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Abstract

Dynamic Time Warping (DTW) is probably the most popular distance measure for time series data,

because it captures flexible similarities under time distortions. However, DTW has long been suffering

from the pathological alignment problem, and most existing solutions, which essentially impose rigid

constraints on the warping path, are likely to miss the correct alignments. A crucial observation on

pathological alignment is that it always leads to an abnormally large number of links between two

sequences. Based on this new observation, we propose a novel variant of DTW called LDTW, which

limits the total number of links during the optimization process of DTW. LDTW not only oppresses the

pathological alignment effectively, but also allows more flexibilities when measuring similarities. It is a

softer constraint because we still let the optimization process of DTW decide how many links to allocate

to each data point and where to put these links. In this paper, we introduce the motivation and algorithm

of LDTW and we conduct a nearest neighbor classification experiment on UCR time series archive to

show its performance.
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1. Introduction

With the explosion of acquisition devices and sensors, time series is becoming more available in a

very large number of applications (multi-media, physics, remote sensing, economics, clinical medicine,

biodemography, etc) [21, 29] and it has the advantage of fully capturing the changing process of the

observed objects [14]. Therefore not only the information in a specific time t is important but also the

temporal evolution of the observed processes is a key information to analyze. A fundamental task in time

series analysis is to quantify the similarity (or dissimilarity) between two numerical sequences [11]. The

performance of such a distance measure is critical to many data mining jobs, for instance, classification

[17, 20, 28], clustering [26, 29], retrieval [22, 2, 31], etc. In the context of time series, usual distance

measures such as Euclidean distance, are often not suitable [11], because time shifts or time distortions

exist commonly and unpredictably.

Dynamic Time Warping (DTW), introduced three decades ago in the context of sound processing [33],

is a widely accepted distance measure for time series [11]. DTW is famous for its ability to manage time

distortions by realigning time series when comparing them. However, DTW still suffers from its drawback

that it could lead to pathological alignments [23]. As an example, Fig. 1 illustrates a typical pathological

alignment generated by DTW, where we can observe several singularities. A singularity is a data point

inside one time series that links to a large subsection of the other time series. The presence of singularities

is the main signature of pathological alignment. Obviously, such an alignment is not the “correct” one we

could expect and by “correct” we mean intuitively obvious “feature to feature” alignment. The quality

of this alignment greatly influences the accuracy of the associated similarity measure. We cannot find

accurate similarity based on pathological alignment. To cope with this problem, an intuitive solution is

to limit the number of points a point can link to, and this idea has been implemented by a widely used

category of constraints on DTW, which is called windowing constraint [30, 34, 27, 6] (will be discussed

in Section 2.3). Although windowing constraint can solve pathological alignment, it also brings another

problem that it takes a risk of preventing the correct alignment from being generated.

In fact, a crucial observation on pathological alignment is that if singularities happen, the total number

of links (green lines in Fig. 1) between sequences must be abnormally large. Therefore, another intuitive

solution, which will be explored in this paper, is to limit the total number of links between two time

series. This way, we can also oppress singularities effectively. Moreover, this is a softer constraint than

windowing constraint because we still let the optimization process of DTW decide how many links to

allocate to each data point and where to put these links, instead of setting a rigid limit. As a result, it
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Figure 1: A typical example of pathological alignment generated by DTW. The two time series here are

the first two in the ECG200 training set.

allows more flexibilities and avoid the risk of missing the correct alignment. We call this new method

LDTW (“L” for “Limited” warping path “Length”), because it essentially limits the length of the warping

path (detailed definition of warping path can be found in Section 2) during the DTW process.

LDTW originates from naive DTW. To clearly introduce LDTW and its motivations, we give a deep

review of DTW and its variants in Section 2. Then in Section 3, we provide and explain the detailed

implementation of the LDTW algorithm based on dynamic programming process. In the experiment

section, we use LDTW as a distance measure and we report the one nearest neighbor classification error

rate on UCR time series archive, in comparison with Euclidean distance, DTW without constraint and

DTW with most popular windowing constraints. The experimental result shows that LDTW can achieve

a better classification performance on most datasets. The upper bound of warping path length is the only

parameter of LDTW and we also describe how to find the optimal upper bound by LOOCV (leave-one-out

cross validation) [24] on the training set.

2. Dynamic Time Warping (DTW)

2.1. Notation

Before entering into technical details, Table 1 establishes a set of notations that will be used throughout

this paper. Note that the relation between current step count s and current path length l is: s = l − 1,

because the path length takes into account the starting point.
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Table 1: List of Notations

A = a1 ... ar ... aR - a time series of length R

B = b1 ... bc ... bC - another time series of length C

An - a sub-sequence consists of the first n points of A

m[r][c] - a R× C cumulative cost matrix used in DTW, each cell keeps only one value

m[r][c][s] - a R× C cumulative cost matrix used in LDTW, each cell keeps multiple values

r - row index of the cumulative cost matrix m, also the index of A

c - column index of the cumulative cost matrix m, also the index of B

W = w1 ... wl ... wL - a warping path of length L

wl = (r, c) - a link between ar and bc

s - current step count of the warping path, s starts from 0 and s = l − 1

LUB - upper bound of warping path length

δ() - cost between points of time series
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2.2. Naive DTW

As shown in Fig. 1 and Fig. 2, DTW is alignment-based. The terminology alignment here refers to

a collection of all links (or couplings) between two time series. The goal of DTW is to find an optimal

alignment between two time series that achieves minimum global cost while ensuring time continuity.

