 4.18. For all F ∈ Obj (Fct (Uβ, K-Mod)), the monomorphisms {ξ (F) n } n∈N (see Definition 4.5) allow to define a natural transformation ξ (F) : (LM • τ 1 ) (F) → (τ 1 • LM) (F) where, for all natural numbers n:

ξ (F) n = ι I K[F 1 ] * id I K[Fn ] K[F 1+n ] F b β 1,1 -1 id n .
This yields a natural transformation ξ : LM • τ 1 → τ 1 • LM.

Proof. Let n and n be natural numbers such that n ≥ n, and [nn, σ] ∈ Hom Uβ (n, n ) with σ ∈ B n . Let i ∈ I K[F n ] , v ∈ F (n + 2) and g ∈ F n . By Condition 2.3 (using Lemma 2.5 with n = n + 1) the following equality holds in B n+2 :

b β 1,1 -1 id n • (id 1 ς n (g)) = ς 1+n e F 1 * g • b β 1,1 -1 id n .
Recall that

F (n + 2) is a K [F n ]-module via F ς 1+n • ι F 1 * id F n and τ 1 F (n + 1) is a K [F n ]-module via F (id 1 (ς n • id F n )).
Then it follows that the assignment ξ (F) n is well-defined with respect to the tensor product structures of (LM • τ 1 ) (F) (n) and (τ 1 • LM) (F) (n). Moreover, we compute that:

(τ 1 • LM) (F) n -n, σ • ξ (F) n i K[F n ] v = a 1+n (id 1 σ) a 1+n b β 1,n -n -1 id n ι I K [ F 1+n -n ] * id I K[Fn ] (i) K[F n +1 ] F b β 1,1 -1 n -n, σ (v) .
It follows from Condition 2.10 that:

a 1+n b β 1,n -n -1 id n • ι I K [ F 1+n -n ] * id I K[Fn ] (i) = ι I K [ F 1+n -n ] * id I K[Fn ] (i) .
Again by Condition 2.10, we deduce that:

a 1+n (id 1 σ) • ι I K [ F 1+n -n ] * id I K[Fn ] (i) = ι I K[F 1 ] * a n (σ) ι I K [ F n -n ] * id I K[Fn ] (i) .
Hence, we deduce that:

(τ 1 • LM) (F) n -n, σ • ξ (F) n = ξ (F) n • (LM • τ 1 ) (F) n -n, σ .
Let η : F → G be a natural transformation in the category Fct (Uβ, K-Mod) and let n be a natural number. Since η is a natural transformation, we have:

G b β 1,1 -1 id n • η n+2 = η n+2 • F b β 1,1 -1 id n .
Hence, we deduce from the definitions of τ 1 • LM (see Theorem 2.21) and of LM • τ 1 (see Remark 4.17) that:

ξ (G) n • (LM • τ 1 ) (η) n = (τ 1 • LM) (η) n • ξ (F) n .

Splitting of the translation functor

Now, we can establish a decomposition result for the translation functor applied to a Long-Moody functor.

Proposition 4.19.

There is a natural equivalence of endofunctors of Fct (Uβ, K-Mod):

τ 1 • LM ∼ = τ 2 ⊕ (LM • τ 1 ) .
Proof. Recall the natural transformations υ : Υ → τ 1 • LM (introduced in Proposition 4.15) and ξ : LM • τ 1 → τ 1 • LM (defined in Proposition 4.18). The direct sum in the category Fct (Uβ, K-Mod) (induced by the direct sum in the category K-Mod) allows us to define a natural transformation:

υ ⊕ ξ : Υ ⊕ (LM • τ 1 ) -→ (τ 1 • LM) (F) .
This is a natural equivalence since for all natural numbers n, we have an isomorphism of K-modules according to Proposition 4.4: Υ (F) (n) ⊕ (LM • τ 1 ) (F) (n) ∼ = (τ 1 • LM) (F) (n). We conclude using Proposition 4.16.

