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PARALLEL COMPUTING INVESTIGATIONS FOR THE PROJECTION METHOD

APPLIED TO THE INTERFACE TRANSPORT SCHEME OF A TWO-PHASE

FLOW BY THE METHOD OF CHARACTERISTICS.

MIREILLE HADDAD†‡, FRÉDÉRIC HECHT†, TONI SAYAH‡, AND PIERRE HENRI TOURNIER†

Abstract. This paper deals with the discretization of the problem of mould filling in iron foundry
and its numerical solution using a Schwarz domain decomposition method. An adapted technique for

domain decomposition methods that suits the discretization in time by the method of characteristics

is introduced. Furthermore, the projection method is used to reduce the computation time. Finally,
numerical experiments show and validate the effectiveness of the proposed scheme.

Keywords. Two-phase flow, Level-Set function, finite element method, method of characteristics,
domain decomposition methods, overlapping decomposition, parallel computing.

1. Introduction.

Serious limitations in terms of computational time and memory requirement are encountered in modeling
the problem of mould filling with medium and large series shapes by the finite element method. The
algorithm built for the simulation of the problem in ([?]) was designed with the priority of reducing the
computational cost. The problem was discretized in time by the first order method of characteristics
combined with a time splitting approach where the discretization in space was used with P1 finite ele-
ments. However, this algorithm still remains inefficient for large domains.
In the past, improving performance of such simulations, either in speed or in the amount of data pro-
cessed, was only a matter of waiting for the next generation of processors. But since approximately year
2005 the clock speed stagnates at 2-3 GHz. The increase in performance is almost entirely due to the
increase in the number of cores per processor. To improve the performance of an algorithm, parallelism
must be used.
There exists in the litterature direct and iterative solvers to parallelize large problems. Contrary to
direct methods, the appealing feature of domain decomposition methods is that they are naturally par-
allel. Also, these iterative solvers are highly memory efficient but they are highly problem specific. For
example, they do not perform well for problems involving highly ill conditioned matrices. On the other
hand, direct solvers are more robust. However, large memory requirements pose a serious constraint for
the direct methods. Many ways to circumvent this problem are being investigated. The development of
multifrontal solvers ([?]) has enormously improved the computational efficiency and lowered the memory
requirements for direct solvers [?], [?].
Recently a parallel direct solver, Multifrontal Massively Parallel Solver (MUMPS) (See [?], [?] and [?])
in a distributed environment [?] has been studied. It has been reported that by using MUMPS solver,
larger problems can be solved in a parallel environment as the memory is distributed amongst the dif-
ferent processors. However it has also been reported that the scalability of MUMPS solver [?] is not
very high. In order to obtain good scalability, instead of using a parallel sparse direct solver, the prob-
lem itself is split amongst the different processors using domain decomposition [?] and a highly efficient
sparse direct solver is used in each of subdomain problems. Schwarz methods are the oldest domain
decomposition methods. They were invented by Hermann Amandus Schwarz in 1869 as an analytical
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tool to rigorously prove results obtained by Riemann through a minimization principle (see [?]). Re-
newed interest in these methods was sparked by the arrival of parallel computers, and variants of the
method have been introduced and analyzed (for a historical presentation of these kind of methods see [?]).

In this paper, we will use the domain decomposition methods that are one of the dominant paradigms
in contemporary large scale partial differential equation simulations to parallelize the problem of mould
filling in iron foundry in the context of overlapping methods. The problem is discretized by the finite
element method in space and by the method of characteristics in time. This discretization in time allows
us to relax the CFL condition and to use a relatively large time step in comparison with other methods,
resulting in a significant decrease of the number of iterations to simulate the filling of the moulds, cut-
ting down simulation time tremendously. However, applying this method next to the boundaries of each
subdomain in the domain decomposition method creates small numerical errors that accumulate and add
unwanted numerical diffusion especially with a time step greater than the space mesh step.
In this paper, we introduce a technique to reduce these numerical errors. The performance of the al-
gorithm is assessed by numerical simulations executed on hundreds of cores, for solving various highly
heterogeneous elliptic problems in 3D with millions of degrees of freedom.

The outline of the paper is as follows:

• In section 2, we recall the problem of mould filling.
• In section 3, we present the Schwarz algorithm associated with the method of characteristics.
• In section 4, we show numerical results for validation.