The global cost is the summation of the cost between each pair of points in the alignment. So we should

first define the cost between points of time series, which is denoted by the symbol δ. Euclidean distance

or squared Euclidean distance is normally used as the base cost δ and we employ squared Euclidean

distance as our δ in this work. The detailed definition of δ is shown in Eq. 1.

δ(ar, bc) = (ar − bc)2
(1)

The optimal global cost of DTW, namely, the DTW distance, can be recursively calculated by :

D(Ar, Bc) = δ(ar, bc) +min


D(Ar , Bc−1)

D(Ar−1, Bc )

D(Ar−1, Bc−1)

(2)

A direct implementation of Eq. 2 leads to an exponential time complexity if we compute each subprob-

lem from scratch. Fortunately, Eq. 2 belongs to a typical dynamic programming problem [10, 12], because

overlapping subproblems widely exhibit. For instance, the computation of D(Ar, Bc−1) and D(Ar−1, Bc)

both require D(Ar−1, Bc−1). The right solution here is to memorize the results of all these subproblems

in a cumulative cost matrix, where the cell (r, c) keeps the result of D(Ar, Bc). This way the process of

DTW is converted into the process of fully filling the cumulative cost matrix in a certain order. Since the

dimension of the matrix is R×C, the time complexity of the DTW algorithm is Θ(R×C). Algorithm 1

shows the basic implementation of DTW. Intuitively, we fill the bottom row and the leftmost column

first, and then sweep the matrix row by row (from left to right) from bottom to top according to Eq. 2.

The last matrix cell m[R][C] holds the final DTW distance between two entire sequences.

From the perspective of cumulative cost matrix, we can only solve the calculation of DTW distance.

But if we want to gain a deep insight into DTW and the motivations of its variants, we need to review

DTW closely from the perspective of warping path. As shown in Fig. 2, a warping path consists of a series

of continuous matrix cells passing through the cumulative cost matrix. Each matrix cell, for example

(r, c), corresponds to a link (or coupling) between two points Ar and Bc. In this way, the warping path

W defines the alignment between two time series.
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Algorithm 1 DTW

Require: A = 〈a1 ... ar ... aR〉

Require: B = 〈b1 ... bc ... bC〉

Let δ() be the cost between two points of different time series

Let m[r][c] be the cumulative cost matrix

1: function DTW(A, B)

2: . Initializing the first column and row of m

3: m[1][1] = δ(a1, b1)

4: for r = 2 to R do

5: m[r][1] = m[r − 1][1] + δ(ar, b1)

6: end for

7: for c = 2 to C do

8: m[1][c] = m[1][c− 1] + δ(a1, bc)

9: end for

10: . Fully filling the cumulative cost matrix

11: for r = 2 to R do

12: for c = 2 to C do

13: m[r, c] = δ(ar, bc) +min


m[ r ][c− 1]

m[r − 1][ c ]

m[r − 1][c− 1]

14: end for

15: end for

16: return m[R][C]

17: end function
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(a) Euclidean alignment (b) Euclidean warping path

(c) DTW alignment (d) DTW warping path

(e) LDTW alignment (f) LDTW warping path

Figure 2: Alignments and their corresponding warping paths for Euclidean distance, DTW, and LDTW.
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The warping path is generated by certain rules and different rules lead to different distance measures.

From this point of view, the Euclidean distance can also be regarded as alignment-based and has its own

rule of warping path. As shown in Fig. 2(a-b), Euclidean distance obeys a rigid one-to-one alignment

and thus its warping path is only composed of the diagonal cells of the cumulative cost matrix. Implied

by Eq. 2, the warping path of DTW, W , must satisfy the following three rules [23]:

1. Boundary constraint :

wl = (1, 1) and wL = (R,C)

2. Monotonicity constraint :

Given wl = (r, c), wl+1 = (r′, c′)

Then r′ ≥ r and c′ ≥ c

3. Continuity constraint :

Given wl = (r, c), wl+1 = (r′, c′)

Then r′ ≤ r + 1 and c′ ≤ c+ 1

The boundary constraint indicates that the warping path should start at the lower-left corner (1, 1)

and end at the top-right corner (R,C). The other two constraints define the admissible step pattern,

where only the upper, upper-right, and right neighbors of the current position are reachable at each step.

Fig. 2(c-d) show the alignment and the corresponding warping path generated by DTW. If we follow the

idea of LDTW and make the length of warping path not longer than six, then we get Fig. 2(e-f).

Given the warping path W = 〈w1 ... wl ... wL〉, DTW distance can also be defined as :

D(A,B) = min
W

[
L∑

l=1

δ(wl)

]
(3)

where if wl = (r, c), then δ(wl) = δ(ar, bc).

This new definition reminds us that the idea of DTW is to find the optimal warping path that leads

to the minimum cumulative cost.

