
HAL Id: hal-01470371
https://hal.science/hal-01470371

Submitted on 17 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IPipeline: a development framework for image
processing pipelines

Cédric Pradalier

To cite this version:
Cédric Pradalier. IPipeline: a development framework for image processing pipelines. [Technical
Report] UMI 2958 GeorgiaTech-CNRS. 2017. �hal-01470371�

https://hal.science/hal-01470371
https://hal.archives-ouvertes.fr

IPipeline: a development framework for image processing

pipelines

Cédric Pradalier
UMI 2958 GT-CNRS - GeorgiaTech Lorraine

Metz, France

October 14, 2016

1 Introduction

Developing an image processing or computer vision application typically involves the sequencing
of a number of elementary operations on images. Some operations can be simple image processing
(blurring, thresholding, morphological operations, ...), other operations will be arithmetic (addi-
tions, logical operation, transcendant functions, ...) and others will be more advanced function
(edge detection, rectification, ...). In most cases, a tool like OpenCV (http://www.opencv.org)
provide optimized and efficient implementations, but in some cases, specialized functions also need
to be implemented.

During the development phases, it can sometimes be useful to visualize all the intermediary
output and input, or even to create some debugging visualizations that require creating tem-
porary images. In a linear development framework, this requires allocating or reusing specific
memory blocks, cluttering the code and impeding readability. In an other century, poor memory
management was also an easy source of memory leaks. An additional requirement of the devel-
opment phase is to design modules that can very clearly check if their input correspond to their
expectations in terms of size, color depth, pixel format.

In the optimization phase, the processing tree contains multiple parallelizable path, a deploy-
ment of the image processing operations into multiple threads is often desirable. Independently of
multi-threading, profiling the timing required for every elementary operation is often very useful
in targetting the optimization requirements of a particular application.

For documentation and reusability, one often want to build a visualization of the processing tree
with all its inputs and outputs, data types and condition of execution. With a similar objective, a
centralized representation of all the processing parameters that can be edited without recompiling
is an obvious requirement.

The IPipeline framework is a tool that has been developed with all the above goals in mind
since 2004. The first version was aimed at the joint processing of 5 individual fish-eye cameras
for 3D reconstruction. Later version have been extended with more and more operations, and
integrated with various middlewares, DDX, Yarp, and finally ROS. The current version builds
upon OpenCV in such a tight way that all objects exchanged between application modules are
array of cv::Mat. An example of the kind of processing tree we can build with the IPipeline
framwork in given in figure 1. Note that the graph description is auto-generated once all the
modules have been loaded.

The code is available on https://github.com/cedricpradalier/ipipeline.

2 IPipeline: Design Principle

The core principle behind IPipeline is the notion of an ImageProcessor (IP) object. An IP typically
has a name and a number of input and, when all the input are available, produces an output, with

1

http://www.opencv.org
https://github.com/cedricpradalier/ipipeline

image source

Gray

8UC2: 640x480

dconvert rgb
cond: only debug

8UC2: 640x480

dconvert 16s

8UC0: 640x480

ssl

16SC0: 640x480

scale

16SC0: 640x480

ssl_thresh

16SC0: 640x480

local max

16SC0: 640x480

dconvert 8u

16SC0: 640x480

8UC0: 640x480

draw cross
cond: only debug

32FC0: 2x3 32FC0: 2x38UC2: 640x480

draw scale
cond: only debug

8UC2: 640x480

32FC0: 3x3

ssl sink

32FC0: 3x3

Figure 1: Example of processing tree for the extraction of Self-Similar Landmarks

the specificity that both inputs and outputs are std::vector<cv::Mat>. In terms of memory
ownership, a key design principle, is that each IP owns its output. Programmatically, once IP has
defined its input, it must define two functions: checkInput that validates that all the inputs have
the expected types, consistent sizes, etc, and processInput that does the actual computation.

Example of typical IPs are the following:

• Unary operators: image blurring, image thresholding, image negation, fft2, ...

• Binary operators: image addition, image plane combination, ...

• Image sources: file reader, video reader, ROS image transport subscribers, ...

• Image sinks: file saver, video writer, ROS image transport publishers, ...

