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Abstract. We consider a time-harmonic wave problem, appearing for example in water-waves and
in acoustics, in a setting such that the analysis reduces to the study of a 2D waveguide problem
with a Neumann boundary condition. The geometry is symmetric with respect to an axis orthog-
onal to the direction of propagation of waves. Moreover, the waveguide contains one branch of
finite length. We analyse the behaviour of the complex scattering coefficients R, T as the length
of the branch increases and we exhibit situations where non reflectivity (R = 0, |T| = 1), perfect
reflectivity (|R| = 1, T = 0) or perfect invisibility (R = 0, T = 1) hold. Numerical experiments
allow us to illustrate the different results.

Key words. Water waves, acoustic waves, waveguides, invisibility, non reflectivity, perfect reflec-
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1 Introduction
Invisibility is an exciting topic in scattering theory. In the present article, we consider a time-
harmonic water waves problem in a 3D channel of finite and constant depth which is unbounded
in one direction (say (Ox)). Factoring out the dependence on the vertical coordinate, it reduces to
the study of a problem in a 2D waveguide with a non-penetration (Neumann) boundary condition.
Note that in this work, we decide to consider the water wave point of view, but this problem
also appears naturally in the theory of acoustic waves. In the waveguide geometry, at a given
frequency, only a finite number of waves can propagate along the (Ox) axis. More precisely, the
velocity potential decomposes as the sum of a finite number of propagative waves plus a remainder
which is exponentially decaying at ±∞. All through the paper, we will assume that the frequency
is small enough so that only one wave (the piston wave) can propagate in the 2D waveguide.
To describe the scattering process of the incident piston wave coming from −∞, classically one
introduces two complex coefficients, namely the reflection and transmission coefficients, denoted
R and T, such that R (resp. T) corresponds to the amplitude of the scattered field at −∞ (resp.
+∞). According to the energy conservation, we have

|R|2 + |T|2 = 1. (1)

In this work, we are interested in geometries where non reflectivity (R = 0), perfect reflectivity
(T = 0) or perfect invisibility (T = 1) occurs. Of course, due to the conservation of energy (1),
perfect invisibility implies non reflectivity. The converse is wrong since we can have |T| = 1 with
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T 6= 1. In this case, the incident piston wave goes through the waveguide with a phase shift.

In this setting, examples of situations where quasi invisibility (|R| small or |T − 1| small) hap-
pens, obtained via numerical simulations, exist in literature. We refer the reader to [38, 16] for
water waves problems and to [1, 13, 36, 37, 18] for strategies based on the use of new “zero-index”
and “epsilon near zero” metamaterials in electromagnetism (see [17] for an application to acoustic).
Let us mention also that the problem of the existence of quasi invisible obstacles for frequencies
close to the threshold frequency has been addressed in the analysis of the so-called Weinstein
anomalies [40] (see e.g. [32, 20]).

As for the rigorous proof of existence of geometries where R = 0 or T = 1, literature is not
very developed especially if we compare to what is available concerning the existence of trapped
modes (see e.g. [39, 14, 15, 12, 22, 25, 35]). We remind the reader that trapped modes are non
zero solutions to the homogeneous problem (3) which are exponentially decaying both at ±∞.
Using a similar terminology, we can call invisible modes the solutions of (3) such that the scat-
tered field is exponentially decaying both at ±∞ (T = 1). Such a difference of treatment between
trapped and invisible modes in literature is striking since the two notions seem to share similarities.

One approach to construct waveguides such that R = 0 has been proposed in [5, 4] (see also
[6, 2, 10, 11] for applications to other problems). The method consists in adapting the proof of
the implicit functions theorem. More precisely, the idea is to observe that R = 0 in the straight
waveguide and then to make a well-chosen smooth perturbation of amplitude ε (small) in the
boundary to keep R = 0. As explained in [5], this strategy does not permit to impose T = 1
(perfect invisibility) for waveguides with Neumann boundary conditions because the differential
of T with respect to the deformation for the reference geometry is not onto in C (think to the
assumptions of the implicit functions theorem). However, this problem was overcome in [3] where
it is shown how to get T = 1 (and not only |T| = 1) working with singular perturbations (instead of
smooth ones) made of thin rectangles. Let us mention that these types of techniques proposed in
[27, 31] were used in [28, 30, 8, 29] in a similar context. In these works, the authors construct small
(non necessarily symmetric) perturbations of the walls of a waveguide that preserve the presence
of a trapped mode embedded in the continuous spectrum.

It is important to emphasize that the methods of the previous paragraph are perturbative methods.
They require to start from a geometry where it is known that R = 0 or/and T = 1. In our case, this
geometry is simply the reference (straight) waveguide. As a consequence, the technique cannot
be used to construct waveguides where T = 0 (perfect reflectivity). In this article, we propose
to investigate another route allowing us to get R = 0, T = 0 and also T = 1. It relies on two
main ingredients: symmetries and asymptotic analysis for truncated waveguides. Interestingly,
our approach provides examples of geometries where R = 0 or T = 1 which are not small pertur-
bations of the reference waveguide. In our study, we will be led to consider scattering problems
in T-shaped waveguides. Such problems have been considered in particular in [26, 34]. Let us
mention also that this work shares connections with [9, 24, 7, 19]. In the latter papers, the authors
investigate the presence of trapped modes (also called bound states) embedded in the continuous
spectrum in geometries similar to ours. Finally, note that in the present article, we deal only with
the Neumann boundary conditions. However, Dirichlet waveguides can be treated similarly and
analogous results would be obtained.

