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Scaling limit of the uniform prudent walk

Nicolas Pétrélis* Rongfeng Sun' Niccolo Torrit

Abstract

We study the 2-dimensional uniform prudent self-avoiding walk, which assigns equal
probability to all nearest-neighbor self-avoiding paths of a fixed length that respect
the prudent condition, namely, the path cannot take any step in the direction of
a previously visited site. The uniform prudent walk has been investigated with
combinatorial techniques in [3], while another variant, the kinetic prudent walk has
been analyzed in detail in [2]. In this paper, we prove that the 2-dimensional uniform
prudent walk is ballistic and follows one of the 4 diagonals with equal probability. We
also establish a functional central limit theorem for the fluctuations of the path around
the diagonal.
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1 Introduction

The prudent walk was introduced in [9, 8] and [7] as a simplified version of the self-
avoiding walk. It has attracted the attention of the combinatorics community in recent
years, see e.g., [3, 1, 4], and also the probability community, see e.g. [2] and [6].

In dimension 2, for a given L € I, the set 2}, of L-step prudent path on Z? contains all
nearest-neighbor self-avoiding path starting from the origin, which never take any step
in the direction of a site already visited, i.e.,

Qp = {(m)y € (2" w9 =(0,0), w1 —m; € {+, =, 1,1} Vie{0,...,L—1},
(TF,'+IN(TI'7;+177T¢))QTI'[O7Z'] ZQ VZG{O,,Lfl}} (11)

where 7 ;) is the range of 7 at time i, i.e., 7 ;) = {m; : 0 < j < i}

Two natural laws can be considered on {2 :
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Uniform prudent walk: scaling limits

1. The uniform law Py 1, also referred to as the uniform prudent walk, under which
at every path in ), is assigned equal probability 1/|2,

’

2. The kinetic law Py, 1, also referred to as the kinetic prudent walk, under which
each step of the path is chosen uniformly among all the admissible steps. Note that
the first step is in one of the 4 directions with equal probability. Subsequently, if a
step increases either the width or the height of its range, then the next step has 3
admissible choices; otherwise there are only 2 admissible choices. Let H (o —1])
and W(mo,,—1)) denote the height and width of the range of 7 ;1. Then, for
L € N and 7 € Qy, we note that

Pkin,L(TF) _ %(%)L*"H(ﬂ[o,Lq])*W(W[o.lﬁl]) ( )H(W[O,L—l])‘i’w(ﬂ'[o,L—l])' (1.2)

1
3

[2] proved that the scaling limit of the kinetic prudent walk is given by
Zy = 0‘3“/7 (o11iw, >0y (3) + 021w, <03 (9))ds, where W is a Brownian motion and o+, 03 €

{-=1,1} are random signs (independent of W), cf. [2, Theorem 11].

In this paper, we identify rigorously the scaling limit of the 2-dimensional uniform
prudent walk, proving a conjecture raised in several papers, e.g., [2, Section 5], and [3,
Proposition 8] where partial answers were provided for the 2-sided and 3-sided versions
of the 2-dimensional prudent walk using combinatorial techniques. The conjecture,
supported by numerical simulations, was that when space and time are rescaled by the
length L, the 2-dimensional uniform prudent walk converges to a straight line in one of
the 4 diagonal directions chosen with equal probability. This is in stark contrast to the
kinetic prudent walk.

2 Main results

Definition 2.1. For every w € Qy, let 7L : [0,1] — R? be the rescaled and interpolated
version of 7, i.e.,

- 1
7L = 7 (Tazy + (L = (L)) (mpppyer = 7pazy)), ¢ € (0,1],

We also denote é; := (1,1), & :=(—1,1), &5 := (—=1,—1) and &, := (1, -1).
Our first result shows that the scaling limit of the uniform prudent walk is a straight line
segment.

Theorem 2.2 (Concentration along the diagonals). There exists a ¢ > 0 such that for
everye > 0

lim Pyt (Hi €{l,....,4} sit. sup |7} —cté| < g) =1 (2.1)
L—oo te[O,l]

Furthermore, we can identify the fluctuation of the prudent walk around the diagonal.
More precisely, let o7, = 1,2, 3, 4, depending on whether 7/ lies in the interior of the 1st,
2nd, 3rd, or the 4th quadrant, and let 0;, = 0 otherwise. Then we have

Theorem 2.3 (Fluctuations around the diagonal). Under P, 1, the law of o1, converges
to the uniform distribution on {1,2, 3,4}, and

(\/Z(%tL — CtggL))t€[071] = (Bt)te[o,l] as L — 0, (22)

where = denotes weak convergence, and (B;);>o is a two-dimensional Brownian motion
with a non-degenerate covariance matrix, cf. (3.28).
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Uniform prudent walk: scaling limits

The proof of Theorem 2.2 follows the strategy used by [2]. We consider the so called
uniform 2-sided prudent walk (cf. Section 3), a sub-family of prudent walks with a
fixed diagonal direction. First we prove that the scaling limit of the uniform 2-sided
prudent walk is a straight line, cf. Theorem 3.1. A weaker version of this result was
already proven by [3, Proposition 6]. We reinforce it by using an alternative probabilistic
approach. We decompose a path into a sequence of excursions, which leads to an
effective one-dimensional random walk with geometrical increments, see e.g., Figure
1. Then we show that under the uniform measure, a typical path of length L crosses its
range from one end to the other at most log L times and the total length of the first log L
excursions also grows at most logarithmically in L. This results refines the upper bound
obtained by [6]. The excursions crossing the range of the walk disappear in the scaling
limit, while the remaining part of the path is nothing but a uniform 2-sided prudent walk
(in one of the four diagonal directions), for which we have identified the correct scaling
limit.

Theorem 2.3 can be proved using the same strategy. Once it is shown to hold for the
2-sided uniform prudent walk, cf. Theorem 3.2, then it also holds for the uniform prudent
walk thanks to control on the number of excursions crossing the range of the walk.

2.1 Organization of the paper

The article is organized as follows: In Section 3, we introduce the uniform 2-sided
prudent walk and identify its scaling limit. In Section 4, we analyze the uniform prudent
walk and prove some technical results needed to control the excursions crossing the
range of the walk. Lastly, we prove our main results Theorems 2.2 and 2.3 in Section 5.