The sequence of IPs is managed by a specific scheduler. Starting from the known list of source
IPs, the scheduler will execute each IP and then push its output to the depending IPs. When an
IP has all been provided with all its inputs, it is executed as well (which practically means that is
checkInput and processInput methods are called). When using a multi-threaded scheduler, the
threads are organised in a pool of execution agents, while the available IPs are pooled together.
When a thread is available, it takes the first available IP, checks that all its input are ready and if
so executes it. Otherwise, the IP is put back in the pool, at the back of the list. This round-robin
execution of the IPs is sometimes inefficient as it does not maintain cache consistency and does
not schedule IPs based on their expected run-time.

Finally, the scheduler and the list of IPs are managed by a driver class that will own all these
objects and implement our visualization, profiling, ROS integration and documentation objectives.

2

The core modules are implemented in the subdirectory ipipeline core

2.1 Integration with ROS

Given that the IPipeline framework has been designed from the beginning with robotics in mind,
it is tightly integrated with ROS www.ros.org, both at the level of its build system and at the
level of its middleware.

At the build level, IPipeline is split into a number of ROS packages that are managed by
Catkin, the package management layer developed over CMake by the ROS community. The
consequence of this integration with the ROS framework is minimal beyond a simpler expression
of the dependencies between packages in the CMakeLists.txt and package.xml.

At the level of the ROS communication middleware, IPipeline provides specialized IPs to
publish their input data to ROS and to act as data sources. The ROS message type used can either
be std msgs::FloatArray or sensor msgs::Image. In the latter case, the image transport

framework is used in combination with cv bridge to convert to/from cv::Mat to image messages.
In terms of scheduling, the subscriber modules are specific because they are image sources

that are triggered by ROS when an image has been received. In this case, the program using the
IPipeline framework must wait for this trigger using the driver waitTrigger member function.

The ROS modules are implemented in the package ipipeline io.

2.2 Visualization Tools

The purpose of the visualization tools is to be able to display in real-time the output of any of
the IPs involved in our processing tree. To this end, a specific type of IP is created to represent
probes. The specificity of this IP is that it does not have a fix place in the processing tree and
can be moved around interactively. It is sometimes useful to observe simultaneously the output
of multiple IPs. In consequence, the IPipeline framework support a run-time decided dynamic
number of probes.

In practice, when integrated with ROS, the probes are specific image sinks using the image transport

framework to publish their input as ROS images. In comparison with normal ROS publishers,
they are also doing the required conversion to make their input renderable as either gray-level
images or RGB images.

Two tools are provided to interact with the probes in the ipipeline view package: probe view

built upon the code of the image view node from the eponymous package, and sdlprobe which
uses the SDL library to potentially use a little bit less resources.

To launch one of them, use the following command (similar to image view:

rosrun ipipeline view sdlprobe probe:=/Probe0000

where the probe topic depends on the configuration file (Probe0000 in this case) and can be
deduced from a simple rostopic list.

Use mouse clicks (or arrow keys) to move the probe inside the processing tree, mouse wheel to
select image index in case of a multi image output.

The probe modules and visualization tools are implemented in the package ipipeline view.

2.3 Conditional Execution

In some context, it may be useful to have a conditional execution of a given IP. It may be based
on some parameters in the configuration file, dynamic context variables or even variables control
from the dynamic reconfigure package in ROS. An example of such a need would be IPs only
useful for debugging as shown in the processing tree in figure 1. Image pre-processing (contrast
improvement, bluring, ...) may also be something that need to be activated or not depending on
the context. To this end, the IPipeline framework includes a concept of Condition variables that
can be attached to an IP. When this condition is true, the IP is executed normally. Otherwise,

3

www.ros.org

the input declared as the default input is passed through as-is to the output. Note that this is one
exception to an IP owning its output since no copy is done before passing the input.

2.4 Profiling Tools

Profiling a computer vision application consists in identifying how every image operation con-
tributes to the total processing tree computing time. Unless working with a framework that
provides the tools, once requires to manually add a structure to record the time taken by every
operation. Because it is such a common requirement in computer vision, the IPipeline framework
provides a common profiling context that is active by default. In practice, everytime the scheduler
starts executing its processing tree, it records the start time and end time, and does it as well for
every single IP. When the program terminates, a profiling file. In the case of the processing tree
presented in figure 1, the profiling data looks like the following:

