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ADDITION THEOREMS IN Fp

VIA THE POLYNOMIAL METHOD

ÉRIC BALANDRAUD

Abstract. In this article, we use the Combinatorial Nullstellensatz to give
new proofs of the Cauchy-Davenport, the Dias da Silva-Hamidoune and to
generalize a previous addition theorem of the author. Precisely, this last result
proves that for a set A ⊂ Fp such that A∩ (−A) = ∅ the cardinality of the set
of subsums of at least α pairwise distinct elements of A is:

|Σα(A)| ≥ min

{

p,
|A|(|A|+ 1)

2
−

α(α + 1)

2
+ 1

}

,

the only cases previously known were α ∈ {0, 1}.
The Combinatorial Nullstellensatz is used, for the first time, in a direct and

in a reverse way. The direct (and usual) way states that if some coefficient
of a polynomial is non zero then there is a solution or a contradiction. The
reverse way relies on the coefficient formula (equivalent to the Combinatorial
Nullstellensatz). This formula gives an expression for the coefficient as a sum
over any cartesian product.

For these three addition theorems, some arithmetical progressions (that
reach the bounds) will allow to consider cartesian products such that the co-
efficient formula is a sum all of whose terms are zero but exactly one. Thus
we can conclude the proofs without computing the appropriate coefficients.

1. Introduction

In this article, p is always a prime number, given two non-empty subsets A and
B of Fp, we denote their sumset A+B = {a+ b | a ∈ A, b ∈ B}.

The first addition theorem in Fp is the Cauchy-Davenport theorem.

Theorem 1 (Cauchy-Davenport [5, 7, 8]). Let A and B be two non empty subsets
of Fp, then:

|A+B| > min {p, |A|+ |B| − 1} .

In the seminal article [1], Alon described the Combinatorial Nullstellensatz and
the polynomial method that relies on it (described in section 2). The method
allows to prove that a combinatorial problem has a solution or a contradiction, just
by computing a certain coefficient in a polynomial. The combinatorial problem
is reduced to a computation problem. The Cauchy-Davenport is one of the first
example developed in this article. The binomial theorem is the key point that
allows to prove that the proper coefficient is non zero.

Surprisingly a slight variation of the definition of the sumset has revealed itself
much more difficult to tackle. For two subsets A and B of Fp, we define their
restricted sumset: A+̇B = {a + b | a ∈ A, b ∈ B, a 6= b}. In 1964, Erdős and
Heilbronn made the following famous conjecture:

Conjecture (Erdős-Heilbronn). Let A ⊂ Fp, then:

|A+̇A| > min {p, 2|A| − 3} .

The first proof follows from the following generalization in 1994 by Dias da Silva
and Hamidoune, introducing the h-fold restricted sumset:
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Definition 1. Let A ⊂ Fp and h ∈ [0, |A|], we denote h∧A the set of subsums of h
pairwise distinct elements of A:

h∧A = {a1 + · · ·+ ah | ai ∈ A, ai 6= aj}.

Theorem 2 (Dias da Silva, Hamidoune [9]). Let A ⊂ Fp. For a natural integer
h ∈ [0, |A|],

|h∧A| > min{p, h(|A| − h) + 1}.

Their proof relies on exterior algebras. A second proof of this result was given
the following year by Alon, Nathanson and Rusza. They applied the Combinatorial
Nullstellensatz [2, 3]. To prove that the proper coefficient is non zero, they consider
another combinatorial interpretation of it through strict ballot number.

Following this method, the author could prove a further statement considering
the set of all subsums.

Definition 2. Let A ⊂ Fp, we denote its set of subsums by:

Σ(A) =

{
∑

x∈I

x | ∅ ⊂ I ⊂ A

}

=

|A|
⋃

h=0

(h∧A)

and we also denote its set of non-trivial subsums by:

Σ∗(A) =

{
∑

x∈I

x | ∅ ( I ⊂ A

}

=

|A|
⋃

h=1

(h∧A).

For the following result the computation of the coefficient relied on determinants
of binomial coefficients: binomial determinants considered in the work of Gessel and
Viennot.

Theorem 3 (Balandraud [4]). Let A ⊂ Fp, such that A ∩ (−A) = ∅. We have

|Σ(A)| > min

{

p,
|A|(|A|+ 1)

2
+ 1

}

,

|Σ∗(A)| > min

{

p,
|A|(|A|+ 1)

2

}

.