3 Uniform 2-sided prudent walk

Let QJLr be the subset of 2; containing the so called 2-sided prudent path (in the
north-east direction), that is, those paths = € 2, satisfying three additional geometric
constraints:

1. 7 can not take any step in the direction of any site in the quadrant (—oo, 0]%;

2. The endpoint 7y, is located at the top-right corner of the smallest rectangle con-
taining ;

3. w starts with an east step (—), i.e., m = (1,0).
We denote by Pf{nm ;. the uniform measure on ;. Theorems 3.1 and 3.2 below are the

counterparts of Theorems 2.2 and 2.3 for the uniform 2-sided prudent walk. Recall that
er =(1,1).

Theorem 3.1. There exists a ¢ > 0 such that for every € > 0,
LILH;O P:mf,L( sup ‘%tL — cté'1| < 5) =1. (3.1)
tel0,1]

Theorem 3.2. Under P! ., ,,
(VL(FE -~ cté1)),eoq = (Bicpoy)  as L — oc. (3.2)

where B is the same two-dimensional Brownian motion as in Theorem 2.3.
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Uniform prudent walk: scaling limits

3.1 Decomposition of a 2-sided prudent path into excursions

Every path 7 € Qz can be decomposed in a unique manner into a sequence of horizontal
and vertical excursions (see Figure 1). First we introduce some notation. For 7 € QJLr
and ¢ < L, denote m; = (m; 1, m;,2). Let 79 := 0 and

mi(m) :=min{i >0 : mo >0} =1, 7o(r):=min{i >n : my >7r, -1, (3.3)

which are the times when the first horizontal, resp. vertical excursion ends. For k£ € IN,
define

Tok1(7) :=inf{i > Top @ Mo > mry, o} — 1, Topgo(m) ;= inf{d > Topy1 @ M1 > Trpy, p— L

Let vz (m) := min{j > 1: 7;(7) = oo} be the number of excursions in 7. Note that each
horizontal excursion starts with an east step, and each vertical excursion a north step.
Since the endpoint 7, lies at the top-right corner of the smallest rectangle containing
m, the last excursion of 7 can be made complete by adding an extra north step if it is a
horizontal excursion, or adding an extra east step if it is a vertical excursion. Therefore,
with a slight abuse of notation, we redefine 7, := L. We can thus decompose 7 into the
excursions ((mr,_,,...,r,)),",, which are horizontal for odd k and vertical for even k.

3.2 Effective random walk excursion

Let Z; denote the set of horizontal excursions of length ¢, flipped above the x-axis, i.e.,

T = {7r = (mo,m1,...,m): mo = (0,0), m = (1,0), m2>0Vie{l,... t}, mo= 0}.
(3.4)
Recall from Section 3.1 that each path 7 € Qz can be decomposed uniquely into v, ()
excursions of length 7, — 7,1, i« = 1,...,7.(m). These excursions are alternatingly
horizontal and vertical, with the first excursion being horizontal, see Figure 1. We can
thus partition Qf according to the value of r := v, (7) and the excursion lengths ¢1, ..., t,..
Defining

1
K(t) := ?’L

) (3.5)
we have that

Zlo=> ¥ JElx=-X ¥ I[rw. s

r>1t1+-+t,=Li=1 r>1 ¢+ +tp=Li=1

We now follow the idea introduced in [2] and rewrite (3.5) in terms of a one-dimensional
effective random walk V = (V;)2,. The walk V starts from 0, has law P, and its
increments (U;)2, are i.i.d. and follow a discrete Laplace distribution, i.e.,

11

3 2l=|”
Lemma 3.3. Given the walk V andt € N, let n, := min {i > 1: i + Z§'=1 |U;| > t}, then

PlU, =x) = r € 7. (3.7)

O, 3 't
K(t) = B[S DM Ly o vicn v o s, |Uj\=t}] (3.8)

Proof. For each 7 € 7, (cf. (3.4)), let n(w) := |m1 — mo,1| be the number of horizontal
steps. Each horizontal step is followed by a stretch of vertical steps, and for 1 <i <mn,
let ¢; € Z denote the vertical displacement after the i-th horizontal step. This gives a
bijection between Z; and Uizl L+, where

J n n
Loy = {e:(él,...,en) €Z": Y L>0Vji=1,....n, ) Lr=0n+) (] :t}.
k=1 k=1 j=1
(3.9)
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Page 4/19


http://dx.doi.org/10.1214/17-EJP87
http://www.imstat.org/ejp/

Uniform prudent walk: scaling limits

2-sided prudent path - Excursions of effective random walk V

Figure 1: We decompose a path 7 € STLr into a sequence of horizontal and vertical excur-

. 4 . . . . .
sions ((77ka1 e ,wTk)) x—1- €ach associated with an effective one dimensional random
walk excursion.

At this stage we note that

1 1 1 3ynm & 11 log( 3
- _ R (et _ - - . nlog(3)
ot |It| = Z ot—n(r) gn(m) (2) - Z Z 3n 9% 5 ;1€ 2 (3.10)
wELy n=1£0cLy ¢
By identifying ¢ = (¢4, ..., ¥¢,) in (3.10) with the increments of V, we get (3.8). O

3.3 Representation of the law of a uniform 2-sided prudent walk

I.Aemma 3.4.let K be as in (3.8), then there exists \* > (0 such that
K\ =302 K(t)e Nt =1.
Remark 3.5. We will denote by K* the probability measure on IN defined by

K*(t)=K(t)e ™",  tel. (3.11)

The proof of Lemma 3.4 below shows that there exists A < A\* such that 1 < IA{(X) < 00.
Therefore K* has exponential tail, i.e., there exist ¢1, ¢ > 0 such that K*(n) < ¢je™ 2"
for every n € IN.

