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- We propose a new formulation for the steady viscoelastic contact problem in rolling 

conditions without friction. 

- The numerical method is efficient for rollers of arbitrary shape. 

- The method is also valid for unstationnary rolling conditions. 

*Highlights (for review)
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A new formulation for solving 3-D time dependent rolling contact

problems of a rigid body on a viscoelastic half-space

H.P. Yinb, J. Cesbrona,∗, Q.H. Buib

aLUNAM Université, IFSTTAR, AME, LAE, F-44344 Bouguenais, France
bUniversité Paris-Est, Laboratoire Navier (UMR 8205), CNRS, ENPC, IFSTTAR, F-77455 Marne-la-Vallée,
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Abstract

The paper deals with a new formulation for solving the rolling contact problem without friction
of a rigid body on a viscoelastic half-space in three dimensions. Assuming that the material
behavior is independent of time for a sufficiently short time duration, the viscoelastic contact
problem is transformed into elastic like problems. Then the contact problem is solved using a
direct numerical method at each time step. The convergence of the method in time and space is
good for a spherical indenter. The dissymmetry of the contact patch due to hysteresis was found
in three dimensions for the spherical indenter and two cylinders of different width. Finally the
method was tested for a sinusoidal varying speed and shows a good efficiency.

Keywords: Rolling contact, Viscoelasticity, Numerical simulations

1. Introduction

Rolling systems such as car tyres and conveyer systems widely use elastomers. Therefore the
time dependent behavior of elastomers should be taken into account when computing rolling
contact for such systems. The viscoelastic rolling contact is also a fundamental problem which
was first investigated by the experimental work of Tabor (1952) and the studies of Hunter (1961)
and Morland (1962) on the rolling contact of a rigid cylinder on a viscoelastic half-space. However
most of these studies are restricted to cylinder cases for two dimensional problems. This paper
presents a new algorithm for computing the 3-D time dependent rolling contact between a rigid
body and a viscoelastic half-space. The friction is not taken into account in this work.

Since the middle of the 80’s, Finite Element Methods (FEM) have been used to solve vis-
coelastic rolling contact problems. Padovan and Paramadilok (1985) developed a travelling
finite element strategy based on moving total Lagrangian coordinates to handle transient and
steady viscoelastic rolling contact. Oden and Lin (1986) studied the contact of hyperelastic
and viscoelastic rolling cylinders on a rough foundation. The Arbitrary Lagrangian Eulerian
(ALE) formulation and a finite element approach were applied to rolling contact problems by
Nackenhorst (2004) and later applied to rolling noise simulations (Brinkmeier et al., 2008).

On the other hand, Boundary Element Methods (BEM) were used by Kalker to solve the
elastic rolling contact problems (Kalker, 1990) and later the problem of rolling viscoelastic
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multilayered cylinders (Kalker, 1991). The contact stresses between viscoelastic cylinders were
also computed with BEM by Wang (1993) and González and Abascal (2006).

Though many formulations and strategies have been developed to solve viscoelastic rolling
problems, most of them are restricted to 2-D and/or stationary rolling. In this paper, a new
formulation is proposed for the 3-D time dependent rolling contact between a rigid body and a
viscoelastic half-space. The friction will be neglected in the present work and only the normal
pressure is studied. Based on the assumption that the material behavior is independent of time
for a sufficiently short time duration, the viscoelastic contact problem is transformed into elastic
like problems. As a result, numerical methods developed for solving elastic contact problems
can be used.

In section 2, the formulation of viscoelastic contact is described without the rolling conditions
for facilitating the comprehension. Then the rolling conditions are introduced in a Lagrangian
coordinates system. Section 3 presents the numerical algorithm that uses the principle of direct
matrix inversion methods (Johnson, 1985). Numerical results are given in Section 4 for a rolling
sphere and rolling cylinders of different lengths. The method and the examples are presented
in terms of a displacement-control problem. Transient rolling and sinusoidal speed rolling are
considered to show the efficiency of the formulation.

2. Formulation of the viscoelastic rolling contact problem

The problem of the contact between a rigid solid and a viscoelastic half-space is considered
in frictionless conditions. The present normal displacement w at any point (x, y) within the
contact area depends on the pressure distribution history p(ξ, η, τ):

w(x, y, t) =

∫ t

0
J(t− τ)

d

dτ

[
∫∫

Sm

T (x, y; ξ, η)p(ξ, η, τ)ds

]

dτ (1)

where Sm is the maximal contact area, J is the creep function and T (x, y; ξ, η) is the influence
function which designates the displacement induced at point (x, y) by a unit point force at (ξ, η).