Among other the applications of this result are algebraic invariants: Noether
number or Davenport constant variations [6, 17, 18]. Many of these applications
would consider the bound on Σ∗(A) in order to ensure the existence of a non trivial
zero-subsum of A. For these problems it is also of interest to consider subsums with
a larger restriction on the number of terms. This is the aim of the last and new
result of this article. We define:

Definition 3. Let A ⊂ Fp, we denote Σα(A) the set of subsums of at least α
pairwise distinct elements of A and Σα(A) the set of subsums of at most |A| − α
pairwise distinct elements of A.

Σα(A) = {a1 + · · ·+ ak | ai ∈ A, α ≤ k ≤ |A|, ai 6= aj} =

|A|
⋃

k=α

(k∧A)

Σα(A) = {a1 + · · ·+ ak | ai ∈ A, 0 ≤ k ≤ |A| − α, ai 6= aj} =

|A|−α
⋃

k=0

(k∧A).

These sets of subsums satisfy the following elementary properties:

• Whenever α ∈ {0, 1}, one has Σ0(A) = Σ0(A) = Σ(A) and Σ1(A) = Σ∗(A).
• Whatever α, one has the symmetry: Σα(A) =

(∑

a∈A a
)
− Σα(A), what

implies that |Σα(A)| = |Σα(A)|.
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• Whenever α ≤ α′ one has Σα′(A) ⊂ Σα(A).

The generalization of Theorem 3 is:

Theorem 4. Let A ⊂ Fp, such that A ∩ (−A) = ∅. For any natural integer
α ∈ [0, |A|], we have:

|Σα(A)| = |Σα(A)| > min

{

p,
|A|(|A|+ 1)

2
−

α(α + 1)

2
+ 1

}

.

Before the proof, we can make the following remarks:

• Whenever α ∈ {0, 1}, this is exactly Theorem 3.
• This bound is sharp since for A = [1, d], one has:

Σα(A) =

[

0,
d(d+ 1)

2
−

α(α + 1)

2

]

.

of cardinality exactly min
{

p, |A|(|A|+1)
2 − α(α+1)

2 + 1
}

.

The article is organized as follows: In a first section, we explain the method. We
state the Combinatorial Nullstellensatz, the coefficient formula and the new proofs
of the Cauchy-Davenport and Dias da Silva-Hamidoune theorems. The novelty in
these proofs, is that there would be no need to compute the coefficients. In a second
section, the proof of Theorem 4 is given. It follows the steps of the method of the
first section. In the last section, we discuss the problem of the sets of subsums with
upper and lower bound on the number of terms. It appears surprisingly that the
problem with a double bound is of a different nature than the three previous ones.

2. Rewriting the polynomial proofs of Cauchy-Davenport and Dias

da Silva-Hamidoune theorems

2.1. The polynomial method. The Combinatorial Nullstellensatz is a result that
generalizes to multivariate polynomials the fact that an univariate polynomial of
degree d cannot vanish on d+ 1 points.

Theorem 5 (Combinatorial Nullstellensatz [1]). Let F be any field and P (X) ∈
F[X1, . . . , Xd]. If P has total degree k1+ · · ·+kd and its coefficient of the monomial
∏d

i=1 X
ki

i is non-zero, then whatever is the family (A1, . . . , Ad) of subsets of F

satisfying |Ai| > ki, there is a point a ∈ A1 × · · · ×Ad such that

P (a) 6= 0.

This theorem has lead to numerous proofs of combinatorial conjectures and new
proofs in many mathematical fields. It is called Combinatorial Nullstellensatz be-
cause another formulation of it gives a generating family of the ideal of polynomial
that vanishes on a cartesian product. The previously stated formulation is a crite-
rion for a polynomial not to belong to this ideal.

Applying the polynomial method (the one that relies on the Combinatorial Null-
stellensatz) on a combinatorial problem consists in defining a (big enough) cartesian
product and a polynomial of small degree, so that the Combinatorial Nullstellen-
satz, will assert that there is a solution or a contradiction provided that a specific
coefficient is nonzero. The combinatorial problem is then reduced to the computa-
tion problem of the appropriate coefficient.

In the three problems treated in this article, we will not need to compute the
coefficient. We use the coefficient formula proved independently by Karasev-Petrov
and by Láson, it is equivalent to the Combinatorial Nullstellensatz:

Theorem 6. (Coefficient formula [13, 14]) Let P ∈ F[X1, . . . , Xd] be a polynomial
of degree k1 + · · · + kd and any family of sets Ai, with |Ai| = ki + 1, denoting
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gi(X) =
∏

a∈Ai
(X − a), then the coefficient of the monomial

∏d

i=1 X
ki

i in the
expansion of P is

∑

b∈
∏

d
i=1

Ai

P (b)
∏d

i=1 g
′
i(bi)

.

In [13], Karasev and Petrov gave a new proof of Dyson’s conjecture thanks to
this formula using an auxiliary polynomial and cartesian product.