The proof of Lemma 3.4 will be given at the end of the present section. We first explain
how the law K* can be used to express the law P* of the excursions of the uniform
two-sided prudent walk. Continuing Section 3.2, let V, be the set of all non-negative
excursions of the effective walk, i.e.,

Voo i= |J {(V)Xo: Vo=0,Vi = 0% < N, Viy =0} (3.12)
N>1

By (3.8) and Lemma 3.4, we obtain the following probability law P* on V.., with Radon-
Nikodym derivative

dP” VN N .

p (V) = stV RS 10D, (3.13)
We will show that P* is in fact the law of a uniform 2-sided prudent walk excursion. To
that end, consider a sequence (t;,n;);_; € IN" x IN" satisfying t1 +--- +t, = Land n; <{;
for every i < r. Let Qz ((ti, ni)gzl) denote the set of 2-sided prudent path consisting of r
excursions, where the ¢-th excursion has total length ¢;, with n; horizontal (resp. vertical)

EJP 22 (2017), paper 66. http://www.imstat.org/ejp/
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steps if it is a horizontal (resp. vertical) excursion. By the reasoning leading to (3.6),
with o* :=log(3/2) — A\*, we obtain

1
Ealohy o \T *>\ L a*n;—X\*(t; 777,1)
2L|QL ((tlanl)z 1 HE{ {‘/}Zongnigvni:07ni+2;i1|Uj|:ti} .

(3.14)
If (T;, N;)ien denotes an i.i.d. sequence such that Ny = N and 73 = N + Zfil |U;| for a
random walk excursion (Vi)ij\io following the law P* in (3.13), and

Jp=min{i >1: Ty +---+1T, > L}, (3.15)

then by (3.6) and (3.14), for any set of paths A which is a union of some QF ((¢;,n;)_;),
we have

I )

]

Plin(A) = , (3.16)

P*[T1+---+T5L=L}

where we also used P* to denote the joint law of the i.i.d. sequence of effective random
walk excursions that give rise to (7}, NV;);en. This representation will be the basis of our
analysis.

Proof of Lemma 3.4. The existence of \* is guaranteed if A** := inf{\ > 0: K()\) < oo}
satisfies K (A**) > 1. To show this, let 7 be the first time the walk V' returns to or crosses

the origin, i.e.,
1 ifVi =0,
=4 _ (3.17)
min{i > 2: V;_1V; <0} otherwise.

Let o :=log(3/2) — A\. By (3.8) and decomposing V' € V, into positive excursions, we can
write

R) = S B[etos®-0mdtom g s i)
t>1

=S¥ EfeeN Ay . N
- {Vi>0 Vi<N,VN=0,N+3 ., |Ui|=t}
t>1 N<t

_ Z E{ aN —AZL 1|U|1{V>0 Vi<N, Vn= 0}}

= Z Z HE{ R N Vg n_o}}

N=1r=1ni+--+n,.=N i=1

(ZE{ TATL I 1y oy O}D’"

( [ ar=AL 1, U] 1{V1207VT:0}DT . ia(,\)’”_ (3.18)
r=1

Therefore \** = inf{\ > 0: G(\) < 1}, and it suffices to show that G(A**) > 1/2. Note
that

g

p"qg

1

%
Il

tnqg

r=1

@

E|:eo¢7'—/\z:=1 U] 1{\4:0}} — %7 (3.19)
and
S ST 1
E[em—xzml\w\ 1{V1>0’T:n}} :E{ea AY T Ui L{vis0,r=n,v, =0} | 575, (3.20)
1—e"*/2
EJP 22 (2017), paper 66. http://www.imstat.org/ejp/

Page 6/19


http://dx.doi.org/10.1214/17-EJP87
http://www.imstat.org/ejp/

Uniform prudent walk: scaling limits

because given (V;)!'~)} with V; > 0, the events {r = n,V,, = 0} and {7 = n} differ only in
that the first event requires U,, = —V,,_1, while the second event requires U,, < —V,,_1,
—ka

and the probability ratio of the two events is precisely > .-, S = ﬁ by (3.7).
Summing over n in (3.20), using the symmetry of V and (3.19) then gives

e 1 e A 1 e T AST
— (= _ _ _ T— ZZ: |Us|
G =5 (2+ y )+2<1 5 )E{e . } (3.21)
Now let \ be the unique solution of
log E[e MUl = —ar = X — log(3/2), A€ [0, 00).

n

Then (M;})nzo = (e"‘”*;\zi:l IUil),,>¢ is a positive martingale. We will show that E[MT)‘] =
1, which then gives G(\) = 14 "‘?A € (1/2,1). By definition, we have A > \**. Since
A — G()) is strictly decreasing, we conclude that G(A\**) > G(A) > 1/2.

It remains to prove that E[M;A\} = 1. Note that 7 is an almost surely finite stopping time,

so that M), converges almost surely to M. Fatou’s lemma implies E[A/}] < 1. On the
other hand,

5 . B . X
E(M}] = lim B[M} 1(;cy] = lim (1-E[M), 1rany]). (3.22)
It remains to prove that lim,,_, E[M,%l{wn}] = 0. Let ((71-)1-21 be ii.d. with law P such

that
~ ~ 1

PU,=2)= —— el py, = cZ.
(=)= g =io ¢ Cr=a), @

We observe that

—:\\U1|] = =

E(M} (0] = e TosBe Bz 5y — B(r > ). (3.23)

Under 15,~the random walk increments ((71)121 are symmetric and integrable. Thus, 7
is finite P-a.s. and the right hand side in (3.23) converges to 0 as n tends to co. We
conclude that E[M}] = 1. O

3.4 Scaling limit of the uniform 2-sided prudent walk

In this section we prove Theorems 3.1 and 3.2.

Proof of Theorems 3.1 and 3.2. Let P* be the law of the i.i.d. sequence of effective
random walk excursions as in (3.13), and let (ﬁ, Z\Nfi)iE]N and 7y, be as introduced after
(3.14). Then by the law of large numbers, as L — oo, almost surely we have :’TL —
E*%YNH] > (), since fl has exponential tail by Remark 3.5. Let 7, = Zle i which defines
a renewal process. For any t, < 1/E*[T}], note that by the renewal theorem, cf. [5,
Appendix A], the law of (ﬁ7 Ni)lgigtn 1 conditioned on L € 7 is equivalent to its law under
P* without conditioning, in fact their total variation distance tends to 0 as L tends to
infinity since L — ZZU:LI ﬁ — o0 in probability. Therefore to identify the scaling limit of
(mi)iek under P:“mf’L, by (3.16), it suffices to consider P* in place of P:“mf’L.

