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Brillouin scattering is a fundamental nonlinear interaction between two optical waves and an acoustic wave
mediated by electrostriction and photoelasticity. In this paper, we revisit the usual theory of this inelastic scattering
to get a joint system in which the acoustic wave is strongly coupled to the interference pattern between the optical
waves. We show in particular that when the coupling rate exceeds the phonon damping rate, the system enters
the strong-coupling regime, giving rise to anticrossing in the dispersion relation and Rabi-like splitting. We
further find numerically that strong coupling can, in principle, be observed using backward Brillouin scattering
in subwavelength-diameter optical waveguides.
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I. INTRODUCTION

Cavity optomechanics, a branch of physics that studies the
interaction of light with tiny mechanical objects, has recently
drawn widespread interest because of key fundamental obser-
vations such as resolved-sideband cooling, optomechanically
induced transparency, quantum coherent coupling, and Rabi
oscillations [1–4]. Rabi oscillations were initially described
as damped periodic oscillations of an excited atom coupled
to an electromagnetic cavity in which the atom alternately
emits and reabsorbs photons [5]. From a theoretical point
of view, this remarkable and ubiquitous phenomenon can be
readily described as a joint system of two coupled oscillators. If
both oscillators are uncoupled, they share the same degenerate
eigenfrequency. When they are strongly coupled, however,
the degeneracy is removed and the frequency is split into two
distinguishable eigenfrequencies corresponding to the odd and
even supermodes of the joint system. The frequency difference
between the two eigenfrequencies is called the Rabi frequency
[5,6]. When the same effect occurs at the quantum level,
e.g., an atom and a photon embedded in a cavity, the new
eigensolutions are coherent superpositions of the two particles.
When the two particles are not interacting with each other, they
have their own dispersion relations ki(ω) that may cross each
other. However, when the strong-coupling regime is reached,
the joint system dispersion relation displays an avoided
crossing and Rabi splitting. Since its first observation, this
concept has recently been extended to cavity optomechanics
where mechanical and optical modes of high-quality-factor
resonators are strongly coupled [7,8], and to many other joint
systems including photons, phonons, excitons, and plasmons
[2,5,6,9–11].

In this work, we theoretically investigate strong coupling
in backward Brillouin scattering (BS), which is a well-known
photon-phonon interaction involving two frequency-detuned
counterpropagating optical waves and an acoustic wave.
Although similar ideas have recently been introduced by Van
Laer et al. [12], our work specifically demonstrates that strong
coupling can be achieved between the acoustic phonon and
the optical beat note formed by the pump and Stokes waves.
The strong coupling investigated in this paper fundamentally
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differs from other regimes because it is cavityless and does not
rely on the optical and acoustic field variations. In our study,
this is the phase difference between the pump and Stokes
waves that govern the strong coupling. When the proper phase
conditions are fulfilled, strong coupling and Rabi splitting
can be numerically observed in subwavelength waveguides
providing that the coupling rate exceeds the phonon damping
rate.

The paper is organized as follows: First, we describe the
principle and methodology of the photon-phonon interaction
under consideration. Then we derive from the standard theory
of BS a joint two-level system, as commonly used in the Rabi
problem. Finally, we investigate from this system the specific
conditions that allow the strong optoacoustic coupling regime
to be achieved in small optical waveguides.

II. PRINCIPLE AND METHODOLOGY

Let us first describe the photon-phonon interaction under
consideration. When a coherent laser light is coupled and
guided into a thin optical fiber, as shown schematically in
Fig. 1, light generates and interacts with several types of
acoustic waves [13–15]. Here we assume only one acoustic
longitudinal wave interacting with the guided light (this
assumption will be discussed later on). As sketched in Fig. 1,
BS is an inelastic scattering whereby two frequency-detuned
optical pump (red right-pointing arrow) and Stokes (blue
left-pointing arrow) waves coherently interact in a dielectric
waveguide, giving rise to an optical interference pattern
(purple) that generates an acoustic wave (green phonon arrow)
through the effect of electrostriction. Simultaneously, the
photoelastic effect creates a moving index grating that travels
at the speed of hypersound (i.e., a few thousand of m s−1 in
silica and chalcogenide glasses). The index grating acts as a
moving Bragg mirror and reflects off the pump light with a
Doppler downshift matching the frequency detuning between
the two optical waves. When the frequency detuning is equal
to the acoustic phonon frequency, phase matching is achieved
and therefore one gets amplification of both the Stokes wave
and the optical beat note. In the weak-coupling regime, both the
optical beat note and acoustic wave grow along the propagation
distance, while in the strong-coupling regime, they couple and
alternately exchange energy over short periods of few tens of
microns.
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FIG. 1. Principle of strong coupling using backward Brillouin
scattering in an optical fiber. A strong pump wave (red arrow, pointing
right) coherently interacts with a counterpropagating probe wave,
giving rise to an optical beat note which generates an acoustic
wave through electrostriction. Under strong coupling, the interference
pattern and the phonon are coherently coupled and alternately
exchange energy over short periods of few tens of microns. Bottom
left: scheme of a two-level system with an exciton interacting with
a photon. Bottom right: scheme of the strong-coupling regime in
Brillouin scattering.