Splitting of the difference functor

Recall the natural transformation i 1 : Id Fct(Uβ,K-Mod) → τ 1 of Fct (Uβ, K-Mod). Our aim is to study the cok- ernel of i 1 • LM. We recall that for F an object of Fct (Uβ, K-Mod), for all natural numbers n, (i 1 LM) (F) n = LM (F) ([1, id 1+n ]) (see Definition 3.4).

Remark 4.20. Explicitly for all elements i of I K[F n ] , for all elements v of F (n):

(i 1 LM) (F) n i K[F n ] v = ι I K[F 1 ] * id I K[Fn ] (i) K[F 1+n ] F (id 1 ι 1 id n ) (v) .
The natural transformation LM • i 1 : Let us consider the exact sequence [START_REF] Daniel | Groups of cohomological dimension one[END_REF] in the category of endofunctors of Fct (Uβ, K-Mod) of Proposition 3.5:

0 / / κ 1 Ω 1 / / Id i 1 / / τ 1 ∆ 1 / / δ 1 / / 0 .
Since the Long-Moody functor is exact (see Proposition 2.24), we have the following exact sequence: 0 / / LM • κ 1 oooLM(Ω 1 ) / / LM LM(i 1 ) / / LM • τ 1

LM(∆ 1 ) / / LM • δ 1 / / 0 . ( 12 
)
Remark 4.21. From the definition of LM (see Theorem 2.21), we deduce that for F an object of Fct (Uβ, K-Mod), for all natural numbers n, for all elements i of I K[F n ] , for all elements v of F (n):

LM (i 1 ) (F) n i K[F n ] v = i K[F n ] F (ι 1 id 1 id n ) (v) .
Recall the natural transformation ξ : LM • τ 1 → τ 1 • LM introduced in 4.18.

Lemma 4.22. As natural transformations from LM to τ 1 • LM, which are endofunctors of the category Fct (Uβ, K-Mod), the following equality holds: ξ • (LM (i 1 )) = i 1 LM.

Proof. Let F be an object of Fct (Uβ, K-Mod). Let n be a natural number. Let i be an element of I K[F n ] and let v be an element of F (n). 

• (LM (i 1 )) (F) n i K[F n ] v = (id 1 * i) K[F 1+n ] F (id 1 ι 1 id n ) (v) = (i 1 LM) (F) n i K[F n ] v .
Remark 4.31. The proof of Proposition 4.30 shows in particular that a Long-Moody functor LM is not essentially surjective on very strong polynomial functors in any degree.

In [5, Section 4.7, Open Problem 7], Birman and Brendle ask "whether all finite dimensional unitary matrix representations of B n arise in a manner which is related to the construction" recalled in Theorem 2.21. Since the Tong-Yang-Ma and unreduced Burau representations recalled in Theorem 1.19 are unitary representations, the proof of Proposition 4.30 shows that any Long-Moody functor (and especially the one based on the version of the construction of Theorem 2.21) cannot provide all the functors encoding unitary representations. Therefore, we refine the problem asking whether all functors encoding families of finite dimensional unitary representations of braid groups lie in the image of a Long-Moody functor.

Remark 4.32. Another question is to ask whether we can directly obtain the reduced Burau functor Bur t by a Long-Moody functor. Recall that for all natural numbers n, Bur t (n) = C t ±1 ⊕n-1 and LM (F) (n) ∼ = (F (n + 1)) ⊕n for any Long-Moody functor LM and any object F of Fct (Uβ, K-Mod) (see Remark 2.25). Therefore, for dimen- sional considerations on the objects, it is clear that we have to consider a modified version of the Long-Moody construction. This modification would be to take the tensor product with I F n-1 on F n-1 , the K-module F (n + 1) being a K [F n-1 ]-module using a morphism F n-1 → F n-1 a n B n+1 → B n+1 for all natural numbers n, where a n : B n+1 → Aut (F n-1 ) is a group morphism.

Definition 1 . 5 .