2. Problem of mould filling

In this section, we consider the problem of mould filling for an iron foundry. The objective is to model
and solve the corresponding industrial problem which requires a huge computational cost in memory and
time. In this work we will follow the mathematical model introduced and treated in [?].

We consider an unsteady and laminar flow of two immiscible, viscous, Newtonian and of large density ratio
fluids. In addition, the fluids are considered incompressible and isothermal, thus neglecting the variations
of density and viscosity due to changes in pressure and temperature. Furthermore, by assuming that both
fluids are homogenous, we suppose that the viscosity and density are constant in each fluid. We assume
the interface is sharp and impermeable, thus the mass transfer across the interface is neglected (See [?]
and [?]).

2.1. System of equations. We consider an interval [0, T ] ⊂ IR, where T is a positive real number, and

an arbitrary time t ∈ [0, T ]. Let Ω be a bounded simply connected open domain in IRd, d = 2, 3 , with
a Lipschitz-continuous connected boundary ∂Ω. We denote by n the outward unit normal vector to the
interface ∂Ω and (e1, e2) the canonical base of R2 (respectively (e1, e2, e3) the canonical base of R3).

We suppose that at each time t ∈ [0, T ], Ω is divided into two open sub-domains Ω1 and Ω2 evolving in
time and separated by the interface Γ such that Ω = Ω1(t) ∪ Ω2(t) and Ω1(t) ∩ Ω2(t) = ∅.

We denote by ∂Ωi the boundary Ωi, i = 1, 2, which is divided into four parts such that ∂Ω1∩∂Ω2 = Γ(t),
∂Ω = Γ0 ∪ Γ1 ∪ Γ2 where Γ0 is the bottom of the boundary as indicated in Figure ?? (corresponding
to the inlet), Γ2 is the top of the boundary (corresponding to the free boundary of the fluid) and
Γ1 = ∂Ω \ (Γ(t) ∪ Γ0 ∪ Γ2) (corresponding to the wall).
The interface is captured, at each time step, by the advection of the Level-Set function [?], denoted by φ,
by the fluid velocity denoted by u. The level set function is a signed distance function which is positive
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Figure 1. An arbitrary domain Ω

in Ω2 and negative in Ω1. In [?], we describe the mathematical model of equations corresponding to φ:

∂tφ+ u.∇φ− ε∆φ = 0 in Ω, , (2.1a)

∂nφ = G(u) on Γ1, (2.1b)

∂nφ = 0 on Γ0 ∪ Γ2, (2.1c)

φ(x, 0) = φ0 in Ω, (2.1d)

(2.1e)

where φ0 is the initial position of the interface and G(u) =

(
ρged + ρ

(
(u.∇)u

))
.n

‖
(
ρged + ρ

(
(u.∇)u

))
.n‖

is a boundary

condition under gravitational effect. The term ε∆φ is the artificial viscosity that vanishes as ε →
0. For the discussion of this introduced term and specially in the context of numerical investigations
corresponding to this work, we refer to our previous work [?].
The density ρ and the viscosity µ can then be written in Ω as:

ρ(x, t) = ρ1(φ ≤ 0) + ρ2(φ > 0) and µ(x, t) = µ1(φ ≤ 0) + µ2(φ > 0)

where ρi, i = 1, 2 (respectively µi) is the density (respectively the viscosity) in Ωi, i = 1, 2.

The fluids motion is described by the following Navier-Stokes problem [?]: at each time t ∈]0, T [,

ρ
(∂u
∂t

+ (u.∇)u
)
−div(2µDu) +∇p = f in Ω1 ∪ Ω2 , (2.2a)

divu = 0 in Ω, (2.2b)

u = Uin on Γ0, (2.2c)

β−1u.n + tn(2µDu− pI).n = 0 on Γ1 (2.2d)

αu.τ + tn(2µDu− pI).τ = 0 on Γ1 (2.2e)

(2µDu− pI).n = 0 on Γ2, (2.2f)

[2µDu− pI].n = 0 on Γ, (2.2g)

[u] = 0 on Γ, (2.2h)

u(x, 0) = 0 in Ω, (2.2i)

where f = −ρged is the gravitational force vector, I is the identity matrix, β is a penalty coefficient,
which is a small number [?], and Uin designates the velocity of the flux at the inlet.The equation (2.2a)
is the Navier-Stokes equation which describes the fluids motion in the domains Ω1 and Ω2. The equa-
tion (2.2b) is the incompressibility condition. The equation (2.2c) is the non-homogeneous Dirichlet
boundary condition at the inlet Γ0. The equations (2.2d) and (2.2e) are the Navier boundary condi-
tion [?] at the wall Γ1 where α is the friction coefficient and β is a penalty coefficient, which is a small
number [?]. The equation (2.2f) is the do-nothing boundary condition at the outlet Γ2. The equations
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(2.2g) and (2.2h) are the jump condition [?] on the interface Γ. The equation (2.2i) is the initial condition.