The influence function is then given by the Boussinesq’s fundamental solution:

T (x, y; ξ, η) =
(1− ν)

π
√

(x− ξ)2 + (y − η)2
(2)

We suppose that the pressure distribution up to t−∆t is known, and propose to compute the
pressure distribution at instant t. For the sake of simplicity, we use the following notation for
any two instants t1 and t2:

It2t1 =

∫ t2

t1

J(t− τ)
d

dτ

[
∫∫

Sm

T (x, y; ξ, η)p(ξ, η, τ)ds

]

dτ (3)

Then the following equation holds:

It0 = It−∆t
0 + Itt−∆t (4)

In the latter equation, the first term It−∆t
0 can be computed from the pressure distribution

history before t−∆t. The second term Itt−∆t will be studied. When τ varies from t−∆t to t,

2
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t− τ varies from ∆t to 0. We assume that if the time duration ∆t is sufficiently short, the creep
function is constant:

J(t− τ) ≈ J(0) for t−∆t < τ < t (5)

Then one can derive:

Itt−∆t ≈ J(0)

∫

S(t)
T (x, y; ξ, η)p(ξ, η, t)ds − J(0)

∫

Sm

T (x, y; ξ, η)p(ξ, η, t −∆t)ds (6)

where S(t) denotes the present contact area.
By introducing the preceding displacement u(x, y, t) which represents the contribution to

w(x, y, t) due to the pressure distribution history between 0 and t−∆t:

u(x, y, t) = It−∆t
0 − J(0)

∫

Sm

T (x, y; ξ, η)p(ξ, η, t −∆t)ds (7)

and taking into account the above equations, Eq. (1) becomes:

w(x, y, t) ≈ u(x, y, t) + J(0)

∫

S(t)
T (x, y; ξ, η)p(ξ, η, t)ds (8)

Then the present pressure distribution can be determined by solving the unilateral contact
problem given by the complementary relations between the gap and the normal pressure:

{

∀(x, y) ∈ S(t), δ(t) − z(x, y)− w(x, y, t) = 0 and p(x, y, t) > 0

∀(x, y) ∈ S̄(t), δ(t) − z(x, y)− w(x, y, t) > 0 and p(x, y, t) = 0
(9)

where δ(t) is the normal penetration of the indenter in the half-space (i.e. the normal displace-
ment at the tip of the indenter), z(x, y) described the geometry of the surface of the indenter,
w(x, y, t) is the present normal displacement as defined in Eq. (1) and S̄(t) is the surface of the
half-space where there is no contact. Then the contact condition on the gap in Eq. (9) combined
with Eq. (8) leads to:

∀(x, y) ∈ S(t), J(0)

∫

S(t)
T (x, y; ξ, η)p(ξ, η, t)ds ≈ δ(t)− z(x, y) − u(x, y, t) (10)

Since u(x, y, t) is assumed to be known, this problem can be seen as an elastic like contact
problem at instant t.

In rolling conditions, one can follow a point in the contact plane by introducing the coordi-
nates below:

X(x, y, t) = x+

∫ t

0
Vx(τ)dτ, Y (x, y, t) = y +

∫ t

0
Vy(τ)dτ (11)

where Vx and Vy designate the speed of the rolling solid in the contact plan. The frames of
coordinates are illustrated in Fig. 1.

Then in rolling conditions one should replace in all equations (x, y) with (X,Y ) and z(x, y)
with Z(X,Y, t) which describes the surface profile of the rolling solid potentially in contact with
the half-space at the present instant. For instance Eq. (1) becomes:

w(X,Y, t) =

∫ t

0
J(t− τ)

d

dτ

[
∫∫

Sm

T (X,Y ; ξ, η)p(ξ, η, τ)ds

]

dτ (12)

3
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Fig. 1: Frames of coordinates for the rolling problem.

and the contact problem becomes:

∀(X,Y ) ∈ S(t),







J(0)

∫

S(t)
T (X,Y ; ξ, η)p(ξ, η, t)ds ≈ δ(t) − Z(X,Y, t)− u(X,Y, t)

p(X,Y, t) > 0

(13)

Like Eq. (10), Eq. (13) is an elastic like problem which can be solved by using classical methods
such as the Matrix Inversion Method (Johnson, 1985; Kalker, 1990).