 15 [START_REF] Randal | Homological stability for automorphism groups[END_REF] Section 1.1] Quillen's bracket construction on the groupoid β, denoted by Uβ, is the category defined by: • Objects: Obj (Uβ) = Obj (β) = N;

Figure 1 :

 1 Figure 1: Failure of the braiding property

Lemma 2 . 19 .

 219 The action a n : B n → Aut (F n ) canonically induces an action of B n on I K[F n ] denoted by a n : B n → Aut I K[F n ] (abusing the notation).

Proof. Let 0

 0 Fct(Uβ,K-Mod) : Uβ → K-Mod denote the null functor. It follows from the definition of the Long-Moody functor that LM 0 Fct(Uβ,K-Mod) = 0 Fct(Uβ,K-Mod) . Let n be a natural number. Since the augmentation ideal I K[F n ] is a free K [F n ]-module (as stated in Proposition 2.23), it is therefore a flat K [F n ]-module. Then, the result follows from the fact that the functor I K[F n ] K[F n ] -: K-Mod → K-Mod is an exact functor, the naturality for morphisms following from the definition of the Long-Moody functor (see Theorem 2.21).

:

  1.13), b M x,y : x y ∼ = -→ y x defines an isomorphism. Hence, precomposition by b M x,y id M defines a natural transformation b M x,y id M * : τ x y → τ y x . It is an isomorphism since we analogously construct an inverse natural transformation b M τ y x → τ x y . Remark 3.3. In Proposition 3.2, the natural isomorphism is not unique: as the proof shows, we could have used the morphism b M y,x -1

Remark 4 . 2 .

 42 In the statement of Proposition 4.1, recall that the augmentation ideal I K[G] (respectively I K[H] ) is a free right K [G]-module (respectively K [H]-module) by Proposition 2.23. Moreover, the group ring K

Remark 4 . 7 .

 47 Condition 4.6 will be used to define an intermediary functor (seeProposition 4.14).

It follows from Definition 3 . 1 and→ τ 2 .

 312 Proposition 4.14 that the isomorphisms {χ n,F } n∈N define the desired natural equivalence Υ χ The functor LM • τ 1 : Now, let us consider the part I K[F n ] K[F n ]

Tong-Yang-Ma functor: This

  for all natural numbers n ≥ n, such that the relation (1) of Proposition 1.10 is satisfied.Therefore, according to Proposition 1.10, it suffices to show that the relation (2) is satisfied to prove that N is an object of Fct Uβ, C t ±1 -Mod . ±1 ⊕n → C t ±1 ⊕n the embedding of C t ±1 ⊕n as the submodule of C t ±1 ⊕n given by the n last copies of C t ±1 . example is based on the family introduced by Tong, Yang and Ma (see Theorem 1.19). Let TYM t : β → C t ±1 -Mod be the functor defined on objects by TYM t (n) = C t ±1 ⊕n for all nat- ural numbers n, and for all numbers n ≥ 2, for every Artin generator σ i of B n , by TYM t (σ i ) = tym n,t (σ i ) for morphisms. For all natural numbers n and n such that n ≥ n, we assign TYM t ([nn, id n ]) : C t ±1 ⊕n →

	Notation 1.22. Recall that 0 is a null object in the category of R-modules, and that the notation ι G : 0 → G was
	introduced in Notation 0.1. Let n ∈ N. For all natural numbers n and n such that n ≥ n, we define ι	C[t ±1 ]	⊕n -n ⊕
	id C[t ±1 ]			
	C t ±1 ⊕n to be the embedding ι	C[t ±1 ]	⊕n -n ⊕ id C[t ±1 ]	⊕n (where these morphisms are introduced in Notation 1.22).