The paper is structured as follows. We begin by introducing the setting and notation in Sec-
tion 2. The waveguide ΩL is symmetric with respect to the (Oy) axis (perpendicular to the
unbounded direction) and contains one vertical (along the (Oy) axis) branch of finite length L−1.
Using the symmetry, we decompose the problem into two sub-problems set in half-waveguides
with different boundary conditions: one with Neumann boundary conditions, another with mixed
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(Dirichlet and Neumann) boundary conditions. Then, we compute an asymptotic expansion of the
scattering coefficients R, T as L → +∞ (the branch of finite length becomes longer and longer).
This expansion depends on the number of propagative modes existing in the vertical branch of
the unbounded T-shaped waveguide Ω∞ obtained at the limit L = +∞, and this number itself
depends on the width ` of the vertical branch of Ω∞. In Section 3, we focus our attention on small
values of ` for which only one propagative mode exists in the vertical branch of Ω∞. In Section 4,
we use the asymptotic expansions of the scattering coefficients to prove the existence of geometries
where one has R = 0 (non reflectivity) or T = 0 (perfect reflectivity). In Section 5, we consider
a larger value for the parameter ` such that two modes can propagate in the vertical branch of
Ω∞. In such cases, we show that the behaviour of the scattering coefficients as L → +∞ can be
quite complex. Section 6 is dedicated to the proof of existence of waveguides where there holds
T = 1 (perfect invisibility). Finally, in Section 7 we provide numerical experiments illustrating the
different results obtained in the paper.

2 Setting

x

y

z

`

L− 1

Figure 1: Geometry of ΩL. Top view of the 3D channel Ξ = ΩL × (−d; 0). The vertical thick
dashed line marks the axis of symmetry of the domain which will play a key role in the analysis.

Take some ` > 0. For L > 1, set

ΩL := {(x, y) ∈ R× (0; 1) ∪ (−`/2; `/2)× [1;L)}.

We are interested in the propagation of time-harmonic small amplitude water waves at the fre-
quency ω > 0 in the 3D channel Ξ := ΩL × (−d; 0). The depth d > 0 is constant and the surface
ΩL×{0} is free. We shall assume that the fluid is irrotational and more generally that the setting
is such that the theory of linear water waves applies (see e.g. [21] for more details). Thus we are
led to study the problem

∆Φ = 0 in Ξ, ∂νΦ = 0 on ∂Ξ \ (ΩL × {0}), ∂zΦ = λΦ on ΩL × {0}. (2)

In (2), Φ(x, y, z) is the velocity potential, ∆ is the 3D Laplace operator, λ = g−1ω2 and g is the
acceleration due to gravity. Moreover, ν stands for the normal unit vector to ∂Ξ directed to the
exterior of Ξ. Looking for solutions of the form

Φ(x, y, z) = v(x, y) cosh(k (z + d)),

we find that the wavenumber k must satisfy the dispersion relation ω2 = g k tanh(kd) while v must
be a solution of the Helmholtz equation with Neumann boundary conditions

∆v + k2v = 0 in ΩL

∂nv = 0 on ∂ΩL.
(3)
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In this problem, which also models the propagation of waves in acoustic, ∆ is the 2D Laplace
operator and n denotes the normal unit vector to ∂ΩL directed to the exterior of ΩL. The map
k 7→ g k tanh(kd) is bijective from (0; +∞) to (0; +∞). In the rest of the paper, we focus our
attention on Problem (3). We assume that k ∈ (0;π) so that k2 is located between the first and
second thresholds of the continuous spectrum σc = [0; +∞) of Problem (3) and we set

w±(x, y) = e±ikx/
√

2k.

In the following, w± will serve to define the incident and scattered fields. Introduce χ+ ∈ C∞(R2)
(resp. χ− ∈ C∞(R2)) a cut-off function that is equal to one for x ≥ 2` (resp. x ≤ −2`) and to
zero for x ≤ ` (resp. x ≥ −`). Now, the scattering problem we consider states

Find v ∈ H1
loc(ΩL) such that v − χ−w+ is outgoing and

∆v + k2v = 0 in ΩL

∂nv = 0 on ∂ΩL.

(4)

Here, v − χ−w+ is outgoing means that there holds the decomposition

v − χ−w+ = χ−Rw− + χ+Tw+ + ṽ (5)

with ṽ ∈ H1(ΩL) which is exponentially decaying at ±∞. One can prove that Problem (4) always
admits a solution (see e.g. [33, Chap. 5, §3.3, Thm. 3.5 p.160]) which is possibly non uniquely
defined if there is a trapped mode1 at the wavenumber k. However, the reflection coefficient
R ∈ C and transmission coefficient T ∈ C are always uniquely defined. They satisfy the energy
conservation relation

|R|2 + |T|2 = 1

already written in (1). Of course R and T depend on the features of the geometry, in particular on
L. In this work, we explain how to find some L such that R = 0, |T| = 1 (non reflectivity); |R| = 1,
T = 0 (perfect reflectivity); or R = 0, T = 1 (perfect invisibility). To obtain such particular values
for the scattering coefficients, we will use the fact that the geometry is symmetric with respect to
the (Oy) axis. Define the half-waveguide

ωL := {(x, y) ∈ ΩL |x < 0}.

