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Approximate and exact solutions of intertwining
equations through random spanning forests

Luca Avena, Fabienne Castell, Alexandre Gaudillière and Clothilde Mélot

Abstract For different reversible Markov kernels on finite state spaces, we look for
families of probability measures for which the time evolution almost remains in their
convex hull. Motivated by signal processing problems and metastability studies we
are interested in the case when the size of such families is smaller than the size of
the state space, and we want such distributions to be with “small overlap” among
them. To this aim we introduce a squeezing function to measure the common overlap
of such families, and we use random forests to build random approximate solutions
of the associated intertwining equations for which we can bound from above the
expected values of both squeezing and total variation errors. We also explain how
to modify some of these approximate solutions into exact solutions by using those
eigenvalues of the associated Laplacian with the largest size.
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1 Main results, motivations and heuristic

The aim of this work is to build exact and approximate solutions of certain inter-
twining equations between Markov kernels on finite state spaces. The intertwining
equations we look at are related to the two following problems. First, we want
to build wavelet-like multiresolution schemes for signal processing on arbitrary
weighted graphs. Second, we want to make sense of the notion of metastability
without asymptotics, in a finite setup where no large-volume or low-temperature
limits are in place. We will partially address these problems by giving “good ap-
proximate solutions” of the intertwining equations, making use of random spanning
forests.

1.1 Intertwining equations

The basic object in this paper is an irreducible stochastic matrix P on a finite state
space X . P is associated (see Section 1.3.1 for precise definitions) with the gener-
ator L of a continuous time process X on X defined by

L f (x) = ∑
y∈X

w(x,y)
[

f (y)− f (x)
]
, f : X → R, x ∈X ,

or, equivalently, with a connected edge weighted graph G = (X ,E ,w), or G =
(X ,w), with X as vertex set, and

E =
{
(x,y) ∈X ×X : w(x,y)> 0

}
as edges set. We will assume throughout the paper that P (or L ) is reversible with
respect to some probability measure µ on X :

∀x,y ∈X , µ(x)w(x,y) = µ(y)w(y,x) . (1)

We look at solutions (Λ , P̄) of the intertwining equations

ΛP = P̄Λ , (2)

and, for q′ > 0,
ΛKq′ = P̄Λ , (3)

where

• P̄ is a stochastic matrix defined on some finite state space X̄ ;
• Λ : X̄ ×X → [0,1] is a rectangular stochastic matrix;

and Kq′ is the transition kernel on X given by

Kq′(x,y) := Px(X(Tq′) = y) = q′(q′ Id−L )−1(x,y) , (4)
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with Tq′ an exponential random variable with parameter q′ that is independent of X .
Solving Equation (2) amounts to find a family of probability measures νx̄ =

Λ(x̄, ·) on X and such that, for some stochastic matrix P̄,

νx̄P = ΛP(x̄, ·) = P̄Λ(x̄, ·) = ∑
ȳ∈X̄

P̄(x̄, ȳ)νȳ, x̄ ∈ X̄ . (5)

In other words the one step evolution of the νx̄’s have to remain in their convex hull.
Solving Equation (3) is the same, except that the “one step evolution” has now to be
considered in continuous time and on time scale 1/q′. In both cases a trivial solution
is always given by taking all the νx̄ equal to the equilibrium measure µ .

Related literature

Intertwining relations, restricted to measures νx̄ with disjoint support, appeared in
the context of diffusion processes in the paper by Rogers and Pitman [20], as a tool
to state identities in laws. This method was later successfully applied to many other
examples (see for instance [5], [11], [15]). In the context of Markov chains, inter-
twining was used by Diaconis and Fill [6] without the disjoint support restriction to
build strong stationary times and to control convergence rates to equilibrium. This
approach initiated in [6] is intimately related with metastability, as will be made
clearer in Sections 1.2.2 and 1.2.3, and it has been recently developed in different
directions, see e.g. [16] and [14]. However, contrary to our setup, in these refer-
ences intertwining relations have mainly been considered with an absorbing point
for P̄ in X̄ and with size m of X̄ being (much) larger than or equal to the size n
of X . At present, applications of intertwining include random matrices [7], particle
systems [24], spectral clustering [1] . . .

Our contribution

Motivated by signal processing and metastability problems (see Section 1.2), in this
paper we are instead interested in the case where

(R1) the size m of X̄ is smaller than the size n of X ,
(R2) P̄ is irreducible,
(R3) the probability measures

(
νx̄ : x̄ ∈ X̄

)
are linearly independent and have

small “joint overlap”.

We will define the squeezing of a collection of probability measures to control this
overlap (see Section 1.3.2) and a small “joint overlap” will correspond to little
squeezed probability measures. We will see in Section 2.2 that, for any reversible
stochastic kernel P with non-negative eigenvalues and for any positive m < n,
non-degenerate solutions of Equation (2) with |X̄ | = m always exist. By “non-
degenerate solutions” we mean linearly independent probability measures such that
Equation (5) holds for some irreducible P̄. But we will argue that exact solutions
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tend to be squeezed solutions. Then, rather than looking at the less squeezed so-
lutions in the large space of all solutions for a given m, we will first consider ap-
proximate solutions with small squeezing. To this aim we will make use of random
spanning forests to build random approximate solutions for which we will be able
to bound both the expected value of an error term in intertwining Equation (2) and
the expected value of the squeezing (Theorem 1). Then we will use the same ran-
dom forests to build random approximate solutions of Equation (3) with no overlap,
i.e., with disjoint support (Theorem 2). Assuming knowledge of the n−m largest
eigenvalues of −L , we will finally see how to modify such an approximate solu-
tion of (3) with m probability measures νx̄ into exact solutions for q′ small enough
(Theorem 3).

Structure of the paper

In the rest of this section, we detail our motivations, linking signal processing and
metastability studies, and we give some heuristics in Section 1.2. After having fixed
some notation in Section 1.3.1, we define the squeezing of a probability measure
family in Section 1.3.2, we introduce random forests in Section 1.3.3, and state
our main results in Sections 1.3.4, 1.3.5 and 1.3.6. In Section 2 we prove some
preliminary results, and we give the proofs of our three main theorems in the three
last sections. We conclude with an appendix that contains the proof of the main
statement that links metastability studies with Equation (5).

1.2 Motivations and heuristics.

Before stating precise results, we would like to explain why we are interested in so-
lutions to (2) and (3) satisfying requirements (R1–3). These come from two motivat-
ing problems we describe now, the first one being the construction of a multiresolu-
tion analysis for signals on graphs, the second one being a proposal of metastability
results without asymptotics.

1.2.1 Pyramidal algorithms in signal processing

First we are interested in extending classical pyramidal algorithms of signal pro-
cessing on the discrete torus

X = X0 = Zn = Z/nZ

to the case of signals on generic edge-weighted graphs. Such algorithms are used
for example to analyze or compress a given signal
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f= f0 : X0→ R

through filtering and subsampling operations. A filter is a linear operator which is
diagonal in the same base as the discrete Laplacian L . A low-pass filter K has eigen-
values of order 1 for low frequency modes, i.e., eigenvectors that are associated with
small eigenvalues of −L , and it has small eigenvalues for high frequency modes,
i.e., eigenvectors that are associated with large eigenvalues of −L . Assuming that
n is an even number, a pyramidal algorithm first computes m = n/2 approximation
coefficients by

• computing a low-pass filtered version K f of the original signal f ,
• subsampling K f by keeping one in each two of its n values, those in some X1 =

X̄ ⊂X , for example the n/2 values in the even sites of Zn.

In doing so it defines a function

f̄ : x̄ ∈ X̄ 7→ K f (x̄) ∈ R

that can naturally be seen as a signal f1 : Zn/2 → R on a twice smaller torus. It
then computes an approximation f̃ of f on X as a function of the approximation
coefficients, and a detail function g̃ = f − f̃ , which in turn can be encoded into
n−m detail coefficients. Wavelet decomposition algorithms are of this kind. It then
applies a similar treatment to f1, to define f2, then f3, . . . up to reaching a simple
signal defined on a small torus made of a few points only. The reason why this
can be useful for compression is that, for well chosen filters, many of the detail
coefficients obtained at the different levels are very small or negligible for a large
class of smooth signals f . And one just has to store the few non-negligible detail
coefficients together with the coarsest approximation’s coefficients to reconstruct a
good approximation of the original signal f . The point is then to find “good” filters,
i.e. “good” ϕx̄ in `2(µ) (in this case µ is the uniform measure on X , the reversible
measure of the simple random walk associated with the discrete Laplacian) so that,
for all f ∈ `2(µ),

f̄ (x̄) = 〈ϕx̄, f 〉= K f (x̄).

And a basic requirement for good filters is that, for each x̄, ϕx̄ is localized around
x̄. Even though the measures dνx̄ = ϕx̄dµ (so that f̄ (x̄) = 〈νx̄| f 〉) are usually signed
measures and not measures, this is the reason why we want to think of the computa-
tion of the approximation coefficients f̄ (x̄) as computation of local means. K being
a low-pass filter, ϕx̄ needs also to be “localized” in Fourier space (written in the di-
agonalizing basis of L , it must have small coefficients on high-frequency modes).
Thus the difficulty comes from Heisenberg principle, which roughly says that no
function ϕx̄ can be well localized both in Fourier space and around x̄. Part of the art
of wavelet design lies in the ability to make a good compromise with Heisenberg
principle (see for example Chapter 7 in [23] for more details on this point).

When moving to the case of signal processing for generic edge-weighted graph,
there are three main issues one has immediately to address to build pyramidal algo-
rithms:
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(Q1) What kind of subsampling should one use? What could “one every second
node” mean?

(Q2) Which kind of filter should one use? How to compute local means?
(Q3) On which (weighted) graph should the approximation coefficients f̄ (x̄) be

defined to iterate the procedure?

On a general weighted finite graph G = (X ,E ,w), none of these questions has a
canonical answer. Several attempts to tackle these issues and to generalize wavelet
constructions have been proposed: see [22, 19] for recent reviews on this subject and
[9] for one of the most popular method. A good starting point to partially answer
questions (Q2) and (Q3), is to look for a solution (Λ , P̄) to intertwining Equation (2),
since any row νx̄ of Λ automatically belongs to an eigenspace of P, and is therefore
frequency localized. Moreover, P̄ is a candidate to define the graph structure on X̄ .
Requirements (R1) (R3) on (Λ , P̄) reflect then the need of a subsampling procedure
(with m = |X̄ | and n of the same order), and of space localization of the νx̄. (R2) is
more technical, and essentially ensures that we can deal with P̄ at the next level in the
pyramidal algorithm in the same way we deal with P. We could however continue
the pyramidal algorithm with a signal defined on unconnected graphs. Question (Q1)
is left apart for the time being. This is where the random forest comes into the play,
and we will come back to this question in Section 1.2.4.

Based on Theorem 1, we developed in [2] a novel wavelet transform. To our
knowledge, our approach is the first one based on the solution of intertwining equa-
tions.

1.2.2 Metastability and intertwining

Our second motivation stems from metastability studies, where it is common to
build a coarse-grained version X̄ of a Markov process X , possibly by seeing X̄ as
a measure-valued process on a small state space, these measures being probability
measures on the large state space X , on which X is defined. For example, when we
want to describe the crystallisation of a slightly supersaturated vapor, we can do it
in the following way. Vapor and crystal are defined by probability measures concen-
trated on very different parts of a very large state space. On this space a Markov pro-
cess describing the temporal evolution of a microscopic configuration evolves, and
this Markovian evolution has to be “macroscopically captured” by a new two-state
Markov process evolving from gas (a probability measure on the large state space)
to crystal (another probability measure on the same space almost non-overlapping
with the previous one). And this evolution is such that the gas should appear as
a local equilibrium left only to reach a more stable crystalline equilibrium. This
is usually done in some asymptotic regime (e.g. large volume or low temperature
asymptotic) and we refer to [17] and [4] for mathematical accounts on the subject.