We will use the coefficient formula for some well chosen sets to prove that the
wanted coefficient is not zero. This does not require to compute the coefficient.
The coefficient formula will provide an expression of the specified coefficient as a
sum, all of whose terms are zero but exactly one.

In our context the bound is tight and reached by some arithmetical progressions.
The way to choose the auxiliary polynomial and cartesian product will be to con-
sider the same constructions for these arithmetical progressions. In conclusion, our
method is a way to understand why these bounds are reached by these arithmetical
progressions via a kind of algebraic comparison.

2.2. A proof of the Cauchy-Davenport theorem.

Proof. Let us consider two non empty subsets A and B of Fp, of respective cardinal-
ity, |A| = n and |B| = m. Define δ = max{0, n+m− 1− p}. Since max{n,m} ≤ p,
one has δ < min{n,m}.

We will prove the theorem by contradiction. Let us suppose that |A + B| <
min{p, n+m−1}, then consider a set C of cardinality |C| = min{p−1, n+m−2}=
n+ (m− δ)− 2 < p that contains A+B.

Define the polynomial

P (X,Y ) =
∏

x∈C

(X + Y − x).

By definition, P vanishes on the cartesian product A × B. We have deg(P ) =
|C| = (n− 1) + (m− δ − 1).

Using the Combinatorial Nullstellensatz, to obtain a contradiction, it suffices to
prove that the coefficient cn−1,(m−δ)−1 of Xn−1Y (m−δ)−1 is not zero.

Now consider the sets A′ = [1, n] and B′ = [1, (m − δ)], one has A′ + B′ =
[2, n+ (m− δ)]. We also consider the polynomial

Q(X,Y ) =

n+(m−δ)−1
∏

x=2

(X + Y − x).

The polynomial Q(X,Y ) is defined similarly as P (X,Y ) on a set C′ = [2, n+(m−
δ)− 1] of cardinality |C′| = n+ (m− δ)− 2 = |C|. Since |C′| < p, the elements of
[2, n+ (m− δ)] are pairwise distinct modulo p. The two polynomial P and Q have
the same coefficients of maximal degree, in particular they have the same coefficient
cn−1,(m−δ)−1 of the monomial Xn−1Y (m−δ)−1.

We can use the coefficient formula on the sets A′ and B′ to find this coefficient
in Q. The key point of this proof is the fact that the polynomial Q vanishes on all
the element of A′ ×B′ but one: Q(n, (m− δ)) 6= 0. Therefore the coefficient is

cn−1,(m−δ)−1 =
∑

(a,b)∈A′×B′

Q(a, b)
∏

a′∈A′\{a}(a− a′)
∏

b′∈B′\{b}(b− b′)

=
Q(n, (m− δ))

∏n−1
i=1 (n− i)

∏(m−δ)−1
i=1 ((m− δ)− i)

6= 0.

The expression as a sum that contains exactly one non-zero term suffices to
assert that it is non zero. �
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In this case, the computation is easy and the previous formula also proves that

cn−1,(m−δ)−1 =
(
n+(m−δ)−2

n−1

)
.

2.3. A proof of the Dias da Siva-Hamidoune theorem.

Proof. Consider a subset A = {a1, . . . , ad} of Fp and h ∈ [0, d].
We will prove the theorem by contradiction. Suppose that h∧A ⊂ C, with

|C| = min{p− 1, h(d− h)}.
Let us denote δ = max{0, h(d−h)+1−p}, this implies that |C| = h(d−h)−δ < p.

Since h∧(A\{ad}) ⊂ h∧A, one can consider that h((d−1)−h)+1 < p, what implies
that δ < h.

Let us consider the polynomial of Pd,h,δ(X) ∈ Fp[X1, . . . , Xh]:

Pd,h,δ(X) =
∏

x∈C

(X1 +X2 + · · ·+Xh − x)
∏

1≤i<j≤h

(Xj −Xi).

By definition of C, Pd,h,δ vanishes on the whole cartesian product Ah. In our
context, we will consider the sub-cartesian product A1 × · · · ×Ah, where:

A1 = {a1, . . . , ad−h}
...

...
. . .

Aδ = {a1, . . . , ad−h+δ−1}
Aδ+1 = {a1, . . . , ad−h+δ+1}
...

...
. . .

Ah = {a1, . . . , ad}

On the first hand, one has

deg(P ) =|C|+
h(h− 1)

2

=h(d− h) +
h(h− 1)

2
− δ

=dh−
h(h+ 1)

2
− δ,

and on the other hand
∑h

i=1(|Ai| − 1) = dh− h(h+1)
2 − δ.