(see Figure 2, left). Introduce the problem with Neumann boundary conditions

∆u+ k2u = 0 in ωL
∂nu = 0 on ∂ωL

(6)

as well as the problem with mixed boundary conditions

∆U + k2U = 0 in ωL
∂nU = 0 on ∂ωL ∩ ∂ΩL

U = 0 on ΣL := {0} × (0;L).
(7)

Problems (6) and (7) admit respectively the solutions

u = χ−(w+ + r w−) + ũ, with ũ ∈ H1(ωL), (8)

U = χ−(w+ +Rw−) + Ũ , with Ũ ∈ H1(ωL), (9)

where r, R ∈ C are uniquely defined. Moreover, due to conservation of energy, one has

|r| = |R| = 1. (10)
1We remind the reader that we call “trapped mode” a solution to Problem (3) which belongs to H1(ΩL) (see [22]

for more details).
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Briefly, let us explain how to show the latter identities. First, integrating by parts, one obtains∫
x=−ξ

∂nuu− u ∂nu dσ = 0 (11)

for ξ > 0 large enough. Here, we denote ∂n = −∂x at x = −ξ. Observing that the integral (11)
does not depend on ξ, taking the limit ξ → +∞ and using the explicit representation (8), we get
|r| = 1. Working analogously with U and exploiting (9) leads to |R| = 1.

Now, direct inspection shows that if v is a solution of Problem (4) then, we have v(x, y) =
(u(x, y) + U(x, y))/2 in ωL and v(x, y) = (u(−x, y) − U(−x, y))/2 in ΩL \ ωL (up possibly to
a term which is exponentially decaying at ±∞ if there is a trapped mode at the given wavenumber
k). We deduce that the scattering coefficients R, T appearing in the decomposition (5) of v are
such that

R = r +R

2 and T = r −R
2 . (12)

Imagine that we want to have R = 0 (non reflectivity). According to (12), we must impose
r = −R. Relations (10) guarantee that for all L > 1, both r and R are located on the unit circle
S := {z ∈ C | |z| = 1}. In the following, we will show that for `, the width of the vertical branch
of ΩL, smaller than π/k, R tends to a constant R∞ ∈ S while r runs continuously along S as
L→ +∞. This will prove the existence of L such that r = −R and so R = 0. This will also show
that there is some L such that r = R and, therefore, T = 0 (perfect reflectivity). In order to obtain
perfect invisibility, that is T = 1, we must impose both r = 1 and R = −1. In other words, there is
an additional constrain to satisfy and we will need to play with another degree of freedom. Here,
we do not explain how to proceed, this will be the concern of Section 6. The important outcome
of this discussion is that we will study the behaviour of r and R with respect to L going to +∞.
As one can imagine, this behaviour depends on the properties of the equivalents of Problems (6),
(7) set in the limit geometry

ω∞ := {(x, y) ∈ (−∞; 0)× (0; 1) ∪ (−`/2; 0)× [1; +∞)}

(see Figure 2, right). More precisely, the number of propagating waves existing in the vertical
branch of ω∞ will play a key role in the analysis.

ΣL

ωL

L

ΓL

`/2

Σ∞

ω∞

Figure 2: Domains ωL (left) and ω∞ (right).

3 Asymptotic expansion of the scattering coefficients as L→ +∞

3.1 Half-waveguide problem with mixed boundary conditions

Set Σ∞ := {0} × (0; +∞) and consider the problem obtained from (7) making formally L→ +∞:

∆U + k2U = 0 in ω∞
∂nU = 0 on ∂ω∞ \ Σ∞
U = 0 on Σ∞.

(13)
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When ` ∈ (0;π/k), propagative modes in the vertical branch of ω∞ for Problem (13) do not exist
and we can show that (13) admits the solution

U∞ = χ−(w+ +R∞w
−) + Ũ∞, with Ũ∞ ∈ H1(ω∞),

where R∞ (such that |R∞| = 12) is uniquely defined. Then, working as in [23, Chap. 5, §5.6], we
can prove the expansion

U = U∞ + . . . .

Here and in what follows, the dots correspond to a remainder which is exponentially small as
L→ +∞. Hence, we deduce

R = R∞ + . . . . (14)

More precisely, we can show that R = R∞ +O(e−
√
k2−(π/`)2L).

3.2 Half-waveguide problem with Neumann boundary conditions

Making L→ +∞ in (6) leads to the problem

∆u+ k2u = 0 in ω∞
∂nu = 0 on ∂ω∞.

(15)

When ` ∈ (0; 2π/k), one propagative mode exists in the vertical branch of ω∞ for (15). Set

w±◦ (x, y) = e±iky/
√
k`.

Problem (15) admits the solutions

u−∞ = χ−(w+ + r∞w
−) + χ◦ t∞w

+
◦ + ũ−∞,

u◦∞ = χ− t◦∞w
− + χ◦(w−◦ + r◦∞w

+
◦ ) + ũ◦∞,

(16)

where ũ−∞, ũ◦∞ are functions in H1(ω∞) and where χ◦ ∈ C∞(R2) is such that χ◦ = 0 for y ≤ 1,
χ◦ = 1 for y ≥ 1 + δ (δ > 0 is a constant). To obtain an asymptotic expansion of r as L goes to
+∞, let us compute an asymptotic expansion of u. For u, we make the ansatz [23, Chap. 5, §5.6]

u = u−∞ + a(L)u◦∞ + . . . (17)

where a(L) is a gauge function, depending on L but not on (x, y), which has to be determined.
On the segment ΓL := (−`/2; 0)× {L}, we find

∂nu(x, L) = ∂nu
−
∞(x, L) + a(L) ∂nu◦∞(x, L) + . . .