2.2. Weak variational formulation. In order to write the variational formulation of the previous
problem, we introduced the following Sobolev spaces (m and p ∈ N):

Wm,p(Ω) = {v ∈ Lp(Ω), ∂αv ∈ Lp(Ω),∀|α| ≤ m},
Hm(Ω) = Wm,2(Ω),

equipped with the following semi-norm and norm:

|v|m,p,Ω = {
∑
|α|=m

∫
Ω

|∂αv(x)|pdx}
1
p

and
‖v‖m,p,Ω = {

∑
K≤m

|v|pk,p,Ω}
1
p .

We considered the following spaces:

Xu = {u ∈ H1(Ω) / u = Uin on Γ0},
Xv = {v ∈ H1(Ω) / v = 0 on Γ0},

M = L2
0(Ω) = {p ∈ L2(Ω) /

∫
Ω

p(x)dx = 0},

Y = H1(Ω).

and we supposed that f ∈ L2(Ω)d.

Then, the variational formulation can be written as [?]:
Find (u, p) ∈ Xu ×M , φ ∈ Y such that for all (v, q) ∈ Xv ×M and ∀r ∈ Y

∫
Ω

(∂φ
∂t

+ u.∇φ
)
r + ε

∫
Ω

∇φ∇r − ε
∫

Γ1

G(u)r = 0.

ρ

∫
Ω

(∂u
∂t

+ (u.∇)u
)
v + µ

∫
Ω

∇u∇v −
∫

Ω

p divv

−
∫

Γ1

β−1 tu(n tn)vds−
∫

Γ1

α tu(τ tτ )vds = −
∫

Ω

ρgedv.∫
Ω

divu q = 0.

(2.3)

3. Discrete system

In this section, in order to simulate the model, we discretize the problem in time by the method of
characteristics [?] and in space by the finite element method.

3.1. Time and space discretizations. We use a time splitting approach and we discretize the problem
(?? ) in time by using the method of characteristics. Thanks to this method, it is theoretically possible to
follow the particles over time along their trajectory by solving, for each particle, an ordinary differential
equation called characteristic equation:

∂X

∂t
(x, s; t) = u(X(x, s; t), t),

X(x, s; s) = x,
(3.1)

where the characteristic curve X(x, s; t) denotes the position at time t of a fluid particle located at posi-
tion x at time s.

We introduce a partition of the interval [0, T ] into N subintervals [tn, tn+1], such that ∆t =
T

N
and the

points tn = n∆t, for n = 0, ...., N .
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Using the following approximation of the total derivative along the characteristic curves, we approxi-

mate
Du

Dt
and

Dφ

Dt
at time t = tn+1 by:

Du

Dt
(x, tn+1) ≈ u(x, tn+1)− u(Xn(x), tn)

∆t
(3.2)

and
Dφ

Dt
(x, tn+1) ≈ φ(x, tn+1)− φ(Xn(x), tn)

∆t
(3.3)

where Xn(x) is the approximation of X(x, tn+1 : tn).

For the discretization in space, we consider τh a regular family of triangulations of Ω (by triangles in 2D
and tetrahedra in 3D) of parameter h.

We introduce the discrete spaces Xu,h ⊂ Xu, Xv,h ⊂ Xv, Mh ⊂M and Yh ⊂ Y such that:

Xuh = {uh ∈ Xu;∀k ∈ τh;uh|k ∈ Pb(k)d},
Xvh = {vh ∈ Xv;∀k ∈ τh;vh|k ∈ Pb(k)d},
Mh = {qh ∈M ∩ C0(Ω);∀k ∈ τh, qh|k ∈ P1(k)},
Lh = {uh ∈ L2(Ω);∀k ∈ τh;uh|k ∈ P1(k)d},

where P1(k) is the Lagrange finite element of degree 1 on the element k and Pb(k) is spanned by functions
in P1(k) and the bubble function on k (for each element k, the bubble function is equal to the product
of the barycentric coordinates associated with the vertices of k).