Recall that the 2-sided uniform prudent walk 7 is constructed by concatenating alternat-
ingly eastward horizontal excursions and northward vertical excursions, where modulo
rotation, the excursions have a one-to-one correspondence with the effective random
walk excursions. Therefore if we let X,, := (X,, 1, X, 2) be a random walk on 72 with

noo _ _ n . _ _ E* ]’\7
Xng =Y (Noii1—c(Toic1+Tai)), Xno = (Naoj—c(Toi—1+T5)), wherec= £ ~1] ;
i=1 i=1 2E [Tl]
(3.24)
EJP 22 (2017), paper 66. http://www.imstat.org/ejp/
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then X,, = m,(,) — cp(n)e1, with p(n) = Zle T playing the role of time change. By the
strong law of large numbers, P*-a.s., we have

(lX,fL)t>0 —~0 and (M)DO — (AE*[Tv)

17 17 (3.25)

>0

It is then easily seen that, with I := {+ Zfil T, :1 <k < toL/2}, the rescaled path 7~
satisfies )
sup ’77{‘ —ct é'l‘ = sup ‘*Xgafl(tL)‘ —0 P*-a.s. as L — co. (3.26)
tel ter | L
In fact (3.26) still holds if the supremum is taken over all 0 < ¢ < % Zfole ﬁ since for
the ¢-th excursion, the prudent path deviates from the end points of the excursion by at
most T;, which has exponential tail by Remark 3.5. It is then easily seen that

1 ~
— max T; =0 P*-a.s. as L — oco. (3.27)
VL 1<i<L
Therefore (3.26) holds with sup taken over ¢ € [0,%], with % := limz_ o0 %Zf‘;ﬁ T, =
toE*[T1] < 1, and (%tL)te[O,fo] converges in probability to (cté1),c (o7, under P* as well
as P;“nif) - We can now deduce (3.1) by letting #, 1 1, using that modulo time reversal,
translation and rotation, (m;);Z __; has the same law as (m;)sL, under ijf, - and hence
is negligible in the scaling limit as ¢ | 0.

The proof of Theorem 3.2 is similar. By (3.27), it suffices to consider 7; — ct€; along the se-
quence of times (¢, )nen, Which is a time change of (X, ),en. It is clear that (XtL/\E)tzo
converges to a Brownian motion (Et)tgo with covariance matrix E[El,i’él’ i1 =E[X1,X: ;]
Undo the time change ¢, which becomes asymptotically deterministic by (3.25), we find
that under P*, hence also P/,

~1, -
VL(F} - t€1)e0,) = (Bt)ie(o,7)
where B is a Brownian motion with covariance matrix

E[2NE[T] - E'[N)(Ty + T3)) @N;E*[T1] — E* [N\ ](Th + T»))]

E[B, ;B ;]= =— ,4,7=1,2.
! SE*[T})3

(3.28)

Letting ¢9 T 1 and applying the same reasoning as before then gives (3.2). O

4 Uniform prudent walk

By symmetry, we may assume without loss of generality that the prudent walk starts
with an east step, and the first vertical step is a north step. We will assume this from
now on.

4.1 Decomposition of a prudent path into excursions in its range

We now decompose each prudent path = € €1, into a sequence of excursions within
its range (see Figure 2). We use the same decomposition as in [2, Section 2], which is
slightly different from our decomposition for the 2-sided prudent path.

For every t < L, let A, (resp. B3;) denote the projection of the range of 7 onto the x-axis
(resp. y-axis), i.e.,

Ay={m1€2:0<i<t} and By={m2€Z:0<i<t} (4.1)

EJP 22 (2017), paper 66. http://www.imstat.org/ejp/
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Vo A
A
Ty
1
’TI'p2 O
R4
R,
\ > S >
(0,0) '7Tpl
“—>

R,

Figure 2: We decompose a path 7 € (1, into a sequence of excursions. The i-th excursion
is a horizontal excursion if ¢ is odd, and vertical excursion if ¢ is even. The 1-st excursion
corresponds to the sub-path 7y ,,}, the 2-nd to the sub-path 7, ,,1; and so on. At the end
of the i-th excursion, if ¢ is odd (resp. if i is even) we set R; to be the width (resp. the
height) of the range. The last excursion is incomplete.

Let W, = | A;| and H; = |B;| denote respectively the width and height of the range 7o ;.
Define Hy = Wy = 1, and set py = vy = 0. For k£ > 0, define

Pk+1 = min{t > v 2 He > Ht—l} -1, vgp1 = min{t > Pyl 2 W > Wt—l} —1. 4.2)

We say that on each interval [py, vg] (resp. [vk, pr+1]) ™ performs a vertical (resp. horizon-
tal) excursion in its range, and the path is monotone in the vertical (resp. horizontal)
direction. Note that each excursion ends by exiting one of two sides of the smallest
rectangle containing the range of 7 up to that time, and the excursion ends at a corner
of this rectangle.

Let 1 (7) be the number of complete excursions contained in 7, where the last excursion
is considered complete if adding an extra horizontal or vertical step can make it complete.
Let T; denote the length of the i-th excursion, NN; its horizontal (resp. vertical) extension
if it is a horizontal (resp. vertical) excursion, and let &; = 1 if the excursion crosses the
range and let & = 0 otherwise. More precisely, a horizontal excursion on the interval
[Vk, prt1] crosses the range if |7, , o — 7y, 2| = H,,,,.- We can thus associate with
every m € Qy the sequence (T}, N;, £ );’i@. Note that the i-th excursion is a horizontal
excursion if 7 is odd, and vertical excursion if 7 is even. For 7 € IN, let R;,_; denote the
width (resp. height) of the range of = before the start of the i-th excursion if it is a
vertical (resp. horizontal) excursion. It can be seen that R; = R;_s + N, for i > 1, with
R_1=Ry=0.

4.2 Effective random walk excursion in a slab

The one-to-one correspondence in Section 3.2 between the excursion paths (which are
partially directed) and the effective random walk paths can be extended to the current
setting, except that now the effective random walk lies in a slab corresponding to the
range of the path at the start of the excursion, and the excursion may end on either side

EJP 22 (2017), paper 66. http://www.imstat.org/ejp/
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of the slab. As a consequence, we define a measure Lz on IN x IN x {0,1} by

og(2)n—A*t
LR(t, ’I’L,O) = E{el g(3)n—A"t l{ViG{O,M,R} Vi<n, Va=0,37_, |Ui|:t*n}i|7
(4.3)

i =1

Lg(t,n,1) = E{el‘)g(%)"”*t Livie{o,...,R} Vi<n, V,=R, 37 |U7¢\:t—n}}~

When R = 0, define Ly(t,n,1) as above and define Ly(¢,n,0) = 0. Let L g be a variant of
L that accounts for an incomplete excursion (cf. Figure 2), i.e.,

T og(3)n—A*
ALR@,N)==E[61“2) Atl{WG{Q~wR}Wﬁnﬂ<v%<RQ:LﬂﬂhF4*nJ7 (4.4)

where \* is as in Lemma 3.4. We also set Lp(t) = Y on>1 Lr(t,n) and L(0) = 1.