But we are here outside any asymptotic regime: we are given a finite graph
(X ,w) or a Markov process X and we want to define a finite coarse-grained version
of this graph and Markov process, (X̄ , w̄) and X̄ . Solving the intertwining equation
ΛP = P̄Λ , with the size of P̄ smaller than the size of P, provides a clean way to do
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so. In this equation P is given and stands for the transition kernel of a discrete time
skeleton X̂ of X (see Section 1.3.1 for a precise definition) and we look for an m×m
stochastic matrix P̄ together with a collection of m probability measures νx̄ on X
that defines the rectangular matrix Λ by

Λ(x̄,x) = νx̄(x), x̄ ∈ X̄ , x ∈X .

This equation reads
νx̄P = ∑

ȳ∈X̄
P̄(x̄, ȳ)νȳ (6)

for all x̄ in X̄ and it suggests that the evolution of X can be roughly described
through that of X̄ , associated with the transition kernel P̄: from state or local equi-
librium νx̄ the process X evolves towards a new state or local equilibrium νȳ which
is chosen according to the Markovian kernel P̄. This can be turned into a rigorous
and powerful mathematical statement by the following proposition, which is a par-
tial rewriting of Section 2.4 of [6] in the spirit of [13], and whose proof is given in
appendix.

Proposition 1. If Equation (6) is in force for some x̄ in X̄ , then there are a filtration
F for which X̂ is F -adapted, a F -stopping time Tx̄ and a FTx̄ -mesurable random
variable Ȳx̄ with value in X̄ \{x̄} such that, for X̂ started in νx̄:

1. Tx̄ is geometric with parameter 1− P̄(x̄, x̄);
2. νx̄ is stationary up to Tx̄, i.e., for all t ≥ 0,

Pνx̄

(
X̂(t) = ·

∣∣ t < Tx̄
)
= νx̄ ; (7)

3. Pνx̄ (Ȳx̄ = ȳ) = P̄(x̄,ȳ)
1−P̄(x̄,x̄) for all ȳ in X̄ \{x̄};

4. Pνx̄

(
X̂(Tx̄) = ·

∣∣ Ȳx̄ = ȳ
)
= νȳ(·);

5.
(
Ȳx̄, X̂(Tx̄)

)
and Tx̄ are independent.

Notice the slight abuse of notation. In fact, in the above statement, Pνx̄ captures also
the extra-randomness of the random variables Tx̄ and Ȳx̄.

As far as metastability is concerned, a possibly more natural approach is, instead
of ΛP = P̄Λ , to look for a solution of ΛKq′ = P̄Λ for a small q′ and with Kq′ the
transition kernel associated with our process X looked along a Poisson process of
intensity q′ (see Equation (4) of Section 1.1). It is indeed on a “long” time scale 1/q′

that one is usually looking at a coarse-grained Markovian version of X . But whatever
the equation we are looking at, ΛP = P̄Λ or ΛKq′ = P̄Λ , again we want solutions νx̄
that are localized in well distinct part of the state space, that is solutions satisfying
(R3). Concerning (R1), in metastability studies, we are often interested in cases
where m is very small with respect to n. However if one implements a complete
pyramidal algorithm, one will solve at the same time intertwining equations with
very different m and n by transitivity of the coarse-graining procedure.
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1.2.3 Heisenberg principle, approximate solutions and related work

There is actually at least a fourth question without canonical answer that arises
when going from classical pyramidal or wavelet algorithms to signal processing for
generic weighted graphs: what is a “Heisenberg principle” limiting the localisation
of our νx̄? We do not have an answer to this question, but, although we explained
why we are interested in localized, non-overlapping, little squeezed solutions of the
intertwining equations, we will see in Section 2 that exact solutions of intertwining
equations are strongly localized in Fourier domain, then, a priori, poorly localized in
space. This is the main difficulty faced by the present approach and this is one of the
two reasons why we turned to approximate solutions of intertwining equations. We
will also see in the next section that one needs a detailed knowledge of the spectrum
and the eigenvectors of the Laplacian L to build exact solutions of intertwining
equations. From an algorithmic point of view this can be very costly, and this is the
other reason why we turned to approximate solutions.

In [2] we analyse the full pyramidal algorithm, including a wavelet basis con-
struction, rather than simply focusing on intertwining equations of a one-step reduc-
tion. But we are still looking for a generalised Heisenberg principle that could serve
as a guideline for similar constructions. And our results suggest that such a Heisen-
berg principle should degenerate in presence of a gap in the spectrum (see 1.3.4).

Before concluding these introductory part on intertwining equations, let us note
that Proposition 1 can still be used to make sense of approximate intertwining. We
will show in Section 2, denoting by dTV the total variation distance:

Proposition 2. If X̂ and X̄ are discrete time Markov chains on finite spaces X and
X̄ with transitions kernels P and P̄, if, for each x̄ in X̄ , νx̄ is a probability measure
on X , then, setting

ε = max
x̄∈X̄

dTV

(
νx̄P, ∑

ȳ∈X̄
P̄(x̄, ȳ)νȳ

)

and for any convex combination

ν = ∑
x̄∈X̄

ν̄(x̄)νx̄,

there is a coupling between X̂ν and X̄ ν̄ , i.e., X̂ and X̄ started from ν and ν̄ , a Markov
chain (Z, Z̄) on some product space X × X̃ , with X̄ ⊂ X̃ , and two geometric
random times T and T̄ with mean value 1/ε such that for all k ≥ 0,

P
(
Zk = x

∣∣ Z̄k = x̄
)
= νx̄(x), x ∈X , x̄ ∈ X̄ ,

X̂ν
k = Zk conditionally to {T > k} and X̄ ν̄

k = Z̄k conditionally to {T̄ > k}. In partic-
ular it holds, for all k ≥ 0,
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dTV

(
P
(
X̂ν

k = ·
)
, ∑

x̄∈X̄
P
(
X̄ ν̄

k = x̄
)
νx̄

)
≤ P

(
T ≤ k

)
+P
(
T̄ ≤ k

)
= 2
(
1− (1− ε)k)≤ 2kε. (8)

Comment: It is then possible to use approximate intertwining and the coarse-grained
version X̄ of X̂ to control, for example, the mixing time of X̂ from that of X̄ : if 1/ε

is large with respect to the latter, one can upper bound the mixing time of X̂ by
adding that of X̄ to the time k needed for all the δxPk —distribution of X̂k when X̂
is started in x— to be close to the convex hull of the νx̄. Note that the latter will be
related with the squeezing of the νx̄ in the sense of Section 1.3.2.

1.2.4 Some heuristics on the subsampling question: well distributed points,
renormalization and determinantal processes

We now go back to the subsampling question (Q1), i.e. the issue of finding m points,
a fraction of n, that are in some sense well distributed in X . This question turns out
to be much simpler than (Q2) and (Q3), and a random solution is proposed in [3].
This solution is based on a random spanning forest Φ (i.e. a random collection of
oriented rooted trees on the graph G = (X ,w) exhausting X ), whose law depends
on a real parameter q > 0. We denote by ρ(Φ) the set of tree roots of Φ . This
forest will be precisely described in Section 1.3.3, but we review at once some of its
features related to question (Q1). Let us denote, for any subset A of X , by HA and
H+

A the hitting time of and the return time to A for the process X :

HA := inf{t ≥ 0,X(t) ∈ A} ,

H+
A := inf{t ≥ σ1,X(t) ∈ A} ,

with σ1 the first time of the Poisson process that links X̂ with X (see Section 1.3.1).
For each x in X the mean hitting time Ex[Hρ(Φ)] is a random variable, since so are
Φ and ρ(Φ) (Ex being the expectation w.r.t the law of X starting from x). And it
turns out that its expected value, with or without conditioning on the size of ρ(Φ),
does not depend on x. In this sense the roots of the random forest are “well spread”
on X . More precisely, denoting by Ex,q the expectation w.r.t to the joint law of the
Markov process X and on the random forest Φ , and by Eq expectation w.r.t to the
law Pq of Φ , we have (see [3]):

Proposition 3. For any x ∈X and m ∈ {1, · · · ,n} it holds

Ex,q
[
Hρ(Φ)

]
=

Pq [|ρ(Φ)|> 1]
q

; (9)

Ex,q
[
Hρ(Φ)

∣∣ |ρ(Φ)|= m
]
=

Pq [|ρ(Φ)|= m+1]
qPq [|ρ(Φ)|= m]

; (10)
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Eq

[
1
m ∑

x̄∈ρ(Φ)

Ex̄

[
H+

ρ(Φ)

∣∣ |ρ(Φ)|= m
]]

=
n

αm
. (11)

This suggests to take X̄ = ρ(Φ).
This is in line, in the context of very low temperature metastability systems, with

Scoppola’s renormalization introduced in [21] and with Freidlin and Wentzell’s W -
graphs [8]. Renormalization consists in individuating a sequence of smaller and
smaller subsets of X with strong recurrence properties on longer and longer time
scales. The coarse-grained Markov processes of this approach are the traces of the
original process on these subsets. These subsets are naturally built as the roots of
forests, or W -graphs in [8], made of bigger and bigger trees. These forests arise
in this context of very low temperature systems as almost deterministic limits of
our random forests Φ , and local equilibria reduce to (unsqueezed) Dirac masses.
In moving away from this asymptotic regime through intertwining equations we
consider dealing with more squeezed local equilibria.

As a consequence of Burton and Pemantle’s transfer current Theorem, ρ(Φ) is a
determinantal process on X , and its kernel is Kq = q(qId−L )−1 (see [3]):

Proposition 4. For any subset A of X ,

Pq(A⊂ ρ(Φ)) = detA(Kq) ,

where detA applied to some matrix is the minor defined by the rows and columns
corresponding to A.

By using reversibility, one can see that the determinant of (Kq(x,y))x,y∈A is, up to a
multiplicative factor ∏x∈A µ(x), the Gram matrix of the distributions

(
Px
(
X(T̃q) =

·
)
,x ∈ A

)
, with T̃q the square of an independent centered Gaussian variable with

variance 1/(2q) (in such a way that the sum of two independent copies of T̃q has the
same law as Tq). This means that a family of nodes x̄ is unlikely to be part of ρ(Φ) if
the volume of the parallelepiped formed by these distributions is small. It suggests
that the distributions

(
Px̄
(
X(T̃q) = ·

)
, x̄ ∈ ρ(Φ)

)
are typically little squeezed (i.e.

well space-localized) and so should be the distributions
(
Kq(x̄, ·), x̄ ∈ ρ(Φ)

)
, which

are easier to deal with. To have a trade-off between squeezing and approximation
error in intertwining equations, it will be convenient to introduce a second parameter
q′> 0 and set νx̄ =Kq′(x̄, ·) for x̄ in ρ(Φ). At this point the choice made for P̄ in 1.3.4
may be the most natural one.

Finally, when dealing with metastability issues, building local equilibria νx̄ from
single “microscopic configurations” x̄ in ρ(Φ) seems rather unnatural. In our pre-
vious example, no special microscopic configuration should play a role in defining
what a metastable vapor should be. One should better look for larger structures asso-
ciated with Φ , like the partition A (Φ) of X defined by the trees of Φ , rather than
ρ(Φ). Then, in view of the following proposition from [3], the unsqueezed measures
µA(x̄) appear to be natural candidates for giving approximate solutions of (3):

Proposition 5. Conditional law of the roots, given the partition.
Let m be fixed, and A1, . . . , Am be a partition of X . For any x1 ∈ A1, · · · ,xm ∈ Am,
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Pq
[
ρ(Φ) = {x1, · · · ,xm}

∣∣A (φ) = (A1, · · · ,Am)
]
=

m

∏
i=1

µAi(xi) , (12)

where µA is the invariant measure µ conditioned to A (µA(B) = µ(A∩B)/µ(A)).
Hence, given the partition, the roots are independent, and distributed according to
the invariant measure.

