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Abstract

We study the 2-dimensional uniform prudent self-avoiding walk, which assigns equal
probability to all nearest-neighbor self-avoiding paths of a fixed length that respect
the prudent condition, namely, the path cannot take any step in the direction of
a previously visited site. The uniform prudent walk has been investigated with
combinatorial techniques in [3], while another variant, the kinetic prudent walk has
been analyzed in detail in [2]. In this paper, we prove that the 2-dimensional uniform
prudent walk is ballistic and follows one of the 4 diagonals with equal probability. We
also establish a functional central limit theorem for the fluctuations of the path around
the diagonal.
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1 Introduction

The prudent walk was introduced in [9, 8] and [7] as a simplified version of the self-
avoiding walk. It has attracted the attention of the combinatorics community in recent
years, see e.g., [3, 1, 4], and also the probability community, see e.g. [2] and [6].

In dimension 2, for a given L ∈ N, the set ΩL of L-step prudent path on Z2 contains all
nearest-neighbor self-avoiding path starting from the origin, which never take any step
in the direction of a site already visited, i.e.,

ΩL :=
{

(πi)
L
i=0 ∈ (Z2)L+1 : π0 = (0, 0), πi+1 − πi ∈ {←,→, ↓, ↑} ∀i ∈ {0, . . . , L− 1},(

πi +N(πi+1 − πi)
)
∩ π[0,i] = ∅ ∀i ∈ {0, . . . , L− 1}

}
(1.1)

where π[0,i] is the range of π at time i, i.e., π[0,i] = {πj : 0 ≤ j ≤ i}.
Two natural laws can be considered on ΩL:
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Uniform prudent walk: scaling limits

1. The uniform law Punif,L, also referred to as the uniform prudent walk, under which
at every path in ΩL is assigned equal probability 1/|ΩL|;

2. The kinetic law Pkin,L, also referred to as the kinetic prudent walk, under which
each step of the path is chosen uniformly among all the admissible steps. Note that
the first step is in one of the 4 directions with equal probability. Subsequently, if a
step increases either the width or the height of its range, then the next step has 3

admissible choices; otherwise there are only 2 admissible choices. Let H(π[0,L−1])

and W(π[0,L−1]) denote the height and width of the range of π[0,L−1]. Then, for
L ∈ N and π ∈ ΩL, we note that

Pkin,L(π) = 1
4

(
1
2

)L−H(π[0,L−1])−W(π[0,L−1]) ( 1
3

)H(π[0,L−1])+W(π[0,L−1]). (1.2)

[2] proved that the scaling limit of the kinetic prudent walk is given by

Zu =
∫ 3u/7

0

(
σ11{Ws≥0}

(
1
0

)
+σ21{Ws<0}

(
0
1

))
ds, where W is a Brownian motion and σ1, σ2 ∈

{−1, 1} are random signs (independent of W ), cf. [2, Theorem 1].

In this paper, we identify rigorously the scaling limit of the 2-dimensional uniform
prudent walk, proving a conjecture raised in several papers, e.g., [2, Section 5], and [3,
Proposition 8] where partial answers were provided for the 2-sided and 3-sided versions
of the 2-dimensional prudent walk using combinatorial techniques. The conjecture,
supported by numerical simulations, was that when space and time are rescaled by the
length L, the 2-dimensional uniform prudent walk converges to a straight line in one of
the 4 diagonal directions chosen with equal probability. This is in stark contrast to the
kinetic prudent walk.

2 Main results

Definition 2.1. For every π ∈ ΩL, let π̃L : [0, 1] 7→ R2 be the rescaled and interpolated
version of π, i.e.,

π̃Lt =
1

L

(
πbtLc + (tL− btLc)(πbtLc+1 − πbtLc)

)
, t ∈ [0, 1].

We also denote ~e1 := (1, 1), ~e2 := (−1, 1), ~e3 := (−1,−1) and ~e4 := (1,−1).

Our first result shows that the scaling limit of the uniform prudent walk is a straight line
segment.

Theorem 2.2 (Concentration along the diagonals). There exists a c > 0 such that for
every ε > 0

lim
L→∞

Punif,L

(
∃ i ∈ {1, . . . , 4} s.t. sup

t∈[0,1]

∣∣π̃Lt − ct~ei∣∣ ≤ ε) = 1. (2.1)

Furthermore, we can identify the fluctuation of the prudent walk around the diagonal.
More precisely, let σL = 1, 2, 3, 4, depending on whether π̃L1 lies in the interior of the 1st,
2nd, 3rd, or the 4th quadrant, and let σL = 0 otherwise. Then we have

Theorem 2.3 (Fluctuations around the diagonal). Under Punif,L, the law of σL converges
to the uniform distribution on {1, 2, 3, 4}, and(√

L(π̃Lt − ct~eσL)
)
t∈[0,1] ⇒ (Bt)t∈[0,1] as L→∞, (2.2)

where⇒ denotes weak convergence, and (Bt)t≥0 is a two-dimensional Brownian motion
with a non-degenerate covariance matrix, cf. (3.28).
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Uniform prudent walk: scaling limits

The proof of Theorem 2.2 follows the strategy used by [2]. We consider the so called
uniform 2-sided prudent walk (cf. Section 3), a sub-family of prudent walks with a
fixed diagonal direction. First we prove that the scaling limit of the uniform 2-sided
prudent walk is a straight line, cf. Theorem 3.1. A weaker version of this result was
already proven by [3, Proposition 6]. We reinforce it by using an alternative probabilistic
approach. We decompose a path into a sequence of excursions, which leads to an
effective one-dimensional random walk with geometrical increments, see e.g., Figure
1. Then we show that under the uniform measure, a typical path of length L crosses its
range from one end to the other at most logL times and the total length of the first logL

excursions also grows at most logarithmically in L. This results refines the upper bound
obtained by [6]. The excursions crossing the range of the walk disappear in the scaling
limit, while the remaining part of the path is nothing but a uniform 2-sided prudent walk
(in one of the four diagonal directions), for which we have identified the correct scaling
limit.

Theorem 2.3 can be proved using the same strategy. Once it is shown to hold for the
2-sided uniform prudent walk, cf. Theorem 3.2, then it also holds for the uniform prudent
walk thanks to control on the number of excursions crossing the range of the walk.

2.1 Organization of the paper

The article is organized as follows: In Section 3, we introduce the uniform 2-sided
prudent walk and identify its scaling limit. In Section 4, we analyze the uniform prudent
walk and prove some technical results needed to control the excursions crossing the
range of the walk. Lastly, we prove our main results Theorems 2.2 and 2.3 in Section 5.

3 Uniform 2-sided prudent walk

Let Ω+
L be the subset of ΩL containing the so called 2-sided prudent path (in the

north-east direction), that is, those paths π ∈ ΩL satisfying three additional geometric
constraints:

1. π can not take any step in the direction of any site in the quadrant (−∞, 0]2;

2. The endpoint πL is located at the top-right corner of the smallest rectangle con-
taining π;

3. π starts with an east step (→), i.e., π1 = (1, 0).

We denote by P+
unif,L the uniform measure on Ω+

L . Theorems 3.1 and 3.2 below are the
counterparts of Theorems 2.2 and 2.3 for the uniform 2-sided prudent walk. Recall that
~e1 = (1, 1).