Let a* = log(3)—\*, and let (t;,n;,&;) € N*x{0,1}, 1 <4 < r, be such that t;+---+t, < L
and n; < t;. Let QL((ti, ni,si)lf:l) be the set of prudent paths containing r complete
excursions, with (73, N;, &), = (ti,ni,€;)i—;, and recall (R;_1);en from the end of
Section 4.1. Reasoning as for (3.14), we then have

1 oy
27L|QL((tianiagi)£:1)|e A

r

— E ea*ni—)\*(ti—ni) s
1_]1: {Vie[O;Ri—l] Vi<ng, Vo, =eiRi—1,ni+32 ;24 |U; \:ti}
i=

X Lp, (L= (ty+---+1)) (4.5)

= |:HLRil(tiani>5i):| ERT (L —(t1+--- +tr))7
i=1

where Lp, (L — (t; + - - + t,.)) accounts for the last incomplete excursion in 7.

4.3 Representation of the law of a uniform prudent walk
We now show how to represent the law of the uniform prudent walk in terms of the
excursions of the effective random walk V.

For R € N, let Vi be the set of effective random walk paths in a slab of width R and
ending at either 0 or R. Namely,

V= |J [VirUVEA], (4.6)
N>1

where fora =0, 1,
Vg = {(m—)gioz Vo=0,V;€{0,....,R}¥ie{0,..., N}, Vy = aR}. 4.7)

Recall the effective random walk excursion measure P* from (3.13). We will define a
probability law P} on Vi by sampling a path under P* and truncating it if it passes
above R 4+ 1. More precisely, define the truncation Tr : V. — Vg as follows. Given
V= (Vi)f\;() € Voo, let TRV :=V if V; < R for every i < N. Otherwise, let 7 := inf{i >
1: V; > R+ 1} and set

(TRV); =V; fori<rg—1and (TgRV),, = R. (4.8)

Then define P} as the image measure of P* under Tx. For each trajectory V € Vg,
we associate (T, N,€) such that N is the number of increments (U;))Y, of V, T =
N+Zi]\;1|Ui,and€: 1lif Vv =Rand £ =0if Vy =0(f R =0, set £ = 1). Let L},

EJP 22 (2017), paper 66. http://www.imstat.org/ejp/
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denote the law of (T, N,£) when V is sampled from P}, and we observe that L}, and Ly
(cf. (4.3)) coincide when ¢ = 0, i.e.,

Lg(t,n,0) = Li(t,n,0), (t,n) € N x IN. (4.9)

Let (‘7( )i>1 be an i.i.d. sequence of effective walk excursions with law P, and for each
i € N, let (T, N;) denote the total length and the number of increments of V(). We now
construct a sequence (T}, N;, &;);>1 from (V( ))121 inductively, using the truncation map
Tr. First set R_1 = Rp := 0. For each i > 1, set

VO =Tp, VO, (N, T,&) = (N, T,E)(VY), and R, =Rio+N,.  (4.10)

where (N, T, 5)(V<L>) is the triple (N, T, £) associated with V@) € Vg, . Foreveryi>1,

we have N; < N; and T, < T;, and conditioned on ( T;,N;, & )J 1 the law of (N;, T3, &)
is P} R._,- Note that the excursion decomposition of a prudent path in Section 4.1 gives

exactly a sequence of excursions of the form (TRV/(Z'))Z-ZL
For a set of prudent paths A C 2, depending only on (T}, N;, &)~ (), where
vy =min{i >1: Ty +---+T; > L} — 1, (4.11)
let (¢;,n4,€;)I_; ~ A denote compatibility with A. By (4.5), we then have
1, xer - -
oz 1 Ale = > {HLRil(ti,ni,ei)] Lp,(L—(ti 4+ +1))
(tinisei)i_~A —i=1

- 1 N,&)  Lp,(L—(Ti+ +T,))
= X . NYL ¥ * * 9
{(Te,Ni, €)1 ~ A} 1l Ly (T, Ni, &) Ph (T>L—(Th+-+T,,)

(4.12)

where E* is expectation over the i.i.d. excursions (V(i))izl, and hence (T;, N;, &;)i>1-
We conclude this section with two technical lemmas needed to control the ratios inside
the expectation in (4.12). For ease of notation, let us denote
= Lg(t,n,e) and  Lg(t) := La(t,0) + Lg(t,1). (4.13)
n>1
Lemma 4.1. There exists C' > 0 such that

Lg(t)
Ly (1)

<(Ct 1{,523} + 1{t<R} forallt € IN. (4.14)

Proof. First, observe that for ¢t < R, a path of length ¢ cannot reach level R. Therefore,
Lg(t,n,1) = L}(t,n,1) = 0 and Lg(t,n,1) = Li(t,n,1). It only remains to consider
t > R, and it suffices to show that Lg(¢,1) < CtLg(t,0) = CtL%(t). For simplicity we
only consider the case R € 2IN, but the case R € 2IN + 1 can be treated in a similar
manner. Let

BE, ::{(m);;oz Vo=0,V; €{0,....R} Vi € {0,...,n}, Vs = R, Y |U]| :t—n},
(4.15)

AR, _{(w);;O: VO:O,VZ»e{O,...,R}Vie{(),...,n},vn:O,Z|Ui|:t—n}. (4.16)
=1

We define a map Gff, : Bf, — A, U Al as follows. For V € Bff,, let 75 := min{i >
1: V; > R/2}. We distinguish between two cases (see Figure 3):

EJP 22 (2017), paper 66. http://www.imstat.org/ejp/
Page 11/19


http://dx.doi.org/10.1214/17-EJP87
http://www.imstat.org/ejp/

Uniform prudent walk: scaling limits

1. If V7, = R/2, then define GE (V) by simply reflecting V across R/2 from 75/,
onward, i.e., GF,(V); = Vi fori < 7p/p and G ,(V); = R—V, fori € {rg/s,...,n}.