Again, in the context of very low temperature metastable systems, this is in line with
the so-called cycle decomposition ([8], [17]).

1.2.5 About the reversibility assumption.

Concerning signal processing issues, the reversibility assumption (1) is rather stan-
dard. Actually, the classical multiresolution analysis of signals defined on the reg-
ular grid assumes the “reversibility of the grid”, even in the case of audio signal
where X is a time interval. When considering oriented and non-reversible graphs,
the question of building a suitable Fourier analysis is already a delicate one, beyond
the scope of the present paper.

In metastability studies, both reversible and non-reversible settings have been
considered. Common approaches are usually initiated in the former context, where
a richer palette of techniques is available. In our case, looking at metastable issues
through intertwining equations and random forests does not rely on reversibility
hypotheses, but our squeezing analysis is based on the description of determinantal
processes associated with self-adjoint kernels: these are mixture of determinantal
processes with a deterministic size and associated with a projector. Without such a
reversibility hypotheses the full description of determinantal process kernels is still
an open question. It is worth noting that the root process we use for subsampling
is an example of such a non-reversible determinantal process, and that our total
variation estimates in Theorem 1 still hold in this context.

1.3 Notations and main results.

We describe now our main results, and for this purpose, introduce notations used
throughout the paper.

1.3.1 Functions, measures, Markov kernel and generator

Let X be a finite space with cardinality |X |= n. We consider an irreducible con-
tinuous time Markov process (X(t), t ≥ 0) on X , with generator L :

L f (x) := ∑
y∈X

w(x,y)( f (y)− f (x)), (13)
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where f : X → R is an arbitrary function, and w : X ×X → [0,+∞[ gives the
transition rates. For x ∈X , let

w(x) := ∑
y∈X \{x}

w(x,y) .

Note that L acts on functions as the matrix, still denoted by L , the entries of which
are:

L (x,y) = w(x,y) for x 6= y ; L (x,x) =−w(x) .

Let α > 0 be defined by
α = max

x∈X
w(x) . (14)

Hence, P :=L /α+Id is an irreducible stochastic matrix, and we denote by (X̂k,k∈
N) a discrete time Markov chain with transition matrix P. The process (X(t), t ≥
0) can be constructed from (X̂k,k ∈ N) and an independent Poisson point process
(σi, i > 0) on R+ with rate α . At each point, or time, in the Poisson process, X
moves according to the trajectory of X̂ , i.e., with σ0 = 0:

X(t) =
+∞

∑
i=0

X̂i1σi≤t<σi+1 .

We assume that X is reversible with respect to the probability measure µ on X ,
(i.e. (1)). The process X being irreducible, µ is strictly positive. The operator −L
is self-adjoint and positive; we denote by (λi; i = 0, · · · ,n− 1) the real eigenvalues
of −L in increasing order. It follows from the fact that P is irreducible that

0 = λ0 < λ1 ≤ λ2 · · · ≤ λn−1 ≤ 2α . (15)

A function f on X will be seen as a column vector, whereas a signed measure on
X will be seen as a row vector. For p≥ 1, `p(µ) is the space of functions endowed
with the norm

‖ f‖p =

(
∑

x∈X
| f (x)|p µ(x)

)1/p

.

The scalar product of two functions f and g in `2(µ) is

〈 f ,g〉= ∑
x∈X

f (x)g(x)µ(x)

The corresponding norm is denoted by ‖·‖= ‖·‖2. When f is a function and ν is a
signed measure, the duality bracket between ν and f is

〈ν | f 〉= ∑
x∈X

ν(x) f (x) .

`∗p(µ) denotes the dual space of `p(µ) with respect to 〈·|·〉. It is the space of signed
measures endowed with the norm:
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‖ν‖∗p =

(
∑

x∈X

∣∣∣∣ ν(x)µ(x)

∣∣∣∣p∗ µ(x)

)1/p∗

where p∗ is the conjugate exponent of p: 1/p+ 1/p∗ = 1. `∗p(µ) is identified with
`p∗(µ) through the isometry: ν ∈ `∗p(µ) 7→ ν∗ ∈ `p∗(µ), where ν∗(x) = ν(x)/µ(x)
is the density of ν with respect to µ . The inverse of this isometry is still denoted
by ∗. It associates to a function f ∈ `p(µ), the signed measure f ∗ ∈ `∗p∗(µ) whose
density with respect to µ is f : f ∗(A) = ∑x∈A µ(x) f (x) for all subset A of X . `∗2(µ)
is an Euclidean space whose scalar product is denoted by:

〈ν ,ρ〉∗ := 〈ν∗,ρ∗〉= ∑
x∈X

ν(x)ρ(x)
1

µ(x)
.

The corresponding norm is denoted by ‖·‖∗. For ν ∈ `∗2(µ) and f ∈ `2(µ), one gets

〈ν | f 〉= 〈ν , f ∗〉∗ = 〈ν∗, f 〉 .

1.3.2 Squeezing of a collection of probability measures

For some finite space X̄ of size m≤ n, let (νx̄ : x̄ ∈ X̄ ) be a collection of m prob-
ability measures on X which is identified with the matrix Λ , the row vectors of
which are the νx̄’s: Λ(x̄, ·) = νx̄ for each x̄ in X̄ . Since these measures form acute
angles between them (〈νx̄,νȳ〉∗ ≥ 0 for all x̄ and ȳ in X̄ ) and have disjoint supports
if and only if they are orthogonal, one could use the volume of the parallelepiped
they form to measure their “joint overlap”. The square of this volume is given by
the determinant of the Gram matrix:

Vol(Λ) =
√

det(Γ ),

with Γ the square matrix on X̄ with entries Γ (x̄, ȳ) =
〈
νx̄,νȳ

〉∗, that is

Γ := ΛD(1/µ)Λ t , (16)

where D(1/µ) is the diagonal matrix with entries given by (1/µ(x),x ∈X ), and
Λ t is the transpose of Λ . Loosely speaking, the less overlap, the largest the volume.

We will instead use the squeezing of Λ , that we define by

S (Λ) :=

{
+∞ if det(Γ ) = 0,√

Trace
(
Γ−1

)
∈ ]0,+∞[ otherwise,

(17)

to measure this “joint overlap”. We call it “squeezing” because the νx̄ and the par-
allelepiped they form are squeezed when S (Λ) is large. This is also the half di-
ameter of the rectangular parallelepiped that circumscribes the ellipsoid defined by
the Gram matrix Γ : this ellipsoid is squeezed too when S (Λ) is large. We note
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finally that our squeezing controls the volume of Λ . Indeed, by comparison between
harmonic and geometric mean applied to the eigenvalues of the Gram matrix, small
squeezing implies large volume: Vol(Λ)1/nS (Λ)≥

√
n. We will also show in Sec-

tion 2:

Proposition 6. Let (νx̄, x̄ ∈ X̄ ) be a collection of m probability measures on X .

1. We have

S (Λ)≥
√

∑
x̄∈X̄

1

‖νx̄‖∗2
. (18)

Equality holds if and only if the (νx̄, x̄ ∈ X̄ ) are orthogonal.
2. Assume that µ is a convex combination of the (νx̄, x̄ ∈ X̄ ). Then,

S (Λ)≥ 1 .

Equality holds if and only if the (νx̄, x̄ ∈ X̄ ) are orthogonal.

Comment: S (Λ) is thus maximal when the νx̄, x̄ ∈ X̄ , are linearly dependent, and
minimal when they are orthogonal. Moreover, we know the minimal value of S (Λ),
when µ is a convex combination of the (νx̄, x̄ ∈ X̄ ). Note that this is necessarily
the case if the convex hull of the νx̄ is stable under P, i.e. when ΛP = P̄Λ for
some stochastic P̄. Indeed it is then stable under etL for any t > 0 and the rows
of ΛetL converge to µ when t goes to infinity. Note also that we are using “`2(µ)
computations” (through the Gram matrix) to define the squeezing of measures that
are normalized in `1(µ)∼ `∗∞(µ) (these are probability measures). This proposition
shows that such a mixture of norms is not meaningless.

1.3.3 Random forests

Note that the weight function w induces a structure of oriented graph on X , e =
(x,y) being an oriented edge if and only if w(e) := w(x,y) > 0. Let E be the set of
oriented edges, and G = (X ,E ) the oriented graph just defined. An oriented forest
φ on X is a collection of rooted trees that are subgraphs of G, oriented from their
leaves towards their root. A spanning oriented forest (s.o.f.) on X is an oriented
forest which exhausts the points in X . The set of roots of a spanning oriented forest
φ is denoted by ρ(φ).

We introduce now a real parameter q > 0, and associate to each oriented forest a
weight

wq(φ) := q|ρ(φ)|∏
e∈φ

w(e) . (19)

These weights can be renormalized to define a probability measure on the set of
spanning oriented forest,

πq(φ) :=
wq(φ)

Z(q)
, (20)

where the partition function Z(q) is given by
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Z(q) := ∑
φ s.o.f.

wq(φ) . (21)

We can sample from πq by using Wilson’s algorithm ([25], [18]) which can be
described as follows. Let Φc be the current state, an oriented forest, of the spanning
oriented forest being constructed. At the beginning, Φc has no nodes or edges. While
Φc is not spanning, i.e., while there is a vertex in X which is not in the vertex set
V (Φc) of Φc, perform the following steps:

• Choose a point x in X \V (Φc), in any deterministic or random way.
• Let evolve the Markov process (X(t), t ≥ 0) from x, and stop it at Tq ∧HV (Φc)

with Tq an independent exponential time of parameter q and HV (Φc) the hitting
time of V (Φc).

• Erase the loops, in order of appearance, of the trajectory drawn by X to obtain a
self-avoiding path C starting from x and oriented towards its end-point.

• Add C to Φc.

Each iteration of the “while loop” stopped by the exponential time, gives birth to
another tree. Wilson’s algorithm is not only a way to sample πq, it is also a power-
ful tool to study it. The main strength of this algorithm is the freedom one has in
choosing the starting points x’s of X .

In the sequel, Φ will denote a random variable defined on some probability space
(Ω f ,A f ,Pq), having distribution πq. The corresponding expectation will be denoted
by Eq. We will often work with two independent sources of randomness: the Markov
process X , and the random forest Φ . Integration with respect to X starting from x
will be denoted by Px and Ex. When X is started with an initial measure π , we will
use the notations Pπ and Eπ . When we integrate over both randomness, we will use
the notations Ex,q,Eπ,q and Px,q,Pπ,q. The random forest Φ defines a partition of
X , two points being in the same set of the partition if they belong to the same tree.
This partition will be denoted by A (Φ). A point x ∈X being fixed, τx is the tree
of Φ containing x, ρx its root, and A(x) the unique element of A (Φ) containing x.

A theorem of Kirchhoff [10] gives in this context that

Z(q) = det(q Id−L ) = ∏
j<n

(q+λ j), (22)

and this implies (see for example [3] for more details, a proof of (22) and the fol-
lowing proposition):

Proposition 7. For all k ∈ {0, · · · ,n},

Pq [|ρ(Φ)|= k] = ∑
J⊂{0,··· ,n−1}
|J|=k

∏
j∈J

q
q+λ j

∏
j/∈J

λ j

q+λ j
.

