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Abstract

Objective: Each surgical procedure is unique due to patient’s and also surgeon’s particularities. In this study, we propose a new
approach to distinguish surgical behaviors between surgical sites, levels of expertise and individual surgeons thanks to a pattern
discovery method. Methods: The developed approach aims to distinguish surgical behaviors based on shared longest frequent
sequential patterns between surgical process models. To allow clustering, we propose a new metric called SLFSP. The approach is
validated by comparison with a clustering method using Dynamic Time Warping as a metric to characterize the similarity between
surgical process models. Results: Our method outperformed the existing approach. It was able to make a perfect distinction
between surgical sites (accuracy of 100%). We reached an accuracy superior to 90% and 85% for distinguishing levels of expertise
and individual surgeons. Conclusion: Clustering based on shared longest frequent sequential patterns outperformed the previous
study based on time analysis. Significance: The proposed method shows the feasibility of comparing surgical process models, not
only by their duration but also by their structure of activities. Furthermore, patterns may show risky behaviors, which could be an
interesting information for surgical training to prevent adverse events.
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1. Introduction

Surgical procedures are unique due to a patient’s anatomi-
cal particularities, and due to the habits and experience of the
surgical team. The surgical process modeling methodology was
introduced about 15 years ago to study such variabilities [1, 2].
A surgical process model describes a surgical procedure at dif-
ferent levels of granularity as a list of phases, steps, and/or ac-
tivities [2]. A surgical procedure can be divided into successive
phases corresponding to the main periods of the procedure. A
phase is composed of one or several steps. A step is a sequence
of activities used to achieve a surgical objective. An activity
is a physical action performed by the surgeon. Each activity
is decomposed into different components, including the action
verb, the target concerned by the action (anatomical structure),
and the surgical instrument used to perform this action. Surgi-
cal Process Models (SPM) have been developed for three main
purposes: (1) Formalizing surgical knowledge, (2) evaluating
surgical skills and systems, (3) assisting the surgeon during a
surgical intervention.

A SPM can be acquired manually from observations [3] or
automatically thanks to recent advances in the automatic recog-
nition of phases [4, 5], steps [6, 7] or activities [8, 9]. These
SPMs have been recently used to identify differences between

∗Corresponding author
Email address: arnaud.huaulme@imag.fr (Arnaud Huaulmé)

surgical behaviors, like the differences between surgical sites
[10], surgical skills [11], types of procedures [12] and levels of
surgical expertise [10, 13, 14].

In these studies, the differences between surgical behaviors
were mostly computed by comparison of the surgical duration
[10, 11, 13, 14]. For instance, Riffaud et al. [11] highlighted sta-
tistical relationship between surgical practice and surgical ex-
perience based on duration. Some studies computed a generic
SPM (gSPM) to express the differences between surgical be-
haviors. For instance, Neumuth et al. [12] compared inpatient
and outpatient procedures by creating one gSPM for each type
of procedure, and used duration as metric to highlight the dif-
ferences. However, a surgical behavior is not only character-
ized by the duration, but also by the succession of activities.
To allow a better identification of surgical behavior, we present
a method based on pattern discovery to identify a sequence of
activities specific to a population of surgical cases.

Pattern discovery is used in various domains, like biology
[15, 16], telecommunications [17], web [18] or medicine [19,
20, 21]. In all applications, the authors try to identify patterns
(i.e. successions of elements that have multiple occurrences in a
given set of sequences) to explain or understand the apparition
of phenomena, for example, the apparition of an alert signal
in telecommunications, or a protein promoter site in biology. In
the medical field, the patterns are used to create a generic repre-
sentation of the clinical pathway of patients from the admission
to the discharge [19, 20] or to identify relationships between
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peri-operative data [21]. Up to our best knowledge, pattern dis-
covery has never been used to identify surgical behaviors yet.

A pattern uniquely specific to a surgeon is a mark of his
(her) behavior. We developed a pattern discovery method ex-
ploiting this characteristic based on expansion from short pat-
terns, similar to the APRIORI method [22], for identifying dif-
ferences in surgical behaviors.

2. Method

The aim of this study is to find the longest frequent patterns
in surgical procedures and cluster these procedures thanks to the
amount of patterns shared between them. For this purpose, we
developed a pattern discovery method (section 2.1), and defined
a new similarity metric for the clustering of surgical procedures
(section 2.2).