Iterations = 12315

Total time = 261.705204 s

Overhead = 0.379954% 0.994360 s

Used time = 260.710843 s 0.021170 s/run 47.2 Hz

ssl = 88.360998% 231.245331 s 0.018778 s/run

local max = 6.570274% 17.194748 s 0.001396 s/run

Gray = 0.978708% 2.561331 s 0.000208 s/run

dconvert 8u = 0.708158% 1.853286 s 0.000150 s/run

dconvert 16s = 0.550779% 1.441417 s 0.000117 s/run

draw scale = 0.526726% 1.378470 s 0.000112 s/run

dconvert rgb = 0.515246% 1.348426 s 0.000109 s/run

draw cross = 0.514835% 1.347351 s 0.000109 s/run

scale = 0.443326% 1.160208 s 0.000094 s/run

ssl_thresh = 0.389457% 1.019229 s 0.000083 s/run

ssl sink = 0.060955% 0.159522 s 0.000013 s/run

image source = 0.000582% 0.001524 s 0.000000 s/run

This shows that the program run for 261.70s and the IPs used 260.70s of this time, hence only
0.37% of the time was lost due to the IPipeline framework overhead. Most of the time was spent in
the ssl and local max IPs. All the other IPs used a negligible amount of time. If an optimization
effort is required, it should thus be focused on the ssl IP.

In the case of a multi-threaded execution, the percentage interpretation might be a little bit
less obvious to interprete, but the ranking of the time used by each module will still be a very
valuable information.

2.5 Configuration File

The configuration file used by IPipeline is inspired from the INI file in old versions of MS Windows,
with a couple of improvements. The core structure is a list of key-values separated by an equal
sign, separated into sections. The key difference with the INI file is that the values are strongly
typed (int, float, bool, string) and that values can be referred to between variables or between
sections using a syntax such as $varname or $section.varname. The $ notation can also be
used to refer to environment variables ($HOME, ...). Similarly to the Bash variables, configuration
variable concatenation can be forced using braces: var = "${HOME}/Pictures".

An example of such configuration file is shown below (corresponding to the processing tree in
figure 1):

[main]

middleware = "ros"

period = 0

debug = 1

4

[IPLDriver]

numProbes = 3

numThreads = 1

progressWheel = 1

profiling = 1

stepByStep = 0

[IPLTest]

use_source_image = true

infile = "test/SSL_circ3_small.png"

intopic = "/image_raw"

outtopic = "/processed"

[ssl_thresh]

threshold = 5000

max_value = 255

It can be seen that there is a main section for high level parameters, a section specific to the
generic IPLDriver structure and to its specialization IPLTest. Finally the ssl thresh IP has its
own section with numerical parameters.

2.6 Documentation

To conclude this section on design principle, we felt it was important to build a system that would
automatically prepare a graphical representation of itself, for the purpose of validation of the
completeness of the processing tree, as well as for the ability to revisit and understand quickly
an old processing tree. To this end, every IP has a way to describe itself by printing its name
and output type in a format that can be interepreted by the graphviz or vcg packages (Linux).
All the examples proposed in the repository will process the first frame while asking to print the
processing tree (spd.nextFrame(printtree=true)).

In graphviz format, the resulting files (extension .dot) will look like the following example:

digraph "Image Processing" {

node [shape=box]

000 [label="image source"]

001 [label="image sink"]

000 -> 001 [label="8UC2: 420x300"]

}

which results in the minimal graph shown in figure 2.
In figure 1, the condition variables are also shown in the processing tree.

3 Developing A New Application

The simplest way to develop a new application is to start from the ipipeline template package.
This package implement 3 objects:

• IPLMyProcessor, in src and include: a customized IP that does nothing but is a good starting
point. See section 4 for the development of a new IP.

• IPLTestDriver, in nodes: inherits from the generic IPLDriver to control the execution of a
processing tree. Its main role is the definition of the processing tree itself.

5

image source

image sink

8UC2: 420x300

Figure 2: Minimal example of a processing tree described in section 2.6

• IPLTest.cpp: the main code that creates a ros node and an IPLTestDriver instance and run
it.