Otherwise stated, the number of roots has the same law as ∑
n−1
j=0 B j where B0, . . . ,

Bn−1 are independent, B j having Bernoulli distribution with parameter q
q+λ j

.
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1.3.4 Approximate solution of ΛP = P̄Λ

Assume that we sampled Φ from πq for some parameter q > 0. For q′ > 0 we then
set

• X̄ := ρ(Φ);
• For any x̄ ∈ X̄ , νx̄(·) := Kq′(x̄, ·) (cf. Equation (4)), i.e. Λ = Kq′ |X̄ ×X ;

• P̄(x̄, ȳ) := Px̄

[
X(H+

X̄
) = ȳ

]
with, for any A⊂X ,

H+
A := inf{t ≥ σ1,X(t) ∈ A} . (23)

H+
A is in other words the return time in A, and P̄ is the (irreducible and reversible)

Markovian kernel associated with the trace chain of X on X̄ .

Here X̄ is a random subset of X , and so is its cardinality. If we want to keep
approximately m points from X , we have to ensure that

Eq
[∣∣X̄ ∣∣]= n−1

∑
i=0

q
q+λi

≈ m . (24)

This can be obtained, starting from any q to sample Φ , by updating q according
to q← qm/|ρ(Φ)| before re-sampling Φ and going so up to getting a satisfactory
number of roots (see [3] for more details).

Let us remind the definition (14) of α , and let us define

p j :=
q

q+λ j
, p′j :=

q′

q′+λ j
, j < n,

and denote by dTV the total variation distance: if ν and ν ′ are two probability mea-
sures on X ,

dTV (ν ,ν
′) =

1
2 ∑

x∈X

∣∣ν(x)−ν
′(x)
∣∣ .

Theorem 1. For all m ∈ {1, · · · ,n},

Eq

[
∑

x̄∈X̄
dTV (ΛP(x̄, ·), P̄Λ(x̄, ·))

∣∣∣∣ ∣∣X̄ ∣∣= m

]
≤ q′(n−m)

α
, (25)

and

Eq

[
∑

x̄∈X̄
dTV (ΛP(x̄, ·), P̄Λ(x̄, ·))

]
≤ q′

α

n−1

∑
i=1

λi

q+λi
. (26)

In addition, with

Sn :=
n−1

∑
j=1

p′2j (1− p j)
2 ; Tn :=

n−1

∑
j=1

p2
j

p′2j
; Vn =

n−1

∑
j=1

p j(1− p j) ,
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it holds

Eq

[
S (Λ)

∣∣∣∣ ∣∣X̄ ∣∣= m
]

≤
min

{√
1+
√

Tn
Sn

exp
(√

SnTn−Vn
)

;
√

1+Tn exp
(
(1+SnTn))

2 −Vn

)}
Pq
[
|X̄ |= m

] (27)

for any m ∈ {1, · · · ,n}.

Proof: See Section 3.
Comment: Our upper bounds depend on L through its spectrum only. They show
that if there is a gap in this spectrum —that is if for some 1 < m < n it holds
λm−1� λm— then we can have asymptotically exact solutions with small squeez-
ing by choosing λm−1� q� q′� λm. We then have indeed q′� α since λm ≤ 2α

and p j ∼ p′j ∼ 1 for j < m, while p j� p′j� 1 for j ≥ m. We can then have a van-
ishing error in the approximation, see (26). In addition we can have Vn� 1, Sn� 1,
Tn ∼m−1, Pq[|X̄ |= m]∼ 1 (recall Proposition 7) and an upper bound on the mean
value of S (Λ) that goes like

√
m. This upper bound has to be compared with the

lower bounds of Proposition 6, i.e. with 1 if we have asymptotic solutions of inter-
twining equations. For some simple low temperature metastable systems as quickly
mentioned in Section 1.2.4, there is such a gap in the spectrum and this construc-
tion will give indeed asymptotic solutions with S (Λ) going to 1. There is room for
improvement in the sense that our approximate solutions can be even less squeezed
that what is ensured by the theorem.

1.3.5 Approximate solutions of ΛKq′ = P̄Λ

Assume once again that we sampled Φ from πq for some parameter q > 0. But let
us modify our choices for X̄ , Λ and P̄, by using this time the partition A (Φ). Set:

• X̄ := ρ(Φ) (one could rather think that X̄ is the set of the different pieces
forming the partition A (Φ) but the notation will be simpler by using the set of
roots, which obviously is in one to one correspondence through the map A : x̄ ∈
ρ(Φ) 7→ A(x̄));

• for any x̄ ∈ X̄ , νx̄(·) := µA(x̄)(·), with, for any A ⊂X , µA being defined by the
probability µ conditioned to A: µA := µ(·|A);

• for any x̄, ȳ ∈ X̄ , P̄(x̄, ȳ) := PµA(x̄)

[
X(Tq′) ∈ A(ȳ)

]
, with Tq′ being as previously

an exponential random variable of parameter q′ that is independent from X . Irre-
ducibility and reversibility of P̄ are then inherited from those of P.

It follows from Proposition 6 that the squeezing of
{

νx̄, x̄ ∈ X̄
}

is minimal and
equal to one.

To bound the distance between ΛKq′ and P̄Λ , we introduce another random forest
Φ ′ distributed as πq′ and independent of Φ and X . For any x ∈X , t ′x is the tree
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containing x in Φ ′, ρ ′x its root, A′(x) the unique element of A (Φ ′) containing x, and
Γ ′x is the path going from x to ρ ′x in Φ ′. By Wilson algorithm started at x, Γ ′x is the
trajectory of a loop-erased random walk started from x and stopped at an exponential
time Tq′ . We denote by |Γ ′x | its length, that is the number of edges to be crossed in
Φ ′ to go from x to ρ ′x.

Theorem 2. Let p≥ 1, and p∗ its conjugate exponent, so that 1
p +

1
p∗ = 1. Then,

Eq

[
∑

x̄∈X̄
dTV (ΛKq′(x̄, ·), P̄Λ(x̄, ·))

]
≤ (Eq [|ρ(Φ)|])1/p

(
q′

q ∑
x∈X

Eq′
[
|Γ ′x |
])1/p∗

.

Proof: See Section 4.
Comment: Note that

q′Eq′
[
|Γ ′x |
]
= α

Eq′ [|Γ ′x |]
α/q′

is, up to the factor α , the ratio between the mean number of steps of the loop-erased
random walk and the mean number of steps of the simple random walk up to time
Tq′ , that is the time fraction spent outside loops up to time Tq′ . As a consequence
“the more recurrent is X on time scale 1/q′ ”, the smaller is this ratio.

1.3.6 Exact solutions of ΛKq′ = P̄Λ

We finally modify the previous random measures µA(x̄) to build exact solution of
Equation (3) for q′ small enough. We will use to this end a result due to Micchelli
and Willoughby [12]: for any m > 0

MWm := ∏
j≥m

1
λ j

(L +λ jId)

is a Markovian kernel (one can see [3] for a probabilistic insight into the proof of
this result). Assume then that we sampled Φ from πq for some parameter q > 0, let
us keep X̄ = ρ(Φ), but let us now set

νx̄ = µA(x̄)MWm, x̄ ∈ X̄ ,

with m = |X̄ |.

Theorem 3. If the νx̄ have finite squeezing, then for q′ small enough, the νx̄Kq′ are
in the convex hull of the νx̄.

Proof: See Section 5.
Comment: Since we do not give quantitative bounds on how small q′ has to be for
the thesis to hold, and we do not bound the squeezing of these νx̄, Theorem 3 is
at first not a very insightful result. However the proof we will give suggests that
the νx̄ are natural candidates for not too squeezed solution associated with some
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non-very small q′. It will also give further motivation to use squeezing to measure
joint overlap. We actually got to our squeezing definition by looking for quantitative
bounds for this theorem.

2 Preliminary results

2.1 Proof of Proposition 6

If Γ is not invertible, points (1) and (2) are obviously true. We assume therefore that
Γ is invertible. Let Λ̃ := Γ−1Λ , and let (ν̃x̄, x̄ ∈ X̄ ) be the row vectors of Λ̃ . Note
that

Λ̃D(1/µ)Λ t = Γ
−1

ΛD(1/µ)Λ t = Γ
−1

Γ = Id .

Λ̃D(1/µ)Λ̃ t = Γ
−1

ΛD(1/µ)Λ t
Γ
−1 = Γ

−1 .

Hence, for all x̄, ȳ ∈X ,
〈
ν̃x̄,νȳ

〉∗
= δx̄ȳ and ‖ν̃x̄‖∗2 = (Γ−1)(x̄, x̄).

1. We have S (Λ)2 = ∑x̄∈X̄ ‖ν̃x̄‖∗2 ≥ ∑x̄∈X̄
〈ν̃x̄,νx̄〉∗2

‖νx̄‖∗2
= ∑x̄∈X̄

1
‖νx̄‖∗2

.

Assume now that the νx̄’s, x̄ ∈ X̄ are orthogonal. Γ = diag(‖νx̄‖∗2), so that
Trace(Γ−1) = ∑x̄∈X̄

1
‖νx̄‖∗2

.

In the opposite direction, assume instead that Trace(Γ−1) = ∑x̄∈X̄
1

‖νx̄‖∗2
. Then

for any x̄ ∈ X̄ ,
∣∣〈ν̃x̄,νx̄〉∗

∣∣ = ‖ν̃x̄‖∗ ‖νx̄‖∗. This implies that for all x̄ ∈ X̄ , there
exists a real number α(x̄) 6= 0 such that ν̃x̄ = α(x̄)νx̄. Taking the scalar product
with νȳ leads to δx̄ȳ =

〈
ν̃x̄,νȳ

〉∗
= α(x̄)

〈
νx̄,νȳ

〉∗. Hence (νx̄, x̄ ∈ X̄ ) are orthog-
onal.

2. Let us write µ as a convex combination of the (νx̄, x̄ ∈ X̄ ):

µ = ∑
x̄∈X̄

α(x̄)νx̄, α(x̄)≥ 0, ∑
x̄∈X̄

α(x̄) = 1.

Note that for any probability measure ν , 〈µ,ν〉∗ =∑x∈X µ(x)ν(x)/µ(x) = 1. As
a special case, for any ȳ ∈ X̄ ,

1 =
〈
µ,νȳ

〉∗
= ∑

x̄∈X̄
α(x̄)

〈
νx̄,νȳ

〉∗ ≥ α(ȳ)
∥∥νȳ
∥∥∗2 . (28)

By point (1), we deduce that

S (Λ)2 ≥ ∑
x̄∈X̄

1

‖νx̄‖∗2
≥ ∑

x̄∈X̄
α(x̄) = 1 .



20 Luca Avena, Fabienne Castell, Alexandre Gaudillière and Clothilde Mélot

Equality holds if and only if (28) and (18) are equalities. By point (1), this implies
that the (νx̄, x̄ ∈ X̄ ) are orthogonal. In the opposite direction, when the νx̄, for
x̄ ∈ X̄ , are orthogonal, (28) and (18) are equalities, and S (Λ) = 1.

2.2 Elementary observations on intertwining equations

Consider Equation (2) for any reversible and irreducible stochastic kernel P, and as-
sume an m×n rectangular stochastic matrix Λ = (Λ(x̄,x))x̄∈X̄ ,x∈X to be a solution
for some P̄ with m≤ n. Let us write (θ j) j<n = (1−λ j/α) j<n for the n eigenvalues
of P in decreasing order:

1 = θ0 > θ1 ≥ ·· · ≥ θn−1 ≥−1.

We also set [n] = {0,1,2, . . . ,n− 1}, call µ the reversible measure of P, and write
νx̄ = Λ(x̄, ·) for the rows of Λ .

Lemma 1. Assume Equation (2) is in force. If Λ is non-degenerate, i.e., if Λ is of
rank m, then there is an orthonormal basis of left eigenvectors (µ j : 0≤ j < n) of P
such that

µ jP = θ jµ j, j < n,

there is a subset J of [n] such that 0∈ J and |J|= m and there is an invertible matrix
C = (C(x̄, j))x̄∈X̄ , j∈J with C(x̄,0) = 1 for all x̄ in X̄ , such that

νx̄ = ∑
j∈J

C(x̄, j)µ j, x̄ ∈ X̄ , (29)

and
P̄C(·, j) = θ jC(·, j), j ∈ J. (30)

In particular, the spectrum of P̄ is contained in that of P, with eigenvalue multiplic-
ities that do not exceed the corresponding ones for P.