Theorem 3.1. There exists a c > 0 such that for every ε > 0,

lim
L→∞

P+
unif,L

(
sup
t∈[0,1]

∣∣π̃Lt − ct~e1∣∣ ≤ ε) = 1. (3.1)

Theorem 3.2. Under P+
unif,L,(√

L(π̃Lt − ct~e1)
)
t∈[0,1] ⇒ (Bt)t∈[0,1] as L→∞. (3.2)

where B is the same two-dimensional Brownian motion as in Theorem 2.3.
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Uniform prudent walk: scaling limits

3.1 Decomposition of a 2-sided prudent path into excursions

Every path π ∈ Ω+
L can be decomposed in a unique manner into a sequence of horizontal

and vertical excursions (see Figure 1). First we introduce some notation. For π ∈ Ω+
L

and i ≤ L, denote πi = (πi,1, πi,2). Let τ0 := 0 and

τ1(π) := min{i > 0 : πi,2 > 0} − 1, τ2(π) := min{i > τ1 : πi,1 > πτ1,1} − 1, (3.3)

which are the times when the first horizontal, resp. vertical excursion ends. For k ∈ N,
define

τ2k+1(π) := inf{i > τ2k : πi,2 > πτ2k,2} − 1, τ2k+2(π) := inf{i > τ2k+1 : πi,1 > πτ2k+1,1
} − 1.

Let γL(π) := min{j ≥ 1: τj(π) =∞} be the number of excursions in π. Note that each
horizontal excursion starts with an east step, and each vertical excursion a north step.
Since the endpoint πL lies at the top-right corner of the smallest rectangle containing
π, the last excursion of π can be made complete by adding an extra north step if it is a
horizontal excursion, or adding an extra east step if it is a vertical excursion. Therefore,
with a slight abuse of notation, we redefine τγL := L. We can thus decompose π into the
excursions

(
(πτk−1

, . . . , πτk)
)γL
k=1

, which are horizontal for odd k and vertical for even k.

3.2 Effective random walk excursion

Let It denote the set of horizontal excursions of length t, flipped above the x-axis, i.e.,

It :=
{
π = (π0, π1, . . . , πt) : π0 = (0, 0), π1 = (1, 0), πi,2 ≥ 0 ∀ i ∈ {1, . . . , t}, πt,2 = 0

}
.

(3.4)
Recall from Section 3.1 that each path π ∈ Ω+

L can be decomposed uniquely into γL(π)

excursions of length τi − τi−1, i = 1, . . . , τL(π). These excursions are alternatingly
horizontal and vertical, with the first excursion being horizontal, see Figure 1. We can
thus partition Ω+

L according to the value of r := γL(π) and the excursion lengths t1, . . . , tr.
Defining

K(t) :=
1

2t
∣∣It∣∣, (3.5)

we have that

1

2L
|Ω+
L | =

∑
r≥1

∑
t1+···+tr=L

r∏
i=1

∣∣∣Iti∣∣∣ 1

2ti
=
∑
r≥1

∑
t1+···+tr=L

r∏
i=1

K(ti). (3.6)

We now follow the idea introduced in [2] and rewrite (3.5) in terms of a one-dimensional
effective random walk V = (Vi)

∞
i=0. The walk V starts from 0, has law P, and its

increments (Ui)
∞
i=0 are i.i.d. and follow a discrete Laplace distribution, i.e.,

P(U1 = x) =
1

3

1

2|x|
, x ∈ Z. (3.7)

Lemma 3.3. Given the walk V and t ∈ N, let ηt := min
{
i ≥ 1: i+

∑i
j=1 |Uj | ≥ t

}
, then

K(t) = E
[
elog(

3
2 ) ηt 1{Vi≥0 ∀i≤ηt, Vηt=0, ηt+

∑ηt
j=1 |Uj |=t}

]
. (3.8)

Proof. For each π ∈ It (cf. (3.4)), let n(π) := |πt,1 − π0,1| be the number of horizontal
steps. Each horizontal step is followed by a stretch of vertical steps, and for 1 ≤ i ≤ n,
let `i ∈ Z denote the vertical displacement after the i-th horizontal step. This gives a
bijection between It and

⋃t
n=1 Ln,t, where

Ln,t :=

{
` = (`1, . . . , `n) ∈ Zn :

j∑
k=1

`k ≥ 0 ∀ j = 1, . . . , n,

n∑
k=1

`k = 0, n+

n∑
j=1

|`j | = t

}
.

(3.9)
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Uniform prudent walk: scaling limits

N1 N3

N2

N4

N1 N2 N3 N4

πτ1

πτ2

(0,0)

πτ3

πτ4

2-sided prudent path Excursions of effective random walk V

~

~

~ ~

~ ~ ~ ~

Figure 1: We decompose a path π ∈ Ω+
L into a sequence of horizontal and vertical excur-

sions
(
(πτk−1

, . . . , πτk)
)4
k=1

, each associated with an effective one dimensional random
walk excursion.

At this stage we note that

1

2t
∣∣It∣∣ =

∑
π∈It

1

2t−n(π)
1

3n(π)

(3

2

)n(π)
=

t∑
n=1

∑
`∈Ln,t

1

3n
1

2
∑n
j=1 |`j |

en log( 3
2 ). (3.10)

By identifying ` = (`1, . . . , `n) in (3.10) with the increments of V , we get (3.8).

3.3 Representation of the law of a uniform 2-sided prudent walk

Lemma 3.4. Let K be as in (3.8), then there exists λ∗ > 0 such that
K̂(λ∗) :=

∑∞
t=1K(t)e−λ

∗t = 1.

Remark 3.5. We will denote by K∗ the probability measure on N defined by

K∗(t) = K(t)e−λ
∗t, t ∈ N. (3.11)

The proof of Lemma 3.4 below shows that there exists λ̂ < λ∗ such that 1 < K̂(λ̂) <∞.
Therefore K∗ has exponential tail, i.e., there exist c1, c2 > 0 such that K∗(n) ≤ c1e−c2n
for every n ∈ N.

The proof of Lemma 3.4 will be given at the end of the present section. We first explain
how the law K∗ can be used to express the law P∗ of the excursions of the uniform
two-sided prudent walk. Continuing Section 3.2, let V∞ be the set of all non-negative
excursions of the effective walk, i.e.,

V∞ :=
⋃
N≥1

{
(Vi)

N
i=0 : V0 = 0, Vi ≥ 0 ∀i ≤ N, VN = 0

}
. (3.12)

By (3.8) and Lemma 3.4, we obtain the following probability law P∗ on V∞, with Radon-
Nikodym derivative

dP∗

dP

(
(Vi)

N
i=0

)
= elog(

3
2 )N−λ

∗(N+
∑N
i=1 |Ui|). (3.13)

We will show that P∗ is in fact the law of a uniform 2-sided prudent walk excursion. To
that end, consider a sequence (ti, ni)

r
i=1 ∈ Nr ×Nr satisfying t1 + · · ·+ tr = L and ni ≤ ti

for every i ≤ r. Let Ω+
L

(
(ti, ni)

r
i=1

)
denote the set of 2-sided prudent path consisting of r

excursions, where the i-th excursion has total length ti, with ni horizontal (resp. vertical)
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Uniform prudent walk: scaling limits

steps if it is a horizontal (resp. vertical) excursion. By the reasoning leading to (3.6),
with α∗ := log(3/2)− λ∗, we obtain

1

2L
|Ω+
L

(
(ti, ni)

r
i=1

)
|e−λ

∗L =

r∏
i=1

E

[
eα
∗ni−λ∗(ti−ni) 1{

Vj≥0 ∀j≤ni, Vni=0, ni+
∑ni
j=1 |Uj |=ti

}].
(3.14)

If (T̃i, Ñi)i∈N denotes an i.i.d. sequence such that Ñ1 = N and T̃1 = N +
∑N
i=1 |Ui| for a

random walk excursion (Vi)
N
i=0 following the law P∗ in (3.13), and

γ̃L := min{i ≥ 1 : T̃1 + · · ·+ T̃i ≥ L}, (3.15)

then by (3.6) and (3.14), for any set of paths A which is a union of some Ω+
L

(
(ti, ni)

r
i=1

)
,

we have

P+
unif,L(A) =

|Ω+
L(A)|
|Ω+
L |

=

E∗
[
1A1{T̃1+···+T̃γ̃L=L}

]
P∗
[
T̃1 + · · ·+ T̃γ̃L = L

] , (3.16)

where we also used P∗ to denote the joint law of the i.i.d. sequence of effective random
walk excursions that give rise to (T̃i, Ñi)i∈N. This representation will be the basis of our
analysis.