= ik (k`)−1/2 ( t∞ eikL + a(L) (−e−ikL + r◦∞ e
ikL) ) + . . . .

Since ∂nu = 0 on ΓL, we take
a(L) = −t∞

−e−2ikL + r◦∞
. (18)

In order a(L) to be defined for all L > 1, we must have |r◦∞| 6= 1. Note that if |r◦∞| = 1, then
t◦∞ = t∞ = 0. In that case, we choose a(L) = 0 and we can prove that R = r∞ + . . . . When
|r◦∞| 6= 1, plugging expression (18) in (17) and identifying the main contribution of the terms of
each side of the equality at x = −∞, we get

r = rasy(L) + . . . with rasy(L) := r∞ −
(t◦∞)2

−e−2ikL + r◦∞
. (19)

2Work as in (10) to establish this identity.
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In (19), the subscript “asy” stands for “asymptotic” (and not “asymmetric”). As L tends to +∞,
the term rasy(L) runs along the set

{r∞ −
(t◦∞)2

z + r◦∞
| z ∈ S} with S = {z ∈ C | |z| = 1}. (20)

Using classical results concerning the Möbius transform, one finds that this set coincides with the
circle centered at

r∞ + (t◦∞)2 r◦∞
1− |r◦∞|2

(21)

of radius
|t◦∞|2

1− |r◦∞|2
. (22)

Using the relations 1 = |t◦∞|2 + |r◦∞|2 and r◦∞ = −t◦∞r∞/t◦∞3, one can prove that the set defined in
(20) is nothing else but the unit circle S.

Since the dots in (19) correspond to terms which are exponentially decaying as L tends to +∞, we
infer that the coefficient r does not converge when L→ +∞. Instead, asymptotically as L→ +∞,
it behaves like rasy(L), i.e. it runs periodically along the unit circle S. Since |r| = 1 for all L ≥ 1,
we deduce that r also runs (almost periodically) along S as L→ +∞. The period, which is equal
to π/k, tends to +∞ when k → 0.

3.3 Original problem

From Formula (12), we know that the coefficients R, T appearing in the decomposition (5) of a
solution to Problem (4) set in ΩL satisfy R = (r + R)/2 and T = (r − R)/2. From the results of
§3.1 and §3.2, we deduce that when ` ∈ (0;π/k), we have

R = Rasy(L) + . . . with Rasy(L) = (rasy(L) +R∞)/2,
T = Tasy(L) + . . . with Tasy(L) = (rasy(L)−R∞)/2.

(23)

Here rasy(L) is defined in (19). This shows that asymptotically, R (resp. T) runs along a circle of
radius 1/2 centered at R∞/2 (resp. −R∞/2).

4 Non reflectivity and perfect reflectivity

We have R = (r + R)/2 and T = (r − R)/2 (Formula (12)). Moreover, for all L ≥ 1, r and R are
located on the unit circle S. For a given k ∈ (0;π), pick some ` ∈ (0;π/k) and assume that the
coefficient r∞ appearing in (16) satisfies |r∞| 6= 1. Then, the results of the previous section show
that, as L→ +∞, R tends to a constant while r runs continuously (and almost periodically) along
S. From the intermediate value theorem, we deduce that there is an infinite sequence of values
1 < L1 < · · · < LN < . . . such that for L = Ln, we have r = −R and, therefore, R = 0 for the
chosen k. This provides examples of geometries there holds non reflectivity. As n → +∞, there
holds

Ln+1 − Ln = π/k + . . . ,

where the dots denote exponentially small terms.

From this discussion, we also infer that there is another infinite sequence of values 1 < L1 < · · · <
LN < . . . such that for L = Ln, we have r = R and, therefore, T = 0. This provides examples
of geometries where we have perfect reflectivity. As n→ +∞, again we have Ln+1−Ln = π/k+. . . .

3To derive this identity, work as in (10) with the integral
∫
y=ξ ∂yu

−
∞ u

◦
∞ − u−∞ ∂yu

◦
∞ dσ − (

∫
x=−ξ ∂xu

−
∞ u

◦
∞ −

u−∞ ∂xu
◦
∞ dσ).
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Note that the assumption |r∞| 6= 1 is not restrictive. Indeed, if |r∞| = 1 for some `, we can
make a small perturbation of order ε as described in Figure 3. More precisely, for some function
h ∈ C∞0 (R) supported in (−∞;−`/2) and some ε small enough, define

ωε∞ := {(x, y) ∈ R2 |x ∈ (−∞; 0), 0 < y < 1 + εh(x)} ∪ (−`/2; 0)× [1; +∞)}.

Denote rε∞ the equivalent of the coefficient r∞ in the geometry ωε∞ instead of ω∞. We can prove
that

rε∞ = r∞ −
ε

2

∫ −`/2

−∞
∂xh(x)u−∞(x)w+(x) dx+O(ε2).

Making the perturbation far away from zero so that , u−∞ ≈ w+ + r∞w
−, we can find some h

and some ε so that |rε∞| 6= 1. Then the geometry Ωε
L where we have non reflectivity or perfectly

reflectivity is defined from ωεL := {(x, y) ∈ ωεL | y < L} thanks to the symmetry with respect to
(Oy).

1 + εh(x)

Figure 3: Domain ωε∞ obtained as a perturbation of ω∞.