⊕n : C t

Burau functors: Other examples naturally arise from the Burau representations. Let Bur t : β -→ C t ±1 -Mod be the functor defined on objects by Bur t (n) = C t ±1 ⊕n for all natural numbers n, and for all numbers n ≥ 2, for every Artin generator σ i of B n , by Bur t (σ i ) = bur n,t (σ i ) for morphisms. For all natural numbers n and n such that n ≥ n, we assign Bur t ([n -n, id n ]) : C t ±1 ⊕n → C t ±1 ⊕n to be

  Hence we deduce thatTYM t (ψ σ) • TYM t nn, id n = TYM t nn, id n • TYM t (σ)for all σ ∈ B n and all ψ ∈ B n -n . According to Proposition 1.10, our assignment defines a functor TYM t : Uβ → C t ±1 -Mod, called the Tong-Yang-Ma functor.As for the functor TYM, the assignment for Bur implies that for all natural numbers n ≥ n ≥ n, for all σ ∈ B n and all ψ

	the embedding ι	C[t ±1 ]	⊕n -n ⊕ id C[t ±1 ]	⊕n (where these morphisms are introduced in Notation 1.22).

  According to Proposition 1.10, our assignment defines a functor Bur t : Uβ -→ C t ±1 -Mod, called the unreduced Burau functor. The dual version of the functor Bur t was already considered by Randal-Williams and Wahl in [20, Example 4.3].

  10. The morphisms {a n,1 : B n → Aut (F n )} n∈N together with the morphisms {ς n,1 : F n → B n+1 } n∈N of Example 2.7 satisfy Condition 2.12.

	Proposition 2.16.

  ς: Finally, let us consider the family of morphisms {ς n, * : F n → B n+1 } n∈N of Example 2.9. Remark 2.26. As stated in Example 2.18, we only need to consider a family of morphisms {a n : B n → Aut (F n )} n∈N which satisfies Condition 2.10 so that the families {ς n, * : F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N are coher- ent.

  Let G and H be groups. Then, there is a natural K [G * H]-module isomorphism:

	and
	[6, Theorem 4.7].
	Proposition 4.1.

  Condition 4.8. Let n and n be natural numbers such that n ≥ n. We require a n (id n -n -) : B n → Aut (F n ) maps to the stabilizer of the homomorphism id F n -n * ι F n : F n -n -→ F n , ie for all element σ of B n the following diagram is commutative: Remark 4.9. Condition 4.8 will be used in the proof of Propositions 4.14 and 4.15.Remark 4.10. The relations of Conditions 4.6 and 4.8 remain true mutatis mutandis, for all natural numbers n, considering the induced morphisms a n : B n → Aut I K[F n ] and id I K[Fn ] * ι I If the morphisms {a n : B n → Aut (F n )} n∈N also satisfy conditions 4.6 and 4.8, the coherent fami- lies of morphisms {ς n : F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N are said to be reliable. The coherent families of morphisms {a n,1 : B n → Aut (F n )} n∈N and {ς n,1 : F n → B n+1 } n∈N of Ex- amples 2.7 and 2.15 are reliable.

	F n -n		id F n -n	* ι Fn	/ / F n = =
	id F n -n	* ι Fn	" "		a n (id n -n σ)
			F n .
	Proposition 4.12.			

K [ F n -n ] : I K[F n ] → I K[F n ] .

Definition 4.11. Proof. Recall from Definition 1.4 that b β

  (ι 1 id 1 ) = id 1 ι 1 by Definition 1.13, we deduce from Proposition 4.18, Remark 4.21 and Remark 4.20, that:

	Since b 1,1 β • ξ -1
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Proposition 3.28. The functor Bur is a strong polynomial functor of degree 2. This functor is not very strong polynomial. More precisely, we have the following short exact sequence in Fct Uβ, C t ±1 -Mod : 0 / / Bur t / / τ 1 Bur t / / T 1 / / 0 .