Proof of Lemma 3.4. The existence of λ∗ is guaranteed if λ∗∗ := inf{λ > 0: K̂(λ) <∞}
satisfies K̂(λ∗∗) > 1. To show this, let τ be the first time the walk V returns to or crosses
the origin, i.e.,

τ =

{
1 if V1 = 0,

min{i ≥ 2: Vi−1Vi ≤ 0} otherwise.
(3.17)

Let α := log(3/2)−λ. By (3.8) and decomposing V ∈ V∞ into positive excursions, we can
write

K̂(λ) =
∑
t≥1

E
[
e(log(

3
2 )−λ)ηt−λ(t−ηt) 1{Vi≥0 ∀i≤ηt,Vηt=0, ηt+

∑ηt
i=1 |Ui|=t}

]
=
∑
t≥1

∑
N≤t

E
[
eαN−λ(t−N) 1{Vi≥0 ∀i≤N, VN=0, N+

∑N
i=1 |Ui|=t}

]
=

∞∑
N=1

E
[
eαN e−λ

∑N
i=1 |Ui|1{Vi≥0 ∀i≤N, VN=0}

]
=

∞∑
N=1

∞∑
r=1

∑
n1+···+nr=N

r∏
i=1

E
[
eατ e−λ

∑τ
i=1 |Ui| 1{V1≥0, τ=ni, Vni=0}

]
=

∞∑
r=1

( ∞∑
n=1

E
[
eατ−λ

∑τ
i=1 |Ui| 1{V1≥0, τ=n, Vτ=0}

])r
=

∞∑
r=1

(
E
[
eατ−λ

∑τ
i=1 |Ui| 1{V1≥0,Vτ=0}

])r
=:

∞∑
r=1

G(λ)r. (3.18)

Therefore λ∗∗ = inf{λ > 0: G(λ) < 1}, and it suffices to show that G(λ∗∗) > 1/2. Note
that

E
[
eατ−λ

∑τ
i=1 |Ui| 1{V1=0}

]
=
eα

3
, (3.19)

and

E
[
eατ−λ

∑τ
i=1 |Ui| 1{V1>0,τ=n}

]
= E

[
eατ−λ

∑τ
i=1 |Ui| 1{V1>0,τ=n,Vτ=0}

] 1

1− e−λ/2
, (3.20)
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Uniform prudent walk: scaling limits

because given (Vi)
n−1
i=0 with V1 > 0, the events {τ = n, Vn = 0} and {τ = n} differ only in

that the first event requires Un = −Vn−1, while the second event requires Un ≤ −Vn−1,
and the probability ratio of the two events is precisely

∑∞
k=0

e−kα

2k
= 1

1−e−λ/2 by (3.7).
Summing over n in (3.20), using the symmetry of V and (3.19) then gives

G(λ) =
eα

3

(1

2
+
e−λ

4

)
+

1

2

(
1− e−λ

2

)
E
[
eατ−λ

∑τ
i=1 |Ui|

]
. (3.21)

Now let λ̂ be the unique solution of

logE[e−λ|U1|] = −α = λ− log(3/2), λ ∈ [0,∞).

Then (M λ̂
n )n≥0 := (eαn−λ̂

∑n
i=1 |Ui|)n≥0 is a positive martingale. We will show that E[M λ̂

τ ] =

1, which then gives G(λ̂) = 1
2 + e−2λ̂

8 ∈ (1/2, 1). By definition, we have λ̂ > λ∗∗. Since

λ 7→ G(λ) is strictly decreasing, we conclude that G(λ∗∗) > G(λ̂) > 1/2.

It remains to prove that E[M λ̂
τ ] = 1. Note that τ is an almost surely finite stopping time,

so that M λ̂
n∧τ converges almost surely to M λ̂

τ . Fatou’s lemma implies E[M λ̂
τ ] ≤ 1. On the

other hand,

E[M λ̂
τ ] = lim

n→∞
E[M λ̂

τ 1{τ≤n}] = lim
n→∞

(
1−E[M λ̂

n∧τ 1{τ>n}]
)
. (3.22)

It remains to prove that limn→∞E[M λ̂
n1{τ>n}] = 0. Let (Ũi)i≥1 be i.i.d. with law P̃ such

that

P̃(Ũ1 = x) =
1

E[e−λ̂|U1|]
e−λ̂|x|P(U1 = x), x ∈ Z.

We observe that

E[M λ̂
n 1{τ>n}] = eαn+logE[e−λ̂|U1|]n P̃(τ > n) = P̃(τ > n). (3.23)

Under P̃, the random walk increments (Ũi)i≥1 are symmetric and integrable. Thus, τ
is finite P̃-a.s. and the right hand side in (3.23) converges to 0 as n tends to ∞. We
conclude that E[M λ̂

τ ] = 1.

3.4 Scaling limit of the uniform 2-sided prudent walk

In this section we prove Theorems 3.1 and 3.2.

Proof of Theorems 3.1 and 3.2. Let P∗ be the law of the i.i.d. sequence of effective
random walk excursions as in (3.13), and let (T̃i, Ñi)i∈N and γ̃L be as introduced after
(3.14). Then by the law of large numbers, as L → ∞, almost surely we have γ̃L

L →
1

E∗[T̃1]
> 0, since T̃1 has exponential tail by Remark 3.5. Let τ̃k =

∑k
i=1 T̃i, which defines

a renewal process. For any t0 < 1/E∗[T̃1], note that by the renewal theorem, cf. [5,
Appendix A], the law of (T̃i, Ñi)1≤i≤t0L conditioned on L ∈ τ̃ is equivalent to its law under
P∗ without conditioning, in fact their total variation distance tends to 0 as L tends to
infinity since L−

∑t0L
i=1 T̃i →∞ in probability. Therefore to identify the scaling limit of

(πi)
t0L
i=1 under P+

unif,L, by (3.16), it suffices to consider P∗ in place of P+
unif,L.