Unlike DTW distance, the corresponding warping path does not emerge explicitly during the DTW

algorithm. Although the warping path has already been determined, it hides in the cumulative cost

matrix and you need another backtracking procedure to reveal it. Starting from the upper-right corner

(R,C), we check the three backward neighbors of the current position at each stage. Assume (r, c) is

the current position inside the cumulative cost matrix. Its three backward neighbors, (r − 1, c), (r, c −

1), and (r − 1, c− 1), will be checked and the one with the smallest value will be added to the warping
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(a) Sakoe-Chiba band (b) Itakura parallelogram (c) learned window

(d) step patterns

Figure 3: Two types of constraints on the warping path: windowing constraint (a-b-c) and step pattern

(d).

path. Then we move to the new position and repeat the above steps until the lower-left corner (1, 1)

is reached. Note that the warping path comes from backtracking so it is in reverse order. We need to

reverse the entire path in the end to get the forward-going path.

2.3. Variants of DTW

As mentioned in the Introduction, DTW has the drawback of generating pathological alignments.

Therefore, a large number of variants of DTW have been proposed to tackle with this issue. Generally,

we can classify these variants into two major categories.

The first category essentially sets constraints on the warping path. The most widely used one is

called windowing constraint [30, 34, 27, 6]. From the perspective of alignment, it limits the number of

points any point can link to, and from the perspective of warping path, it limits the allowable domain

9



of the warping path in a specific area. Fig. 3(a-b) illustrate two most widely used shapes of constraint

windows, Sakoe-Chiba band and Itakura parallelogram. In order to introduce more flexibility than a fixed

authorized shape, some researchers prefer to learn an adaptive window shape from the data [32, 35, 7].

For instance, Fig. 3(c) shows a window generated by learning. Other types of constraints include step

pattern [27, 19] and slope weighting [25, 33]. Step pattern specifies the reachable neighbors for each step,

as illustrated in Fig. 3(d). Slope weighting sets a bias toward a certain direction.

The second category replaces the feature DTW considers. Derivative DTW [23] is a pioneer work in

this category. It employs local derivative rather than the raw value, because the authors believe the trend

of a data point is more important. For example, two points may have the same value, but they should be

considered different if one is part of a ascending trend while the other is part of a descending trend. After

Derivative DTW, many other types of features have also been considered, such as local maximum, local

minimum [36], shape context [37, 4], and interest-points [1], etc. It is also possible to combine different

distance measures to create new methods, for example, combining Derivative DTW with DTW [16] or

combining DTW with Euclidean distance [8].

These two categories follow different clues and they are independent with each other. The method

we propose in this paper belongs to a new constraint for the warping path, so we concentrate on the

methods of the first category in this paper.

3. LDTW : DTW with limited warping path length

3.1. Motivation

Windowing constraints limit the number of points each point can link to. It is an intuitive and

straightforward solution to the pathological alignment problem. However, it takes the risk of preventing

the correct alignment from being found due to its rigidity. Moreover, it is not easy to find an appropriate

size or shape for the constraint window. Other types of constraints such as step patterns and slope

weighting also suffer from the similar drawbacks.

In fact, another intuitive type of constraint is still open and seems promising. That is to limit the total

number of links between two time series, rather than the number of links each point involves. This way,

the pathological alignment will be alleviated because we prevent the tremendous amount of unreasonable

links from happening by setting an upper bound to the total number of links. In other words, the number

of links is not sufficient enough for singularities to form. In addition, we gain more flexibility because we
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still let the optimization procedure of DTW decide the number of points each point links to and where

these links happen. We call DTW under this new constraint LDTW, because it actually requires us to

solve DTW under Limited warping path length.

3.2. LDTW Algorithm

The calculation of LDTW is not trivial. As already shown, DTW only concentrates on the minimum

cumulative cost at each stage, regardless of the warping path length. However, LDTW puts a constraint

on the warping path length. Therefore, we have to consider the current length of the warping path as

an additional factor. The path length is decided by the number of steps that have been taken and in

order to describe the algorithm more intuitively, we sometimes use the term “step count”. Note that

step count = path length−1 because path length takes into account the starting point. After considering

the factor of step count (denoted by s), the problem of computing DTW under a fixed warping path

length can be formulated recursively into Eq. 4. Compared with the formulation of DTW shown in Eq. 2,

an extra dimension dedicated to record the current step count is added to the cumulative cost matrix.

D(Ar, Bc, s) = δ(ar, bc) +min


D(Ar , Bc−1, s− 1)

D(Ar−1, Bc , s− 1)

D(Ar−1, Bc−1, s− 1)

(4)

To solve Eq. 4, we rely on the similar dynamic programming principle used for DTW and the key

point is to memorize the results of all subproblems. However, in DTW each cell inside the cumulative

cost matrix only keeps one value, which is the global minimum cumulative cost among all possible path

lengths. In contrast, in LDTW each cell has to keep multiple values, each of which is the minimum

cumulative cost under a certain path length. For example, in the same cell at position (r, c), m[r][c][s] is

the result of subproblem D(Ar, Bc, s) and m[r][c][s− 1] is the result of subproblem D(Ar, Bc, s− 1).