Proof. The natural transformation i 1 Bur t n : Bur t (n) → τ 1 Bur t (n) (introduced in Definition 3.4) is defined to be ι

Let n ≥ 2 be a natural number. This map is a monomorphism (so κ 1 Bur t = 0) and its is C t ±1 . Repeating mutatis mutandis the work done in the proof of Proposition 3.25, we deduce that for all [nn, σ] ∈ Hom Uβ (n, n ) (with n ≥ n ≥ 2), δ 1 Bur t ([nn, σ]) = Id C[t ±1 ] . In addition, since Bur t (1) = 0 and τ 1 Bur t (1) = C t ±1 , we deduce that δ 1 Bur t (1) = C t ±1 and for all n ≥ 1, for all [n -1, σ] ∈ Hom Uβ (1, n ),

. Hence, we prove that δ 1 Bur t ∼ = T 1 where T 1 is introduced in Definition 3.26. The results follow from the fact that δ 1 T 1 ∼ = A 0 by Remark 3.27.

For formal reasons (see Proposition 3.5), Bur t is a subfunctor of τ 1 Bur t . The following proposition illustrates Remarks 3.11 and 3.18.

Proposition 3.29. The functor τ 1 Bur t is a very strong polynomial functor of degree 1.

Proof. Repeating mutatis mutandis the work done in the proof of Proposition 3.28, we prove that δ 1 τ 1 Bur t is the constant functor equal to C t ±1 (denoted by X in Notation 2.27). Since X is a constant functor, δ 1 τ 1 Bur t is by Proposition 3.20 a very strong polynomial functor of degree 0.

A very strong polynomial functor of degree two: We could have defined the unreduced Burau functor of Example 1.2 assigning C t ±1 q ±1 ⊕n to each object n ∈ N.

Notation 3.30. Abusing the notation, C t ±1 q ±1 : Uβ → C t ±1 q ±1 -Mod denotes the constant functor at C t ±1 q ±1 . The functor

Remark 3.31. These functors C t ±1 q ±1 and B ur t are also very strong polynomial of degree one (the proof is exactly the same as the one for Bur t in Proposition 3.27). Lemma 3.32. Considering the modified version of the unreduced Burau functor of Remark 3.30, then δ 1 LK is equivalent to B ur t .

Proof. We consider the application i 1 LK ([0, id n ]). This map is a monomorphism and its cokernel is 2≤l≤n+1 V 1,l . Let n and n be two natural numbers such that n ≥ n. Let [nn, σ] ∈ Hom Uβ (n, n ). By naturality and because of the universal property of the cokernel, there exists a unique endomorphism of C t ±1 q ±1 -modules such that the following diagram commutes, where the lines are exact. It is exactly the definition of

Let i ∈ {1, . . . , n -1}, l ∈ {2, . . . , n + 1} and v 1,l be an element of V 1,l . Then we compute:

Decomposition results: Lemma 4.22 leads to the following key results.

Theorem 4.23.

There is a natural equivalence in the category Fct (Uβ, K-Mod):

Moreover, there is a natural isomorphism

Proof. It follows from the definition of i 1 (see Proposition 3.5) and from Lemma 4.22 that the following diagram is commutative and the row is an exact sequence:

) is a monomorphism. Then, recalling the exact sequence [START_REF] Kohno | Homological representations of braid groups and kz connections[END_REF], we obtain that the following diagram is commutative and that the two rows are exact:

A fortiori, by definition of δ 1 (see Definition 3.4) and the universal property of the cokernel, we deduce that:

Furthermore, by the unicity up to isomorphism of the kernel, we conclude that κ 1

Increase of the polynomial degree

The results formulated in Theorem 4.23 allow us to understand the effect of the Long-Moody functors on (very) strong polynomial functors.

Proposition 4.24. Let F be a non-null object of Fct (Uβ, K-Mod). If the functor F is strong polynomial of degree d, then:

1. the functor τ 2 (F) belongs to P ol strong d

(Uβ, K-Mod);

2. the functor LM (F) belongs to P ol strong d+1 (Uβ, K-Mod).