We denote by un+1
h , pn+1

h and φn+1
h respectively the discrete velocity, pressure and Level-Set function

at time tn+1. The discrete system corresponding to the variational formulation can be written in the
following form:
Having un ∈ Xu,h and φnh ∈ Yh, find (un+1

h , pn+1
h ) ∈ Xu,h ×Mh and φn+1

h ∈ Yh such that

(φn+1
h − φnhoXn

∆t
, rh

)
+(ε∇φn+1

h ,∇rh)− ε
∫

Γ1

G(unh)rh = 0 ∀rh ∈ Yh,

ρnh

(un+1
h − unhoX

n

∆t
,vh

)
+µnh (∇un+1

h ,∇vh)− (pn+1
h ,divvh)

−
∫

Γ1

α tun+1
h (τ tτ )vhds−

∫
Γ1

β−1 tun+1
h (n tn)vhds = (−ρnhged,vh) ∀v ∈ Xv,

(qh,divun+1
h ) = 0 ∀qh ∈Mh.

(3.4)

3.2. Algorithm of the projection method. Our purpose is to model mould filling for an iron foundry.
The mould that we will use are of medium and large series. The computational cost in time and memory
is rather very high. In order to reduce it, we use a time splitting approach which is also called the
projection method (See [?], [?]). The algorithm corresponding to this method was introduced in [?]. It
corresponds to computing first an intermediate velocity u∗ that does not satisfy the incompressibility
condition, then projecting this intermediate velocity on the set of divergence free functions to get the
value of the pressure solution of the problem, and finally computing the correct velocity from the obtained
results. The discrete variational formulation can be written in the following form: Having un ∈ Xu,h and

φnh ∈ Yh, find (un+1
h , pn+1

h , φn+1
n ) ∈ Xu,h ×Mh × Yh following the steps:

1- Compute the intermediate velocity u∗: Find u∗h ∈ Xuh such that for all vh ∈ Xvh, we have:∫
Ω

ρnh
u∗h − unhoX

n

∆t
vh +

∫
Ω

µnh∇u∗h∇vh +

∫
Ω

∇pnvh −
∫

Γ1

α tun+1
h (τ tτ )vhds

−
∫

Γ1

β−1 tun+1
h (n tn)vhds =

∫
Ω

ρnhgedvh.
(3.5)
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2- Compute the pressure pn+1
h : Find pn+1

h ∈Mh such that for all qh ∈Mh, we have:∫
Ω

divu∗hqh +

∫
Ω

∆t

ρnh
∇(pn+1

h − pnh)∇qh = 0. (3.6)

3- Compute the final velocity un+1: Find un+1
h ∈ Xuh such that for all vh ∈ Xvh, we have:∫

Ω

ε′∇un+1
h ∇vh −

∫
Γ1

β−1 tun+1
h (n tn)vhds+

∫
Ω

un+1
h vh =

∫
Ω

u∗hvh −
∫

Ω

∆t

ρnh
∇(pn+1

h − pnh)vh.

(3.7)
4- Once we obtain un+1

h , we compute φn+1
h by using the following equation:∫

Ωh

φn+1
h − φnhoXn

∆t
rh + ε

∫
Ω

∇φn+1
h ∇rh − ε

∫
Γ1

G(un+1
h )rh = 0 ∀rh ∈ Yh, (3.8)

It is well known that numerous errors affect the numerical solution in two phase flow modeling. In this
algorithm, as time evolves, the algebraic distance property of the Level-Set function is lost and the mass
is not preserved. This lack of robustness can be corrected by an algorithm of reinitialization and mass
conservation (see for instance [?]).

• Algorithm of reinitialization We solve iteratively the following equation until it reaches a
steady state [?], [?].

∂Φ

∂τ
+ w∇Φ = sign(φ) with w = sign(φ)

∇Φ

‖∇Φ‖
, (3.9)

with

Φ(x, t, τ = 0) = φ(x, t), (3.10)

where τ is an imaginary time.

• Mass conservation The concept of the method [?] is to vary the zero isocontour at each time
step by moving the level-set function, i.e. by adding to Φ some signed constant cΦ, where |cΦ| is
the distance between the old and new zero-level sets such that the new level-set function Φnew
reduces the error of the corresponding mass and defines a new domain

Ωnew2 = {x ∈ Ω : Φnew > 0}.