Thanks to the Combinatorial Nullstellensatz, to obtain a contradiction, it suffices

to prove that the coefficient cd,h,δ of the monomial
∏h

i=1 X
|Ai|−1
i =

∏δ

i=1 X
d−h+i−2
i

∏h

i=δ+1 X
d−h+i−1
i

is not zero.
We now consider the same construction for the set B = [1, d] that satisfy h∧B =

[
h(h+1)

2 , d(d+1)
2 − (d−h)(d−h+1)

2

]

of cardinality |h∧B| = min{p, h(d− h) + 1}.

Let us consider the cartesian product B1 × · · · ×Bh:

B1 = {1, . . . , (d− h)}
...

...
. . .

Bδ = {1, . . . , (d− h+ δ − 1)}
Bδ+1 = {1, . . . , (d− h+ δ + 1)}
...

...
. . .

Bh = {1, . . . , d}.

We also define the set R =
[
h(h+1)

2 , d(d+1)
2 − (d−h)(d−h+1)

2 − δ − 1
]

. (Since h(d−

h)− δ < p, the elements of R are pairwise distinct modulo p and do not cover Fp.)
Finally, we define the polynomial

Qd,h,δ(X) =
∏

x∈R

(X1 +X2 + · · ·+Xh − x)
∏

1≤i<j≤h

(Xj −Xi).



6 ÉRIC BALANDRAUD

Since |R| = h(d − h) − δ = |C|, the two polynomials Qd,h,δ and Pd,h,δ have same
degree. Moreover they differ only by constants in their linear factors, so they have
the same coefficients of maximal degree. In particular, they share the have the

same coefficient cd,h,δ of the monomial
∏δ

i=1 X
d−h+i−2
i

∏h
i=δ+1 X

d−h+i−1
i .

If we consider the sums b1 + · · ·+ bh of pairwise different values bi ∈ Bi, one can

reach any value in
[
h(h+1)

2 , d(d+1)
2 − (d−h)(d−h+1)

2 − δ
]

. Only one of the values is

missing in R, namely d(d+1)
2 − (d−h)(d−h+1)

2 − δ and this value is uniquely reached
by the sum (d− h) + · · ·+ (d− h+ δ − 1) + (d− h+ δ + 1) + · · ·+ d. This implies
that there is only one point b∗ in the cartesian product B1 × · · · × Bh such that
Qd,h,δ(b

∗) 6= 0. Using the coefficient formula, one get that:

cd,h,δ =
∑

b∈
∏

Bi

Qd,h,δ(b)
∏

g′i(bi)
=

Qd,h,δ(b
∗)

∏d

i=1 g
′
i(b

∗
i )

6= 0,

where

b∗ = ((d− h), . . . , (d− h+ δ − 1)
︸ ︷︷ ︸

i=1..δ

, (d− h− δ + 1), . . . , d
︸ ︷︷ ︸

i=δ+1..h

).

This coefficient is therefore different from zero and the proof is complete. �

Remark 1. The computation of the coefficient cd,h,δ can be proceed to a closed
expression, it is done in proposition 1 in the annex of this article.

3. Sets of subset sums whose number of terms is bounded

We proceed now to the proof of theorem 4:

Proof. Whenever p = 2, the hypothesis A ∩ (−A) = ∅ is impossible for a non-
empty subset, so from now on p is an odd prime. Consider that the set is A =

{2a1, 2a2, . . . , 2ad}, so |A| = d and denote m =
∑d

i=1 ai.

We prove the theorem by contradiction. Suppose that |Σα(A)| < min
{

p, d(d+1)
2 − α(α+1)

2 + 1
}

,

and consider a set C, such that Σα(A) ⊂ C, with |C| = min
{

p− 1, d(d+1)
2 − α(α+1)

2

}

.

Denote:

δ = max

{

0,
d(d+ 1)

2
−

α(α+ 1)

2
− (p− 1)

}

.

So that |C| = d(d+1)
2 − α(α+1)

2 − δ < p.

Since one has Σα+1(A) ⊂ Σα(A). One can consider that d(d+1)
2 − (α+1)(α+2)

2 +1 <
p. This implies that δ ≤ α.

We define the polynomial:

Pd,α,δ(X) =
∏

x∈C

(X1 + · · ·+Xd +m− x)
∏

1≤i<j≤d

(Xj −Xi)
∏

1≤i<j≤d
and j>α

(Xj +Xi)

This polynomial has degree

deg(Pd,α,δ) =

(
d(d+ 1)

2
−

α(α + 1)

2
− δ

)

+

(
d(d− 1)

2

)

+







(d− α)α
︸ ︷︷ ︸

j>α, and i≤α

+
(d− α)(d− α− 1)

2
︸ ︷︷ ︸

α<i<j







=d2 +
d(d− 1)

2
− α2 − δ.
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Let us consider the sets:

A1 = {−ad, . . . ,−aα+1}
...