Proof. Let V be the subspace of `∗2(µ) spanned by the νx̄. Since Λ is non-degenerate,
V is of dimension m. Since ΛP = P̄Λ , the νx̄P are convex combinations of the νx̄
and V is stable by the self-adjoint operator P. It follows that there is an orthonormal
basis of left eigenvectors µ j, with µ0 = µ , a subset J⊂ [n] of size m, and an invertible
matrix C such that (29) holds. Since for j > 0 one has 〈µ,µ j〉∗ = 0, by computing
the scalar product with µ of both sides of equations (29), it follows that 0 belongs
to J and C(x̄,0) = 1 for each x̄.

Now, applying P on both sides of (29) we obtain

∑
j∈J

∑
ȳ∈X̄

P̄(x̄, ȳ)C(ȳ, j)µ j = ∑
j∈J

θ jC(x̄, j)µ j, x̄ ∈ X̄ .

By identifying the decomposition coefficients in the basis of the µ j’s, this gives (30).
Since the m column vectors C(·, j) are linearly independent, they form a basis of the
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functions on X̄ . This is why equations (30) completely describe the spectrum of
P̄ and we can conclude that the spectrum of P̄ is contained in that of P with the
multiplicity constraint. ut

The previous lemma shows on the one hand a localisation property in Fourier space
of exact solutions of intertwining equations: the νx̄ have to be with no component
on n−m eigenvectors of the Laplacian L (see equations (29)). On the other hand, it
shows that finding exact solutions of intertwining equation implies to have a detailed
knowledge of the eigenvectors of the Laplacian.

Conversely, it is now possible to describe all the non-degenerate solutions of the
intertwining equations in terms of, on the one hand, the eigenvectors and eigenvalues
of P and, on the other hand, the set of diagonalizable stochastic matrices P̄ with a
given spectrum contained in that of P, and satisfying the multiplicity constraint. Any
right eigenvector basis (C(·, j) : j ∈ J) —satisfying (30) and with C(·,0) ≡ 1— of
such a P̄ will provide, through equations (29) and possibly after rescaling, a non-
degenerate solution of the intertwining equations. The only delicate point to check
is indeed the non-negativity of the νx̄. But if this fails, and since µ = µ0 charges all
points in X , one just has to replace the C(·, j) for positive j in J, by some δ jC(·, j)
for some small enough δ j.

At this point we just have to give sufficient conditions for the set of diagonalisable
stochastic matrices with a given spectrum to ensure that our intertwining equations
do have solutions. The next lemma shows that, if P has non-negative eigenvalues,
then we will find solutions with X̄ of any size m < n. We further note that this
hypothesis will always be fulfilled if instead of considering P we consider its lazy
version (P+ Id)/2.

Lemma 2. For any

1 = θ0 > θ1 ≥ θ2 ≥ ·· · ≥ θm−1 ≥ 0

there always exists a reversible and irreducible stochastic matrix P̄ with such a spec-
trum. In particular, if P is a reversible and irreducible stochastic matrix that admits
(θ j : j < m) as a subsequence of its ordered spectrum with multiplicities, then the
Markov chains associated with P and P̄ are intertwined.

Proof. Let us set

A =



1 −1 0 · · · · · · 0

1 1 −2
. . .

...

1 1 1 −3
. . .

...
...

...
...

. . . . . . 0
...

...
...

. . . −(m−1)
1 1 1 · · · · · · 1


,

a matrix with orthogonal rows, and introduce the diagonal matrices
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Dθ =


θ0

θ1
. . .

. . .
θm−1

 , Dµ̄ =



1
1×2

1
2×3

. . .
1

(m−1)m
1
m

 ,

the second one being such that Q = D1/2
µ̄

A is orthogonal. We compute

P̄ = D−1/2
µ̄

QDθ QtD1/2
µ̄

= ADθ AtDµ̄

to find

P̄ =



Σ1+θ1
1×2

Σ1−θ1
2×3

Σ1−θ1
3×4 . . . Σ1−θ1

(m−1)m
Σ1−θ1

m
Σ1−θ1

1×2
Σ2+22θ2

2×3
Σ2−2θ2

3×4 . . . Σ2−2θ2
(m−1)m

Σ2−2θ2
m

Σ1−θ1
1×2

Σ2−2θ2
2×3

Σ3+32θ3
3×4 . . . Σ3−3θ3

(m−1)m
Σ3−3θ3

m
...

...
...

. . .
...

...
Σ1−θ1

1×2
Σ2−2θ2

2×3
Σ3−3θ3

3×4 . . .
Σm−1+(m−1)2θm−1

(m−1)m
Σm−1−(m−1)θm−1

m
Σ1−θ1

1×2
Σ2−2θ2

2×3
Σ3−3θ3

3×4 . . .
Σm−1−(m−1)θm−1

(m−1)m
Σm
m


(31)

with, for all 1≤ k≤m, Σk = ∑ j<k θ j. P̄ is stochastic, irreducible and reversible with
respect to µ̄ defined by

µ̄(k) =

{
1

k(k+1) if k < m,
1
m if k = m.

It also has the desired spectrum. ut

Comment: The proof actually shows that the positivity hypothesis on the θ j’s can be
slightly relaxed: we only have to require the numerators of the diagonal coefficients
in (31) to be non-negative.

We conclude this section by observing that the universal solution we just pro-
vided is not fully satisfactory. First, it requires a detailed knowledge of the spectrum
that can be practically unavailable. Second, we can expect such a universal solution
to produce very squeezed solutions. Indeed, the coefficients C(x̄, j) in (30) will be
given by the matrix C = D−1/2

µ̄
Q = A or by C = ADδ with Dδ a rescaling diagonal

matrix

Dδ =


1

δ1
. . .

δm−1


ensuring the non-negativity of the νx̄. The fact that the δi’s may have to be chosen
very small can be the source of very strong squeezing.
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2.3 Proof of Proposition 2

Let ξ
+
x̄ and ξ

−
x̄ be, for each x̄ in X̄ , the positive and negative part of the signed

measure ξx̄ = ξ
+
x̄ −ξ

−
x̄ such that

νx̄P = ξx̄ + ∑
ȳ∈X̄

P̄(x̄, ȳ)νȳ. (32)

Since νx̄P and the convex combination of the νȳ are both probability measures, ξ
+
x̄

and ξ
−
x̄ have the same mass

εx̄ = dTV

(
νx̄P, ∑

ȳ∈X̄
P̄(x̄, ȳ)νȳ

)
.

Adding ξ
−
x̄ on both sides of Equation (32) and dividing by 1+ εx̄, we get

1
1+ εx̄

νx̄P+
εx̄

1+ εx̄
π
−
x̄ =

εx̄

1+ εx̄
π
+
x̄ +

1
1+ εx̄

∑
ȳ∈X̄

P̄(x̄, ȳ)νȳ, (33)

where π
+
x̄ and π

−
x̄ are the probability measures obtained by normalization from ξ

+
x̄

and ξ
−
x̄ .

Let us build a new set X̃ by associating some x̄′ with each x̄ in X̄ , calling X̄ ′

the set of these associated x̄′ and setting X̃ = X̄ ∪ X̄ ′ to get a twice as large set.
We can then read Equation (33) as an exact intertwining equation at site x̄, between
a Markov chain Zx̄ with values in X and transition probabilities

Px̄(x,y) =
1

1+ εx̄
P(x,y)+

εx̄

1+ εx̄
π
−
x̄ (y), x,y ∈X ,

on the one hand, and on the other hand a Markov chain Z̄ with values in the aug-
mented set X̃ and transition probabilities

P̃(x̄, ȳ) =
1

1+ εx̄
P̄(x̄, ȳ), x̄ ∈ X̄ , ȳ ∈ X̄ ,

P̃(x̄, ȳ′) =
εx̄

1+ εx̄
1{ȳ′=x̄′}, x̄ ∈ X̄ , ȳ′ ∈ X̄ ′,

P̃(x̄′, ỹ) = 1{ỹ=x̄′}, x̄′ ∈ X̄ ′, ỹ ∈ X̃ .

The linking probabilities at our x̄ in Equation (33) are the νȳ and νx̄′ = π
+
x̄ . The

process Zx̄ can be constructed with a sequence of independent uniform random vari-
ables (Uk,k≥ 1). Assuming that at time k, Zx̄(k) = z and that Uk+1 >

εx̄
1+εx̄

, Zx̄(k+1)
is sampled with P(z, ·), while if Uk+1 ≤ εx̄

1+εx̄
, Zx̄(k+1) is sampled with π

−
x̄ .
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By Proposition 1, we get a stopping time Tx̄ and a random variable Ỹx̄, with values
in {x̄′}∪X̄ \{x̄}, such that, conditionally to Ỹx̄, the law of Zx̄(Tx̄) is νỸx̄

. For ν = νx̄

we define then the Markov chain (Z, Z̄) on X ×X̄ in the following way:

• the law of (Z, Z̄)(0) is νx̄⊗δx̄;
• for k < Tx̄, (Z, Z̄)(k) = (Zx̄(k), x̄);
• (Z, Z̄)(Tx̄) = (Zx̄(Tx̄),Ỹx̄).
• If Ỹx̄ = x̄′ then we set (Z, Z̄)(k) = (Z, Z̄)(Tx̄) for all k ≥ Tx̄. Otherwise Ỹx̄ plays

now the previous role of x̄.

This construction is naturally adapted to Z̄ started in ν̄ and Z in νZ̄ . We get the
desired equality on the law of Zk conditioned on Z̄k as a consequence of properties
(2) and (4) of Proposition 1.

By properties (1), (3) and (5) of Proposition 1, Z̄ and X̄ ν̄ have the same law before
the absorbing time

K̄ = min
{

k > 0 : Z̄k 6∈ X̄
}
.

We can then set X̄ ν̄
k = Z̄k for k < K̄, and build X̄ ν̄ independently from (Z, Z̄) for

k ≥ K̄. Setting

K = min

{
k < K̄ : Uk ≤

εZ̄k

1+ εZ̄k

}
,

with the usual convention that the minimum of the empty set is +∞, we can also set
X̂ν

k = Zk for k < K, and build X̂ν independently of (Z, Z̄) for k≥ K. We simply con-
clude this coupling construction by observing that K and K̄ stochastically dominate
two (correlated) geometric random variables T and T̄ with success probability

ε ≥max
x̄∈X̄

εx̄

1+ εx̄
.

Let us finally explain why this implies our claimed upper bound on the total
variation distance between the law of X̂ν

k and

ξk = ∑
x̄∈X̄

P
(
X̄ ν̄

k = x̄
)
νx̄

for any k ≥ 0. For any A⊂X it holds

ξk(A) = ∑
x̄∈X̄

P
(
X̄ ν̄

k = x̄, T̄ ≤ k
)
νx̄(A)+ ∑

x̄∈X̄
P
(
X̄ ν̄

k = x̄, T̄ > k
)
νx̄(A)

≤ ∑
x̄∈X̄

P
(
X̄ ν̄

k = x̄, T̄ ≤ k
)
+ ∑

x̄∈X̄
P
(
Z̄k = x̄

)
νx̄(A)

= P
(
T̄ ≤ k

)
+ ∑

x̄∈X̄
P
(
Z̄k = x̄,Zk ∈ A

)
≤ P

(
T̄ ≤ k

)
+P
(
Zk ∈ A

)
≤ P

(
T̄ ≤ k

)
+P
(
T ≤ k

)
+P
(
X̂ν

k ∈ A
)
.
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The same inequality holds with the complementary of A and this concludes the
proof.