3.1 Writing the driver class

The role of the IPLDriver is to collect some global configuration parameters that will define the
processing tree, for instance whether the tree should depend on a ROS source or just an image
source, and then define the processing tree. The code for the template is as follows, starting from
the headers:

1 #ifndef _IPL_TEST_DRIVER_H_
2 #define _IPL_TEST_DRIVER_H_
3

4 #include "ipipeline_core/IPLDriver.h"
5

6 /**
7 * \class IPLTestDriver
8 * Class implementing a basic dataflow for our template
9 * \sa IPLImageProcessor \sa IPLIPScheduler

10 * **/
11 class IPLTestDriver : public IPLDriver
12 {
13 public :
14 /**
15 * Constructor
16 * **/
17 IPLTestDriver ();
18 ~IPLTestDriver ();
19

20 protected :
21

22 /**
23 * Build the complete processing tree
24 * **/
25 virtual bool buildProcessingTree ();
26

27 virtual bool initialise ();
28

29 bool use_source_image;
30 std:: string infile;
31 std:: string intopic;
32 std:: string outtopic;
33 ros:: NodeHandle nh;
34 bool debug;
35 };

6

36

37

38 #endif // _IPL_TEST_DRIVER_H_

And the corresponding implementation:

1 #include "ipipeline_io/IPLRosImageTransportPublisher.h"
2 #include "ipipeline_io/IPLRosImageTransportSubscriber.h"
3 #include "ipipeline_core/IPLCvImageSource.h"
4 #include "ipipeline_modules/IPLImageToGray.h"
5 #include "ipipeline_template/IPLMyProcessor.h"
6 #include "IPLTestDriver.h"
7

8 // Constructor has to specify the prefix that will be used for the profiling
9 // and graph files.

10 IPLTestDriver :: IPLTestDriver () : IPLDriver("IPLTest")
11 {
12 use_source_image = true;
13 debug = false;
14 }
15

16 IPLTestDriver ::~ IPLTestDriver () { }
17

18

19 bool IPLTestDriver :: initialise ()
20 {
21 ROS_INFO("In ’%s:: initialise",this ->getName ().c_str ());
22 if (config.selectSection("main")) {
23 config.getBool("debug",&debug);
24 }
25 if (config.selectSection(this ->getName ())) {
26 config.getBool("use_source_image",&use_source_image);
27 config.getString("infile",infile);
28 config.getString("intopic",intopic);
29 config.getString("outtopic",outtopic);
30 ROS_INFO("Test driver: reading from ’%s’ writing to ’%s’",use_source_image?infile.

c_str():intopic.c_str(),outtopic.c_str ());
31 } else {
32 ROS_WARN("Could not select section ’%s’",this ->getName ().c_str());
33 }
34 return true;
35 }
36

37 bool IPLTestDriver :: buildProcessingTree ()
38 {
39 // For each image processor in the tree , we do two or three things.
40 // - We create an instance of the image processor object (new)
41 // - If needed we add the instance as a receiver for the object creating its input
42 // - We store the pointer in the IPLDriver. After this point , the pointer
43 // is owned by the IPLDriver and will be deleted automatically.
44

45 // First create an image source , either from ROS or from a file
46 IPLImageProcessor * image = NULL;
47 if (use_source_image) {
48 image = new IPLCvImageSource("image source", infile);
49 } else {
50 image = new IPLRosImageTransportSubscriber("image source", nh, intopic , "raw");
51 }
52 store(image);
53

54 // Use a standard module to convert it to 8b gray (path through if it is
55 // already gray)
56 IPLImageToGray * gray = new IPLImageToGray("Gray");
57 image ->addReceiver(gray);
58 store(gray);
59

60 // Instantiate our customize image processor
61 IPLMyProcessor * my_proc = new IPLMyProcessor("my processor");
62 gray ->addReceiver(my_proc);
63 store(my_proc);
64

65 // Instantiate an image sink that will export the result to ROS
66 IPLRosImageTransportPublisher * publisher = new IPLRosImageTransportPublisher("image

sink",nh,outtopic);
67 my_proc ->addReceiver(publisher);
68 store(publisher);
69

70 return true;
71 }

7

3.2 Writing the ROS node to operate the driver

The ROS node has several roles. It must first instantiate the ROS infrastructure, then instantiate
the IPLDriver and link it with probes that will help monitor the intermediary processing steps.
Once this is done, it just keep asking the driver to process new frames until it is interrupted by
the user or the driver declares itself complete (which does not happen at this level for simple
processing trees).