Recall that the 2-sided uniform prudent walk π is constructed by concatenating alternat-
ingly eastward horizontal excursions and northward vertical excursions, where modulo
rotation, the excursions have a one-to-one correspondence with the effective random
walk excursions. Therefore if we let Xn := (Xn,1, Xn,2) be a random walk on Z2 with

Xn,1 =

n∑
i=1

(Ñ2i−1−c(T̃2i−1+ T̃2i)), Xn,2 =

n∑
i=1

(Ñ2i−c(T̃2i−1+ T̃2i)), where c =
E∗[Ñ1]

2E∗[T̃1]
,

(3.24)
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Uniform prudent walk: scaling limits

then Xn = πϕ(n) − cϕ(n)~e1, with ϕ(n) =
∑2n
i=1 T̃i playing the role of time change. By the

strong law of large numbers, P∗-a.s., we have( 1

L
XtL

)
t≥0
→ 0 and

(ϕ(tL)

L

)
t≥0
→
(
2tE∗[T̃1]

)
t≥0. (3.25)

It is then easily seen that, with I := { 1
L

∑2k
i=1 T̃i : 1 ≤ k ≤ t0L/2}, the rescaled path π̃L

satisfies

sup
t∈I

∣∣π̃Lt − ct~e1∣∣ = sup
t∈I

∣∣∣ 1
L
Xϕ−1(tL)

∣∣∣→ 0 P∗-a.s. as L→∞. (3.26)

In fact (3.26) still holds if the supremum is taken over all 0 ≤ t ≤ 1
L

∑t0L
i=1 T̃i, since for

the i-th excursion, the prudent path deviates from the end points of the excursion by at
most T̃i, which has exponential tail by Remark 3.5. It is then easily seen that

1√
L

max
1≤i≤L

T̃i → 0 P∗-a.s. as L→∞. (3.27)

Therefore (3.26) holds with sup taken over t ∈ [0, t̃0], with t̃0 := limL→∞
1
L

∑t0L
i=1 T̃i =

t0E
∗[T̃1] < 1, and (π̃Lt )t∈[0,t̃0] converges in probability to (ct~e1)t∈[0,t̃0] under P∗ as well

as P+
unif,L. We can now deduce (3.1) by letting t̃0 ↑ 1, using that modulo time reversal,

translation and rotation, (πi)
γL
i=γL−εL has the same law as (πi)

εL
i=1 under P+

unif,L, and hence
is negligible in the scaling limit as ε ↓ 0.

The proof of Theorem 3.2 is similar. By (3.27), it suffices to consider πt−ct~e1 along the se-
quence of times (ϕn)n∈N, which is a time change of (Xn)n∈N. It is clear that (XtL/

√
L)t≥0

converges to a Brownian motion (B̃t)t≥0 with covariance matrix E[B̃1,iB̃1,j ] = E[X1,iX1,j ].
Undo the time change ϕ, which becomes asymptotically deterministic by (3.25), we find
that under P∗, hence also P+

unif,L,

√
L(π̃Lt − ct~e1)t∈[0,t̃0] ⇒ (Bt)t∈[0,t̃0],

where B is a Brownian motion with covariance matrix

E[B1,iB1,j ]=
E
[(

2ÑiE
∗[T̃1]−E∗[Ñ1](T̃1 + T̃2)

)(
2ÑjE

∗[T̃1]−E∗[Ñ1](T̃1 + T̃2)
)]

8E∗[T̃1]3
, i, j=1, 2.

(3.28)
Letting t̃0 ↑ 1 and applying the same reasoning as before then gives (3.2).

4 Uniform prudent walk

By symmetry, we may assume without loss of generality that the prudent walk starts
with an east step, and the first vertical step is a north step. We will assume this from
now on.

4.1 Decomposition of a prudent path into excursions in its range

We now decompose each prudent path π ∈ ΩL into a sequence of excursions within
its range (see Figure 2). We use the same decomposition as in [2, Section 2], which is
slightly different from our decomposition for the 2-sided prudent path.

For every t ≤ L, let At (resp. Bt) denote the projection of the range of π onto the x-axis
(resp. y-axis), i.e.,

At =
{
πi,1 ∈ Z : 0 ≤ i ≤ t} and Bt =

{
πi,2 ∈ Z : 0 ≤ i ≤ t}. (4.1)
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(0,0)

πρ2

πν
1

πρ1

πν2

R1

R2

R4

R3

Figure 2: We decompose a path π ∈ ΩL into a sequence of excursions. The i-th excursion
is a horizontal excursion if i is odd, and vertical excursion if i is even. The 1-st excursion
corresponds to the sub-path π[0,ρ1], the 2-nd to the sub-path π[ρ1,υ1] and so on. At the end
of the i-th excursion, if i is odd (resp. if i is even) we set Ri to be the width (resp. the
height) of the range. The last excursion is incomplete.

LetWt = |At| and Ht = |Bt| denote respectively the width and height of the range π[0,t].
Define H0 =W0 = 1, and set ρ0 = ν0 = 0. For k ≥ 0, define

ρk+1 = min{t > υk : Ht > Ht−1} − 1, υk+1 = min{t > ρk+1 : Wt >Wt−1} − 1. (4.2)

We say that on each interval [ρk, υk] (resp. [υk, ρk+1]) π performs a vertical (resp. horizon-
tal) excursion in its range, and the path is monotone in the vertical (resp. horizontal)
direction. Note that each excursion ends by exiting one of two sides of the smallest
rectangle containing the range of π up to that time, and the excursion ends at a corner
of this rectangle.

Let γL(π) be the number of complete excursions contained in π, where the last excursion
is considered complete if adding an extra horizontal or vertical step can make it complete.
Let Ti denote the length of the i-th excursion, Ni its horizontal (resp. vertical) extension
if it is a horizontal (resp. vertical) excursion, and let Ei = 1 if the excursion crosses the
range and let Ei = 0 otherwise. More precisely, a horizontal excursion on the interval
[νk, ρk+1] crosses the range if |πρk+1,2 − πνk,2| = Hρk+1

. We can thus associate with

every π ∈ ΩL the sequence (Ti, Ni, E)
γL(π)
i=1 . Note that the i-th excursion is a horizontal

excursion if i is odd, and vertical excursion if i is even. For i ∈ N, let Ri−1 denote the
width (resp. height) of the range of π before the start of the i-th excursion if it is a
vertical (resp. horizontal) excursion. It can be seen that Ri = Ri−2 +Ni for i ≥ 1, with
R−1 = R0 = 0.

4.2 Effective random walk excursion in a slab

The one-to-one correspondence in Section 3.2 between the excursion paths (which are
partially directed) and the effective random walk paths can be extended to the current
setting, except that now the effective random walk lies in a slab corresponding to the
range of the path at the start of the excursion, and the excursion may end on either side

EJP 22 (2017), paper 66.
Page 9/19

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP87
http://www.imstat.org/ejp/


Uniform prudent walk: scaling limits

of the slab. As a consequence, we define a measure LR on N×N× {0, 1} by

LR(t, n, 0) = E
[
elog(

3
2 )n−λ

∗t 1{Vi∈{0,...,R} ∀i≤n, Vn=0,
∑n
i=1 |Ui|=t−n}

]
,

LR(t, n, 1) = E
[
elog(

3
2 )n−λ

∗t 1{Vi∈{0,...,R} ∀i≤n, Vn=R,
∑n
i=1 |Ui|=t−n}

]
.

(4.3)

When R = 0, define L0(t, n, 1) as above and define L0(t, n, 0) = 0. Let L̂R be a variant of
LR that accounts for an incomplete excursion (cf. Figure 2), i.e.,

L̂R(t, n) = E
[
elog(

3
2 )n−λ

∗t 1{Vi∈{0,...,R} ∀i≤n, 0<Vn<R,
∑n
i=1 |Ui|=t−n}

]
, (4.4)

where λ∗ is as in Lemma 3.4. We also set L̂R(t) =
∑
n≥1 L̂R(t, n) and L̂R(0) = 1.