...
. . .

Aδ = {−ad, . . . ,−aα−δ+2}
Aδ+1 = {−ad, . . . ,−aα−δ}
...

...
. . .

Aα = {−ad, . . . ,−a1}
Aα+1 = {−ad, . . . ,−a1, a1, . . . , aα+1}
...

...
...

...
. . .

Ad = {−ad, . . . ,−a1, a1, . . . , ad}

Moreover, one also have:

d∑

i=1

(|Ai| − 1) =

(

d2 −
α(α− 1)

2

)

+

(

d(d− α)−
(d− α)(d − α− 1)

2

)

− d− δ

=d(2d− α− 1)−

(

α2 +
d(d− 1)

2
− dα

)

− δ

=d2 +
d(d− 1)

2
− α2 − δ.

Whatever is the element of the cartesian product, if the two last factors of Pd,α,δ

do not vanish then it consists of a sum of the type ±a1 ± a2 · · · ± ad, which has
at least α negative signs. So ±a1 ± a2 · · · ± ad + m is a sum of at most d − α
elements of A and the first factor vanishes. In conclusion, Pd,α,δ vanishes on the

whole cartesian product
∏d

i=1 Ai.
To obtain a contradiction thanks to the Combinatorial Nullstellensatz, it suffices

to prove that the coefficient cd,α,δ of the following monomial is non zero:

d∏

i=1

X
|Ai|−1
i =

(
δ∏

i=1

Xd−α+i−2
i

)(
α∏

i=δ+1

Xd−α+i−1
i

)(
d∏

i=α+1

Xd+i−1
i

)

.

Let us now consider the same construction for the set B = 2.[1, d]: one has

Σα(B) = 2.

[

0,
d(d+ 1)

2
−

α(α+ 1)

2

]

,

of cardinality |Σα(B)| = d(d+1)
2 − α(α+1)

2 + 1. Define the sets:

B1 = {−d, . . . ,−(α+ 1)}
...

...
. . .

Bδ = {−d, . . . ,−(α− δ + 2)}
Bδ+1 = {−d, . . . ,−(α− δ)}
...

...
. . .

Bα = {−d, . . . ,−1}
Bα+1 = {−d, . . . ,−1 1, . . . , α+ 1}
...

...
...

...
. . .

Bd = {−d, . . . ,−1 1, . . . , d}

Let us denote m′ = d(d+1)
2 and R =

[

0, d(d+1)
2 − α(α+1)

2 − δ − 1
]

. Since d(d+1)
2 −

α(α+1)
2 − δ < p, the elements of R are pairwise distinct modulo p and do not cover

Fp.
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define the polynomial:

Qd,α,δ(X) =
∏

x∈R

(X1 + · · ·+Xd +m′ − x)
∏

1≤i<j≤d

(Xj −Xi)
∏

1≤i<j≤d
and j>α

(Xj +Xi)

Since |R| = d(d+1)
2 − α(α+1)

2 −δ = |C|, the two polynomials Qd,α,δ and Pd,α,δ have
same degree. Moreover they differ only by constants in their linear factors, so they
have the same coefficients of maximal degree. In particular, they have the same coef-

ficient of the monomial
(
∏δ

i=1 X
d−α+i−2
i

) (∏α
i=δ+1 X

d−α+i−1
i

) (∏d
i=α+1 X

d+i−1
i

)

.

If we consider all the sums b1 + · · ·+ bd +m′ where bi ∈ Bi and
∏

1≤i<j≤d

(bj − bi)
∏

1≤i<j≤d
and j>α

(bj + bi) 6= 0,

one can reach any value in
[

0, d(d+1)
2 − α(α+1)

2 − δ
]

. Only one value for the sum

does miss in R, d(d+1)
2 − α(α+1)

2 −δ, and there is only one element, whose coordinates
are pairwise neither equal nor opposite in this cartesian product and that reaches
this value. It implies that there is only one point b∗ in the cartesian product
B1 × · · · ×Bd such that Qd,α,δ(b

∗) 6= 0. Using the coefficient formula, one

cd,α,δ =
∑

b∈
∏

Bi

Qd,α,δ(b)
∏

g′i(bi)
=

Qd,α,δ(b
∗)

∏d

i=1 g
′
i(b

∗
i )

6= 0,

where

b∗ = (−(α+ 1), . . . ,−(α− δ + 2)
︸ ︷︷ ︸

i=1..δ

,−(α− δ), . . . ,−1
︸ ︷︷ ︸

i=δ+1..α

, α+ 1− δ, α+ 2, . . . , d
︸ ︷︷ ︸

i=α+2..d

)

This coefficient is therefore different from zero, what concludes the proof. �

Remark 2. The value of cd,α,δ can be compute from this formula. It is written in
proposition 2 in the annex of this article.