2.1. Sequential Pattern Discovery

Sequential pattern discovery consists in finding patterns in
sequences, where each element is directly followed by another.
In our case, the sequences are surgical process models (SPMs)
at the granularity level of activities performed by the surgeon’s
dominant hand. Therefore, a sequential pattern is a series of
activities, at least 2, where an activity is followed by another
determined activity. In our method, we search for longest fre-
quent patterns. A pattern is frequent if the succession of ac-
tivities it represents is present at least min f r times in a set of
SPMs, where min f r is a predetermined threshold. We search
the longest pattern in agreement with the lemma 1 of Mannila
et al. [17]: “If an episode α is frequent in an event sequence s,
then all subepisodes β � α are frequent”, where an episode is
a pattern. Therefore, with longest patterns, we limit the num-
ber of results without any loss of information. The following
subsections present the developed algorithms.

2.1.1. Main algorithm (algorithm 1)
Algorithm 1 computes all the longest frequent patterns present

in a set of activity sequences. In a first step, the algorithm es-
tablishes a vocabulary of frequent activities (algorithm 2). Sec-
ondly, the algorithm generates candidate patterns of size k from
the frequent patterns of size k-1 and frequent activities (algo-
rithm 3). In a third step, the frequency of candidate patterns is
computed to determine the frequent patterns of size k, and the
longest frequent patterns of size k-1 (algorithm 4). Steps 2 and
3 are repeated to extend patterns until we do not find any new
frequent patterns of size k. At each loop, the longest frequent
patterns of size k-1 are added to the longest frequent patterns of
inferior sizes. Figure 1 illustrates the full process for a simple
example.

2.1.2. Get Vocabulary Activities algorithm (algorithm 2)
This algorithm extracts a vocabulary of frequent activities.

First, it parses each sequence s (line 4) to count the number of
apparitions of each activity. Them (line 13), if the number of
apparitions is superior to the threshold min f r, the activity is
added to the frequent activities vocabulary.

input : S: A set of activity sequences. min f r: A
frequency threshold.

output: allLongestFrequentPatterns: A set of longest
frequent patterns.

1 begin
2 frequentActivities← Get Vocabulary

Activities(S, min f r); /* Algorithm 2 */

3 k = 2; /* Length of patterns */

4 frequentPatternsk−1 ←frequentActivities;
5 while |frequentPatternsk−1 |> 0 do
6 candidatePatterns← Get Candidate

Patterns(frequentPatternsk−1,
frequentActivities, k); /* Algorithm 3 */

7 frequentPatternsk,allLongestFrequentPatterns
← Get Frequent Patterns(min f r, k, S,
candidatePatterns); /* Algorithm 4 */

8 k++;
9 frequentPatternsk−1 ←frequentPatternsk;

10 end
11 return allLongestFrequentPatterns;
12 end

Algorithm 1: Main Algorithm.

1 Get Vocabulary Activities(S, min f r)
input : S: A set of activity sequences. min f r: A

frequency threshold.
output: frequentActivities: A set of frequent activities.

2 begin
3 /* Count frequency of apparition of each

activity. */

4 foreach sequence s of S do
5 for i=1 to |s| do
6 if s[i]<activitiesMap then
7 activitiesMap.insert(s[i],1) ;

/* activitiesMap contains

activities (keys) and their

frequency of apparition

(values) */

8 end
9 else activitiesMap [s[i]]++ ;

10 end
11 end
12 /* Save frequent activities in

frequentActivities. */

13 foreach activity a of activitiesMap do
14 if a.value ≥min f r then
15 frequentActivities.insert(a.key);
16 end
17 end
18 return frequentActivities;
19 end
Algorithm 2: Algorithm to return all frequent (>min f r) ac-
tivities in a set of sequences S.
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Figure 1: Proceeding of the sequential pattern discovery method for a simple example. S is a set of activity sequences, min f r is a frequency threshold.

With this vocabulary of frequent activities, we are certain
that all the patterns constructed with these activities can be fre-
quent. The vocabulary of frequent activities limits the candidate
patterns created in algorithm 3.

2.1.3. Get Candidate Patterns algorithm (algorithm 3)
The aim of this algorithm is to return candidate patterns that

could be frequent (good candidate).
First, an activity a of the vocabulary of frequent activities is

added at the end of a frequent pattern of size k-1, to create a po-
tential candidate of size k (line 5). At this instant, every activity
constituing the potential candidate is frequent (thanks to algo-
rithm 2), but we do not know if each sub-pattern is frequent.
Therefore, we test if the sub-patterns of size k-1 are frequent
(line 6). We test the sub-pattern containing the activity a only,
since the other, due to the construction of a potential candidate,
is frequent. If the sub-pattern containing the activity a is one
of the frequent patterns of size k-1, the potential candidate is
a good candidate. This is repeated for each frequent pattern of
size k-1 associated to each activity.