Let α∗ = log(3
2 )−λ∗, and let (ti, ni, εi) ∈ N2×{0, 1}, 1 ≤ i ≤ r, be such that t1+· · ·+tr ≤ L

and ni ≤ ti. Let ΩL
(
(ti, ni, εi)

r
i=1

)
be the set of prudent paths containing r complete

excursions, with (Ti, Ni, Ei)ri=1 = (ti, ni, εi)
r
i=1, and recall (Ri−1)i∈N from the end of

Section 4.1. Reasoning as for (3.14), we then have

1

2L
|ΩL

(
(ti, ni, εi)

r
i=1

)
|e−λ

∗L

=

r∏
i=1

E

[
eα
∗ni−λ∗(ti−ni) 1{

Vi∈[0,Ri−1] ∀i≤ni, Vni=εiRi−1, ni+
∑ni
j=1 |Uj |=ti

}]
× L̂Rr

(
L− (t1 + · · ·+ tr)

)
(4.5)

=

[ r∏
i=1

LRi−1(ti, ni, εi)

]
L̂Rr

(
L− (t1 + · · ·+ tr)

)
,

where L̂Rr (L− (t1 + · · ·+ tr)) accounts for the last incomplete excursion in π.

4.3 Representation of the law of a uniform prudent walk

We now show how to represent the law of the uniform prudent walk in terms of the
excursions of the effective random walk V .

For R ∈ N, let VR be the set of effective random walk paths in a slab of width R and
ending at either 0 or R. Namely,

VR :=
⋃
N≥1

[
V 1
N,R ∪ V 0

N,R

]
, (4.6)

where for a = 0, 1,

V aN,R :=
{

(Vi)
N
i=0 : V0 = 0, Vi ∈ {0, . . . , R} ∀i ∈ {0, . . . , N}, VN = aR

}
. (4.7)

Recall the effective random walk excursion measure P∗ from (3.13). We will define a
probability law P∗R on VR by sampling a path under P∗ and truncating it if it passes
above R + 1. More precisely, define the truncation TR : V∞ 7→ VR as follows. Given
V := (Vi)

N
i=0 ∈ V∞, let TRV := V if Vi ≤ R for every i ≤ N . Otherwise, let τR := inf{i ≥

1: Vi ≥ R+ 1} and set

(TRV )i = Vi for i ≤ τR − 1 and (TRV )τR = R. (4.8)

Then define P∗R as the image measure of P∗ under TR. For each trajectory V ∈ VR,
we associate (T,N, E) such that N is the number of increments (Ui)

N
i=1 of V , T =

N +
∑N
i=1 |Ui|, and E = 1 if VN = R and E = 0 if VN = 0 (if R = 0, set E = 1). Let L∗R
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denote the law of (T,N, E) when V is sampled from P∗R, and we observe that L∗R and LR
(cf. (4.3)) coincide when ε = 0, i.e.,

LR(t, n, 0) = L∗R(t, n, 0), (t, n) ∈ N×N. (4.9)

Let (Ṽ (i))i≥1 be an i.i.d. sequence of effective walk excursions with law P∗, and for each
i ∈ N, let (T̃i, Ñi) denote the total length and the number of increments of Ṽ (i). We now
construct a sequence (Ti, Ni, Ei)i≥1 from (Ṽ (i))i≥1 inductively, using the truncation map
TR. First set R−1 = R0 := 0. For each i ≥ 1, set

V (i) = TRi−1
Ṽ (i), (Ni, Ti, Ei) = (N,T, E)(V (i)), and Ri = Ri−2 +Ni. (4.10)

where (N,T, E)(V (i)) is the triple (N,T, E) associated with V (i) ∈ VRi−1
. For every i ≥ 1,

we have Ni ≤ Ñi and Ti ≤ T̃i, and conditioned on (Tj , Nj , Ej)i−1j=1, the law of (Ni, Ti, Ei)
is P∗Ri−1

. Note that the excursion decomposition of a prudent path in Section 4.1 gives

exactly a sequence of excursions of the form (TRṼ
(i))i≥1.

For a set of prudent paths A ⊂ ΩL depending only on (Ti, Ni, Ei)γLi=1(π), where

γL = min{i ≥ 1: T1 + · · ·+ Ti > L} − 1, (4.11)

let (ti, ni, εi)
r
i=1 ∼ A denote compatibility with A. By (4.5), we then have

1

2L
|A|e−λ

∗L =
∑

(ti,ni,εi)ri=1∼A

[ r∏
i=1

LRi−1(ti, ni, εi)

]
L̂Rr

(
L− (t1 + · · ·+ tr)

)
= E∗

[
1{(Ti,Ni,Ei)

γL
i=1∼A}

γL∏
i=1

LRi−1
(Ti, Ni, Ei)

L∗Ri−1
(Ti, Ni, Ei)

·
L̂RγL (L− (T1 + · · ·+ TγL))

P∗RγL

(
T > L− (T1 + · · ·+ TγL

)], (4.12)

where E∗ is expectation over the i.i.d. excursions (Ṽ (i))i≥1, and hence (Ti, Ni, Ei)i≥1.

We conclude this section with two technical lemmas needed to control the ratios inside
the expectation in (4.12). For ease of notation, let us denote

LR(t, ε) :=
∑
n≥1

LR(t, n, ε) and LR(t) := LR(t, 0) + LR(t, 1). (4.13)

Lemma 4.1. There exists C > 0 such that

LR(t)

L∗R(t)
≤ C t 1{t≥R} + 1{t<R} for all t ∈ N. (4.14)

Proof. First, observe that for t < R, a path of length t cannot reach level R. Therefore,
LR(t, n, 1) = L∗R(t, n, 1) = 0 and LR(t, n, 1) = L∗R(t, n, 1). It only remains to consider
t ≥ R, and it suffices to show that LR(t, 1) ≤ CtLR(t, 0) = CtL∗R(t). For simplicity we
only consider the case R ∈ 2N, but the case R ∈ 2N + 1 can be treated in a similar
manner. Let

BRn,t :=
{

(Vi)
n
i=0 : V0 = 0, Vi ∈ {0, . . . , R} ∀i ∈ {0, . . . , n}, Vn = R,

n∑
i=1

|Ui| = t− n
}
,

(4.15)

ARn,t :=
{

(Vi)
n
i=0 : V0 = 0, Vi ∈ {0, . . . , R} ∀i ∈ {0, . . . , n}, Vn = 0,

n∑
i=1

|Ui| = t− n
}
. (4.16)

We define a map GRn,t : BRn,t 7→ ARn,t ∪ ARn+2,t as follows. For V ∈ BRn,t, let τR/2 := min{i ≥
1: Vi ≥ R/2}. We distinguish between two cases (see Figure 3):
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1. If VτR/2 = R/2, then define GRn,t(V ) by simply reflecting V across R/2 from τR/2
onward, i.e., GRn,t(V )i = Vi for i ≤ τR/2 and GRn,t(V )i = R − Vi for i ∈ {τR/2, . . . , n}.
Then, GRn,t(V ) ∈ ARn,t.

2. If VτR/2 = R/2 + y with y ∈ {1, . . . , R2 }, then let GRn,t(V )i = Vi for i ≤ τR/2 −
1, GRn,t(V )τR/2 = R

2 − 1, GRn,t(V )i = R − Vi−1 for i ∈ {τR/2 + 1, . . . , n + 1} and
GRn,t(V )n+2 := 0. Then, GRn,t(V ) ∈ ARn+2,t.

Note that under GRn,t, every V ∈ GRn,t(BRn,t) ∩ ARn,t has a unique pre-image in BRn,t, and
every V ∈ GRn,t(BRn,t) ∩ ARn+2,t has at most n ≤ t pre-images in BRn,t, one for each time
that V is at level R2 − 1. Finally, we note that in the second case, GRn,t(V ) has two fewer
vertical steps and two more horizontal steps than V . This allows us to write

LR(t, 1) =

t∑
n=1

E
[
elog(

3
2 )n−λ

∗t 1BRn,t(V )
]

(4.17)

≤
t∑

n=1

E
[
elog(

3
2 )n−λ

∗t 1ARn,t(V )
]

+ tE
[
elog(

3
2 )(n+2)−λ∗t 1ARn+2,t

(V )
]
.