5 Two propagative modes in the vertical strip
In §3.3, we computed an asymptotic expansion of the coefficients R, T as L → +∞ when
` ∈ (0;π/k). In this case, one propagative mode exists in the vertical branch of Ω∞ for the
initial problem (4).

When ` ∈ (π/k; 2π/k), the main change compare to what has been done in Sections 3, 4 is that
one propagative mode exists in the vertical branch of ω∞ for Problem (13) with mixed boundary
conditions. Set

w±• (x, y) = (α`/2)−1/2e±iαy sin(πx/`), α =
√
k2 − (π/`)2.

Problem (13) admits the solutions

U−∞ = χ−(w+ +R∞w
−) + χ◦ T∞w

+
• + Ũ−∞,

U•∞ = χ− T •∞w
− + χ◦(w−• +R•∞w

+
• ) + Ũ•∞,

(24)

where Ũ−∞, Ũ•∞ are functions in H1(ω∞). To obtain an asymptotic expansion of R as L goes to
+∞, we will work exactly as in §3.2 where we derived an expansion for r. We first compute an
asymptotic expansion of U . For U , we make the ansatz

U = U−∞ +A(L)U•∞ + . . . (25)
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where A(L) is a gauge function, depending on L but not on (x, y), which has to be determined.
On the segment ΓL = (−`/2; 0)× {L}, we find

∂nU(x, L) = ∂nU
−
∞(x, L) +A(L) ∂nU•∞(x, L) + . . .

= iα (α`/2)−1/2 (T∞ eiαL +A(L) (−e−iαL +R•∞ e
iαL) ) + . . . .

Since ∂nU = 0 on ΓL, we take
A(L) = −T∞

−e−2iαL +R•∞
. (26)

In order A(L) to be defined for all L > 1, we must have |R•∞| 6= 1. Note that if |R•∞| = 1, then
T •∞ = T∞ = 0. In that case, we choose A(L) = 0 and we can prove that R = R∞ + . . . . When
|R•∞| 6= 1, plugging expression (26) in (25) and identifying the main contribution of the terms of
each side of the equality at x = −∞ yields

R = Rasy(L) + . . . with Rasy(L) := R∞ −
(T •∞)2

−e−2iαL +R•∞
. (27)

Working as in (21)–(22), we can prove that the term Rasy(L) runs along the unit circle as L tends
to +∞.

Coupling these results with the ones obtained in §3.2, we deduce that when ` ∈ (π/k; 2π/k),
the scattering coefficients for Problem (4) set in ΩL admit the asymptotic expansion

R = Rasy(L) + . . . with Rasy(L) = (rasy(L) +Rasy(L))/2,
T = Tasy(L) + . . . with Tasy(L) = (rasy(L)−Rasy(L))/2.

(28)

Here rasy(L), Rasy(L) are respectively defined in (19), (27). In §3.3, where ` ∈ (0;π/k) so that only
one propagative mode exists in the vertical branch of Ω∞, we gave an explicit characterization of
the sets (circles of radius 1/2 passing through zero) which are described by Rasy(L), Tasy(L) as L
goes to +∞. In the present situation, this seems much less simple and numerical experiments in
§7.2 show that the behaviour of Rasy(L), Tasy(L) when L → +∞ can be quite complicated. Let
us just consider cases where there are m,n ∈ N∗ := {1, 2, . . . }, with m > n, such that

k = α
m

n
⇔ ` = π

k

m√
m2 − n2

. (29)

This boils down to assume that k/α is a rational number. Define z = e−2iαL/n. As L → +∞,
Rasy(L), Tasy(L) run respectively along the sets

SR :=
{ 1

2
(
r∞ −

(t◦∞)2

−zm + r◦∞

)
− 1

2
(
R∞ −

(T •∞)2

−zn +R•∞

)
| z ∈ S

}
,

ST :=
{ 1

2
(
r∞ −

(t◦∞)2

−zm + r◦∞

)
+ 1

2
(
R∞ −

(T •∞)2

−zn +R•∞

)
| z ∈ S

}
.

In other words, Rasy(L), Tasy(L) run nπ/α-periodically along the close curves SR, ST in the com-
plex plane. Moreover, for any L? > 1, for L ∈ [L?;L? + nπ/α], L 7→ rasy(L) (resp. L 7→ Rasy(L))
runs continuously m times (resp. n times) along S. Therefore, according to the intermediate
value theorem, we know that there exist at least m − n values of L ∈ [L?;L? + nπ/α] such that
Rasy(L) = rasy(L) and m − n other values of L ∈ [L?;L? + nπ/α] such that Rasy(L) = −rasy(L).
Since R = (rasy(L) + Rasy(L))/2 + . . . , and T = (rasy(L) − Rasy(L))/2 + . . . , we infer that there
are some constants α(L?) ≤ 0 and β(L?) ≥ 0 (exponentially small with respect to L?) such that
L 7→ R and L 7→ T vanish at least m− n times in [L? + α(L?);L? + nπ/α+ β(L?)]. This provides
examples of geometries where we have non reflectivity or perfect reflectivity with ` ∈ (π/k; 2π/k).