2.1.4. Get Frequent Patterns algorithm (algorithm 4)
This algorithm has two functions: (1) return the frequent

patterns of size k, and (2) return the longest frequent patterns of
size k-1.

First, the algorithm counts the number of apparitions of
each candidate pattern in activity sequences S (lines 4 to 13).
The number of candidate patterns can be important, especially
for candidate patterns of 2 activities: Indeed, for 100 frequent
activities, algorithm 3 gives 10,000 candidate patterns (100 x
100). To improve the computation time, instead of using brute

1 Get Candidate Patterns(patternsk−1,
frequentActivities, k)
input : patternsk−1: A set of frequent patterns of k-1

activities. frequentActivities: A set of frequent
activities. k: The length of patterns to generate.

output: candidatePatterns: A set of candidate patterns
of length k.

2 begin
3 for i=1 to |patternsk−1 | do
4 foreach activity a of frequentActivities do
5 potentialCandidate←

Concatenation(patternsk−1 [i], a);
/* Add activity a at the end of

the ith pattern of patternsk−1 */

6 if potentialCandidate [2,k ] ∈ patternsk−1
then

7 /* if sub-pattern of size k-1

with a is frequent */

8 candidatePatterns.insert
(potentialCandidate);

9 end
10 end
11 end
12 return candidatePatterns;
13 end
Algorithm 3: Algorithm to generate candidates of length k
thanks to the frequent patterns of length k-1 (patternsk−1) and
the frequent activities.
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1 Get Frequent Patterns(min f r, k, S, candidatePatterns)
input : min f r: A frequency threshold. k: The length of patterns. S: A set of activity sequences. candidatePatterns: A set

of candidate patterns of length k.
output: patternsk: A set of frequent pattern of k activities. longestFrequentpatternsk−1: A set of frequent pattern of k-1

activities not present in patternsk.
2 begin
3 /* Count frequency of apparition of each candidate c of candidatePatterns in S */

4 foreach sequence s of S do
5 for start=1 to |s|−k do
6 foreach candidate c of candidatePatterns do
7 if s[start, start+k ]=c then
8 c.freq++;
9 start++; Stop and go to line 5

10 end
11 end
12 end
13 end
14 foreach candidate c of candidatePatterns do
15 /* save frequent candidates in patternsk */

16 if c.freq ≥ min f r then patternsk.insert(c);
17 else infrequentCandidates.insert(c);
18 end
19 /* Save sub-patterns of infrequentCandidates were not sub-pattern of patternsk */

20 foreach infrequent candidate i of infrequentCandidates do
21 for start=1 to 2 do
22 subPattern←i[start, k-2+start];
23 if !Contains Sub-pattern(patternsk, subPattern) then
24 longestFrequentpatternsk−1.insert(subPattern);
25 end
26 end
27 end
28 return patternsk, longestFrequentpatternsk−1;
29 end
Algorithm 4: Algorithm to get a set of frequent pattern of k activities (patternsk) and a set of longest frequent pattern of k-1
activities (longestFrequentpatternsk−1).

search, we look through each activity sequence only once, and
compare a window of size k to each candidate c (line 7). If
a sequence window matches a candidate pattern c, the number
of apparitions of c is incremented (line 8), we do not test the
remaining candidates and we shift the position of the windows
(line 9).

The second step (lines 14 to 18) consists in checking if the
number of apparitions of candidate c is superior to the threshold
min f r. This step separates candidate patterns into frequent
patterns (patternsk) and infrequent candidates (in f requentCan-
didates). The frequent patterns will be used in the next loop of
algorithm 1.

The infrequent candidates are composed of frequent sub-
patterns (algorithm 3). The last step (lines 20 to 27 of algo-
rithm 4) consists in checking if these sub-patterns are contained

in the frequent patterns (patternsk). If it is not the case, these
frequent sub-patterns constitute the longest frequent patterns of
size k-1.

2.2. Hierarchical Clustering
Clustering [23] consists in the creation of sets of similar ob-

jects (called clusters). Hierarchical clustering is a bottom-up
clustering method. First, each object constitutes its own cluster.
And, clusters are iteratively merged by pairs into a higher-level
cluster. To performed clustering, we need to specify a metric
characterizing the similarity between surgical process models
and an approach to merge the clusters. We propose a new met-
ric called Shared Longest Frequent Sequential Pattern metric
(SLFSP metric) based on the number of shared longest frequent
sequential patterns between 2 SPMs divided by the number of
unique longest frequent patterns of both SPMs:
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SLFSP(A,B) =
|sharedA,B|

|patternsA|+ |patternsB|− |sharedA,B|
, (1)

where A and B are 2 SPMs, |sharedA,B| is the number of shared
longest frequent sequential patterns between A and B, and |pat-
ternsA| and |patternsB| are respectively the number of longest
frequent patterns of A and B.