Then the corrected level set function becomes

Φnew ' Φ + cΦ||∇Φ||. (3.11)

By taking into consideration the above reinitialization and mass conservation techniques, the four steps
of the above proposed algorithm will be completed by the two following two steps:

4- Reinitialization step:

Find Φn+1
h ∈ Yh such that ∀rh ∈ Yh,

∫
Ω

Φn+1
h − ΦnhoX

n
(wh

n,∆τ)

∆τ
, rh −

∫
Ω

sign(φ)nhrh = 0 (3.12)

where ∆τ is an imaginary time step.

5- Mass conservation step:

Φn+1
hnew

' Φnh + cΦn
h
||∇Φnh||. (3.13)

Each step in the above algorithm leads to an algebraic problem to be solved which is defined via a
variational formulation on a domain Ω ⊂ Rd for d ∈ N:

Find u ∈ V such that : aΩ(u,v) = l(v), ∀v ∈ V, (3.14)

where V is a Hilbert space of functions from Ω with real values.

As we mentioned, the problem is discretized by a finite element method. Let N denote the set of
degrees of freedom and A ∈MN (R) be the associated finite element matrix with a generic element Akl.
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For some given right-hand side b, we have to solve linear systems of the form:

Au = b, (3.15)

where u is the desired unknown.

The industrial three dimensional numerical simulations are very expensive in CPU time and memory
requirements. In our problem, the projection method reduced the computation time significantly, but it
is still impossible to solve problems with large domains on a sequential computer. Thus, we will solve
the problem by using a domain decomposition method, the Schwarz method, on a parallel machine.

4. Domain decomposition with Schwarz method

There exists in the litterature different versions of Schwarz algorithms, the Jacobi Schwarz Method (JSM,
see [?]), the Additive Schwarz Method (ASM, see [?] and references therein) and the Restricted Additive
Schwarz (RAS, see [?], [?]). The first natural feature of these algorithms is that they are equivalent to
a Block-Jacobi method when the overlap is minimal. Schwarz methods represent fixed point iterations
applied to preconditioned global problems, and consequently they do not provide the fastest convergence
possible. Thus, it is natural to apply Krylov methods instead. This provides the justification of using
Schwarz methods as preconditioners rather than solvers.

In these methods, the associated mesh of the computational domain Ω is first decomposed into N non-
overlapping meshes {Ti}1≤i≤N by automatic graph partitioners such as METIS [?] or SCOTCH [?]. Then
for a positive integer δ, the overlapping decomposition {T δi }1≤i≤N is defined recursively as follows: T δi
is obtained by including all elements of T δ−1

i plus all its adjacent elements. The number of layers of
elements in the overlap is then 2δ.
Let Vh be the finite element space spanned by the finite set of n basis functions {ψi}1≤i≤n defined on
Ω, and let {V δhi}1≤i≤N be the local finite element spaces defined on the domains associated to each
{ωδi }1≤i≤N , where ωδi is the subdomain defined as the union of all mesh elements in T δi .
Now, consider the restrictions {Ri}1≤i≤N from Vh to {V δhi}1≤i≤N and a local partition of unity {Di}1≤i≤N
such that

Id =

N∑
i=1

RT
i DiRi.

At the algebraic level, if {ni}1≤i≤N denotes the number of degrees of freedom in each local finite element
space, then Ri is a boolean matrix of size ni × n, and Di the diagonal matrix of size ni × ni for all
1 ≤ i ≤ N .
The RAS preconditioner [?] is then defined as

M−1
RAS =

N∑
i=1

RT
i Di

(
RiART

i

)−1

Ri.

In a parallel environment, the local matrices Ai = RiART
i (commonly referred to as ”Dirichlet” ma-

trices) are assembled and factorized concurrently on each processor and are also used in the parallel
implementation of the global matrix-vector product Ax for the Krylov method. For more details about
the numerical implementation, see [?].