When k/α is not a rational number, since rasy(L) runs faster than Rasy(L) along the unit disk
(because k > α•), we can still conclude that there are some L such that R = 0 or T = 0. However,
there is no longer periodicity (or more precisely, approximate periodicity).
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6 Perfect invisibility

Up to now, we have explained how to impose R = 0 (non reflectivity) or T = 0 (perfect reflectivity).
In this section, we show how to get T = 1 (perfect invisibility). Since T = (r − R)/2 (Formula
(12)), we must impose both r = 1 and R = −1. To proceed, we will work in the new symmetric
geometry

Ωγ
L := ΩL ∪ (±ϑ− 1/2;±ϑ+ 1/2)× [1; γ)

where γ > 1 and ϑ > `/2 + 0.5 (see Figure 4, left). The parameter ϑ is chosen only so that
the central branch is distinct from the two others. Let ωγL refer to the half-waveguide such that
ωγL := {(x, y) ∈ Ωγ

L |x < 0} (Figure 4 right). Again, denote R, T (resp. r, R) the scattering
coefficients for Problem (4) (resp. for Problems (6), (7)) set in Ωγ

L (resp. ωγL). For ` ∈ (0;π/k) and
a given γ > 0, as explained in §3.1, R tends to a constant R∞ located on the unit circle S. Making
γ → +∞, we can prove as in §3.2 that R∞ runs continuously along S. This allows one to deduce
that there is γ = γ∞ such that R∞ = −1. Then, tuning γ into γ(L), with γ(L) exponentially close
to γ∞, we can impose R = −1 for all L sufficiently large. On the other hand, the coefficient r runs
along S as L→ +∞. Therefore, almost periodically, we have r = 1 and R = −1 so that T = 1.

`

11 L

γγ

ϑϑ

`/2

1 L

γ

ϑ

Figure 4: Domains Ωγ
L (left) and ωγL (right).

7 Numerical results
We give here illustrations of the results obtained in the previous section. For given ` > 0, L > 1,
we approximate numerically the solution of Problem (4) with a P2 finite element method set in
the bounded domain Ωb := {(x, y) ∈ ΩL | |x| < 8}. At x = ±8, we use a Dirichlet-to-Neumann
map with 20 modes as a transparent boundary condition. From the numerical solution vh, we
deduce approximations Rh, Th of the scattering coefficients R, T defined in (5) (here h refers to
the mesh size). Then, we display the behaviour of Rh, Th with respect to L. For the numerics, the
wavenumber k is set to k = 0.8π ∈ (0;π).

7.1 Case 1: one propagative mode exists in the vertical branch of Ω∞
First, we investigate the situation of §3.3 where ` ∈ (0;π/k). To obtain the results of Figures 5-6,
we take ` = 1 ∈ (0;π/k). In Figure 5, we observe that, asymptotically as L→ +∞, the coefficients
Rh, Th run along circles. This is coherent with what was derived in (23). Figure 6 confirms that
the coefficients R, T are asymptotically periodic with respect to L→ +∞. More precisely, in (23),
we found that the period must be equal to π/k = 1.25, which is more or less what is obtained in
Figure 6. Figure 6 also confirms that, periodically, R, T are equal to zero.
In the next series of experiments, we study the properties of the asymptotic circles {Tasy(L) |L ∈
(1; +∞)} and {Rasy(L) |L ∈ (1; +∞)} defined in (23) with respect to the width ` ∈ (0;π/k)
of the vertical branch. For each ` ∈ (0;π/k), we showed that {Tasy(L) |L ∈ (1; +∞)} (resp.
{Rasy(L) |L ∈ (1; +∞)}) is a circle of radius 1/2 centered at −R∞/2 (resp. R∞/2). Therefore,
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Figure 5: Coefficients Th (left) and Rh (right) for ` = 1 ∈ (0;π/k) and L ∈ (2; 10). Note that due
to the conservation of energy, the coefficients R, T are located inside the unit disk.
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Figure 6: Curves L 7→ − ln |Th| (left) and L 7→ − ln |Rh| (left) for ` = 1.

numerically it suffices, for all ` ∈ (0;π/k), to compute an approximation of the coefficient R∞
solving Problem (13) set in ω∞. The results are displayed in Figure 7. If we take ` = 1, we observe
that the obtained circles coincide with the ones of Figure 5.
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−R∞/2: centers of the circles of radius 1/2
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R∞/2: centers of the circles of radius 1/2

Figure 7: Asymptotic circles with respect to ` ∈ (0;π/k). For each `, there is one circle. Left:
{Tasy, h(L) |L ∈ (1; +∞)}, right: {Rasy, h(L) |L ∈ (1; +∞)}.
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7.2 Case 2: two propagative modes exist in the vertical branch of Ω∞
Now, we consider the case ` ∈ (π/k; 2π/k) which has been studied in Section 5. In Figures 8
left and 9 left, we display the behaviour of Th, Rh for ` = 1.4 and L ∈ (2; 10). Independently,
numerically we can compute the coefficients r∞, t∞, r◦∞ (resp. R∞, T∞, R•∞) appearing in (16)
(resp. (24)). Hence, we can approximate the coefficients Rasy(L), Tasy(L) defined in (28). We
denote Rasy, h(L), Tasy, h(L) these approximations. The results are given in Figures 8 right and
9 right. We observe that the curves are in good agreement, that is Th (resp. Rh) and Tasy, h(L)
(resp. Rasy, h(L)) are close to each other. Figure 10, where the errors L 7→ |Th − Tasy, h(L)| and
L 7→ |Rh − Rasy, h(L)| are displayed, confirms this impression. Errors are small even though L is
not that large. This is due to exponential convergence with respect to L. Actually on Figure 10,
we observe that rapidly the numerical error becomes predominant with respect to the asymptotic
error as L increases.

Figure 8: Coefficients TL, h (left) and Tasy, h(L) (right) for ` = 1.4 ∈ (π/k; 2π/k) and L ∈ (2; 10).