We used the average-link approach with UPGMA algorithm
(Unweighted Pair Group Method with Arithmetic Mean) [24] to
merge the clusters. The average-link approach consists in eval-
uating the similarity between two clusters according to the aver-
age distance between all couples of objects in the two clusters.
Therefore, the distance between clusters C1 and C2, composed
of SPMs, is defined as:

d(C1,C2) =
1

|C1||C2|

|C1|

∑
i=1

|C2|

∑
j=1

SLFSP(spmi,spm j) , (2)

where |Cn| is the number of SPMs in the cluster n.
To analyze the clusters, created by the hierarchical cluster-

ing, we use a dendrogram.

3. Validation

To validate our method, we compared our approach with the
study of Forestier et al. [10]. In this study, the authors compared
surgical practices between three different surgical sites through
a Dynamic Time Warping distance. First, we briefly present the
data. Secondly, we present the previous results obtained by the
authors. Finally, we present the results with our method.

3.1. Data

The data consist of 41 one-level Anterior Cervical Discec-
tomies (ACDs) performed in three different surgical sites by
11 different surgeons. During an ACD, a cervical disc is re-
moved by an anterior approach. In the 41 surgeries, 11 were
performed on site A, 12 on site B, and 18 on cite C (sites are
anonymized). Two expertise levels were defined by Forestier et
al. [10]: expert and intermediate. An expert is a neurosurgeon
who has performed more than 200 ACDs, whereas an interme-
diate is a neurosurgeon who has performed less than 100 ACDs.
Table 1 presents the number of surgeries, the number of experts
surgeons and intermediates surgeons by surgical site.

Surgical site A B C
Number of surgeries 11 12 18
Number of experts 3 3 2

Number of intermediates 1 0 2

Table 1: Repartition of surgeries and surgeon expertise by surgical sites.

The data were recorded on-line by two surgeons, an expert
surgeon for site A and C, and an intermediate surgeon for site
B. Both operators used the Surgical Workflow Editor [3] for
data recording and possessed the same level of training in this

editor. However, Forestier et al. [10] have shown a vocabulary
heterogeneity between surgical sites, specifically, between site
B and the others two (less than 50% of similarity). To remove
this issue, the terms used on sites A and C were matched with
the terms used on site B by an expert surgeon. For our study,
we used the SPMs obtained after vocabulary uniformization.

3.2. Previous study
In their study, Forestier et al. [10] used Dynamic Time Warp-

ing distance as the metric to characterize similarity between sur-
gical process models. This metric and an average-link approach
are used to perform the hierarchical clustering.

The authors made three levels of analyses: distinguishing
surgical sites, distinguishing individual surgeons and distinguish-
ing levels of expertise. They had an accuracy of 97.5% (40/41)
for distinguishing surgical sites, 72.4% (21/29) for distinguish-
ing individual surgeons, and 86.2% (25/29) for distinguishing
levels of expertise. The two last analyses were only performed
for site A and C, because for surgical site B all surgeons were
expert and no clear sub-clusters emerged .

The authors announced few minutes to compute the dis-
tance matrix.

3.3. Results
Figure 2 represents the results of our clustering method by

pattern discovery with a threshold min f r of 6. Which was se-
lected because it is the threshold which offers the best results
for clinical sites clustering. We identified 207 longest frequent
patterns in the 41 surgeries. The computation time to find the
patterns and to create the distance matrix was inferior to 30 sec-
onds.

We identified 3 clusters (CLA,CLB, and CLC), one for each
surgical site. In reality CLC is not a cluster, but 3 separate clus-
ters with the same surgical site. Therefore, our method has an
accuracy of 100% to identify surgical sites.

We separated each of the previous clusters into sub-clusters
where the surgeries were performed by the same surgeon. These
clusters are noted CLn, where n is the id of the surgeon in this
cluster. Only three surgeons have misclassified surgeries: (1)
the two surgeries of surgeon 10 are classified with surgeon 9
(CL9), (2) one surgery of surgeon 3 is classified in CL4, and (3)
surgeon 6 has one surgery in CL5, one in CL7 and one alone.
Our method has an accuracy of 85.4% (35/41) for all surgical
sites, and 89.6% (26/29) for surgical site A and C.