Note that Eq. 4 only defines how to calculate DTW under a fixed warping path length. But the

goal of LDTW is to find the minimum DTW distance when the warping path length is shorter that a

given upper bound LUB . Therefore, a natural solution is to calculate the results for all admissible path

lengths, and then choose the smallest one among those results. To achieve this solution, the first job is

to ascertain the range of all admissible path lengths. According to the rules of DTW, the strict lower

bound of the warping path length is max(R,C) and we already have a given upper bound LUB , so the

range of path lengths is (max(R,C), ..., LUB ]. Next, we are supposed to calculate DTW under each
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Figure 4: Maximum and minimum steps allowed to reach a certain cell.

admissible path length, but fortunately in fact we only need to calculate DTW when the path length

is fixed at the upper bound LUB if we exhaust all possible subproblems at each cell of the cumulative

cost matrix (for example, D(Ar, Bc, s) is a subproblem at cell (r, c)). Because of the recursive nature of

these subproblems, as shown in Eq. 4, a subproblem under a longer path is based on subproblems under

shorter paths. If we calculate DTW under each path length from scratch, we will encounter many overlap

subproblems and eventually each subproblem will be encountered. So we decide to solve all intermediate

subproblems once and for all. In this way, after we solve DTW under the longest path length LUB , all

subproblems required to solve DTW under shorter path lengths have already been calculated and we can

get these results directly in the upper-right cell.

To exhaust all possible subproblems at each cell, the primary task is to ascertain the range of path

lengths that each matrix cell has to consider. This is equivalent to computing the minimum and maximum

steps allowed to reach a certain matrix cell. Given the rule of DTW, the minimum steps to reach a cell,

for instance (r, c), is clear. It is just the larger one between r−1 and c−1, as shown in Algorithm 2. The

red line in Fig. 4 illustrates one shortest path to reach (4, 3) with three steps, and the blue line illustrates

one longest path with four steps. Although a path with five steps is not explicitly forbidden given the

rules of DTW, we will never pick such a path because it involves orthogonal steps (shown in Fig. 4 with

the dashed line) that will always lead to an extra cost. As we have mentioned, passing a matrix cell will

incur a cost, therefore two orthogonal steps always have a higher cost than a diagonal step.

The computing of maximum steps to reach a cell is a bit tricky. First let us discuss the natural
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situation where no limit is set on the warping path length. In this situation, if the cell is located in the

bottom row (r = 1) or the left-most column (c = 1), then the maximum steps is also equal to the larger

one between r− 1 and c− 1. Elsewhere, the maximum steps is equal to (c− 2) + 1 + (r− 2) = r+ c− 3,

for example, we first take (c− 2) horizontal steps to reach the last but one column, then a diagonal step

to reach the last column, and finally (r− 2) vertical steps to reach the end. Algorithm 3 summarizes the

above process. Then let us discuss the situation where a upper bound LUB on the warping path length

is given. In this case, the total quota of steps is LUB − 1. After reaching (r, c), we still need at least

max(R − r, C − c) steps to get to the end, as shown by the green line in Fig. 4. So we should reserve

these steps in advance when we compute the maximum steps to reach (r, c). As a result, the current

upper bound of maximum steps should be the total step quota (LUB − 1) minus the reserved steps and

finally we choose the smaller one between the maximum steps in natural situation and the current upper

bound. Algorithm 4 summarizes the complete procedure.

Algorithm 2 Minimum steps to reach matrix cell (r, c)

Require: r row index of the cumulative cost matrix

Require: c column index of the cumulative cost matrix

1: function min steps(r, c)

2: return max(r, c)− 1

3: end function

Algorithm 3 Maximum steps to reach matrix cell (r, c) with no limit on the warping path length

Require: r row index of the cumulative cost matrix

Require: c column index of the cumulative cost matrix

1: function max steps no limit(r, c)

2: if r == 1 or c == 1 then

3: return max(r, c)− 1

4: else

5: return r + c− 3

6: end if

7: end function

The next job is to fill the cumulative cost matrix according to Eq. 4. For each matrix cell, we compute
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Algorithm 4 Maximum steps to reach matrix cell (r, c) given limited warping path length

Require: r row index of the cumulative cost matrix

Require: c column index of the cumulative cost matrix

Require: LUB the given upper bound of warping path length

Require: R length of the first time series

Require: C length of the second time series

1: function max steps(r, c, LUB , R, C)

2: candidate1 = max steps no limit(r, c)

3: candidate2 = LUB − 1−max(R− r, C − c)

4: return min(candidate1, candidate2)

5: end function

the cumulative costs under different path lengths respectively. Fig. 5 illustrates how we consider different

path lengths respectively. The numbers labeled on each cell show all possible step counts to reach that

cell. To reach cell (5, 4), the number of steps ranges from 4 to 6. When computing the 5-step cost of that

cell (m[5][4][5]), we only consider the 4-step costs of its left, lower-left, and lower neighbors. In parallel,

when computing the 4-step cost, we only consider the 3-step costs of the three neighbor cells. Fig. 5 also

shows another situation that is different from DTW. In DTW we always have to consider three adjacent

cells at each step, but in LDTW some cells could be inaccessible due to limited step count. As shown

in Fig. 5, we cannot get to cell (3, 1) with only one step, but m[3][2][2] only considers the 1-step cost of

adjacent cells, so the cell (3, 1) has to be ignored in the computation of m[3][2][2].

After the cumulative cost matrix is filled, the upper-right cell (R,C) contains those results to be

compared. Each of them is an optimal cumulative cost when the warping path length is fixed at a

different value that is smaller than the upper bound LUB . For instance, m[R][C][L− 1] is the minimum

cumulative cost when the warping path length is fixed at L. We select the smallest value among these

results to be the LDTW distance. Algorithm 5 summarizes the complete LDTW procedure.