Observe that the r.h.s. in (4.17) is less than
∑t
n=1 LR(n, t, 0) + tLR(n + 2, t, 0), which

implies

LR(t, 1) ≤ 2tLR(t, 0). (4.18)

This concludes the proof of the lemma.

To bound the last ratio in (4.12), we will bound L̂R(t)/P∗R
(
T ≥ t

)
, which arises from

the last incomplete excursion in the excursion decomposition. Recall that L̂R(0) := 1 =

P∗R(T > 0).

Lemma 4.2. There exists C > 0 such that

L̂R(t)

P∗R(T > t)
≤ CRt2 for all R, t ∈ N. (4.19)

Proof. Recall L̂R(t) from (4.4). It suffices to show that there exists C > 0 such that

L̂R(t) ≤ CR t2LR(t+ 2, 0), (4.20)

since
P∗R
(
T > t

)
=
∑
j>t

L∗R(j) ≥
∑
j>t

L∗R(j, 0) =
∑
j>t

LR(j, 0) ≥ LR(t+ 2, 0).

For x ∈ {1, . . . , R−1} and n ≤ t, we consider the set of effective random walk trajectories

DR,xn,t =
{

(Vi)
n
i=0 : V0 = 0, Vi ∈ {0, . . . , R} ∀i ∈ {0, . . . , n}, Vn = x,

n∑
i=1

|Ui| = t− n
}
. (4.21)

For simplicity, we assume that x is even, but the case x odd can be treated similarly. Let

σx/2 := max{i ≥ 0: Vi <
x
2} and σ̃x := min{i ≥ σx/2 + 1: Vi ≥ x}. (4.22)

We define a map HR,x
n,t : DR,xn,t → ARn+2,t+2 (cf. (4.16)) as follows. Let V ∈ DR,xn,t . We

distinguish between four cases:
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(a)

(b)

Figure 3: The transformation GRn,t(V ). We let τR/2 := min{i ≥ 1: Vi ≥ R/2}. In (a) we
draw the case in which VτR/2 = R/2. In this case we define GRn,t(V ) by simply reflecting
V across R/2 from ττR/2 onward (in blue, dotted). In (b) we draw the case in which

VτR/2 > R/2. In this second case we let GRn,t(V )τR/2 = R
2 − 1 (in red, dotted) and we

concatenate the reflection of V across R/2 from τR/2 onward. We add a final point
GRn,t(V )n+2 := 0 (in blue, dotted).

1. Vσx/2+1 > x/2 and Vσ̃x > x,

2. Vσx/2+1 > x/2 and Vσ̃x = x,

3. Vσx/2+1 = x/2 and Vσ̃x > x,

4. Vσx/2+1 = x/2 and Vσ̃x = x.

We will treat case 1 only, where HR,x
n,t maps V to a path in ARn+2,t+2 (see Figure 4). Cases

2–4 are similar and even simpler, and to ensure that HR,x
n,t (V ) ∈ ARn+2,t+2, we can add

extra horizontal steps if needed. Roughly speaking, under HR,x
n,t , the piece of V on the

interval [σ̃x, n] is lowered by x/2 and inserted at time σx/2 + 2, while the piece of V on
the interval [σx/2 + 1, σ̃x − 1] is reflected across x/2 and reattached at the end. More
precisely, set

HR,x
n,t (V )i := Vi for i ≤ σx/2,

HR,x
n,t (V )σx/2+1 := x/2,

HR,x
n,t (V )σx/2+1+i := Vσ̃x+i−1 − x/2 for i = 1, . . . , n+ 1− σ̃x,

HR,x
n,t (V )n+2−(σ̃x−σx/2)+i := x− Vσx/2+i for i = 1, . . . , σ̃x − σx/2 − 1,

HR,x
n,t (V )n+2 := 0.
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Figure 4: The transformation HR,x
n,t (V ): We fix x ≤ R even and we consider a path V

ending at Vn = x. We let σx/2 := max{i ≥ 0: Vi <
x
2} and σ̃x := min{i ≥ σx/2+1: Vi ≥ x}.

In the figure we draw the transformation HR,x
n,t (V ) when Vσx/2+1 > x/2 and Vσ̃x > x. In

this case we define HR,x
n,t (V )σx/2+1 := x/2. Then we take the piece of V on the interval

[σ̃x, n] lowered by x/2 and we insert it at time σx/2 + 2 (blue). Finally the piece of V on
the interval [σx/2 + 1, σ̃x − 1] is reflected across x/2 and reattached at the end (violet).

We add a final point HR,x
n,t (V )n+2 := 0.

We note that the sum of absolute increments of HR,x
n,t (V ) equals that of V , and HR,x

n,t (V )

is confined to [0, R]. Therefore HR,x
n,t (V ) ∈ ARn+2,t+2. It remains to bound the number of

pre-images of every V ∈ ARn+2,t+2 ∩H
R,x
n,t (DR,xn,t ) under HR,x

n,t . Note that to undo HR,x
n,t (V ),

we only need to find the two times σx/2 + 2 and σx/2 + n+ 2− σ̃x at which the original

segments of V are glued together and HR,x
n,t (V )i = 0. Since there are at most n2 ≤ t2

such choices, and combined with similar estimates for cases 2–4, we have

L̂R(t, n) =

R−1∑
x=1

E
[
elog(

3
2 )n−λ

∗t 1DR,xn,t
(V )
]

(4.23)

≤ 4(R− 1) t2
(

32e−2 log( 3
2 )+2λ∗E

[
elog(

3
2 )(n+2)−λ∗(t+2) 1ARn+2,t+2

(V )
])

≤ CR t2LR(t+ 2, n+ 2, 0),

which establishes (4.20) and hence the lemma.

As a corollary of Lemma 4.2, we have the following bound on the last ratio in (4.12):

L̂RγL (L− (T1 + · · ·+ TγL))

P∗RγL

(
T > L− (T1 + · · ·+ TγL)

) ≤ C L(L− (T1 + · · ·+ TγL))2. (4.24)

5 Proof of Theorems 2.2 and 2.3

We will use the excursion decomposition developed in Section 4, in particular, the
representation in (4.12). First we show that for large L, a uniform prudent walk typically
crosses its range at most logL times. Namely,

Lemma 5.1. There exists δ > 0 such that

lim
L→∞

Punif,L

[
∃ i ∈ {δ logL, . . . , γL(π)} : Ei(π) = 1

]
= 0. (5.1)

Then we show that the total length of the first logL excursions grows less than a power
of logL.

Lemma 5.2. For every δ > 0, there exists κ > 0 such that

lim
L→∞

Punif,L

[
T1(π) + · · ·+ Tδ logL(π) ≥ κ (logL)2

]
= 0. (5.2)
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Finally, we show that the last incomplete excursion of the walk typically has length at
most logL.

Lemma 5.3. There exists α > 0 such that

lim
L→∞

Punif,L

[
L− (T1 + · · ·+ TγL) ≥ α logL

]
= 0. (5.3)

We prove Theorem 2.2 next using Lemmas 5.1–5.3, whose proof are postponed to
Sections 5.2–5.4.

5.1 Proof of Theorems 2.2 and 2.3

Let δ, κ, α > 0, and we define GL ⊂ ΩL by

GL :=
{
Ei = 0∀ i ∈ {δ logL, . . . , γL}, T1 + · · ·+ Tδ logL ≤ κ(logL)2,

L− (T1 + · · ·+ TγL) ≤ α logL
}
.