Then, GE (V) € Af,

2. If Vp,, = R/2+y with y € {1,..., 5}, then let GE,(V); = V; for i < 155 —
L GE(V)rgyy = 5 -1, GE(V)i = R=Vi_y fori € {rgj2+1,...,n+ 1} and

GE (V)ns2 :=0. Then, GF,(V) € A, ,.

Note that under G}, every V € GE (BE,) N A, has a unique pre-image in BJ
every V e GE (Bf,) n A, , has at most n < ¢ pre-images in B, one for each time
that V' is at level £ — 1. Finally, we note that in the second case, G{ft( ) has two fewer

vertical steps and two more horizontal steps than V. This allows us to write

.t and

i [ log(3)n—A"t 1B§,t(v)} 417

IN

t
Z |:10g Byn—A"t Lan (V)} +tE[elog(%)(n+2) M1 (V)]

n+2,t
Observe that the r.h.s. in (4.17) is less than 3" _, Lgr(n,t,0) + tLgr(n + 2,t,0), which
implies
Lg(t,1) < 2tLg(t,0). (4.18)
This concludes the proof of the lemma. O

To bound the last ratio in (4.12), we will bound ER(t)/P}(T > t), which arises from
the last incomplete excursion in the excursion decomposition. Recall that L r(0):=1=

P%(T > 0).
Lemma 4.2. There exists C' > 0 such that

Lg(t)

< 2 ) .
P> 1) - CRt forall R,t ¢ N (4.19)

Proof. Recall L r(t) from (4.4). It suffices to show that there exists C' > 0 such that

Lr(t) < CRELy(t +2,0), (4.20)
since
PR(T>1) =Y Li() =D Lp(5,0) = Lr(j,0) > Lg(t+2,0).
j>t j>t i>t
Forz € {1,...,R—1} and n < t, we consider the set of effective random walk trajectories

D :{(m;;oz Vo=0,V; €{0,....R}Vi € {0,...,n}, Vo =, > U] = t—n}. (4.21)
=1

For simplicity, we assume that z is even, but the case x odd can be treated similarly. Let
Ogy2 =max{i >0: V; <} and o, :=min{i >0,/ +1: V; > z}. (4.22)

We define a map Hf;f : Df‘f — AE 5 .o (cf. (4.16)) as follows. Let V € Dﬁf. We
distinguish between four cases:
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Via G’r]it (V)i“
/‘ R R
TR/2 z TR/2 i
(@)
Via G (V)iA

TR/2 t TR/2 v
(b)

Figure 3: The transformation G ,(V). We let 75/, := min{i > 1: V; > R/2}. In (a) we
draw the case in which V;, , = R/2. In this case we define GE (V) by simply reflecting
V across R/2 from 7., onward (in blue, dotted). In (b) we draw the case in which
Vrn» > R/2. In this second case we let GF,(V).,,, = £ — 1 (in red, dotted) and we
concatenate the reflection of V' across R/2 from 75/, onward. We add a final point

GE (V)n42 := 0 (in blue, dotted).

1. Vo, 01 > x/2and V5, >z,
2. Vo, pt1 >z/2and V5, =1,
3. Vo pt1 = xz/2 and Vs, > z,
4. V;, ,+1=2/2and V5, =z.

We will treat case 1 only, where H “ maps V to a path in An+2 +1o (see Figure 4). Cases
2-4 are similar and even simpler, and to ensure that Hfz SV ) € A, ., we can add

extra horizontal steps if needed. Roughly speaking, under Hn ,*, the piece of V on the
interval [0, n] is lowered by /2 and inserted at time o, /, + 2, while the piece of V on
the interval [0,/ + 1,0, — 1] is reflected across z/2 and reattached at the end. More
precisely, set

HRI(V)l =V for <oy,
HY Vg, o1 = 2/2,

HY (V)ay pivi = Vo, pic1 —x/2 for i=1,... ,n+1-37,,
H5 (V) nga— 3 —0u o)t =0 — Vi jpi fOr i=1,...,50 — 042 — 1,
HEF(V)pao = 0.
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Via H5r (V)i

}\/‘J e \/\\ , z/g

> W | % >

Ox/2 Oz 17 7

Figure 4: The transformation Hfjf(V): We fix © < R even and we consider a path V'
ending at V,, = 2. Welet 0,/ := max{i > 0: V; < £} and 0, := min{i > 0,/o+1: V; > x}.
In the figure we draw the transformation Hff(V) when V; .41 >2/2and V5, > . In
this case we define Hff(V)%/zH := 2/2. Then we take the piece of V on the interval
[0.,n] lowered by x/2 and we insert it at time o, /> + 2 (blue). Finally the piece of V" on
the interval [0, /, + 1,0, — 1] is reflected across /2 and reattached at the end (violet).

We add a final point Hf)’f(V)nJrz = 0.

We note that the sum of absolute increments of H,}i’tz(V) equals that of V, and HX" (V)

n,t
is confined to [0, R]. Therefore Hﬁf(V) € Al 5 ;.o It remains to bound the number of
pre-images of every V e A¥,,, ., N Hf;’f (Df‘f) under Hf;f. Note that to undo Hf;f(V),
we only need to find the two times 0,/ +2 and 0, /5 + n + 2 — 7, at which the original
segments of V are glued together and Hf;f(V)i = 0. Since there are at most n? < t2
such choices, and combined with similar estimates for cases 2-4, we have

R—1
Pt =3 E{elog(%)n,,\*t 1D§‘,:(V)} (4.23)
x=1

<4R-1) (326—210g(%)+2)\*E {elog(%)(n+2)—)\*(t+2) 1 . (V)D
< CRt*Lg(t+2,n+2,0),
which establishes (4.20) and hence the lemma. O

As a corollary of Lemma 4.2, we have the following bound on the last ratio in (4.12):

Lp, (L—(Ty+-+T
; RWL( ( 1 '7L)) < CL(L _ (Tl + ... +T’)’L))2' (4.24)
Po (T>L—(Ti+--+T,))

5 Proof of Theorems 2.2 and 2.3

We will use the excursion decomposition developed in Section 4, in particular, the
representation in (4.12). First we show that for large L, a uniform prudent walk typically
crosses its range at most log L times. Namely,

Lemma 5.1. There exists 6 > 0 such that
Llim Punif, L [Ei e{dlogL,...,yp(m)}: &(m) = 1] =0. (5.1)
—00

Then we show that the total length of the first log I excursions grows less than a power
of log L.