The algorithms to backtrack the warping path generated by LDTW and DTW are almost identical,

but we still need to notice the differences. For LDTW, the cumulative cost matrix has a third dimension

to indicate the step count, so the actual step count must be provided as input, which means we should

also record the final step count when calculating LDTW. For example, if m[R][C][s] is the smallest value

in the final cell (R,C), then s is the final step count. In addition, remember to decrease the current step
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Figure 5: LDTW considers different path lengths respectively. The numbers labeled on each cell are all

possible step counts to reach that cell.

count by one after each loop.

4. Experiment

The main purpose of DTW and its variants is to measure the similarity between numerical sequences,

so in this section we evaluate the performance of LDTW as a distance measure by nearest neighbor

classification experiment1.

4.1. Datasets

Experiments are conducted on twenty-two datasets from the UCR time series classification archive

[9], the largest online time series database widely referenced by the community in recent years. One

big advantage of the archive is its diversity. It consists of mostly real time series datasets collected

from various domains and some synthetic ones. For example, Gun-Point dataset is collected from video

trajectory recognition field; ECG200 dataset comes from electrocardiogram signals; Swedish Leaf dataset

1Related code of this paper is available at http://sites.univ-rennes2.fr/costel/corpetti/LDTW/LDTW CODE.zip
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Algorithm 5 Complete LDTW procedure

Require: A = 〈a1 ... ar ... aR〉

Require: B = 〈b1 ... bc ... bC〉

Require: LUB the given upper bound of warping path length

Let δ() be the cost between two points of different time series

Let m[r][c][s] be the cumulative cost matrix

Let L be the actual length of the warping path

1: function LDTW(A, B, LUB)

2: . Initializing the first column and row of m

3: m[1][1][0] = δ(a1, b1)

4: for r = 2 to R do

5: m[r][1][r − 1] = m[r − 1][1][r − 2] + δ(ar, b1)

6: end for

7: for c = 2 to C do

8: m[1][c][c− 1] = m[1][c− 1][c− 2] + δ(a1, bc)

9: end for

10: . Exhausting all subproblems at each cell of m

11: for r = 2 to R do

12: for c = 2 to C do

13: min s = min steps(r, c)

14: max s = max steps(r, c, LUB , R, C)

15: for s = min s to max s do

16: m[r, c, s] = δ(ar, bc) +min


m[ r , c− 1, s− 1]

m[r − 1, c , s− 1]

m[r − 1, c− 1, s− 1]

17: end for

18: end for

19: end for
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20: . Selecting the best result and the corresponding path length in the last cell (R,C)

21: min s final = max(R,C)

22: max s final = LUB − 1

23: ldtw = +∞

24: L = 0

25: for s = min s final to max s final do

26: if m[R][C][s] < ldtw then

27: ldtw = m[R][C][s]

28: L = s+ 1

29: end if

30: end for

31: return ldtw

32: end function

is converted from the contours of fifteen different leaf species; while Synthetic Control, CBF, and Two-

Patterns datasets are synthetic. Table 2 summarizes the basic information of all datasets used in the

experiments, such as the number of classes, size of training set, size of testing set and time series length.

The number of classes ranges from 2 (e.g. Gun-Point, Wafer, etc) to 50 (50Words). The length of time

series ranges from 60 (Synthetic Control) to 637 (Lightning-2).

4.2. 1NN Accuracy Report

One nearest neighbor classification (1NN for short) is strongly recommended [9, 11] to demonstrate

the performance of a distance measure, because 1NN has no parameters and thus the accuracy solely

depends on the distance measure. In Table 3, we report the 1NN error rate of LDTW with the best upper

bound of warping path length, which is learned from the training sets by cross validation and the details

will be introduced in Section 4.6. We compare LDTW with four most widely used distance measures

between time series : Euclidean distance, naive DTW, DTW under best Sakoe-Chiba band (Fig. 3(a)),

and DTW under best Itakura parallelogram (Fig. 3(b)). These best parameters are also learned by cross

validation on the training sets. From Table 3 we can observe that LDTW get the lowest error rates on 19

out of 22 datasets and the improvements are considerable especially on OSU Leaf (5%), 50Words (6%),

Fish (7%), and Car (10%). On several datasets, DTW error rates are close to zero, but LDTW still
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Table 2: Basic Information of Datasets

Dataset
Number of Size of Size of Time series

classes training set testing set length

Synthetic Control 6 300 300 60

Gun-Point 2 50 150 150

CBF 3 30 900 128

Face(all) 14 560 1690 131

OSU Leaf 6 200 242 427

Swedish Leaf 15 500 625 128

50Words 50 450 455 270

Trace 4 100 100 275

Two Patterns 4 1000 4000 128

Wafer 2 1000 6164 152

Face(four) 4 24 88 350

Lightning-2 2 60 61 637

Lightning-7 7 70 73 319

ECG200 2 100 100 96

Adiac 37 390 391 176

Yoga 2 300 3000 426

Fish 7 175 175 463

Plane 7 105 105 144

Car 4 60 60 577

Beef 5 30 30 470

Coffee 2 28 28 286

OliveOil 4 30 30 570
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(a) (b)

(c) (d)

Figure 6: 1NN accuracy of LDTW versus the four competitors respectively.

achieves better accuracies. These results demonstrate the utility of the proposed LDTW.