3 Proof of Theorem 1

3.1 Total variation estimates

Inequality (26) is a direct consequence of Inequality (25) and Proposition 7. Indeed,

Eq

[
∑

x̄∈X̄
dTV (ΛP(x̄, ·), P̄Λ(x̄, ·))

]

=
n

∑
i=1

Eq

[
∑

x̄∈X̄
dTV (ΛP(x̄, ·), P̄Λ(x̄, ·))

∣∣∣∣ ∣∣X̄ ∣∣= i

]
Pq
[∣∣X̄ ∣∣= i

]
≤

n

∑
i=1

q′(n− i)
α

Pq
[∣∣X̄ ∣∣= i

]
=

q′

α
Eq
[
n−
∣∣X̄ ∣∣] .

It remains thus to prove (25). Applying Markov property at time σ1, we get

P̄(x̄, ·) = ∑
y∈X

P(x̄,y)Py [X(HX̄ ) = ·] .

Moreover, set δx̄ the Dirac measure at x̄, seen both as a probability measure on X
and as a row vector of dimension n. Then, we can rewrite

ΛP(x̄, ·) = δx̄Kq′P(·) = δx̄PKq′(·) = ∑
y∈X

P(x̄,y)Py
[
X(Tq′) = ·

]
= ∑

y∈X
P(x̄,y)Py

[
HX̄ < Tq′ ;X(Tq′) = ·

]
+ ∑

y∈X
P(x̄,y)Py

[
HX̄ ≥ Tq′ ;X(Tq′) = ·

]
= ∑

y∈X ,z̄∈X̄
P(x̄,y)Py

[
HX̄ < Tq′ ;X(HX̄ ) = z̄

]
Pz̄
[
X(Tq′) = ·

]
+ ∑

y∈X
P(x̄,y)Py

[
HX̄ ≥ Tq′ ;X(Tq′) = ·

]
= P̄Λ(x̄, ·)− ∑

y∈X ,z̄∈X̄
P(x̄,y)Py

[
HX̄ ≥ Tq′ ;X(HX̄ ) = z̄

]
Pz̄
[
X(Tq′) = ·

]
+ ∑

y∈X
P(x̄,y)Py

[
HX̄ ≥ Tq′ ;X(Tq′) = ·

]
.
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Therefore,

dTV (ΛP(x̄, ·), P̄Λ(x̄, ·))

=
1
2 ∑

x∈X
|ΛP(x̄,x)− P̄Λ(x̄,x)|

≤ 1
2 ∑

x∈X ,y∈X ,z̄∈X̄
P(x̄,y)Py

[
HX̄ ≥ Tq′ ;X(HX̄ ) = z̄

]
Pz̄
[
X(Tq′) = x

]
+

1
2 ∑

x∈X ,y∈X
P(x̄,y)Py

[
HX̄ ≥ Tq′ ;X(Tq′) = x

]
= ∑

y∈X
P(x̄,y)Py

[
HX̄ ≥ Tq′

]
= ∑

y∈X
P(x̄,y)Ey

[
1− e−q′HX̄

]
Ł

≤ ∑
y∈X

P(x̄,y)Ey
[
q′HX̄

]
= q′Ex̄

[
H+

X̄
−σ1

]
.

We now take the expectation with respect to Eq.

Eq

[
∑

x̄∈X̄
dTV (ΛP(x̄, ·), P̄Λ(x̄, ·))

∣∣∣∣ ∣∣X̄ ∣∣= m

]

≤ q′Eq

[
∑

x̄∈X̄
Ex̄

[
H+

X̄
−σ1

] ∣∣∣ ∣∣X̄ ∣∣= m

]
.

Formula (11) gives then the desired result.

3.2 Squeezing estimates

We now prove the quantitative upper bounds on the squeezing of Λ stated in (27).
We begin with the following lemma:

Lemma 3. For any m ∈ {1, · · · ,n},

Eq

[
S (Λ)

∣∣∣ ∣∣X̄ ∣∣= m
]

≤

√
∑|J|=m−1 ∏ j∈J p′2j

√
∑|J|=m ∏ j∈J p′−2

j ∏ j∈J p2
j ∏ j/∈J(1− p j)2

∑|J|=m ∏ j∈J p j ∏ j/∈J(1− p j)
. (34)

Proof. Note first that
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S (Λ)2 = ∑
x̄∈X̄

Γ
−1(x̄, x̄) = ∑

x̄∈X̄

detX̄ \{x̄}(Γ )

det(Γ )
= ∑

x̄∈X̄

Vol2(νȳ; ȳ ∈ X̄ , ȳ 6= x̄)
Vol2(νȳ; ȳ ∈ X̄ )

.

Hence,

Eq

[
S (Λ)

∣∣∣ ∣∣X̄ ∣∣= m
]

= ∑
|R|=m

Pq

[
X̄ = R

∣∣∣ ∣∣X̄ ∣∣= m
] √∑x̄∈R Vol2(νȳ; ȳ ∈ R, ȳ 6= x̄)√

Vol2(νȳ; ȳ ∈ R)
. (35)

From Proposition 4, X̄ = ρ(Φ) is a determinantal process associated to the kernel
Kq. Remind that for all j ∈ {0, · · · ,n−1}, µ j(−L ) = λ jµ j. The µ j are orthogonal
by symmetry of −L , and we assume that for all j ∈ {0, · · · ,n−1},

∥∥µ j
∥∥∗ = 1, so

that µ0 = µ . Hence, we get µ jKq =
q

q+λ j
µ j. One way to construct ρ(Φ), the number

of roots being fixed equal to m, is to choose m eigenvectors of Kq, according to
Bernoulli random variables with parameters p j, and then to choose X̄ according
to the determinantal process associated to the projector operator onto the m chosen
eigenvectors. More formally,

Pq

[
X̄ = R

∣∣∣ ∣∣X̄ ∣∣= m
]

=
1

Zm,q
∑
|J|=m

∏
j∈J

q
q+λ j

∏
j/∈J

λ j

q+λ j
det2

(〈
δx̄

‖δx̄‖∗
; µ j

〉∗
x̄∈R, j∈J

)
, (36)

where Zm,q is a normalizing constant (Zm,q = Pq
[∣∣X̄ ∣∣= m

]
). We go back to (35)

and turn to the term Vol2(νȳ; ȳ ∈ R). It follows from Cauchy-Binet formula that

Vol2(νȳ; ȳ ∈ R) = ∑
|J|=m

det2
(〈

νȳ,µ j
〉∗

, ȳ ∈ R, j ∈ J
)
.

Note that

νȳ = δȳKq′ =
n−1

∑
j=0

〈
δȳ; µ j

〉∗
µ jKq′ =

n−1

∑
j=0

p′j
〈
δȳ; µ j

〉∗
µ j.

. Thus
〈
νȳ,µ j

〉∗
= p′j

〈
δȳ; µ j

〉∗. We obtain then

Vol2(νȳ; ȳ ∈ R) = ∑
|J|=m

∏
j∈J

p′2j det2
(〈

δȳ; µ j
〉∗

, ȳ ∈ R, j ∈ J
)
. (37)

Putting (36) and (37) into (35), we are led to
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Eq

[
S (Λ)

∣∣∣ ∣∣X̄ ∣∣= m
]
=

1
Zm,q

∑
|R|=m

√
∑
x̄∈R

Vol2(νȳ; ȳ ∈ R, ȳ 6= x̄)

∏
x̄∈R
‖δx̄‖∗2

×
∑
|J|=m

∏
j∈J

p j ∏
j/∈J

(1− p j) det2
(〈

δx̄; µ j
〉∗

, x̄ ∈ R, j ∈ J
)

√
∑
|J|=m

∏
j∈J

p′2j det2
(〈

δȳ; µ j
〉∗

, ȳ ∈ R, j ∈ J
) .

Cauchy-Schwartz inequality then yields

∑
|J|=m

∏
j∈J

p j ∏
j/∈J

(1− p j) det2
(〈

δx̄; µ j
〉∗

, x̄ ∈ R, j ∈ J
)

√
∑
|J|=m

∏
j∈J

p′2j det2
(〈

δȳ; µ j
〉∗

, ȳ ∈ R, j ∈ J
)

≤

√√√√ ∑
|J|=m

∏
j∈J

p2
j

p′2j
∏
j/∈J

(1− p j)
2 det2

(〈
δx̄; µ j

〉∗
, x̄ ∈ R, j ∈ J

)
and

Eq

[
S (Λ)

∣∣∣ ∣∣X̄ ∣∣= m
]

≤ 1
Zm,q

√√√√√√√ ∑
|R|=m

∑
x̄∈R

Vol2(νȳ; ȳ ∈ R, ȳ 6= x̄)

∏
x̄∈R
‖δx̄‖∗2

×

√√√√√√ ∑
|R|=m
|J|=m

∏
j∈J

p2
j

p′2j
∏
j/∈J

(1− p j)
2 det2

(〈
δx̄

‖δx̄‖∗
; µ j

〉∗
; x̄ ∈ R, j ∈ J

)
.

Using again Cauchy-Binet formula, we get

∑
|R|=m

det2
(〈

δx̄

‖δx̄‖∗
; µ j

〉∗
, x̄ ∈ R, j ∈ J

)
= Vol2(µ j, j ∈ J) = 1 ,

so that the term in the second square root is equal to

∑
|J|=m

∏
j∈J

p2
j

p′2j
∏
j/∈J

(1− p j)
2 .
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We turn now to the term in the first square root, which can be rewritten, by using
twice the Cauchy-Binet formula, as

∑
x̄∈X

1

‖δx̄‖∗2
∑

|R|=m,x̄∈R

Vol2(νȳ; ȳ ∈ R, ȳ 6= x̄)

∏
x̄∈R\{x̄}

‖δx̄‖∗2

= ∑
x̄∈X

µ(x̄) ∑
R⊂X \{x̄},|R|=m−1

Vol2(νȳ; ȳ ∈ R)

∏
ȳ∈R

∥∥δȳ
∥∥∗2

= ∑
x̄∈X

µ(x̄) ∑
R⊂X \{x̄},|R|=m−1

∑
|J|=m−1

∏
j∈J

p′2j det2
(〈

δȳ∥∥δȳ
∥∥∗ ; µ j

〉∗
; ȳ ∈ R, j ∈ J

)

≤ ∑
x̄∈X

µ(x̄) ∑
|J|=m−1

∏
j∈J

p′2j ∑
|R|=m−1

det2
(〈

δȳ∥∥δȳ
∥∥∗ ; µ j

〉∗
, ȳ ∈ R, j ∈ J

)
= ∑
|J|=m−1

∏
j∈J

p′2j Vol2(µ j, j ∈ J)

= ∑
|J|=m−1

∏
j∈J

p′2j .

To end the proof of the lemma, it is sufficient to note that

Zm,q = Pq
(∣∣X̄ ∣∣= m

)
= ∑
|J|=m

∏
j∈J

p j ∏
j/∈J

(1− p j).

ut

We can now conclude the proof of (27) and of Theorem 1. For any t > 0 it holds

∑
|J|=m−1

∏
j∈J

p′2j ≤
1

tm−1

n−1

∏
j=0

(1+ t p′2j ) =
1+ t
tm−1

n−1

∏
j=1

(1+ t p′2j ) .

since the left-hand is the coefficient of tm−1 in the product ∏
n−1
j=0(1+ t p′2j ). In the

same way, for any x > 0,

∑
|J|=m−1,J⊂{1,··· ,n−1}

∏
j∈J

p2
j

p′2j
∏

j∈{1,··· ,n−1}\J
(1− p j)

2

=
n−1

∏
j=1

(1− p j)
2

∑
|J|=m−1,J⊂{1,··· ,n−1}

∏
j∈J

p2
j

p′2j (1− p j)2

≤
∏

n−1
j=1(1− p j)

2

xm−1

n−1

∏
j=1

(
1+ x

p2
j

p′2j (1− p j)2

)
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=
1

xm−1

n−1

∏
j=1

(
(1− p j)

2 + x
p2

j

p′2j

)
.