4. The trouble in the consideration of a double bound

It seems natural at this point to define the sets of subsums whose number of
terms are doubly bounded:

Definition 4. Let A ⊂ Fp, we denote Σβ
α(A) the set of subsums of at least α and

at most |A| − β pairwise distinct elements of A

Σβ
α(A) = {a1 + · · ·+ ak | ai ∈ A, α ≤ k ≤ |A| − β, ai 6= aj} =

|A|−β
⋃

k=α

(k∧A).

At first glance, one could think that for a set A ⊂ Fp such that A∩ (−A) = ∅ the
minimal cardinality of such a set of subsums is again reached on an arithmetical
progression of type [1, d], and so that the cardinality of |Σβ

α(A)| would be at least:

min

{

p,
|A|(|A|+ 1)

2
−

α(α+ 1)

2
−

β(β + 1)

2
+ 1

}

.

This does not hold and several counterexamples can be given:
Let k ≥ 3 and consider the set A = {1,−2, 3, . . . , k}, then one has:

Σ1
1(A) =

{

−2,−1, 1, 2, . . . ,
k(k + 1)

2
− 5,

k(k + 1)

2
− 3,

k(k + 1)

2
− 2

}

,

Σ1
2(A) =

{

−1, 1, 2, . . . ,
k(k + 1)

2
− 5,

k(k + 1)

2
− 3,

k(k + 1)

2
− 2

}

.
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Considered in Z, one has |Σ1
1(A)| =

k(k+1)
2 − 1 = k(k+1)

2 − 1− 1 + 1 and |Σ1
2(A)| =

k(k+1)
2 − 2 =

(
k(k+1)

2 − 3− 1 + 1
)

+ 1.

So whenever k(k+1)
2 − 4 = p, one has

|Σ1
1(A)| =p− 1 =

k(k + 1)

2
− 3 < min

{

p,
k(k + 1)

2
− 1− 1 + 1

}

,

|Σ1
2(A)| =p− 1 =

k(k + 1)

2
− 3 < min

{

p,
k(k + 1)

2
− 3− 1 + 1

}

.

It is conjectured (but not formally known) that there is an infinite number of

couples (k, p) such that p = k(k+1)
2 − 4 ∈ P. Here follows the list of those with

p < 1000:

(5, 11), (6, 17), (9, 41), (14, 101), (17, 149), (18, 167),

(21, 227), (26, 347), (29, 431), (30, 461), (33, 557), (41, 857).

Conversely, it can be seen that, for some other prime numbers, the conjecture
is true. It implies that the problem is of a different nature from the Cauchy-
Davenport, Dias da Silva-Hamidoune theorems and theorem 4. These three theo-
rems can be called universal, since the bound is universal in p, the cardinality of
the set (and their parameters).

However, for this problem, it is still possible to define a polynomial and a carte-
sian product that would lead to a proof of the bound, provided a specified coefficient
is non zero. Of course, since counterexamples are known, for some values of the
parameters d, α, β, p, the specified coefficient will be zero. The computations of
these coefficients lead to the idea that the previous counterexamples are the only
ones possible. What can be summarized in the following conjecture:

Conjecture. Let p be a prime number and A ⊂ Fp such that A ∩ (−A) = ∅, then

|Σβ
α(A)| > min

{

p,
|A|(|A| + 1)

2
−

α(α + 1)

2
−

β(β + 1)

2
+ 1

}

,

unless A = λ.{1,−2, 3, . . . , k}, with λ ∈ F∗
p,

k(k+1)
2 = p+4 and (α, β) ∈ {(1, 1), (1, 2), (2, 1)}.

Annex: Computation of the coefficients

In this annex, we denote n!! =
∏n−1

i=0 i!, the product of the n first factorials. It
is an unusual notation, but it satisfies the nice property

∏

1≤i<j≤n(j − i) = n!!.

4.1. The coefficient involved in the proof of the Dias da Silva-Hamidoune

theorem.

Proposition 1. The coefficient involved in the proof of the Dias da Silva-Hamidoune
theorem is:

cd,h,δ = (h(d− h))!

(
d−h+δ−1

δ

)(
h
δ

)

(
h(d−h)

δ

)
h!!(d− h)!!

d!!
.