Fig. 6 shows the pair-wise comparison of 1NN accuracy between LDTW and its four competitors. Each

dot represents a dataset, whose x-value is the 1NN accuracy generated by the method in competition and

y-value is the 1NN accuracy generated by LDTW. In such a setting, a dot located above the diagonal

indicates LDTW outperforms its competitor on that dataset and vice versa. A dot laying on the diagonal

means a tie and the farther a dot is above the diagonal, the better LDTW performs. The number of

dots above, on, and below the diagonal are depicted on each graph. For instance on Fig. 6(b), LDTW

outperforms naive DTW distance on 15 out of 22 datasets, ties on 6 datasets and loses on only 1 dataset.

These graphs visually confirm the high superiority of LDTW on this variety of datasets.
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Table 3: Comparisons on 1NN Error Rate

Dataset
1NN Euclidean

Distance
1NN DTW

1NN DTW 1NN DTW 1NN LDTW Cross validationc

(best Sakoe-Chiba (best Itakura (best upper bound of with LDTW

band (r%)a) parallelogram (d)b) warping path length) (step size)

Synthetic Control 0.120 0.007 0.017 (6) 0.007 (9) 0.007 (72) 71-74 (1)

Gun-Point 0.087 0.093 0.087 (0) 0.027 (5) 0.020 (158) 156-161 (1)

CBF 0.148 0.003 0.004 (11) 0.004 (55) 0.003 (198) 142-254 (1)

Face(all) 0.286 0.192 0.192 (3) 0.179 (8) 0.198 (147) 147 (5)

OSU Leaf 0.479 0.409 0.388 (7) 0.355 (50) 0.301 (468) 468 (10)

Swedish Leaf 0.211 0.208 0.154 (2) 0.150 (6) 0.131 (134) 134 (1)

50Words 0.369 0.310 0.242 (6) 0.255 (29) 0.180 (301) 301 (10)

Trace 0.240 0.000 0.010 (3) 0.010 (7) 0.000 (416) 286-546 (10)

Two Patterns 0.090 0.000 0.002 (4) 0.00025 (10) 0.000 (194) 139-254 (5)

Wafer 0.005 0.020 0.005 (1) 0.005 (3) 0.003 (155) 154-157 (1)

Face(four) 0.216 0.170 0.114 (2) 0.170 (14) 0.102 (386) 386 (5)

Lightning-2 0.246 0.131 0.131 (6) 0.131 (35) 0.098 (778) 748-818 (10)

Lightning-7 0.425 0.274 0.288 (5) 0.247 (24) 0.205 (355) 335-380 (5)

ECG200 0.120 0.230 0.120 (0) 0.120 (1) 0.120 (98) 97-99 (1)

Adiac 0.389 0.396 0.391 (3) 0.376 (15) 0.338 (177) 177 (5)

Yoga 0.170 0.164 0.155 (2) 0.135 (8) 0.149 (467) 447-487 (10)

Fish 0.217 0.177 0.154 (4) 0.206 (9) 0.086 (474) 474 (10)

Plane 0.038 0.000 0.000 (6) 0.000 (5) 0.000 (218) 151-286 (1)

Car 0.267 0.267 0.233 (1) 0.283 (1) 0.133 (598) 598 (10)

Beef 0.333 0.367 0.333 (0) 0.267 (12) 0.333 (471) 471 (10)

Coffee 0.000 0.000 0.000 (0) 0.000 (1) 0.000 (307) 287-327 (10)

OliveOil 0.133 0.167 0.133 (0) 0.133 (1) 0.133 (581) 571-601 (10)

a r is the percentage of time series length.

b d is the half length of the shorter diagonal of the parallelogram.

c this column shows the optimal value or optimal zone of the upper bound of warping path length found by leave-one-out cross

validation.
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Table 4: Raw p− value in Bergmann and Hommel test

Euclidean DTW SC-DTW IP-DTW LDTW

Euclidean N/A 0.095205 0.006580 0.000419 5.49e-08

DTW 0.095205 N/A 0.294266 0.062991 0.000166

SC-DTW 0.006580 0.294266 N/A 0.417685 0.006580

IP-DTW 0.000419 0.062991 0.417685 N/A 0.056530

LDTW 5.49e-08 0.000166 0.006580 0.056530 N/A

Table 5: Corrected p− value in Bergmann and Hommel test

Euclidean DTW SC-DTW IP-DTW LDTW

Euclidean N/A 0.190409 0.026321 0.002514 5.49e-07

DTW 0.190409 N/A 0.294266 0.188974 0.000995

SC-DTW 0.026321 0.294266 N/A 0.417685 0.026321

IP-DTW 0.002514 0.188974 0.417685 N/A 0.113061

LDTW 5.49e-07 0.000995 0.026321 0.113061 N/A

4.3. Statistical Significance Test

To prove that the accuracy improvement made by LDTW is statistical significant, we first conducted

omnibus Friedman test with Iman and Davenport’s correction [13, 18] to detect if at least one of the

methods performed significantly different from the others. And then we applied pair-wise Bergmann and

Hommel test [5, 15] to compare methods. In both tests, we used the accuracy data shown in Table 3 and

the R package “scmamp”.

We passed the omnibus test with chi− squared = 12.617 and p− value = 4.388e− 08 < 0.05. Then

Table 4 and Table 5 list the raw and corrected results in the Bergmann and Hommel test, where each

p− value represents the possibility that the two methods being compared are not significantly different.