Lemma 5.2. For every § > 0, there exists k > 0 such that

Lli_)m Pounit,r [T1(m) + -+ + Ts10g 1.(7) > ki (log L)?] = 0. (5.2)
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Finally, we show that the last incomplete excursion of the walk typically has length at
most log L.

Lemma 5.3. There exists o > 0 such that

lim Punir,r[L— (T1+ -+ T,,) > alogL] =0. (5.3)

L—oo

We prove Theorem 2.2 next using Lemmas 5.1-5.3, whose proof are postponed to
Sections 5.2-5.4.

5.1 Proof of Theorems 2.2 and 2.3
Let §, k,a > 0, and we define G;, C Q, by

Gr ;:{gi = 0Vie {0logL,..., v}, Ti+ + Tsiogr < ti(log L),

L—(Ty+ - +Ty) < alogL}.

By Lemmas 5.1-5.3, we can choose 4, x and a such that limy o Punig,. (G2) = 1.

We introduce a little more notation. Let O := {NE,NW,SE,SW} be the set of possible
directions of a 2-sided prudent path. For o € O let 27 be the set of L-step 2-sided
path with orientation o (e.g. QYE = QF). Pick 7 € Q, and recall that the endpoint of
each excursion of 7 lies at one of the 4 corners (indexed in O) of the smallest rectangle
containing the range of = up to that endpoint. Thus, for = € G;,, we denote by ¥(7) € O
the corner at which the endpoint of the ¢ log L-th excursion lies.

For apath m € Gy, let 01 :=T1 4 - - - + T5105 1 be the length of the first § log L excursions,
and let o5 := L — (T} + - -- + T,, ) be the length of the last incomplete excursion. Note
that (Wi)iL;le is a 2-sided prudent path of orientation ¥(7) because & = 0 for dlog L <
i < v (7). Therefore, we can safely enlarge a bit G, into

JL = {(TI'Z‘)Z»L:T;? S Qi(—ﬂgl—og’ T1—|—' . '+T610gL S /Q(logL)Q, L—(T1+' . '+T’YL) S alogL}.
Note that conditioned on 7 € G, 0y (7) = m, o2() = n, and Y(x) = o, the law of (mi) o

under Ppir , (modulo translation and rotation) is exactly that of a uniform 2-sided pru-
dent walk with total length L —m —n, for which we have proved the law of large numbers
in Theorem 3.1 and the invariance principle in Theorem 3.2. Since Pypir 1, (5 L) — 1,
we only need to consider m < x(logL)? and n < alog L. Since m/v/L,n/+/'L tend to 0
uniformly as L tends to infinity, (m;)"; and (m;)~ ; _, are negligible in the scaling limit,
and hence Theorems 2.2 and 2.3 follow from their counterparts for the uniform 2-sided
prudent walk, with the direction o distributed uniformly in O by symmetry. O

5.2 Proof of Lemma 5.1
Let M = M (L) be an increasing function of L that will be specified later. We set

{{meQp: 3ie[MyL]st.&(r) = 1}1.

5.4
) 6-4)

oy, = Punif,L(Eli S [M,’}/L] S.t.gi(ﬂ') = 1) =

Multiply both the numerator and denominator by 2~ %e~*"~, we can then apply (4.12)
together with (4.24) to obtain
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L Lg,_,(Ti,Ni,&;)
Zj:IVIE [1{81—1} Hz 1 I3, TI,N“E

* 1 (T3, N, &3)
E [ 7L1 L* (TN 5)1{T1+ ATy =L}

]
)
Lg,_ TN$:|
]

arp < CL?

ZJ>ME*{ {T;>4} Hz 1 I3, (TLNE)

E{ e L (T NoE)

U, (L, M)
3 %1 9
=CL D,

<CL? (5.5)

i=1 L3~ (T;,Ni,&) {T1+-+T,, =L}

where we used that & = 1 onlyif 7; > 1+ R;_1, and R; > % for every ¢ € IN (cf. Section
4.1). Lemma 5.1 then follows immediately from (5.5) and Claims 5.4 and 5.5 below.
Claim 5.4. There exist ¢;,cy > 0 such that V1 (L, M) < ¢; e~ M for every M € N and
L>M.

Claim 5.5. There exists c3 > 0 such that Dy > c3 for every L € IN.

Proof of Claim 5.4. Recall from Section 4.3 how (T}, N;i, €;)i>1 is constructed from the
i.i.d. sequence (Vz,Tl, N; )i>1 with law P*, with T, > T;Vi € IN. We first state and prove a
key lemma.

Lemma 5.6. Let L € IN, and let ¢ : ]Ri — R be any function that is non-decreasing in
each of its L arguments. Then there exists ¢ > 0 independent of L and ®, such that

YL I
LR"— (TiaNiagi) ~ ~ -
E* @(Tl7-.-7TL) *Ll:l SE*|:(I) T17...,TL) 1—|—ch1 S el :| (56)
[ i L (T Ns &) ( E( (T,> 21})

Proof. For n € IN, let F,, be the s-algebra generated by (ﬁ-,Ti, N;,&:)i<n. For ease of
notation, let A; denote the L.h.s. of (5.6). Note that

L
Lr, (T, N;, &)
A, <E* {(I)(T ) max{;l,l (5.7)
' 1;[1 Ly, (T, N, &)
L1
Lg, ,(T;, N, &)
=E" e 2 1V H 5.8
[Hmax{%i_lm’%&), ! L} (5.8)
with
Ln, (Tw, Ni,Ep)
Hy = E* {(I)(Tl,...,TL)max{LfL 1(TL NL L) H]-'L 1}
RL—l( L, 7 (5 9)
= Z¢(TI""7TL_17t)Z Z maX{LRLfl(t,n,E),L}%Lil(t,n,a)}.
t n<te=0,1

When ¢t < Ry, we have Lg, ,(t,n,1) = Ly  (t,n,1) = 0, and Lg,_,(t,n,0) =
Ly, (t,n,0) by (4.9), so that

>3 max{Lg,_,(t,n.e), Ly,  (tn.e)} =Ly, (4 (5.10)

n<te=0,1

When t > R;,_1, we have

S8 max{Lg, ,(t,n.e), Ly, (tn.e)}

n<te=0,1
< DY (Lrp o (tme) + Ly, (tn,6)) = Ly, (8) + Ly, (1) < (L+ct) Ly, (#),
n<te=0,1
(5.11)
EJP 22 (2017), paper 66. http://www.imstat.org/ejp/
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where we applied Lemma 4.1. Therefore we have