We also studied the clustering by levels of expertise. Like
Forestier et al. [10], we did not perform this study for surgical
site B due to the fact that all surgeons are experts. Only CL9 has
different level of expertise due to the presence of surgeries of
the intermediate surgeon 10 in this expert cluster. Therefore, the
accuracy we obtained for distinguishing the levels of expertise
is 93.1% (27/29). These results are compared with those of
Forestier et al. [10] in table 2.

4. Discussion

In this paper, we proposed an approach for studying sur-
gical procedures based on pattern discovery. We applied this
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Figure 2: Dendrogram representing the hierarchical clustering based on our method, using 41 surgeries, for a threshold of 6. The horizontal axis represents the
surgeries. The vertical axis represents the dissimilarity (1- SLFSP). For each surgery, the site (A, B, and C), the surgeon id (1-11) and the level of expertise (Expert
(E), Intermediate (I)) are mentioned.

Analysis Surgical
sites

Levels of
expertise

Individual
surgeons
(sites A
and C)

Individual
surgeons
(all sites)

Accuracy
for

Forestier et
al. study[10]

(%)

97.5 86.2 72.4 Na

Accuracy
for our
method

(%)

100 93.1 89.6 85.4

Table 2: Accuracy of distinguishing surgical sites, of levels of expertise and
individual surgeons by both methods. Study of level of expertise was only
performed for surgical site A and C. Na: Not applicable

approach to define a new metric called SLFSP. We compared
our approach with an existing approach and demonstrated that
pattern analysis had a better discriminative power.

Our method distinguishes the surgical sites with an accu-
racy of 100%, and clusters levels of expertise (only for surgical
site A and C) with an accuracy of 93.1%. In these two cases, for
the same number of surgical process models, we outperformed
the results of Forestier et al. [10] (97.5% for clustering by surgi-
cal sites and 86.2% for clustering by level of expertise). More-
over, Forestier et al. proposed a clustering by surgeons only for

site A and C, because no clear sub-clusters emerged with their
method for site B, with an accuracy of 72.4%. In our case, for
all surgical sites, we had an accuracy of 85.4%. Our method
thus results in better clustering.

However, the accuracy for the surgical site classification
must be nuanced. In figure 2, we can see that the cluster of
the surgeon 8 (CL8) has a distance closer to site A than other
clusters of surgical site C (CL10 and CL11). This result could be
explained by the fact that surgical behavior is not completely
different depending on the surgical site. However, the clear
clusters obtained for sites A and C suggest that it does have
an influence that could be explained by knowledge and practice
sharing between surgeons working at the same surgical site.

Regarding the clustering by individual surgeons and by lev-
els of expertise, CL9 clusters an expert surgeon (9) and an in-
termediate surgeon (10) together. This could be explained by
the fact that the surgeon 9 was the mentor of the surgeon 10,
implying that they both were performing similar patterns.

The main limitation of our method is the necessity to define
a threshold for the number of apparitions of the pattern, in order
to limit the number of irrelevant patterns. In our case, we chose
a threshold of 6 because it offers the best results for clinical
sites clustering of our 41 surgeries. This threshold is dependent
on the number of sequences, consequently, it is necessary to de-
termine the best threshold by testing. However, it is possible to
search for the optimal threshold by exhaustive search, due to the
low computation time (less than 30 second with our threshold).

Even for an off-line method, it seems necessary that the cal-
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culation time is as small as possible for a restricted data set,
in order to be applicable to larger data set. Our method bet-
ter addresses this issue, with a computation time inferior to 30
seconds, than Forestier et al., where it is a few minutes.

5. Conclusion

With our clustering method, thanks to longest frequent pat-
terns, we obtain better results than Forestier et al. study [10] for
the same data.

For the computation of the SLFSP metric, we only used
longest frequent patterns. It is possible that sub-patterns also
give information. It will be interesting to add information of
sub-patterns to allow better clustering.

In this study, we focused on fixed consecutive patterns. Cur-
rently, if two activities only differ by a surgical instrument, we
considered them as two different activities. But if both surgi-
cal instruments have the same function (for example, to cut an
anatomical structure), it could be logical to consider both these
activities as equivalent. So, enhancing the method by allowing
substitution of similar activities inside a pattern, according to
ontological rules, may lead to interesting improvements.

This study highlights the possibility to identify specific sur-
gical behaviors of different populations of surgeons. The objec-
tive of this work is the identification of surgical behaviors which
may be correlated to the apparition of intraoperative adverse
events. Such identification of behaviors may help preventing
their apparition or limiting their severity.

Additionally, our approach may improve automatic recog-
nition of surgical phases or steps, by providing some additional
a priori knowledge on expected surgical patterns in complemen-
tary to other existing approaches such as where hidden Markov
models or Dynamic Time Warping [4, 5, 6, 7].
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