Proof. The computation of the coefficient can be continued:

cd,h,δ =
Qd,h,δ(b

∗)
∏d

i=1 g
′
i(b

∗
i )
,

where

b∗ = ((d− h), . . . , (d− h+ δ − 1)
︸ ︷︷ ︸

i=1..δ

, (d− h− δ + 1), . . . , d
︸ ︷︷ ︸

i=δ+1..h

).
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Since g′i(bi) = (|Bi| − 1)! = (d − h + i − 2)! if i ≤ δ and g′i(bi) = (|Bi| − 1)! =
(d − h+ i − 1)! if i > δ, the multinomial sum gives |R|! = (h(d − h) − δ)! and the

Vandermonde is
(
h
δ

)
h!!

cd,h,δ =
(h(d− h)− δ)!

∏δ

i=1(d− h+ i− 2)!
∏h

i=δ+1(d− h+ i− 1)!

(
h

δ

)

h!!

=
(h(d− h)− δ)!

∏d−h+δ−2
i=d−h−1 i!

∏d−1
i=d−h+δ i!

(
h

δ

)

h!!

=
(h(d− h)− δ)!
(d−h−1)!

(d−h+δ−1)!
d!!

(d−h)!!

(
h

δ

)

h!!

=δ!((h(d− h)− δ)!)

(
d− h+ δ − 1

δ

)(
h

δ

)
h!!(d− h)!!

d!!

=(h(d− h))!

(
d−h+δ−1

δ

)(
h
δ

)

(
h(d−h)

δ

)
h!!(d− h)!!

d!!
.

�

4.2. The coefficient involved in the proof of Theorem 4.

Proposition 2. Denoting md,α = d(d+ 1)/2− α(α + 1)/2. One has

cd,α,δ =
2md,α−δ(md,α)!

(
md,α

δ

)

(
d−α+δ−1

δ

)(
α+1
δ

)(
d+α+1

δ

)

(
2α+2

δ

)
α!!(d− α)!!(d + α+ 1)!!

d!!(2d+ 1)!!

(
d∏

i=α+1

(2i− 1)!

)

.

Proof. The computation of the coefficient can be continued:

cd,α,δ =
Qd,α,δ(b

∗)
∏d

i=1 g
′
i(bi)

,

with

b∗ = (−(α+ 1), . . . ,−(α− δ + 2)
︸ ︷︷ ︸

i=1..δ

,−(α− δ), . . . ,−1
︸ ︷︷ ︸

i=δ+1..α

, α− δ + 1, α+ 2, . . . , d
︸ ︷︷ ︸

i=α+2..d

).

One has:

g′i(b
∗
i ) =







(d− α+ i− 2)! if i ≤ δ,

(d− α+ i− 1)! if δ < i ≤ α,

(−1)δδ! (d+α+1−δ)!
(α−δ+1) = (−1)δ (d+α+1)!

(α−δ+1)(d+α+1

δ )
if i = α+ 1

(d+i)!
i

if i > α+ 1

so the product of their inverse is:

1
∏d

i=1 g
′
i(b

∗
i )

=(−1)δ

(
δ∏

i=1

1

(d− α+ i− 2)!

)(
α∏

i=δ+1

1

(d− α+ i− 1)!

)

×

(
d+ α+ 1

δ

)
(α − δ + 1)

(d+ α+ 1)!

(
d∏

i=α+2

i

(d+ i)!

)
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=(−1)δ
(d− α+ δ − 1)!

(d− α− 1)!

(
α∏

i=1

1

(d− α+ i − 1)!

)

×

(
d+ α+ 1

δ

)

(α− δ + 1)
d!

(α+ 1)!

(
d∏

i=α+1

1

(d+ i)!

)

=(−1)δ
(d− α+ δ − 1)!

(d− α− 1)!

(d− α)!!

d!!

×

(
d+ α+ 1

δ

)

(α− δ + 1)
d!

(α+ 1)!

(d+ α+ 1)!!

(2d+ 1)!!

=(−1)δδ!

(
d− α+ δ − 1

δ

)(
d+ α+ 1

δ

)

(α− δ + 1)
d!

(α+ 1)!

(d− α)!!(d + α+ 1)!!

d!!(2d+ 1)!!
.

The first factor of Qd,α,δ gives:

∏

x∈R

(b∗1 + · · ·+ b∗d +m− x) = 2|R||R|! = 2md,α−δ(md,α − δ)!

The second factor is

∏

1≤i<j≤d

(b∗j − b∗i ) =







∏

1≤i<j≤α

×
α∏

i=1
(j=α+1)

×
∏

1≤i≤α
α+1<j≤d

×
d∏

j=α+2
(i=α+1)

×
∏

α+1<i<j≤d







(b∗j − b∗i )

=

(

α!!