Proof. We prove these two results by induction on the degree of polynomiality. For the first result, it follows from the commutation property 5 of Proposition 3.5 for τ 2 . For the second result, let us first consider F a strong polynomial functor of degree 0. By Theorem 4.23, we obtain that δ 1 LM (F) ∼ = τ 2 (F). Therefore LM (F) is a strong polynomial functor of degree less than or equal to 1. Now, assume that F is a strong polynomial functor of degree n ≥ 0. By Theorem 4.23:

. By the inductive hypothesis and the result on τ 2 , we deduce that LM (F) is a strong polynomial functor of degree less than or equal to n + 1. (Uβ, K-Mod) such that the strong polynomial degree of τ 2 (F) is equal to d. Then, the functor LM (F) is a strong polynomial functor of degree equal to d + 1. Theorem 4.27. Let d be a natural number and F be an object of V P ol d (Uβ, K-Mod) of degree equal to d. Then, the functor LM (F) is a very strong polynomial functor of degree equal to d + 1.

Proof. Using Lemma 3.23, it follows from Corollary 4.26 that LM (F) is a strong polynomial functor of degree equal to n + 1. Since the functor LM commutes with the evanescence functor κ 1 by Theorem 4.23, we deduce that (κ 1 • LM) (F) ∼ = (LM • κ 1 ) (F) = 0. Moreover, using Theorem 4.23, we have:

Therefore, the fact that τ 2 commutes with the evanescence functor κ 1 (see the commutation property 6 of Proposition 3.5) and Theorem 4.23 together imply that:

The result then follows from the fact that F is an object of V P ol n (Uβ, K-Mod) and τ 2 is a reduced endofunctor of the category Fct (Uβ, K-Mod).

Example 4.28. By Proposition 3.20, X is a very strong polynomial functor of degree 0. Now applying the Long-Moody functor LM 1 , we proved in Proposition 2.30 that t -1 LM 1 (tX) is naturally equivalent to Bur t 2 , which is very strong polynomial of degree 1 by Proposition 3.25.

Other properties of the Long-Moody functors

We have proven in the previous section that a Long-Moody functor sends (very) strong polynomial functors to (very) strong polynomial functors. We can also prove that a (very) strong polynomial functor in the essential image of a Long-Moody functor is necessarily the image of another strong polynomial functor.

Proposition 4.29. Let d be a natural number. Let F be a strong polynomial functor of degree d in the category Fct (Uβ, K-Mod).

Assume that there exists an object G of the category Fct (Uβ, K-Mod) such that LM (G) = F. Then, the functor G is a strong polynomial functor of degree less than or equal to d + 1 in the category Fct (Uβ, K-Mod).

Proof. It follows from Theorem 4.23 that:

According to Corollary 3.10, the functor τ 2 (G) is an object of the category P ol strong d-1 (Uβ, K-Mod), and because of Lemma 3.14 the functor G is an object of the category P ol strong d+1 (Uβ, K-Mod). Proposition 4.30. The Long-Moody functor LM : Fct (β, K-Mod) -→ Fct (β, K-Mod) is not essentially surjective.

Proof. Let l be a natural number. Let E l : Uβ -→ K-Mod be the functor which factorizes through the category N, such that E l (n) = K ⊕n l for all natural numbers n and for all

In particular, for all natural numbers n, for every Artin generator σ i of B n , E l (σ i ) = id K ⊕n l . It inductively follows from this definition and direct computations that E l is a very strong polynomial functor of degree l.

Let us assume that LM is essentially surjective. Hence, there exists an object F of Fct (β, K-Mod) such that LM (F) ∼ = E l . Because of the definition of LM (F) on morphisms (see Theorem 2.21), this implies that for all natural numbers n and for all σ ∈ B n , a n (σ) = id n . Also, if LM is essentially surjective, there exists an object T of the category Fct (β, K-Mod) such that we can recover the Burau functor from LM (T), ie something like αLM (T) (see Notation 2.29) with α ∈ K. We deduce from the definition of LM (T) on objects and morphisms that for all n ≥ 1, T (n) = K and for all generator σ i of B n :

Then necessarily, for all i ∈ {1, . . . , n}, T (σ i ) = δ such that δ 2 = t and we consider δ -1 LM (T). We deduce that there exists a natural transformation ω : δ -1 LM (T) ∼ = → Bur t . This contradicts the fact that for all σ ∈ B n , a n (σ) = id n .