The numerical results presented in this paper were obtained using the finite element software FreeFem++
[?]. The linear systems are solved with the GMRES [?] algorithm preconditioned by the RAS precon-
ditioner using the parallel library HPDDM [?] (High-Performance unified framework for Domain De-
composition Methods), which implements several domain decomposition methods and is interfaced with
FreeFem++. The results were obtained with an overlap of minimal size (δ = 1). However, the width
of the overlap plays a crucial role in the implementation of the method of characteristics as shown in the
following.
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4.1. Domain decomposition for the method of characteristics. In the sequential case (without
domain decomposition), it is well known that the characteristic curves may cross some elements of the
domain or even go out of the computational domain next to the boundaries (See Fig ??), especially since
the method of characteristics allows us to use a time step greater than the space mesh size. When reaching
a domain boundary during the construction of the characteristics, the intersection of the characteristic
curve with the boundary is taken as the foot of the characteristic.

	  
	  

Figure 2. (left) traveling characteristic point with time δt inside the domain and (right)
characteristic point going out of the domain.

By using the domain decomposition method with minimal overlap δ = 1 (see Figure ??), if we follow
the above technique in each subdomain, the solution will be affected by small numerical errors that
accumulate and alter the results as time evolves (as we will see in the numerical results). In order to
solve this issue, we propose to extend the subdomain by adding some supplementary overlap layers (see
Figure ??). It is important to note that the extended region is only taken into account for the computation
of the characteristic curves that go out of the subdomain (See figure) and s not involved in the domain
decomposition algorithm for solving the linear systems. It is obvious that the number of extra overlap
layers needed depends on the time step.

Figure 3. Cube subdomains with minimal overlap used in the Schwarz method.

Figure 4. Cube subdomains with additional overlap layers for the characteristic curves
calculation.

5. Numerical results

In this section, we perform several numerical simulations using the FreeFem ++ software [?]. We begin
with an academic application and we show later industrial cases.

For the numerical investigations, we consider the non-dimensionalized incompressible Navier-Stokes equa-
tion:

ρ
(∂u
∂t

+ u.∇u
)
− 1

Re
µ ∆u +∇p = −ρ1

1

Fr2
ed, (5.1)

where Re = ρrefuref lref/µref is the Reynolds number, Fr = uref/
√
lrefg the Froude number. ρref = ρ1

is the density of the first fluid, µref = µ1 is the viscosity of the first fluid, lref is the diameter of the inlet
and uref is the average velocity of the fluid.
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In order to validate the effectiveness of the method described above, we report the error of the volume
evolving in time:

errV =
|Ve − Vn|
|Vn|

,

where Ve is the exact volume and Vn is the numerical volume. We compare this error with both the
sequential and parallel schemes.

5.1. First industrial case. In this section, we model mould filling as considered in [?]. The domain
Ω is an industrial mould as it is shown in Figure ??. We intend here to compare the mould filling and

Figure 5. To the left: The mould shape; To the right: the mould mesh.

the interface transport that separates the two fluids in the sequential code and the parallel code. In this
simulation, The density of air is 1 Kg m−3, the kinematic viscosity is set to be 1.818× 10−3 m2 s−1 and
the dynamic viscosity is set to be 1.818× 10−3 Kg m−1 s−1; whereas the density of the aluminium liquid
is 2385 Kg m−3, the kinematic viscosity is set to be 10−4 m2 s−1 and the dynamic viscosity is set to be
2.385× 10−5 Kg m−1 s−1. The entry surface is 0.045 m2.

The Reynolds number is Re = 10 000. Furthermore, we take Uin = 0.5 m/s, h = 0.02, ∆t = 2h and
ε = h/5. The considered mesh contains 59364 vertices and 294544 tetrahedrons. At the initial time, the
interface Γ is represented by the Level-Set function of equation φ0 = −z + 0.9.

Figures ?? shows the evolution of the interface at the initial time as well as at t = 0.8 s, t = 2 s
and t = 7.2 s. Figure ?? shows a comparison of the evolution of the volume error with respect to
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Figure 6. The approximated interface at the initial time, t = 0.8 s, t = 2 s and t = 7.2 s.

time without applying the mass conservation algorithm, with the sequential code, the parallel code with
minimal overlap,and the parallel code with additional overlap layers for the method of characteristics.
We can see that with the addition of the supplementary layers of overlap, we recover the correct results
with the parallel code.
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Figure 7. The evolution of the volume error with respect to time for dt = 2h with the
sequential code, the parallel code with one overlap and the parallel code with additional
overlap layers (convect overlaps).