By Lemmas 5.1–5.3, we can choose δ, κ and α such that limL→∞Punif,L

(
GL
)

= 1.

We introduce a little more notation. Let O := {NE,NW,SE,SW} be the set of possible
directions of a 2-sided prudent path. For o ∈ O let Ω o

L be the set of L-step 2-sided
path with orientation o (e.g. ΩNE

L = Ω+
L ). Pick π ∈ ΩL and recall that the endpoint of

each excursion of π lies at one of the 4 corners (indexed in O) of the smallest rectangle
containing the range of π up to that endpoint. Thus, for π ∈ GL, we denote by ϑ(π) ∈ O
the corner at which the endpoint of the δ logL-th excursion lies.

For a path π ∈ GL, let σ1 := T1 + · · ·+ Tδ logL be the length of the first δ logL excursions,
and let σ2 := L− (T1 + · · ·+ TγL) be the length of the last incomplete excursion. Note
that (πi)

L−σ2
i=σ1

is a 2-sided prudent path of orientation ϑ(π) because Ei = 0 for δ logL <

i ≤ γL(π). Therefore, we can safely enlarge a bit GL into

G̃L :=
{

(πi)
L−σ2
i=σ1

∈ Ω
ϑ(π)
L−σ1−σ2

, T1 + · · ·+Tδ logL ≤ κ(logL)2, L−(T1 + · · ·+TγL) ≤ α logL
}
.

Note that conditioned on π ∈ G̃L, σ1(π) = m, σ2(π) = n, and ϑ(π) = o, the law of (πi)
L−n
i=m

under Punif,L (modulo translation and rotation) is exactly that of a uniform 2-sided pru-
dent walk with total length L−m−n, for which we have proved the law of large numbers
in Theorem 3.1 and the invariance principle in Theorem 3.2. Since Punif,L

(
G̃L
)
→ 1,

we only need to consider m ≤ κ(logL)2 and n ≤ α logL. Since m/
√
L, n/

√
L tend to 0

uniformly as L tends to infinity, (πi)
m
i=1 and (πi)

L
i=L−n are negligible in the scaling limit,

and hence Theorems 2.2 and 2.3 follow from their counterparts for the uniform 2-sided
prudent walk, with the direction o distributed uniformly in O by symmetry.

5.2 Proof of Lemma 5.1

Let M = M(L) be an increasing function of L that will be specified later. We set

αL := Punif,L

(
∃ i ∈ [M,γL] s.t. Ei(π) = 1

)
=

∣∣{π ∈ ΩL : ∃ i ∈ [M,γL] s.t. Ei(π) = 1}
∣∣

|ΩL|
. (5.4)

Multiply both the numerator and denominator by 2−Le−λ
∗L, we can then apply (4.12)

together with (4.24) to obtain
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αL ≤ CL3

∑L
j=M E∗

[
1{Ej=1}

∏γL
i=1

LRi−1
(Ti,Ni,Ei)

L∗Ri−1
(Ti,Ni,Ei)

]
E∗
[∏γL

i=1

LRi−1
(Ti,Ni,Ei)

L∗Ri−1
(Ti,Ni,Ei)1{T1+···+TγL=L}

]

≤ CL3

∑
j≥M E∗

[
1{Tj≥ j2}

∏γL
i=1

LRi−1
(Ti,Ni,Ei)

L∗Ri−1
(Ti,Ni,Ei)

]
E∗
[∏γL

i=1

LRi−1
(Ti,Ni,Ei)

L∗Ri−1
(Ti,Ni,Ei)1{T1+···+TγL=L}

] := CL3 Ψ1(L,M)

DL
, (5.5)

where we used that Ei = 1 only if Ti ≥ 1 +Ri−1, and Ri ≥ i−1
2 for every i ∈ N (cf. Section

4.1). Lemma 5.1 then follows immediately from (5.5) and Claims 5.4 and 5.5 below.

Claim 5.4. There exist c1, c2 > 0 such that Ψ1(L,M) ≤ c1 e
−c2M for every M ∈ N and

L ≥M .

Claim 5.5. There exists c3 > 0 such that DL ≥ c3 for every L ∈ N.

Proof of Claim 5.4. Recall from Section 4.3 how (Ti, Ni, Ei)i≥1 is constructed from the
i.i.d. sequence (Ṽi, T̃i, Ñi)i≥1 with law P∗, with T̃i ≥ Ti ∀ i ∈ N. We first state and prove a
key lemma.

Lemma 5.6. Let L ∈ N, and let Φ : RL+ → R+ be any function that is non-decreasing in
each of its L arguments. Then there exists c > 0 independent of L and Φ, such that

E∗
[
Φ(T1, . . . , TL)

γL∏
i=1

LRi−1
(Ti, Ni, Ei)

L∗Ri−1
(Ti, Ni, Ei)

]
≤ E∗

[
Φ(T̃1, . . . , T̃L)

L∏
i=1

(
1 + cT̃i 1{T̃i≥ i−1

2 }
)]
. (5.6)

Proof. For n ∈ N, let Fn be the σ-algebra generated by (T̃i, Ti, Ni, Ei)i≤n. For ease of
notation, let AL denote the l.h.s. of (5.6). Note that

AL ≤ E∗
[
Φ(T1, . . . , TL)

L∏
i=1

max

{
LRi−1

(Ti, Ni, Ei)
L∗Ri−1

(Ti, Ni, Ei)
, 1

}]
(5.7)

= E∗
[ L−1∏
i=1

max
{LRi−1

(Ti, Ni, Ei)
L∗Ri−1

(Ti, Ni, Ei)
, 1
}
HL

]
, (5.8)

with

HL := E∗
[
Φ(T1, . . . , TL) max

{LRL−1
(TL, NL, EL)

L∗RL−1
(TL, NL, EL)

, 1
}∣∣∣FL−1]

=
∑
t

Φ(T1, . . . , TL−1, t)
∑
n≤t

∑
ε=0,1

max
{
LRL−1

(t, n, ε), L∗RL−1
(t, n, ε)

}
.

(5.9)

When t < RL−1, we have LRL−1
(t, n, 1) = L∗RL−1

(t, n, 1) = 0, and LRL−1
(t, n, 0) =

L∗RL−1
(t, n, 0) by (4.9), so that∑

n≤t

∑
ε=0,1

max
{
LRL−1

(t, n, ε), L∗RL−1
(t, n, ε)

}
= L∗RL−1

(t). (5.10)

When t ≥ RL−1, we have∑
n≤t

∑
ε=0,1

max
{
LRL−1

(t, n, ε), L∗RL−1
(t, n, ε)

}
≤
∑
n≤t

∑
ε=0,1

(LRL−1
(t, n, ε) + L∗RL−1

(t, n, ε)) = LRL−1
(t) + L∗RL−1

(t) ≤ (1 + ct)L∗RL−1
(t),

(5.11)
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where we applied Lemma 4.1. Therefore we have

HL ≤
∑
t

Φ(T1, . . . , TL−1, t)
(
1 + ct1{t≥RL−1}

)
L∗RL−1

(t),

= E∗
[
Φ(T1, . . . , TL−1, TL)

(
1 + cTL1{TL≥RL−1}

) ∣∣FL−1] . (5.12)

Since RL−1 ≥ L−1
2 and T̃L ≥ TL, we can replace RL−1 by L−1

2 and TL by T̃L in the r.h.s.

of (5.12). Moreover, note that T̃L does not depend on RL−1, and hence we can plug
(5.12) into (5.7) to obtain

AL ≤ E∗
[( L−1∏

i=1

max
{LRi−1

(Ti, Ni, Ei)
L∗Ri−1

(Ti, Ni, Ei)
, 1
})

Φ(T1, . . . , TL−1, T̃L)
(
1 + cT̃L 1{T̃L≥L−1

2 }
)]
.