The smaller the p− value is, the more differently two methods perform. If p− value < 0.05, we believe

they are significantly different.

Pairwise comparisons of methods show that all observed differences between LDTW and well-established
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(a) vs Euclidean (b) vs DTW

(c) vs DTW (Sakoe-Chiba band) (d) vs DTW (Itakura parallelogram)

Figure 7: Expected accuracy gain calculated on training data versus actual accuracy gain

methods are statistically significant, except for IP-DTW. But the p − value of LDTW versus IP-DTW

is still relatively small (raw: 0.057 < 0.1, corrected: 0.113 < 0.15). And judging from IP-DTW’s point

of view, it is not significantly different from LDTW, SC-DTW, and even DTW. These results provide us

statistical evidence to claim that LDTW outperforms those well-established methods.

4.4. The Texas Sharpshooter Fallacy

A simple but pervasive logic error in time series classification papers is that they claim a method is

useful only because the method has better accuracy on some datasets. However, this is not very useful

unless we can tell ahead of time that on which datasets it will be more accurate [3]. To avoid this logic

error, we must prove that we can predict in advance when LDTW will have superior accuracy. We make
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the prediction by measuring the expected accuracy gain looking only at the training data as:

gain =
accuracy LDTW

accuracy competitor
(5)

On training set, the accuracy is calculated by leave-one-out cross validation. If a parameter is involved,

we choose the one with best accuracy. Gain values larger than one indicate that we expect LDTW will

outperform the competitor on a given dataset and vice versa. We also calculated the actual accuracy

gain using testing data.

To testify our prediction, we compare the expected accuracy gain with the actual accuracy gain. Fig. 7

shows the results of LDTW versus different competitors respectively. Each point represents a dataset.

The comparison results in four cases:

• TP(True Positive): In this region we predicted that LDTW would improve accuracy and we were

correct. This is the most beneficial situation for LDTW. Most points fall into this region, which

demonstrates the real utility of LDTW.

• TN(True Negative): In this region we correctly predicted that LDTW would decrease accuracy. In

this case, we can avoid the loss of accuracy by choosing the other method.

• FN(False Negative): In this region we predicted that LDTW would decrease accuracy, but the

accuracy actually improved.

• FP(False Positive): In this region we predicted that LDTW would improve accuracy, but the

accuracy actually decreased. This is the only truly bad case. But only few points are in this region.

4.5. A Close Look at the Alignment Generated by LDTW

One primary motivation of LDTW is to solve the pathological alignment problem by limiting the

total number of links between two time series. To visually demonstrate that LDTW can achieve that

goal, let us take a close look at the alignment generated by DTW and LDTW in Fig. 8. We can observe

that DTW does lead to several singularities, but they are sufficiently suppressed by LDTW. The limited

number of links in LDTW are allocated more evenly while capturing those significant time shifts.

4.6. Extracting Reliable Upper Bound of Warping Path Length

The only parameter of LDTW is the upper bound of warping path length LUB . The effective range of

LUB is finite under the rule of DTW. If the lengths of two time series are R and C, then max(R,C)+1 ≤
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(a) alignment generated by DTW

(b) alignment generated by LDTW (warping path length = 149)

Figure 8: Comparison between alignments generated by DTW and LDTW. The two time series here are

the first two in the CBF training set.

24



(a) 50Words dataset (b) Gun Point dataset (c) Plane dateset

Figure 9: Three typical error count curves in LOOCV (leave-one-out cross validation) processes.

LUB ≤ R+C−2. In our experiment, taking the 50Words dataset as an example, the time series length is

270, so the search space of LUB is [271, 538(270 + 270− 2)]. Based on the search space, we can learn an

appropriate LUB by LOOCV (leave-one-out cross validation) on the training set. Sometimes the search

space may be too large, and in that case we can set a larger step size instead of testing every candidates.

The step size we use for each dataset is shown within the parentheses in the last column of Table 3, and

they are roughly proportional to the length of time series.

During LOOCV, each candidate results in a 1NN classification error count. Fig. 9 shows the LOOCV

processes on three datasets and they exhibit two typical situations. Fig. 9(a) belongs to the first situation

where we can observe a single optimal candidate that corresponds to the minimum error count, and in

this case we choose this candidate directly. Fig. 9(b) belongs to the second situation where we can observe

a continuous zone of candidates that all lead to relatively small error counts. The shapes of the error

count curves in Fig. 9(a-b) are similar: the error gradually descends until it reaches the minimum point

or minimum zone, and then it ascends until the end of the search space. Based on this observation, we

decide to choose the median of the optimal zone as our optimal result. Note that if the size of the optimal

zone is an even number, there will be two medians, and we choose the smaller one. Fig. 9(c) is a special

case of the second situation, where the optimal zone happens at the end of the search space so there is

no ascending phase. We still choose the median if the optimal zone happens at the end or the start. The

last column of Table 3 lists the optimal value or optimal zone of L for each dataset.