Hence, for any x, t > 0, for any m ∈ {1, · · · ,n},

Eq

[
S (Λ)

∣∣∣ ∣∣X̄ ∣∣= m
]

≤ 1
Pq
[∣∣X̄ ∣∣= m

] √1+ t

(tx)
m−1

2

√√√√n−1

∏
j=1

(1+ t p′2j )

(
(1− p j)2 + x

p2
j

p′2j

)
.

One can check that

(1+t p′2j )

(
(1− p j)

2 + x
p2

j

p′2j

)
=
(
1+(
√

xt−1)p j
)2
+

(
√

t p′j(1− p j)−
√

x
p j

p′j

)2

.

Take now xt = 1. We obtain that for any t > 0, for any m ∈ {1, · · · ,n},

Eq

[
S (Λ)1|X̄ |=m

]
≤
√

1+ t

√√√√√n−1

∏
j=1

1+

(
√

t p′j(1− p j)−
1√
t

p j

p′j

)2


≤
√

1+ t exp

1
2

n−1

∑
j=1

(
√

t p′j(1− p j)−
1√
t

p j

p′j

)2


=
√

1+ t exp

(
t
2

n−1

∑
j=1

p′2j (1− p j)
2 +

1
2t

n−1

∑
j=1

p2
j

p′2j
−

n−1

∑
j=1

p j(1− p j)

)
.

Optimizing the exponential term in t and choosing t = Tn lead to (27).

4 Proof of Theorem 2

Let us first rewrite Kq′ in terms of µ .

Lemma 4. For x ∈X ,

Kq′(x, ·) = Eq′
[
µA′(x)∩A(ρ ′x)(·)

]
,Pq a.s..

Proof. Starting Wilson’s algorithm from x to construct Φ ′, we get

Kq′(x,y) = Px
[
X(Tq′) = y

]
= Pq′

[
ρ
′
x = y

]
= Eq′

[
Pq′
[
ρ
′
x = y

∣∣A (Φ ′)
]]
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= Eq′
[
µA′(x)(y)

]
,

where the last equality comes from Proposition 5. Hence, Pq a.s.,

Kq′(x,y) = ∑
x̄∈X̄

Eq′
[
µA′(x)∩A(x̄)(y)µA′(x)(A(x̄))

]
= ∑

x̄∈X̄
Eq′
[
µA′(x)∩A(x̄)(y)Pq′

[
ρ
′
x ∈ A(x̄)

∣∣A (Φ ′)
]]

= ∑
x̄∈X̄

Eq′
[
µA′(x)∩A(x̄)(y)1A(x̄)(ρ

′
x)
]

= Eq′
[
µA′(x)∩A(ρ ′x)(y)

]
.

ut

Lemma 5. For any x ∈X , set K̃q′(x, ·) = Eq′
[
µA(ρ ′x)(·)

]
. Then, Pq a.s.,

Λ K̃q′ = P̄Λ .

Proof. Pq a.s., for any x,y ∈X ,

K̃q′(x,y) = Eq′
[
µA(ρ ′x)(y)

]
= ∑

ȳ∈X̄
µA(ȳ)(y)Pq′

[
ρ
′
x ∈ A(ȳ)

]
= ∑

ȳ∈X̄
νȳ(y)Px

[
X(Tq′) ∈ A(ȳ)

]
.

Hence, Pq a.s., for any x̄ ∈ X̄ , and y ∈X ,

νx̄K̃q′(y) = ∑
x∈X

∑
ȳ∈X̄

νx̄(x)νȳ(y)Px
[
X(Tq′) ∈ A(ȳ)

]
= ∑

ȳ∈X̄
νȳ(y)Pνx̄

[
X(Tq′) ∈ A(ȳ)

]
= P̄Λ(x̄,y) .

ut

Therefore, Pq a.s., for any x̄ ∈ X̄ ,

dTV (ΛKq′(x̄, ·), P̄Λ(x̄, ·)) = dTV (ΛKq′(x̄, ·),Λ K̃q′(x̄, ·))
≤ ∑

x∈X
νx̄(x)dTV (Kq′(x, ·), K̃q′(x, ·))

≤ ∑
x∈X

νx̄(x)Eq′
[
dTV (µA′(x)∩A(ρ ′x),µA(ρ ′x))

]
.

When B is a subset of C, one has dTV (µB,µC) = µC(Bc). This yields

dTV (ΛKq′(x̄, ·), P̄Λ(x̄, ·))≤ ∑
x∈X

νx̄(x)Eq′
[
µA(ρ ′x)(A

′(x)c)
]
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= ∑
x∈X

νx̄(x)Eq′
[
Pq
[
ρρ ′x /∈ A′(x)|A (Φ)

]]
Note that

∑
x̄∈X̄

νx̄(x) = ∑
x̄∈X̄

µ(x)
µ(A(x̄))

1A(x̄)(x) = ∑
x̄∈X̄

µ(x)
µ(A(x))

1A(x̄)(x)

=
µ(x)

µ(A(x)) ∑
x̄∈X̄

1A(x̄)(x) =
µ(x)

µ(A(x))
.

Summing on x̄ and integrating w.r.t. Eq, leads to

Eq

[
∑

x̄∈X̄
dTV (ΛKq′(x̄, ·), P̄Λ(x̄, ·))

]
≤ ∑

x∈X
Eq,q′

[
µA(x)(x)1A′(x)c(ρρ ′x)

]
.

Let p≥ 1 and p∗ its conjugate exponent. Using Hölder’s inequality, we get

Eq

[
∑

x̄∈X̄
dTV (ΛKq′(x̄, ·), P̄Λ(x̄, ·))

]

≤

(
∑

x∈X
Eq,q′

[
µA(x)(x)

p])1/p(
∑

x∈X
Pq,q′

[
ρρ ′x /∈ A′(x)

])1/p∗

≤

(
∑

x∈X
Eq
[
µA(x)(x)

])1/p(
∑

x∈X
Pq,q′

[
ρρ ′x /∈ A′(x)

])1/p∗

.

Note that

∑
x∈X

Eq
[
µA(x)(x)

]
= ∑

x∈X
Pq [ρx = x] = ∑

x∈X
Pq [x ∈ ρ(Φ)] = Eq [|ρ(Φ)|] .

Therefore,

Eq

[
∑

x̄∈X̄
dTV (ΛKq′(x̄, ·), P̄Λ(x̄, ·))

]

≤ (Eq [|ρ(Φ)|])1/p

(
∑

x∈X
Pq,q′

[
ρρ ′x /∈ A′(x)

])1/p∗

. (38)

To conclude the proof of our theorem we evaluate Pq,q′
[
ρρ ′x /∈ A′(x)

]
for x any

given point in X .

Lemma 6. For any x ∈X , let Γ ′x be the path going from x to ρ ′x in Φ ′. Then,

Pq,q′
[
ρρ ′x /∈ A′(x)

]
≤ q′

q
Eq′
[∣∣Γ ′x ∣∣] .
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Proof. To decide whether ρρ ′x is in A′(x) or not, we do the following construction:

1. We begin the construction of Φ ′ using Wilson’s algorithm starting from x. Thus,
we let evolve the Markov process starting from x until an exponential time of
parameter q′, and erase the loop. The result is an oriented path γ ′ (= Γ ′x ) without
loops from x to a point y (= ρ ′x).

2. We go on with the construction of Φ with Wilson’s algorithm starting from y.
We let evolve the Markov process starting from y until an exponential time Tq of
parameter q. The Markov process stops at a point v (= ρρ ′x ).

3. Finally, we continue the construction of Φ ′ using Wilson’s algorithm starting
from v. We let evolve the Markov process starting from v, and we stop it after an
exponential time Tq′ of parameter q′, or when it reaches the already constructed
path γ ′. At this point, we are able to decide whether ρρ ′x is in A′(x) or not, since
ρρ ′x ∈ A′(x) if and only if Tq′ is bigger than the hitting time of γ ′.

Using this construction, we get that for any self-avoiding path γ ′ from x to y,

Pq,q′
[
ρρ ′x /∈ A′(x)|Γ ′x = γ

′;ρ
′
x = y

]
= Py

[
Tq′ < Hγ ′ ◦θTq

]
,

where θt denotes the time shift. Recall that σ1 is the first time of the clock process
on which X is build from X̂ , and let Si be the successive return times to γ ′:

S0 = 0 , S1 = inf
{

t ≥ σ1;X(t) ∈ γ
′}= H+

γ ′ , Si+1 = Si +S1 ◦θSi .

Then,

Py
[
Tq′ < Hγ ′ ◦θTq

]
=

∞

∑
i=0

Py
[
Si ≤ Tq < Si+1;Tq′ < Hγ ′ ◦θTq

]
.

Now, if Si≤ Tq < Si+σ1◦θSi , X(Tq)∈ γ ′ and Hγ ′ ◦θTq = 0< Tq′ . If Tq≥ Si+σ1◦θSi

and Tq < Si+1, X(Tq) /∈ γ ′ and Hγ ′ ◦θTq = Si+1−Tq. Therefore,

Py
[
Tq′ < Hγ ′ ◦θTq

]
=

∞

∑
i=0

Py
[
Si +σ1 ◦θSi ≤ Tq < Tq′ +Tq < Si+1

]
=

∞

∑
i=0

∑
z∈γ ′

Py [Si ≤ Tq;X(Si) = z]Pz

[
σ1 ≤ Tq < Tq′ +Tq < H+

γ ′

]
,

using Markov property at time Si. Set G̃q(y,z,γ ′) = Ey

[
∑
+∞

i=01Si≤Tq;X(Si)=z

]
. Since

z ∈ γ ′, G̃q(y,z,γ ′) is the mean number of visits to the point z up to time Tq. We have
obtained that

Py
[
Tq′ < Hγ ′ ◦θTq

]
= ∑

z∈γ ′
G̃q(y,z,γ ′)Pz

[
σ1 ≤ Tq < Tq +Tq′ < H+

γ ′

]
.

We now use Markov property at time σ1 to write

Pz

[
σ1 ≤ Tq < Tq +Tq′ < H+

γ ′

]
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= ∑
u/∈γ ′

Pz [σ1 ≤ Tq,X(σ1) = u]Pu(Tq < Tq′ +Tq < Hγ ′)

≤ ∑
u/∈γ ′

α

q+α
P(z,u)Pu(Tq′ < Hγ ′)

= ∑
u/∈γ ′

1
q+α

w(z,u)Pq′
[
ρ
′
u 6= y

∣∣ Γ
′

x = γ
′] ,

using that αP(z,u) = L (z,u) = w(z,u) for z 6= u. Integrating over γ ′ and y, we are
led to

Pq,q′
[
ρρ ′x /∈ A′(x)

]
≤ ∑

y∈X
∑

γ:x y
∑
z∈γ

∑
u/∈γ

G̃q(y,z,γ)
q+α

w(z,u)Pq′
[
ρ
′
u 6= y;Γ ′x = γ;ρ

′
x = y

]
where the sum over γ ′ is the sum on all self-avoiding paths going from x to y. Now,
introducing for any such path γ

F1(y,γ,u) := {φ s.o. f . ; y ∈ ρ(φ),γ ⊂ φ ,ρu 6= y} ,

this can be rewritten, with w(φ) = ∏e∈φ w(e), as

Pq,q′
[
ρρ ′x /∈ A′(x)

]
= ∑

y∈X
∑

γ:x y
∑
z∈γ

∑
u/∈γ

∑
φ∈F1(y,γ,u)

G̃q(y,z,γ)
q+α

w(z,u)
(q′)|ρ(φ)|w(φ)

Z(q′)
.