Figure 9: Coefficients RL, h (left) and Rasy, h(L) (right) for ` = 1.4 ∈ (π/k; 2π/k) and L ∈ (2; 10).
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Figure 10: Curves L 7→ |Th − Tasy, h(L)| and L 7→ |Rh − Rasy, h(L)| for ` = 1.4.

In Figure 11, we display the behaviour of the curves {Tasy(L) |L ∈ (1; +∞)} and {Rasy(L) |L ∈
(1; +∞)} for several particular values of the width ` of the vertical branch of the waveguide. More
precisely, we choose ` such that

k = mα ⇔ ` = π

k

m√
m2 − n2

.

with m = 2, 3, 4, 5. In (29), we showed that in this case, {Tasy(L) |L ∈ (1; +∞)} and {Rasy(L) |L ∈
(1; +∞)} must be close curves in the complex plane. Our simulations are in accordance with this
result.
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Figure 11: Curves {Tasy, h(L) |L ∈ (1; +∞)} (left) and {Rasy, h(L) |L ∈ (1; +∞)} (right) for several
values of ` ∈ (π/k; 2π/k). For the line m− 1, m = 2, 3, 4, 5, we take ` = mπ/(k

√
m2 − 1).
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In Figure 12, we represent the numerical approximation of the curves {Tasy(L) |L ∈ (2; 200)} and
{Rasy(L) |L ∈ (2; 200)} for ` = 1.7. We can prove in this case that the ratio k/α is an irrational
number. As predicted, the curves goes through zero. It seems also that they fill the unit disk.
However, we are not able to prove it.

Figure 12: Coefficients Tasy, h(L) (left) and Rasy, h(L) (right) for ` = 1.7 ∈ (π/k; 2π/k) and L ∈
(2; 200).

7.3 Non-reflectivity

We give examples of waveguides where R = 0 for well-chosen ` and L. Numerically we set ` and
then we compute Rh for a range of L. Finally, we select the L such that − ln |Rh| is maximum.

Figure 13: Real part of vh−w+
h in geometries where we have non-reflectivity. Top: ` = 1 ∈ (0;π/k)

and L = 3.3649 (Rh ≈ (−7.8 + 8.9i).10−6). Bottom: ` = 2 ∈ (π/k; 2π/k) and L = 5.5329
(Rh ≈ (1.4 + i).10−5). As expected, the amplitude of the field is very small at x = −8.

7.4 Perfect reflectivity

Now, we provide examples of waveguides where T = 0. This time, we select the L such that
− ln |Th| is maximum.
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Figure 14: Real part of the total field vh in geometries where we have perfect reflectivity. Top:
` = 1 ∈ (0;π/k) and L = 3.85962 (Th ≈ (−5.3 + 6.1i).10−4). Bottom: ` = 2 ∈ (π/k; 2π/k) and
L = 3.152073 (Th ≈ (−7.3 + 2.7i).10−4). As expected, the amplitude of the field is very small at
x = 8.

7.5 Perfect invisibility

Finally, we show examples of waveguides where T = 1. Numerically, first we set ` ∈ (0;π/k) and
ϑ = 1.5 (see the notation in Section 6, Figure 4). Then we approximate the solution of Problem
(13) (half-waveguide problem with mixed boundary conditions) for γ ∈ (1; 10). We select one
γ = γ∞ such that − ln |R∞, h + 1| is maximum. Thus we impose R∞, h ≈ −1. Eventually, we
approximate the solution of the initial Problem (3) set in Ωγ∞

L for L ∈ (5; 10) and we take L such
that − ln |Th − 1| is maximum. We try to cover a range of (relatively) high values of L so that Rh
remains close to R∞, h ≈ −1. Indeed, we remind the reader that the error |R−R∞| is exponentially
small as L→ +∞ (see (14)).

Figure 15: Example of geometry where we have perfect invisibility: ` = 1 ∈ (0;π/k), γ = 2.4959,
L = 6.384936 and ϑ = 1.5. Numerically, we obtain a scattering coefficient Th such that Th − 1 ≈
(−6.5 + 1.4i).10−6. Top: real part of vh − w+

h . Bottom: real part of the total field vh.

16



Acknowledgments
The research of S.A. N. was supported by the grant No. 15-01-02175 of the Russian Foundation on
Basic Research. V. P. acknowledges the financial support of the Agence Nationale de la Recherche
through the Grant No. DYNAMONDE ANR-12-BS09-0027-01.

References

[1] A. Alù, M.G. Silveirinha, and N. Engheta. Transmission-line analysis of ε-near-zero–filled
narrow channels. Phys. Rev. E, 78(1):016604, 2008.

[2] A.-S. Bonnet-Ben Dhia, L. Chesnel, and S.A. Nazarov. Non-scattering wavenumbers and
far field invisibility for a finite set of incident/scattering directions. Inverse Problems,
31(4):045006, 2015.

[3] A.-S. Bonnet-Ben Dhia, L. Chesnel, and S.A. Nazarov. Perfect transmission invisibility for
waveguides with sound hard walls. arXiv preprint arXiv:1609.07596, 2016.

[4] A.-S. Bonnet-Ben Dhia, E. Lunéville, Y. Mbeutcha, and S.A. Nazarov. A method to build
non-scattering perturbations of two-dimensional acoustic waveguides. Math. Methods Appl.
Sci., 2015.