To further demonstrate that selecting the median of optimal zone is fair, we compared the 1NN error
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Table 6: 1NN Error Rates of Selecting Minimum, Maximum, and Median/Mean of Optimal Zone

Dataset Optimal Zone Minimum Maximum Median/Mean

Synthetic Control 71-74 0.0100 0.0067 0.0067

Gun-Point 156-161 0.0267 0.0200 0.0200

CBF 142-254 0.0022 0.0033 0.0033

Trace 286-546 0.0100 0.0000 0.0000

Two Patterns 139-254 0.0000 0.0000 0.0000

Wafer 154-157 0.0032 0.0034 0.0028

Lightning-2 748-818 0.0983 0.0983 0.0983

Lightning-7 335-380 0.2740 0.2603 0.2055

ECG 97-99 0.1200 0.1100 0.1200

Yoga 447-487 0.1423 0.1483 0.1490

Plane 151-286 0.0000 0.0000 0.0000

Coffee 287-327 0.0000 0.0357 0.0000

OliveOil 571-601 0.1333 0.1667 0.1333

rates when selecting minimum, maximum, and median/mean. The step size does not change during the

entire LOOCV process and the best candidate must be an integer. In this setting, the mean is always

equivalent to the median. For example, in [1, 3, 5, 7, 9], the median is 5 and the mean is also 5. Or if the

number of elements is even, for example, in [1, 2, 3, 4, 5, 6], the smaller median is 3 and the integer part

of its mean (floor(3.5)) is also 3. Table 6 lists the 1NN error rates of selecting minimum, maximum, or

median/mean on every dataset involves an optimal zone. After a simple comparison, we can conclude

that selecting the median is a better choice.

4.7. Contributions of LDTW

Apart from the interesting performances of LDTW in terms of classification, we also would like to

point out the theoretical contributions of this technique.

First, although LDTW and some other existing variants of DTW, for instance, windowing constraint,
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both set constraints on the warping path, LDTW prefers a global one rather than local ones. As already

shown in Section 2.3, given a typical windowing constraint such as Sakoe-Chiba band or Itakura par-

allelogram, a point can only link to the points temporally close enough to it, so windowing constraint

essentially limits the local behavior of the warping path. Other variants of DTW such as step pattern

and slope weighting also set constraints locally. In contrast, LDTW limits the total length of the warping

path and this obviously belongs to a global constraint. As shown by the experimental results, LDTW

demonstrates that global constraints may be more efficient than local constraints. We believe LDTW

opens up a new direction of imposing different types of global constraints on DTW. It may take more

advantages of the intrinsic optimization process of DTW and be more flexible.

Second, LDTW makes us follow a similar pattern of time distortions when comparing different pairs of

time series. Excluding noises, the dissimilarities between time series mainly come from two sources: time

distortions and intrinsic differences. The ideal distance measure only captures intrinsic dissimilarities

while fully eliminates the dissimilarities caused by time distortions. But the definition of DTW implies

that DTW tends to attribute all dissimilarities between time series to time distortions. If a set of time

series come from the same sensor or are issued from the same underlying mechanism, there is a high

possibility that they share a common pattern of time distortions. The extracted warping path reflects

the pattern of time distortions among time series. To some degree, limiting or even fixing the length of

warping path ensure the distance measure obeys this common pattern of time distortions, and thus make

comparisons between sequences mainly affected by intrinsic dissimilarities rather than time distortions.

4.8. Time Complexity and Parallelization

In this subsection, we discuss the time complexity and running time of LDTW in comparison with

other well-established methods. Let R and C be the lengths of two time series, and LUB be the parameter

(upper bound of warping path length) in LDTW. Euclidean distance can only deal with time series with

the same length, and its time complexity is Θ(R or C), R = C. As DTW has to consider all cells in the

warping matrix, its time complexity is Θ(R · C). SC-DTW and IP-DTW set constraints on the warping

path, so they only need to consider part of the warping matrix and their time complexities are both

O(R ·C). Similarly to DTW, LDTW considers the entire warping matrix. However, for each matrix cell,

LDTW also considers situations under different path lengths. As a result, LDTW has a time complexity

of O(LUB ·R · C).

To compare running time of different methods, we repeated twenty times the leave-one-out cross
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Figure 10: Running time of the leave-one-out cross validation process on five different datasets.

validation process on five different datasets, and Fig. 10 shows the average running time. We can see that

the running time basically coincide with their own time complexities. LDTW is more time-consuming

than existing methods. But even when running time would be the bottleneck, we always have enough

tools to deal with it, for example, parallel computing, GPGPU, FPGA, etc. In addition, it should be

outlined that the structure of the LDTW algorithm is suitable for parallelization in both bottom and

top level. In bottom level, for each matrix cell, we can consider situations with different step counts in

parallel. In top level, one can also compute LDTW between different pairs of time series in parallel. The

classification of each time series is also independent and can be performed simultaneously.

5. Conclusion

In this paper, we have proposed a new variant of DTW, entitled LDTW, which limits the length of

the warping path in DTW. LDTW sets a global and softer constraint instead of those local and rigid ones

used by many existing variants of DTW. LDTW thus can efficiently alleviate the pathological alignment

while keeping the flexibility of DTW.

To implement LDTW, we have extended the original DTW algorithm by adding a step count dimen-

sion to the cumulative cost matrix. All details associated with the LDTW algorithm have been introduced

in this paper. To demonstrate the performance of LDTW, we have conducted a series of one nearest

neighbor classification experiments on the newest UCR time series archive. Comparing with other most
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popular time series distance measures, LDTW shows better accuracy on most datasets. We therefore

believe this work opens up a new direction of imposing global constraints on DTW instead local ones.
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