Hp <Y O(Ty,...,Tp—1,t)(L+ ctlysp, )Lk, ,(b),
: (5.12)
=E" [®(T1,....To1.T0) (1 + TLlyp, >p, 1y) | Fr-1] -

Since R;_q > L=t and TL > T, we can replace Ry _1 by L=1 and 77, by TL in the r.h.s.

of (5.12). Moreover, note that TL does not depend on RL,l, and hence we can plug
(5.12) into (5.7) to obtain

* EaNl>g - -
ALSE {(Hmax{w 1}>(I)(Tla--~7TL17TL)(1+CTL1{:FL2L21}) .
We can now iterate the argument to deduce (5.6). O

To prove Claim 5.4, we now apply Lemma 5.6 with ®(¢1,...,t1) = 1{t1>%} for j > M to
obtain o

Ui(L,M) <Y B |1,

Nl

L
I+t 1})]
i=1

i>M b

<Y E U+ Tlgssy |1 (1+cﬁ1{i>i;})}
ji>m b i£j<L B

= Z E* (1+CT1)1{T1>§}] H (1+CE*[TV11{T1>%}]) (5.13)
i>m b S igsL -

Since Tl has exponential tail under P* (cf. Remark 3.5), there exist Cy, C> > 0 such that
PY(Ty > 1) <E*[Til55,] <Cie”®*  forallleN. (5.14)

This implies that

oo

Ui(L,M)<(14¢) Z Cre @2 3 H (1 +cCre 2 %) < e 2 M, (5.15)
i>M i=1
which concludes the proof of Claim 5.4. O

Proof of Claim 5.5 The claim is essentially a consequence of the renewal theorem.
Note that by construction, we have Ry =0, & = 1, and Lo(Ty, N1, 1) = L§(T1, N1, 1), and
when R; 1 > 1and 7; = 1, or when 7T; < R;_1, we must have & = 0 and Lg, , (T3, N;,0) =
Ly, (T}, N;,0). Therefore, with A > 0 to be chosen later, we can bound

7 Ly, (T N3 E6)
My (@ N, &) A= (5.16)

ZP*(T1+~--+T% =L, T;=1Vie[LA], T < Rj_1Vj € [A+1,v.]).

ML = E*|:

Recall that (T, N;, &)ien is constructed from (IN/i, Tikﬁi)ieﬂ\l with law P* such that 7; > T}
a.s., and when 7; =1 or T; < R;_1, we have T; = T; (cf. Section 4.3). Since Ry, Ry > 1
and R; > % for + > 3, we can bound the r.h.s. of (5.16) by

My >P(Ti+-+ Ty, =L, Ty, =1Vie [1,A], T; < 5 Vj > A),
=P (=) P (Tt 4T, = L—A Ti< 251z 1), (B17)
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where 7, is the counterpart of v, for (ﬁ)iem (recall (3.15)). Since (Tj)je]N is i.i.d. with
exponential tail, we may pick A € IN large enough such that

A+i—-1

P*(i- < Vi> 1) >1 . (5.18)

AR

Having chosen A, the renewal theorem then ensures that there exists Ly € IN such that

LAy

P*(Ty+--+T > —
2F*[T]

YV L > Ly. (5.19)

YL—a

Combining (5.18) and (5.19) then shows that the r.h.s. in (5.17) is bounded from below
by a positive constant uniformly in L > Ly. The proof is then complete. O

5.3 Proof of Lemma 5.2
The proof is similar to that of Lemma 5.1. Let § > 0 and x > 0 and set

BL Z:Punif’L (Tl(ﬂ') + -+ TélogL(ﬂ-) 2 K(log L)Q)
CHmeQp T+ + Tsi0g L > (log L)?}
- €2 | '

Since T4 (m) +- -+ Ts10g . > r(log L)? implies that T; > k6! log L for some 1 < i < §log L,
similar to (5.5), we have

Slog L yax vr Lr;_y(Ti,Ni,&:)
ijl E [I{TjZmS*llogL} I, Lk, (TN &) Uy (L)

= L3
C D,

Br < CL?

LRifl(Tqu‘,,gq‘,) (520)

* v ERi Ui ViCi)
E |: =1 Lf:gi_l(Tth‘;gi)1{T1+"'+T7L:L}}

By Claim 5.5, Dy, is bounded away from 0 uniformly in L. Using Lemma 5.6 and (5.14),
we obtain

dlog L L N
Uo(L) < Z E" [HiznéllogL} H (1 + CTil{izi;})}
j=1 i=1
~ i ~
< (0log L) E* [(1 + )7, 5 051 logL}} II (1 +cE [Tll{iz%}])
i=1
< (dlog L)cle_cz”“r1 log L (5.21)
which tends to 0 as L tends to infinity if « is chosen large enough. O

5.4 Proof of Lemma 5.3

As in the proof of Lemmas 5.1 and 5.2, given § > 0, we set

PL ::Pun‘lfﬁL(L — (Tl(ﬂ') + - +T7L (71')) > alogL)
fmeQy (L— (T4 +Ty,) > alogL))]
a || '

Similar to (5.5), we have

Lr,_,(Ti,N;,E:)
* v R;
E |:1{L—(T1+...+T7L)ZalogL} Hiil L}ii(Ti,Ni,Si)] Uy(L)
pr < CL? = CL? . (5.22)
E* vr Lr;_(Ti,Ni,&) 1 Dy,
i=1 Tf, (TN &) ATk 4Ty =L}
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By Claim 5.5, Dy, is bounded away from 0 uniformly in L. Since L—(T1+- - -+1,,) > alog L
implies max{T},...,7T.} > alog L, again by Lemma 5.6 and (5.14), we have

YL
Lg, ,(Ti, Ni, &)
U3(L) < ET [1 max{Th,...,Tr}>alog L <
{max{Th,....Tr}zalog }ELRPl(Ti,Ni,&')

L
<E [1{max{ﬁ,...,ﬂ}zalog L} H (1+cT 1{%2@,1})}

i=1

= LE? {(1 + CTl)l{ﬁZalogL}} H (1 + CE*[Tll{iHZ%}]) < ClLe_czalogL’ (5.23)

=1

which tends to 0 as L tends to infinity if « is chosen large enough. O
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