We can now iterate the argument to deduce (5.6).

To prove Claim 5.4, we now apply Lemma 5.6 with Φ(t1, . . . , tL) = 1{tj≥ j2}
for j ≥M to

obtain

Ψ1(L,M) ≤
∑
j≥M

E∗
[
1{T̃j≥ j2}

L∏
i=1

(
1 + cT̃i 1{T̃i≥ i−1

2 }
)]

≤
∑
j≥M

E∗
[
(1 + cT̃j)1{T̃j≥ j2}

∏
i6=j≤L

(
1 + c T̃i 1{T̃i≥ i−1

2 }

)]

=
∑
j≥M

E∗
[
(1 + cT̃1)1{T̃1≥ j2}

] ∏
i6=j≤L

(
1 + cE∗[T̃11{T̃1≥ i−1

2 }
]
)

(5.13)

Since T̃1 has exponential tail under P∗ (cf. Remark 3.5), there exist C1, C2 > 0 such that

P∗(T̃1 ≥ l) ≤ E∗
[
T̃11{T̃1≥`}

]
≤ C1 e

−C2` for all ` ∈ N. (5.14)

This implies that

Ψ1(L,M) ≤ (1 + c)
∑
j≥M

C1e
−C2

j
2

∞∏
i=1

(
1 + cC1e

−C2
i−1
2

)
≤ c1e−c2M , (5.15)

which concludes the proof of Claim 5.4.

Proof of Claim 5.5 The claim is essentially a consequence of the renewal theorem.
Note that by construction, we have R0 = 0, E1 = 1, and L0(T1, N1, 1) = L∗0(T1, N1, 1), and
when Ri−1 ≥ 1 and Ti = 1, or when Ti < Ri−1, we must have Ei = 0 and LRi−1

(Ti, Ni, 0) =

L∗Ri−1
(Ti, Ni, 0). Therefore, with A > 0 to be chosen later, we can bound

ML := E∗
[ γL∏
i=1

LRi−1
(Ti, Ni, Ei)

L∗Ri−1
(Ti, Ni, Ei)

1{T1+···+TγL=L}

]
≥ P∗

(
T1 + · · ·+ TγL = L, Ti = 1∀ i ∈ [1, A], Tj < Rj−1 ∀ j ∈ [A+ 1, γL]

)
.

(5.16)

Recall that (Ti, Ni, Ei)i∈N is constructed from (Ṽi, T̃i, Ñi)i∈N with law P∗ such that T̃i ≥ Ti
a.s., and when T̃i = 1 or T̃i ≤ Ri−1, we have Ti = T̃i (cf. Section 4.3). Since R1, R2 ≥ 1

and Ri ≥ i−1
2 for i ≥ 3, we can bound the r.h.s. of (5.16) by

ML ≥ P∗
(
T̃1 + · · ·+ T̃γ̃L = L, T̃i = 1 ∀ i ∈ [1, A], T̃j <

j−1
2 ∀ j > A

)
,

= P∗(T̃1 = 1)A P∗
(
T̃1 + · · ·+ T̃ γ̃L−A = L−A, T̃i < A+i−1

2 ∀ i ≥ 1
)
, (5.17)
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where γ̃L is the counterpart of γL for (T̃i)i∈N (recall (3.15)). Since (T̃j)j∈N is i.i.d. with
exponential tail, we may pick A ∈ N large enough such that

P∗
(
T̃i <

A+ i− 1

2
∀ i ≥ 1

)
≥ 1− 1

4E∗[T̃1]
. (5.18)

Having chosen A, the renewal theorem then ensures that there exists L0 ∈ N such that

P∗(T̃1 + · · ·+ T̃ γ̃L−A = L−A) ≥ 1

2E∗[T̃1]
∀ L > L0. (5.19)

Combining (5.18) and (5.19) then shows that the r.h.s. in (5.17) is bounded from below
by a positive constant uniformly in L ≥ L0. The proof is then complete.

5.3 Proof of Lemma 5.2

The proof is similar to that of Lemma 5.1. Let δ > 0 and κ > 0 and set

βL :=Punif,L

(
T1(π) + · · ·+ Tδ logL(π) ≥ κ(logL)2

)
=
|{π ∈ ΩL : T1 + · · ·+ Tδ logL ≥ κ(logL)2}|

|ΩL|
.

Since T1(π)+ · · ·+Tδ logL ≥ κ(logL)2 implies that Ti ≥ κδ−1 logL for some 1 ≤ i ≤ δ logL,
similar to (5.5), we have

βL ≤ CL3

∑δ logL
j=1 E∗

[
1{Tj≥κδ−1 logL}

∏γL
i=1

LRi−1
(Ti,Ni,Ei)

L∗Ri−1
(Ti,Ni,Ei)

]
E∗
[∏γL

i=1

LRi−1
(Ti,Ni,Ei)

L∗Ri−1
(Ti,Ni,Ei)1{T1+···+TγL=L}

] := CL3 Ψ2(L)

DL
. (5.20)

By Claim 5.5, DL is bounded away from 0 uniformly in L. Using Lemma 5.6 and (5.14),
we obtain

Ψ2(L) ≤
δ logL∑
j=1

E∗
[
1{T̃j≥κδ−1 logL}

L∏
i=1

(
1 + cT̃i1{T̃i≥ i−1

2 }

)]

≤ (δ logL)E∗
[
(1 + cT̃1)1{T̃1≥κδ−1 logL}

] ∞∏
i=1

(
1 + cE∗[T̃11{T̃1≥ i−1

2 }
]
)

≤ (δ logL)c1e
−c2κδ−1 logL, (5.21)

which tends to 0 as L tends to infinity if κ is chosen large enough.

5.4 Proof of Lemma 5.3

As in the proof of Lemmas 5.1 and 5.2, given δ > 0, we set

ρL :=Punif,L

(
L− (T1(π) + · · ·+ TγL(π)) ≥ α logL

)
=
|{π ∈ ΩL : (L− (T1 + · · ·+ TγL) ≥ α logL)}|

|ΩL|
.

Similar to (5.5), we have

ρL ≤ CL3

E∗
[
1{L−(T1+···+TγL )≥α logL}

∏γL
i=1

LRi−1
(Ti,Ni,Ei)

L∗Ri−1
(Ti,Ni,Ei)

]
E∗
[∏γL

i=1

LRi−1
(Ti,Ni,Ei)

L∗Ri−1
(Ti,Ni,Ei)1{T1+···+TγL=L}

] =: CL3 Ψ3(L)

DL
. (5.22)
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By Claim 5.5,DL is bounded away from 0 uniformly in L. Since L−(T1+· · ·+TγL) ≥ α logL

implies max{T1, . . . , TL} ≥ α logL, again by Lemma 5.6 and (5.14), we have

Ψ3(L) ≤ E∗
[
1{max{T1,...,TL}≥α logL}

γL∏
i=1

LRi−1
(Ti, Ni, Ei)

L∗Ri−1
(Ti, Ni, Ei)

]

≤ E∗
[
1{max{T̃1,...,T̃L}≥α logL}

L∏
i=1

(
1 + c T̃i 1{T̃i≥ i−1

2 }
)]

≤ LE∗
[
(1 + cT̃1)1{T̃1≥α logL}

] ∞∏
i=1

(
1 + cE∗[T̃11{T̃1≥ i−1

2 }
]
)
≤ c1Le−c2α logL, (5.23)

which tends to 0 as L tends to infinity if α is chosen large enough.
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