3. Numerical procedure

The surface involving the potential contact area of size Lx ×Ly was meshed using n = nxny

rectangular elements of dimensions dx = Lx/nx and dy = Ly/ny centered at (xi, yi) and with
uniform pressure on each element.

The influence coefficient Tij expresses the displacement at a point (xi, yi) due to an unit
uniform pressure on the element centered at point (xj , yj). For a half-space, Tij can be calculated
using Love’s results Love (1952):

Tij =
(1− ν)

π

yj+
dy
2

∫

yj−
dy
2

xj+
dx
2

∫

xj−
dx
2

dξdη
√

(xi − ξ)2 + (yi − η)2
(14)

The time discretization is τ = kdτ . Then equation (9) is written in the form:

J(0)

n
∑

j=1

Tijp
l
j = δl − zi − vl−1

i , i = 1 . . . n

vl−1
i =

l−1
∑

k=1

J
(

(l − k)dτ
)

n
∑

j=1

Tij

[

pkj − pk−1
j

]

− J(0)

n
∑

j=1

Tijp
l−1
j

(15)

4
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where pkj = p(xj, yj , kdτ), δl = δ(ldτ), zi = z(xi, yi). These equations are the same as in
Kozhevnikov et al. (2008).

In rolling conditions, Eq. (11) becomes:

Xk
i = x+

k
∑

m=1

Vx(mdτ)dτ, Y k
i = y +

k
∑

m=1

Vy(mdτ)dτ (16)

and the influence function becomes:

T k
ij =

(1− ν)

π

Y k
j + dy

2
∫

Y k
j −

dy
2

Xk
j +

dx
2

∫

Xk
j −

dx
2

dξdη
√

(X l
i − ξ)2 + (Y l

i − η)2
(17)

The system of equations to be solved is:

J(0)

n
∑

j=1

T l
ijp

l
j = δl − Zi − vl−1

i , i = 1 . . . n

vl−1
i =

l−1
∑

k=1

J
(

(l − k)dτ
)

n
∑

j=1

[

T k
ijp

k
j − T k−1

ij pk−1
j

]

− J(0)

n
∑

j=1

T l−1
ij pl−1

j

(18)

The contact problem is solved using the classical Matrix Inversion Method (Johnson, 1985;
Kalker, 1990), as described in Kozhevnikov et al. (2008).

4. Results

This section presents first the results of the numerical method in terms of convergence. Then
the results of the method are compared with the simple viscoelastic foundation model. The
influence of the geometry of the indenter and rolling at a varying speed are also studied. The
calculations were performed in the time interval t ∈ [0, T ]. The viscoelasticity of the material was
described using the standard linear solid, i.e. the Kelvin-Voigt model with delayed elasticity.
This behavior is represented in Fig. 2 by a spring of modulus E1 in series with a spring of
modulus E2 in parallel with a dashpot of viscosity η. Then the relaxation and creep functions,

Fig. 2: Standard linear viscoelastic solid used in the study.

noted G(t) and J(t) respectively, can be written:







G(t) = E∞ + (E0 − E∞)e−
t
τc

J(t) =
1

E∞

− E0 − E∞

E0E∞

e
−

E∞t
E0τc

(19)

5



Page 7 of 14

Acc
ep

te
d 

M
an

us
cr

ip
t

where τc = η/E2 is the characteristic relaxation time, E0 = E1 is the instantaneous Young’s
modulus and E∞ = E1E2/(E1+E2) is the Young’s modulus in static conditions after relaxation.
For the calculation, the values of E0 and E∞ were such that E0 = 2E∞ = 15 MPa. The
characteristic time was τc = 0.001 s for a duration of rolling T = 0.1 s. The rolling was
considered on a straight line trajectory along the (O,X) axis, which means that Vy = 0 m/s for
the calculation. The contact problem was solved with a constant value of the penetration δ.

4.1. Convergence of the algorithm

The convergence of the algorithm was studied using a rigid spherical indenter of radius R=150
mm rolling at a constant speed Vx on the viscoelastic half-space. The penetration δ was 4.2 mm,
i.e. δ/R = 0.028, which guarantees small deformations. The convergence in the space domain
(x, y) was studied in Kozhevnikov et al. (2008) and leads to the discretization rule dx/a ≤ 0.1,
where a is the radius of the contact area in the elastic case. Thus, since a is around 30 mm, dx
and dy were fixed with a maximum value of 3.0 mm.