The basic code is commented below:

1

2

3 /* Includes */
4

5 #include <stdlib.h>
6 #include <stdio.h>
7 #include <signal.h>
8 #include <sys/time.h>
9 #include <time.h>

10

11 #include <ros/ros.h>
12

13 #include "ipipeline_core/IPLGenericProbeFactory.h"
14 #include "ipipeline_io/IPLRosProbeFactory.h"
15 #include "IPLTestDriver.h"
16

17 /**
18 * This program instantiate a IPLDriver object.
19 * Use SDL/sdlprobe to explore this processing
20 * **/
21

22 unsigned int end = 0;
23

24 void sighdl(int n)
25 {
26 end += 1;
27 ROS_INFO("Countdown : end = %d" ,4-end);
28 if (end > 3) {
29 kill(getpid (),SIGKILL);
30 }
31 }
32

33 int main(int argc ,char * argv [])
34 {
35 // Standard ROS initialization
36 ros::init(argc ,argv ,"IPLTest");
37 ros:: NodeHandle nh;
38

39 // We want one argument: the config file
40 if (argc < 2) {
41 ROS_ERROR("Expecting one cmdline argument (config file)");
42 return 1;
43 }
44

45 // We handle Ctrl -C ourselves.
46 signal(SIGINT ,sighdl);
47

48 // Create a probe factory that use our node handle.
49 IPLRosProbeFactory gpf(nh);
50

51 // And the test driver , that will build the processing tree
52 IPLTestDriver spd;
53

54 // Read the config file and distribute it to all image processors
55 if (!spd.loadParamsFromFile(argv [1])) {
56 ROS_ERROR("Fail to load config file %s",argv [1]);
57 }
58

59 // Create the scheduler and install the probes.
60 if (!spd.prepareScheduler (&gpf)) {
61 ROS_ERROR("initialisation failed");
62 return 1;
63 }
64

65

66 ROS_INFO("In the loop");
67 bool first = true;
68 // Start a ROS Asyncspinner , because we need to control our loop ourselves.
69 // Could be somewhat done with a spinOnce ()

8

70 ros:: AsyncSpinner spinner (1);
71 spinner.start ();
72

73 while (ros::ok() && (end <1)) {
74 // Wait for triggers , if any (resulting from subscribers ’ callbacks).
75 if (!spd.waitTrigger (1.0)) {
76 continue;
77 }
78

79 // Process the received image frame , and the first time , save the
80 // processing tree as dot and vcg file
81 switch (spd.nextFrame(first)) {
82 case IPLDriver ::ERROR :
83 ROS_ERROR("Processing error");
84 end ++;
85 break;
86 case IPLDriver :: COMPLETED :
87 // If the driver told us that it is done.
88 end +=2;
89 break;
90 case IPLDriver :: READY_FOR_RESTART :
91 // Only relevant if there are sources that stays constant
92 // until something is finished.
93 spd.updateCachedSources ();
94 break;
95 case IPLDriver :: READY_FOR_NEXT_FRAME :
96 // Normal outcome for a real -time image processing application.
97 break;
98 }
99 first = false;

100

101 }
102 // And we’re done. We’ll save the profiling data in the IPLDriver ’s
103 // destructor.
104 printf("Terminating\n");
105

106 return 0;
107 }

Finally, to operate our new processing tree, we need to create a configuration file that contains
the expected variables. The template provides the following example:

[main]

middleware = "ros"

period = 0

debug = 1

[IPLDriver]

numProbes = 3

numThreads = 1

progressWheel = 1

profiling = 1

stepByStep = 0

[IPLTest]

use_source_image = true

infile = "test/my_image.png"

intopic = "/image_raw"

outtopic = "/processed"

[my processor]

double_variable = 3.1415

9

4 Developing A New Image Processor

When developing a new image processor, the simplest is to start from the basic modules provided
by ipipeline core. In particular, most image processing task require to create image filters,
i.e. IPs that take one input and create one output, or binary operators, i.e. IPs that take two
inputs and create one output. When starting from these, there is not much to do since the output
allocation has already been done. In the case of our template, we are creating an new IP called
IPLMyProcessor. Its header only refers to the required virtual functions to do its processing,
check its input consistency and read its configuration:

1 #ifndef IPL_MY_PROCESSOR_H
2 #define IPL_MY_PROCESSOR_H
3

4 #include "ipipeline_core/IPLImageFilter.h"
5

6 /**
7 * \class IPLMyProcessor : \see IPLImageFilter
8 * Template class for a customized image processor , inheriting from ImageFilter
9 * i.e. it receives an image and output one.