[5] A.-S. Bonnet-Ben Dhia and S.A. Nazarov. Obstacles in acoustic waveguides becoming “invis-
ible” at given frequencies. Acoust. Phys., 59(6):633–639, 2013.

[6] A.-S. Bonnet-Ben Dhia, S.A. Nazarov, and J. Taskinen. Underwater topography “invisible”
for surface waves at given frequencies. Wave Motion, 57(0):129–142, 2015.

[7] E. Bulgakov and A. Sadreev. Formation of bound states in the continuum for a quantum dot
with variable width. Phys. Rev. B, 83(23):235321, 2011.

[8] G. Cardone, S.A. Nazarov, and K. Ruotsalainen. Asymptotic behaviour of an eigenvalue in
the continuous spectrum of a narrowed waveguide. Sb. Math., 203(2):153, 2012.

[9] G. Cattapan and P. Lotti. Bound states in the continuum in two-dimensional serial structures.
Eur. Phys. J. B, 66(4):517–523, 2008.

[10] L. Chesnel, N. Hyvönen, and S. Staboulis. Construction of indistinguishable conductivity
perturbations for the point electrode model in electrical impedance tomography. SIAM J.
Appl. Math., 75(5):2093–2109, 2015.

[11] L. Chesnel and S.A. Nazarov. Team organization may help swarms of flies to become invisible
in closed waveguides. Inverse Problems and Imaging, 10(4):977–1006, 2016.

[12] E.B. Davies and L. Parnovski. Trapped modes in acoustic waveguides. Q. J. Mech. Appl.
Math., 51(3):477–492, 1998.

[13] B. Edwards, A. Alù, M.G. Silveirinha, and N. Engheta. Reflectionless sharp bends and corners
in waveguides using epsilon-near-zero effects. J. Appl. Phys., 105(4):044905, 2009.

[14] D.V. Evans. Trapped acoustic modes. IMA J. Appl. Math., 49(1):45–60, 1992.
[15] D.V. Evans, M. Levitin, and D. Vassiliev. Existence theorems for trapped modes. J. Fluid.

Mech., 261:21–31, 1994.
[16] D.V. Evans, M. McIver, and R. Porter. Transparency of structures in water waves. In

Proceedings of 29th International Workshop on Water Waves and Floating Bodies, 2014.
[17] R. Fleury and A. Alù. Extraordinary sound transmission through density-near-zero ultranar-

row channels. Phys. Rev. Lett., 111(5):055501, 2013.
[18] Y. Fu, Y. Xu, and H. Chen. Additional modes in a waveguide system of zero-index-

metamaterials with defects. Scientific reports, 4, 2014.
[19] S. Hein, W. Koch, and L. Nannen. Trapped modes and fano resonances in two-dimensional

acoustical duct–cavity systems. J. Fluid. Mech., 692:257–287, 2012.
[20] A.I. Korolkov, S.A. Nazarov, and A.V. Shanin. Stabilizing solutions at thresholds of the

continuous spectrum and anomalous transmission of waves. Z. Angew. Math. Mech., (DOI
10.1002/zamm.201500016):1–16, 2016.

17



[21] N. Kuznetsov, V.G. Maz’ya, and B. Vainberg. Linear water waves: a mathematical approach.
Cambridge University Press, 2002.

[22] C.M. Linton and P. McIver. Embedded trapped modes in water waves and acoustics. Wave
motion, 45(1):16–29, 2007.

[23] V.G. Maz’ya, S.A. Nazarov, and B.A. Plamenevskĭı. Asymptotic theory of elliptic boundary
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[33] S.A. Nazarov and B.A. Plamenevskĭı. Elliptic problems in domains with piecewise smooth
boundaries, volume 13 of Expositions in Mathematics. De Gruyter, Berlin, Germany, 1994.

[34] S.A. Nazarov and A.V. Shanin. Calculation of characteristics of trapped modes in t-shaped
waveguides. Computational Mathematics and Mathematical Physics, 51(1):96–110, 2011.

[35] S.A. Nazarov and J.H. Videman. Existence of edge waves along three-dimensional periodic
structures. J. Fluid. Mech., 659:225–246, 2010.

[36] V.C. Nguyen, L. Chen, and K. Halterman. Total transmission and total reflection by zero
index metamaterials with defects. Phys. Rev. Lett., 105(23):233908, 2010.

[37] A. Ourir, A. Maurel, and V. Pagneux. Tunneling of electromagnetic energy in multiple
connected leads using ε-near-zero materials. Opt. Lett., 38(12):2092–2094, 2013.

[38] R. Porter and J.N. Newman. Cloaking of a vertical cylinder in waves using variable
bathymetry. J. Fluid Mech., 750:124–143, 2014.

[39] F. Ursell. Trapping modes in the theory of surface waves. Proc. Camb. Philos. Soc., 47:347–
358, 1951.

[40] L.A. Vainshtein. Diffraction theory and the factorization method. Sov. Radio, Moscow, 1966.
(Russian).

18


	Introduction
	Setting
	Asymptotic expansion of the scattering coefficients as L+
	Half-waveguide problem with mixed boundary conditions
	Half-waveguide problem with Neumann boundary conditions
	Original problem

	Non reflectivity and perfect reflectivity
	Two propagative modes in the vertical strip
	Perfect invisibility
	Numerical results
	Case 1: one propagative mode exists in the vertical branch of 
	Case 2: two propagative modes exist in the vertical branch of 
	Non-reflectivity
	Perfect reflectivity
	Perfect invisibility