In Figure ?? we present the volume error after applying the mass conservation algorithm. We can see
the large effect of the mass conservation algorithm on the error, with a maximal error of 0.0034 (versus
0.4 without the mass conservation step). Figure ?? shows the computation time of the simulation in the
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Figure 8. Variation of the volume error with the mass conservation step for the first
industrial case.

first industrial case. At time t = 10s, the computation time decreases from 42 hours in the sequential
code to approximatively 1.4 hours with the parallel code using 128 cores.
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Figure 9. computation time of the simulation in the first industrial case. To the left:
sequential code; To the right : parallel code.

Figure ?? illustrates a strong scalability test and gives the computation time in logarithmic scale for
the 5 matrices involved in the first iteration (corresponding to the 5 steps of the algorithm presented in
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Section ??) with an increasing number of cores, from 1 to 128. We can see that we obtain a speedup
of approximately 30 when going from 1 to 128 cores. Moreover, we observe a decrease in efficiency with
the number of cores, with a speedup of 2 when going from 1 to 2 cores, to a speedup of approximately
1.3 when going from 64 to 128 cores. This decrease in efficiency depends in fact on the size of the global
problem (in terms of degrees of freedom). In what follows, we will use the parallel algorithm for another
mould of larger size, where the problem cannot be solved with the sequential code due to CPU and
memory limitations.
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Figure 10. Strong scalability test for the industrial problem. By order, matrix 1 to 5
from up to down and left to right.

5.2. Second industrial case. In this section, we model the filling of another industrial mould with
a larger size, the maximal height of the considered mould is 1.7 m; whereas its largest diameter is
1.56 m. The geometry of this mould is given by Figure ??. The density of air is 1Kg.m−3, its cine-

Figure 11. The second indutrial mould.

matic viscosity is 1.818e−3m2.s−1 and its dynamic viscosity is 1.818e−3Kg.m−1.s−1; whereas the density
of liquid aluminium is 2385Kg.m−3, its cinematic viscosity is 1e−4m2.s−1 and its dynamic viscosity is
2.385e−5Kg.m−1.s−1. In addition, Uin = 0.25 m/s, h = 0.02 and ∆t = 3h.
The considered mesh contains 2, 646, 497 tetrahedrons and 468, 362 vertices.

Figures ?? and ?? show the evolution of the approximated interface at t = 0 s, t = 3 s, t = 6 s, t = 9 s,
t = 12 s and t = 15 s.
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Figure 12. The approximated interface at t=0 s, t=3 s and t=6 s
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Figure 13. The approximated interface at t=9 s, t=12 s and t=15 s

Figure ?? shows the volume error variation in time during the mould filling. Numerical difficulties were
encountered in performing the mass conservation in the pipes (for t < 6s), the volume error is large in
the pipes at each time step. This forbade us from applying the mass conservation algorithm until t ≥ 6
where we get small errors of volume.
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Figure 14. Error variation in terms of time.

In figure ??, we present the computation time in logarithmic scale for the 5 matrices involved in the first
iteration for an increasing number of cores, from 2 to 128. We present the strong scalability results for
the first iteration in time because the GMRES convergence is the same regardless of what is happening
with respect to the physics.

When going from 2 to 128 cores we obtain a speedup of 52 for the first matrix, 47 for the second, 104
for the third, 37 for the fourth and 46 for the fifth. The average speedup is 1.9 when going from 2 to 4
cores, but decreases to 1.7 when going from 64 to 128 cores.

Figure ?? shows the computation time for the parallel simulation using 128 cores. The simulation takes
only about 5 hours.

Even if we obtain better speedups in the second industrial case compared to the smaller first case, we still
observe a decrease in parallel efficiency for an increasing number of cores. This is a well-known character-
istic of one-level overlapping domain decomposition preconditioners such as RAS, for two reasons: First,
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Figure 15. Strong scalability test for the second industrial problem. By order, matrix
1 to 5 from up to down and left to right.
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Figure 16. Computation time for the simulation of the second industrial case with the
parallel code.

overlapping methods naturally lose efficiency when the subdomain size becomes too small. Second, one-
level methods only rely on local exchanges between neighbouring subdomains, with no global coupling.
One can show that with such methods the condition number of the preconditioned system depends on
the number of subdomains. To remedy this problem, two-level preconditioners have been introduced [?]
that enrich the one-level method with a so-called coarse operator, providing global transfer of numerical
information across all subproblems. Future work will consist in using two-level domain decomposition
preconditioners to obtain a highly scalable parallel algorithm for solving problems with very large moulds
on thousands of cores.
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