(
α

δ

))(
(2α− δ + 2)!

(2α− 2δ + 2)(α− δ + 1)!

)

×

(
δ∏

i=1

(d+ α− i+ 2)!

(2α− i+ 3)!

α∏

i=δ+1

(d+ α− i+ 1)!

(2α− i+ 2)!

)

×

(
(d− α+ δ − 1)!

δ!

)

(d− α− 1)!!

=α!!

(
α

δ

)
(2α− δ + 2)!

(2α− 2δ + 2)(α− δ + 1)!

×
(d+ α+ 2)!!(2α− δ + 3)!!

(d+ α− δ + 2)!!(2α+ 3)!!

(d+ α− δ + 1)!!(α+ 2)!!

(d+ 1)!!(2α− δ + 2)!!

×

(
d− α+ δ − 1

δ

)

(d− α)!!

=

(
d− α+ δ − 1

δ

)(
α

δ

)

α!!(d − α)!!

×
(2α− δ + 2)!

(2α− 2δ + 2)(α− δ + 1)!

(2α− δ + 2)!

(d+ α− δ + 1)!

×
(d+ α+ 2)!!(α+ 2)!!

(d+ 1)!!(2α+ 3)!!
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=

(
d− α+ δ − 1

δ

)(
α

δ

)

α!!(d − α)!!

×
(2α− δ + 2)!

(2α− 2δ + 2)(α− δ + 1)!

(2α− δ + 2)!

(d+ α− δ + 1)!

(d+ α+ 1)!(α+ 1)!

(2α+ 1)!(2α+ 2)!

×
(d+ α+ 1)!!(α+ 1)!!

(d+ 1)!!(2α+ 1)!!

=
(α + 1)

(α− δ + 1)

(
d−α+δ−1

δ

)(
α
δ

)(
α+1
δ

)(
d+α+1

δ

)

(
2α+2

δ

)2

α!!(d − α)!!(d + α+ 1)!!(α+ 1)!!

(d+ 1)!!(2α+ 1)!!
.

The last factor is:

∏

1≤i<j≤d
j>α

(b∗j + b∗i ) =







α∏

i=1
(j=α+1)

×
∏

1≤i≤α
α+1<j≤d

×
d∏

j=α+2
(i=α+1)

×
∏

α+1<i<j≤d







(b∗j + b∗i )

=
(
(−1)δδ!(α− δ)!

)





d∏

j=α+2

(j − 1)!

(j − α+ δ − 1)(j − α− 2)!





×

(
(d+ α− δ + 1)!

(2α− δ + 2)!

)( d−1∏

i=α+2

(d+ i)!

(2i)!

)

=(−1)δ
α!
(
α
δ

)
δ!

(d− α+ δ − 1)!

d!!

(α+ 1)!!(d− α− 1)!!

×
(d+ α− δ + 1)!

(2α− δ + 2)!

(2d)!!

(d+ α+ 2)!!

d−1∏

i=α+2

1

(2i)!

=(−1)δ
(
2α+2

δ

)

(
α
δ

)(
d+α+1

δ

)(
d−α+δ−1

δ

)
d!!(2d)!!

α!!(d− α)!!(d + α+ 1)!!

d−1∏

i=α+1

1

(2i)!
.

This gives the value of Qd,α,δ(b
∗):

Qd,α,δ(b
∗) =(−1)δ2md,α−δ(md,α − δ)!

(α+ 1)

(α − δ + 1)

(
α+1
δ

)

(
2α+2

δ

)
(α+ 1)!!(2d)!!

d!(2α+ 1)!!

d−1∏

i=α+1

1

(2i)!

=(−1)δ2md,α−δ(md,α − δ)!
(α+ 1)

(α − δ + 1)

(
α+1
δ

)

(
2α+2

δ

)
(α+ 1)!!

d!

d∏

i=α+1

(2i− 1)!

And finally

cd,α,δ =2md,α−δ(md,α − δ)!
(α+ 1)

(α− δ + 1)

(
α+1
δ

)

(
2α+2

δ

)
(α+ 1)!!

d!

d∏

i=α+1

(2i− 1)!

× δ!

(
d− α+ δ − 1

δ

)(
d+ α+ 1

δ

)

(α− δ + 1)
d!

(α+ 1)!

(d− α)!!(d+ α+ 1)!!

d!!(2d+ 1)!!

=
2md,α−δ(md,α)!

(
md,α

δ

)

(
d−α+δ−1

δ

)(
α+1
δ

)(
d+α+1

δ

)

(
2α+2

δ

)
α!!(d− α)!!(d + α+ 1)!!

d!!(2d+ 1)!!

d∏

i=α+1

(2i− 1)!

�
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