The convergence in the time domain was first tested for Vx = 15 m/s (54 km/h), with a fine
spatial resolution dx = dy = 1.5 mm. The number of segments nt in the time interval [0, T ]
varied between 11 and 301. The total force P versus time t and the pressure distribution p on the
x-axis at y = 0 and at the final time T are given in Figs. 3(a) and 3(b) respectively. The same
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Fig. 3: Total force P vs time and normal pressure p on the x-axis at t = T for different time discretizations.

procedure was performed for Vx = 7.5 m/s (27 km/h) and 30 m/s (108 km/h). Convergence
curves are given in Figs. 4(a) and 4(b) for the normalized total force P/Pref and the normalized
contact pressure p/pref at time T , where Pref and pref are the values obtained for nt = 301.
Note that the spatial resolution was 3.0 mm in these calculations. Figs. 4a and 4b show a
good convergence of the proposed algorithm in the time domain. The error of the calculation
decreases steadily and rapidly with the time step.

4.2. Comparison with the simple viscoelastic foundation model

The new algorithm was compared with the simple viscoelastic foundation model used in
Flom and Bueche (1959) for spheres, also described in Johnson (1985) for cylinders. A simple
Voigt model (i.e. a single spring connected in parallel with a dashpot) is used in Flom and
Bueche (1959) while the standard linear solid described in Eq. (19) is used by Johnson (1985).
We propose here to derive the results in quasi-static conditions for a rigid sphere rolling on a
visco-elastic fundation with a standard linear solid behavior.

6
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Fig. 4: Convergence of the method at different speeds for the total force P and the contact pressure p at time T .

In quasi-static conditions we have x = −V t and ∂z/∂t = −V ∂z/∂x. Then the pressure
distribution is linked to the surface geometry by:

p(x, y) = −1

h

∫ x

√
a2−y2

G(x− x′)
∂z(x′, y)

∂x′
dx′ (20)

where h is the depth of the viscoelastic foundation and a is the radius of the contact area in
static conditions. We assume that the sphere can be approximated by a paraboloid of revolution
within the contact area (i.e. x2/R2 + y2/R2 ≪ 1 and a2/R2 ≪ 1), so that:

z(x, y) =
1

2R
(a2 − x2 − y2) (21)

Then integrating Eq. (20) gives a result similar to the cylinder case given by Johnson (1985):

p(x, y) =
Ka2

Rh

[

1

2
(1− x2/a2 − y2/a2) + βζ(x/a− α) + βζ(α+ ζ)(1− e

x/a−α
ζ )

]

(22)

with K = E∞, α =
√

1− y2/a2, β = (E0 − E∞)/E∞ and ζ = V τc/a.
The pressure distribution obtained with the new method proposed in the article was com-

pared with the result of Eq. (22). A rigid sphere of radius R = 150 mm rolling at a constant
speed Vx = 15 m/s with a fixed penetration δ = 4.2 mm was tested. The spatial resolution
was dx = dy = 1.5 mm. The number of time segments nt was 101. The depth h of the elastic
foundation was calculated by identification of the total normal load with Hertz’s theory following
Johnson (1985), which gives:

h =
3π(1− ν2)a

16
(23)

with ν = 0.5 is the Poisson’s coefficient of the half-space.
The normalized pressure distribution p/pm is given at time t = 0 and t = T =0.01 s in

Fig. 5. In both cases (half-space or fundation model), it is clearly observed that the pressure
distribution becomes asymmetrical for a rolling sphere and that the contact area at the final
instant T is no longer circular. This is due to the viscoelasticity of the material which relaxes
more slowly than it is compressed. The same effect is illustrated in Fig. 6 for the pressure
distribution on the x-axis for y = 0. While the contact areas in Fig. 5 are in the same order