Lemma 7. Let Gq(y,z) = Ey

[∫ Tq
0 1X(s)=z ds

]
. Then Gq(y,z) = G̃q(y,z,γ)/(q + α)

for any self-avoiding path γ that contains z and goes from x to y.

Proof. Let Vi be the successive return times to z:

V0 = 0 , V1 = inf{t ≥ σ1;X(t) = z} , Vi+1 =Vi +V1 ◦θVi .

Then G̃q(y,z,γ) = δy(z) +∑
+∞

i=1 Ey[1Vi≤Tq ]. Moreover, using Markov’s property at
time Vi,

Gq(y,z) =
∞

∑
i=0

Ey

[∫ Vi+1

Vi

1Tq≥s1X(s)=z ds
]

=
∞

∑
i=0

Ey

[
1Vi≤TqEX(Vi)

[∫ V1

0
1Tq≥s1X(s)=z ds

]]
= Ey

[∫ V1

0
1Tq≥s1X(s)=z ds

]
+

∞

∑
i=1

Ey
[
1Vi≤Tq

]
Ez

[∫ V1

0
1Tq≥s1X(s)=z ds

]

=

(
δy(z)+

∞

∑
i=1

Ey
[
1Vi≤Tq

])
Ez

[∫ V1

0
1Tq≥s1X(s)=z ds

]
= G̃q(y,z,γ)Ez

[∫ V1

0
1Tq≥s1X(s)=z ds

]
.
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Now, Ez

[∫ V1
0 1Tq≥s1X(s)=z ds

]
= Ez

[∫ σ1
0 1Tq≥s ds

]
= E [σ1∧Tq] =

1
q+α

. ut

Hence,

Pq,q′
[
ρρ ′x /∈ A′(x)

]
≤ ∑

y∈X
∑

γ:x y
∑
z∈γ

∑
u/∈γ

∑
φ∈F1(y,γ,u)

Gq(y,z)w(z,u)
(q′)|ρ(φ)|w(φ)

Z(q′)
.

We fix y, γ and z and want to perform the summations over u and φ . With any pair
(u,φ), with u /∈ γ and φ ∈F1(y,γ,u), we associate a new forest φ̃ = φ̃(u,φ) in the
following way:

1. we reverse the edges from z to y along γ;
2. we add the edge (z,u).

The forest φ̃ is such that:

•
∣∣ρ(φ̃)∣∣= |ρ(φ)|−1;

• z /∈ ρ(φ̃).
• the piece γx z of the path γ going from x to z belongs to φ̃ ;
• the path←−γ y z consisting of the reversed path γ from z to y, belongs to φ̃ .

Using reversibility, one has µ(z)∏e∈γz y w(e) = µ(y)∏e∈←−γ y z
w(e), and

w(z,u)w(φ) = w(φ̃)µ(y)/µ(z) .

Set F2(y,z,γ) =
{

φ s.o. f . ; z /∈ ρ(φ),γx z ⊂ φ ,←−γ y z ⊂ φ
}

. Note that the function

(u,φ) ∈ {(u,φ),u /∈ γ,φ ∈F1(y,γ,u)} 7→ φ̃ ∈F2(y,z,γ)

is one to one. Indeed, given φ̃ in F2(y,z,γ), u is the “ancestor” of z in φ̃ , and once
we know u, φ is obtained by cutting the edge (z,u), and by reversing the path←−γ y z.
Therefore, we obtain

∑
u/∈γ

∑
φ∈F1(y,γ,u)

Gq(y,z)w(z,u)
(q′)|ρ(φ)|w(φ)

Z(q′)

= ∑
φ∈F2(y,z,γ)

Gq(y,z)
µ(y)
µ(z)

(q′)|ρ(φ)|+1w(φ)
Z(q′)

= ∑
φ∈F2(y,z,γ)

Gq(z,y)
(q′)|ρ(φ)|+1w(φ)

Z(q′)

by reversibility. At this point, we are led to

Pq,q′
[
ρρ ′x /∈ A′(x)

]
≤ ∑

y∈X
∑

γ:x y
∑
z∈γ

∑
φ∈F2(y,z,γ)

Gq(z,y)
(q′)|ρ(φ)|+1w(φ)

Z(q′)
.

We now perform the summations over z and γ and φ , y being fixed. Note that if
φ ∈ F2(y,z,γ) for some z and γ , x and y are in the same tree (τx = τy using the
notations of Section 1.3.3), and z is their first common ancestor a(x,y) in that tree.
Let us then denote
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F3(y,x) = Ł
{

φ s.o. f . ; τx = τy,a(x,y) /∈ ρ(φ)
}
.

Then,
∪γ:x y∪z∈γ F2(y,z,γ)⊂F3(y,x) .

In addition, given a forest φ ∈F3(y,x), there is a unique γ : x y, and z ∈ γ such
that φ ∈F2(y,z,γ): z is the first common ancestor a(x,y) of x and y, whereas γ is
the concatenation of the path going from x to a(x,y) and the reversed path from y to
a(x,y). Therefore,

∑
γ:x y

∑
z∈γ

∑
φ∈F2(y,z,γ)

Gq(z,y)
(q′)|ρ(φ)|+1w(φ)

Z(q′)

= ∑
φ∈F3(y,x)

Gq(a(x,y),y)
(q′)|ρ(φ)|+1w(φ)

Z(q′)
.

It remains to sum over y. When moving y in τx, a(x,y) moves along the path γx going
from x to the root of τx. Hence,

∑
y∈X

∑
φ∈F3(y,x)

Gq(a(x,y),y)
(q′)|ρ(φ)|+1w(φ)

Z(q′)

= ∑
φ s.o. f .

∑
z∈γx,z6=ρx

∑
y∈τx;a(x,y)=z

Gq(z,y)
(q′)|ρ(φ)|+1w(φ)

Z(q′)

≤ q′

q ∑
φ s.o. f .

∑
z∈γx,z 6=ρx

πq′(φ)≤
q′

q
Eq′
[∣∣Γ ′x ∣∣] .

ut

5 Proof of Theorem 3

Let us first rewrite our approximate solutions of Equation (3) with error terms. There
are signed measures εx̄,q′ such that, for all x̄ in X̄ ,

µA(x̄)Kq′ = ∑
ȳ∈X̄

PµA(x̄)

(
X(Tq′) ∈ A(ȳ)

)
µA(ȳ)+ εx̄,q′ .

Let us now apply the “‘low-pass filter” MWm on both sides of the equations. On
the one hand, Kq′ and MWm commute. On the other hand, our linear independence
(i.e. finite squeezing) hypothesis implies that the εx̄,q′MWm are linear combinations
of the µA(x̄)MWm. Indeed, since the image im(MWm) of MWm is a vector space of
dimension m that contains the m linearly independent νx̄, the latter should span
im(MWm). We then get, by using the notation of the proof of Proposition 6,



Random forests and intertwining 37

νx̄Kq′ = ∑
ȳ∈X̄

(
PµA(x̄)

(
X(Tq′) ∈ A(ȳ)

)
+ 〈ν̃ȳ,εx̄,q′MWm〉∗

)
νȳ.

Now, when q′ goes to 0, PµA(x̄)

(
X(Tq′) ∈ A(ȳ)

)
converges to µ(A(ȳ)) > 0, and, by

Theorem 2, εx̄,q′ goes to zero. Since our νx̄ do not depend on q′, this concludes the
proof of the theorem.

Let us list what would be needed to give quantitative bounds on q′ to ensure that
we can build in this way exact solutions of (3). We would need:

1. upper bounds on the εx̄,q′ ;
2. upper bounds on the ‖ν̃x̄‖;
3. lower bounds on the PµA(x̄)

(
X(Tq′) ∈ A(ȳ)

)
.

The latter are out of reach in such a general framework, the first ones are provided
by Theorem 2, the second ones would be a consequence of upper bounds on the
squeezing. This is the reason why we introduce the squeezing to measure joint over-
lap. We note that given Proposition 5 and Equation (27) in Theorem 1, we are not so
far of getting such bounds. But no convexity inequality leads here to the conclusion.

Appendix: Proof of proposition 1

If such random variables exist then, for all x̄, ȳ 6= x̄ and y,

Pνx̄

(
Tx̄ = 1,Ȳx̄ = ȳ

∣∣∣ X̂(1) = y
)
=

Pνx̄

(
Tx̄ = 1,Ȳx̄ = ȳ, X̂(1) = y

)
(νx̄P)(y)

=
(1− P̄(x̄, x̄)) P̄(x̄,ȳ)

1−P̄(x̄,x̄)νȳ(y)

(νx̄P)(y)

=
P̄(x̄, ȳ)νȳ(y)
(νx̄P)(y)

.

By summing on ȳ we get

Pνx̄

(
Tx̄ = 1

∣∣∣ X̂(1) = y
)
=

(νx̄P)(y)− P̄(x̄, x̄)νx̄(y)
(νx̄P)(y)

= 1− P̄(x̄, x̄)νx̄(y)
(νx̄P)(y)

.

We also have

Pνx̄

(
Ȳx̄ = ȳ

∣∣∣ X̂(1) = y,Tx̄ = 1
)
=

Pνx̄

(
Ȳx̄ = ȳ,Tx̄ = 1

∣∣∣ X̂(1) = y
)

Pνx̄

(
Tx̄ = 1

∣∣∣ X̂(1) = y
)

=
P̄(x̄, ȳ)νȳ(y)

(νx̄P)(y)− P̄(x̄, x̄)νx̄(y)
.

We are then led to build Tx̄ ≥ 1 and Ȳx̄ in the following way.
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1. At t = 1 we set Tx̄ = 1 with probability 1−P̄(x̄, x̄)νx̄(X̂(1))/(νx̄P)(X̂(1)) by using
a uniform random variable U1 which is independent of X̂ —it holds

P̄(x̄, ȳ)νx̄(y)/(νx̄P)(y)≤ 1

for all y in X , as a consequence of Equation (6).
2. If we just set Tx̄ = 1 we then set Ȳx̄ = ȳ 6= x̄ with a probability given by the ra-

tio P̄(x̄, ȳ)νȳ(X̂(1))/[(νx̄P)(X̂(1))− P̄(x̄, x̄)νx̄(X̂(1))] by using a uniform random
variable U ′1 that is independent of U1 and X̂ . (Once again (6) ensures that these
are positive quantities summing to one.)

3. If for all s < t we did not decide to set Tx̄ = s then we set in the same way
Tx̄ = t with probability 1− P̄(x̄, x̄)νx̄(X̂(t))/(νx̄P)(X̂(t)), in which case we set
Ȳx̄ = ȳ 6= x̄ with probability P̄(x̄, ȳ)νȳ(X̂(t))/[(νx̄P)(X̂(t))−P̄(x̄, x̄)νx̄(X̂(t))]. This
is naturally done by using uniform random variable that are independent of X̂ and
U1, U ′1, U2, U ′2, . . . , Ut−1, U ′t−1.

At this point, the key property to check is the stationarity of νx̄ up to Tx̄. To this end
it suffices to check Equation (7) with t = 1. And one has

Pνx̄

(
X̂(1) = y

∣∣∣ Tx̄ > 1
)
=

Pνx̄

(
X̂(1) = y,Tx̄ > 1

)
Pνx̄ (Tx̄ > 1)

=
Pνx̄

(
X̂(1) = y

)
−Pνx̄

(
X̂(1) = y,Tx̄ = 1

)
1−Pνx̄ (Tx̄ = 1)

=
νx̄P(y)−νx̄P(y)

(
1− P̄(x̄,x̄)νx̄(y)

νx̄P(y)

)
1−∑z νx̄P(z)

(
1− P̄(x̄,x̄)νx̄(z)

νx̄P(z)

)
=

P̄(x̄, x̄)νx̄(y)
1−∑z νx̄P(z)+∑z P̄(x̄, x̄)νx̄(z)

= νx̄(y).

Points (1)–(5) immediately follow.
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