10 * \see IPLImageProcessor for virtual function
11 * **/
12 class IPLMyProcessor : public IPLImageFilter
13 {
14 protected:
15 // Add local variables here
16 double local_variable;
17 public :
18 IPLMyProcessor(const char * name);
19

20 virtual bool processInput ();
21

22 virtual bool checkInput () const;
23

24 virtual void readConfig(Config *config);
25 };
26 #endif // IPL_MY_PROCESSOR_H

These functions must then be implemented, but they can rely on a lot of helper functions from
the ImageProcessor and ImageFilter classes:

1 #include "ipipeline_template/IPLMyProcessor.h"
2

3 IPLMyProcessor :: IPLMyProcessor(const char * name) :
4 IPLImageFilter(name)
5 {
6 // Nothing to initialize here , everything is inherited from the image
7 // filter.
8 }
9

10 void IPLMyProcessor :: readConfig(Config *config)
11 {
12 // Only one dummy variable to read here.
13 config ->getDouble("local_variable",&local_variable);
14 }
15

16

17 bool IPLMyProcessor :: checkInput () const
18 {
19 // First get the image processor that produced our input (deftInput is the
20 // default input defined by ImageFilter).
21 IPLImageProcessor * input = getInput(deftInput);
22 // Request the output of our input processor , which will be our input data.
23 // ImageProcessorOutput is an array of cv::Mat
24 ImageProcessorOutput in = input ->getOutput ();
25 // Now check that all our inputs have the correct type (8bit gray here).
26 for (unsigned int i=0;i<in.size();i++) {
27 if (in[i].type() != CV_8UC1) {
28 return error(INVALID_TYPE);
29 }
30 }
31 // OK , everything is consistent
32 return true;
33 }
34

35 bool IPLMyProcessor :: processInput ()
36 {

10

37 // First get the image processor that produced our input (deftInput is the
38 // default input defined by ImageFilter).
39 IPLImageProcessor * input = getInput(deftInput);
40 // Request the output of our input processor , which will be our input data.
41 // ImageProcessorOutput is an array of cv::Mat
42 ImageProcessorOutput in = input ->getOutput ();
43 // Make sure our output has the same number of cv::Mat as our input
44 outputVector.resize(in.size());
45 // Now iterate on all the cv::Mat in our input
46 for (unsigned int i=0;i<in.size();i++) {
47 // Enforce output image sizes
48 outputVector[i]. create(in[i].size(),CV_16SC1);
49 // Initialize to the correct value
50 outputVector[i] = cv:: Scalar (0);
51 // And that’s all for now... Add your own code below
52 }
53

54 // And we’re done. Return false if the processing tree needs to be aborted.
55 return true;
56 }

To explore the possibilities to create more complex or generic image processor, check the
modules available in the ipipeline modules package.

5 Nested Processing Trees

As a final note, it is sometimes necessary to have one processing step of an algorithm that requires
to apply a complex processing tree to many image subwindow. This is a situation where it is
necessary to nest processing trees. The IPipeline framework support that without particular
difficulties. The key points to pay attention to are the following:

• The high-level IP must instantiate and own the IPLDriver with a different prefix than the
top-level driver. This makes sure that profiling and other generated files are generated with
different names, and that the probe set has a different ROS prefix.

• The high-level IP is responsible for calling the IPLDriver nextFrame function. Because
it is a different processing tree, it is also a different scheduler and it must be triggered
independently.

• The image source IPLImageSourceWithView is a useful asset for this type of problem since
it is an IP that publishes a region of interest of a constant cv::Mat. This region of interest
can be changed by the driver before every execution tu run the processing tree on a different
area of the source image.

6 Conclusion

This document provides a starting point to explore the design of image processing applications with
the IPipeline framework. A lot of use case have been considered when developing this framework
and most of the very specific ones have not been described in this document. To move deeper into
the framework at this stage, there is no really better recommendation than checking the source
code of the modules in the ipipeline modules and ipipeline core packages.

11

	Introduction
	IPipeline: Design Principle
	Integration with ROS
	Visualization Tools
	Conditional Execution
	Profiling Tools
	Configuration File
	Documentation

	Developing A New Application
	Writing the driver class
	Writing the ROS node to operate the driver

	Developing A New Image Processor
	Nested Processing Trees
	Conclusion