7
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Fig. 5: Contact patches for the spherical indenter rolling on a viscoelastic foundation: (a) V = 0 m/s, (b) V =
15 m/s and on a viscoelastic half-space: (c) at time t=0, (d) at time t = T .
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Fig. 6: Contact pressure distribution on the x-axis for y = 0 for the spherical indenter at time t = 0 and t = T .
VHS: viscoelastic half-space, VF: viscoelastic foundation.
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and quite similar in shape, the pressure distribution obtained between the half-space and the
fundation model are quite different. This may be due to the fact that interaction between contact
elements is not taken into account in the foundation model. This drawback of the foundation
model is underlined in the book of Johnson (1985) when comparing the results with those of
Hunter (1961) in the two-dimensional case. Then the results of our model based on elasticity
theory give more accurate results than the simple fundation model. This can be justify by the
maximal value of the normalized pressure distribution p/pm in Fig. 6 which is closed to Hertz’s
theory for the half-space (pmax/pm ≃ 1.5) while it is higher for the viscoelastic foundation
(pmax/pm ≃ 2.0).

4.3. Influence of the indenter geometry

The efficiency of the method was tested for indenters of different 3-D shapes. The rigid
sphere was tested with the same parameters as in section 4.2. Then two cylinders of radius R
= 150 mm, but with different width l were tested at a constant speed of Vx = 15 m/s. The
number of time segments nt was 101. The first one was a short cylinder of width l = R/5 =
30 mm. The spatial resolution was dx = dy = 1.5 mm and the penetration δ = 4.0 mm. The
second cylinder has a width l = R = 150 mm with a spatial resolution dx = 1.5 mm and dy =
3.0 mm and a penetration δ = 2.0 mm. The pressure distributions for the two cylinders at time
T are given in Figs. 7.
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Fig. 7: Final contact patch for the short (l = 30 mm) and the large (l = 150 mm) cylinders.

As the sphere, the pressure distribution is still asymmetrical for the cylinders due to the
viscoelastic behavior of the material. High pressure values are found at the top and bottom sides
of the cylinders due to sharp edges, which can not be observed with two dimensional models.
The normalized pressure distributions versus x/a, where a is the radius of the contact area, are
given in Fig. 8 for the three tested shapes. The results are quite similar (the dissymmetry is
found for the three indenters), but differences are found in the amplitudes of p/pm due to the
geometries of the indenters. This kind of result could find an application for studying the rolling
resistance of pneumatic tyres on a road surface.

4.4. Results for a varying speed

Finally the method was tested for the spherical indenter with a speed Vx sinusoidally varying
with time:

Vx(t) = Vx(1 + sin(2nπt/T )) (24)
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Fig. 8: Comparison of the pressure distribution on the x-axis for y = 0 for the three tested geometries.

where n is the number of periods and Vx = 15 m/s. Results are presented in Figs. 9 for n = 4.
After a few periods, the total force and the pressure become periodic. The total force is delayed in
comparison with the rolling speed. Within each period, the increasing part and the decreasing
part of the force are slightly dissymmetric and the dissymmetry is obvious for the pressure
history. In fact, the pressure increases more rapidly than it decreases. This dissymmetry, as
that of pressure distribution, is due to the viscoelastic hysteresis. The same phenomenon was
observed in the paper of Chertok et al. (2001) where the transient rolling of a rigid cylinder is
studied on a two-dimensional semi-infinite body.

5. Conclusions

In this paper a new formulation was proposed for solving the time dependent rolling contact
problem of a rigid body on a viscoelastic half-space in three dimensions. The viscoelastic problem
was transformed into a succession of elastic like problems. Thus the transient rolling problem
can be solved using a classical direct method scheme.

The results for a spherical indenter show a good convergence in time when the time step
decreases. The dissymmetry of the contact patch is clearly observed when stationary rolling
conditions are raised at a constant speed. This is in accordance with the previous results of the
literature in two dimensions. The dissymmetry of the pressure distribution was also observed
for a short and a long cylinder. Finally the method was tested for a rolling speed varying
sinusoidally. The total force and the pressure distributions are delayed in comparison with the
speed due to the viscoelastic hysteresis.

Future work will concern the rolling of a car tyre on a real road surface for application to
rolling noise and rolling resistance. The method could also be used for studying the hysteretic
friction of viscoelastic rubber sliding on three dimensional road surfaces. The main difficulty is
due to the large number of asperities in contact with the tyre. The numerical method proposed in
this article transforms the viscoelastic contact problem into a succession of elastic-like problems.
Thus it could be combined with the two-scale approach developed in Cesbron et al. (2008, 2009)
for tyre/road contact applications.
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