From a quantum point of view, a pump photon is annihilated
to create both a Stokes photon and an acoustic phonon, as
depicted in the bottom left of Fig. 1. Similarly to the Rabi
problem, the two pump and Stokes photons can be seen as
the two levels of an artificial atom. In our case, however, the
two coupled objects are actually the acoustic phonon and the
optical beat between the pump and Stokes waves. As a
result, our joint system is fundamentally different from the
conventional exciton-polariton picture. In the latter case, the
two-level system includes only one particle. It is described as
an exciton with a given resonant frequency, as sketched by
the spring in the bottom left of Fig. 1. The photon interacting
with the exciton is actually a signal probe tuned at the resonant
frequency. The experiment usually consists of tuning the probe
signal by adjusting its angle (wave vector) or changing the
temperature to affect the resonant frequency of the exciton. In
the BS case, the pump and Stokes light replace the two levels
since ωP > ωS (see bottom right of Fig. 1). However, the levels
are not bounded by a resonant frequency, as defined by the gap
of a two-level atom. In BS, the Brillouin frequency shift is
given by the phase-matching condition between the acoustic
properties of the mechanical structure formed by the optical
fiber and the optical waves. The resonant nature of the process
mostly depends on the acoustic properties of the waveguide.
This is illustrated in the bottom right of Fig. 1, where the
acoustic phonon plays the role of the spring. Since the pump
and Stokes waves are coherent laser light that are conveniently
produced and manipulated, we suggest to use them for probing
the coupling with the acoustic phonon.

To observe Rabi-like oscillations in such a two-level
system, it is also required to limit the interaction with,
ideally, one guided acoustic mode, which is not possible
using bulky standard optical fibers. This mode selection can,
however, be achieved using an optical fiber tapered down
to a subwavelength diameter [14] or a silicon nanoscale

waveguide [16]. To this end, we solved the dispersion equation
of longitudinal acoustic modes βa(�) in a silica fiber taper in
order to select only one acoustic mode interacting with guided
light. This dispersion relation reads [15]

2p

a

(
q2 + β2

a

)
J1(pa)J1(qa) − (

q2 − β2
a

)2
J0(pa)J1(qa)

= 4β2
apqJ1(pa)J0(qa), (1)

with p =
√

�2

V 2
L

− β2
a and q =

√
�2

V 2
T

− β2
a , where VL and VT
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related to the longitudinal and shear components of the
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where γ1 =
√

k2
0n

2
1 − β2, γ2 =

√
β2 − k2

0n
2
2, and Km denotes

the modified Bessel function of the second kind, with the
prime denoting differentiation with respect to the argument.
k0 is the propagating wave vector in vacuum. For each
integer value m, the eigenvalue β is the effective propagation
constant along the fiber axis of the given mode. This leads
to the propagating constants of the pump (P ) and Stokes (S)
waves, βP (ω) and βS(ω). Then the phase-matching condition
βP (ω + ��) − βS(ω) = βa(��) sets the detuning frequency
�� at which Brillouin scattering occurs.

Figure 2 typically shows a numerical simulation of the
acoustic wave spectrum generated in a silica fiber taper (see
Appendix A for chalcogenide), as a function of frequency
detuning �� and of the fiber diameter [14,15]. The color plot
actually shows the overlap between acoustic and optical modes
and it corresponds to the Brillouin scattering efficiency. As can
be seen, there are several acoustic waves in the frequency range
5–13 GHz [14]. We can also see several anticrossings in Fig. 2
that appear when a pressure branch (dotted line) crosses a shear
branch (dashed line). This is due to the fact that longitudinal
modes in acoustic waveguides exhibit both pressure and shear
components coupled at waveguide boundaries. This coupling
leads to the anticrossing seen in Fig. 2 and is fundamentally
different from the strong coupling described in this paper. We
note also that around 5 GHz, there is no avoided crossing
between the two surface Rayleigh waves because they have
orthogonal polarizations. The squared red area in Fig. 2 shows
that for a submicron-diameter fiber, there is a small frequency
range where we can isolate a single acoustic mode around
8 GHz. In our study, we investigate the strong-coupling regime
in a region such as this red area.

In addition, it is also important to have a sufficiently strong
coupling strength for transferring the energy back and forth
between the optical beat note and the phonon. As a result,
large Brillouin efficiency is also required, which is the case in a
subwavelength waveguide due to the strong light confinement.
Moreover, recent works have shown that Brillouin gain
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FIG. 2. Color plot of the Brillouin spectrum related to the
coupling strength between longitudinal acoustic modes with the
fundamental optical mode of a silica fiber taper as a function of
the acoustic frequency (horizontal axis) and of the taper diameter
(vertical axis). The color scale describes the normalized overlap
between the acoustic and optical modes. The scale is referenced
with 0 dB corresponding to the usual Brillouin gain in silica fibers,
γ = 3.3 × 10−11 m W−1. The absolute effective area Aeff is not taken
into account; it would show an enhancement for small diameters.
Several avoided crossings appear when a pressure branch (dotted line)
crosses a shear branch (dashed line). The squared red area isolates a
single acoustic mode, required for the strong-coupling regime.

could be significantly enhanced in nanoscale and large step
index waveguides when radiation pressure enters into play or
becomes comparable to the electrostrictive force [18,19].

III. THEORY

In the following, we rederive the usual theory of BS [20] to
yield a joint system that can experience Rabi-like oscillations.
The pump (P ) and Stokes (S) fields and the material density
ρ̃ can be expressed as

ẼP (x,y,z,t) = ÃP (z,t)EP (x,y)ei(βP z−ωP t+ϕP ), (3)

ẼS(x,y,z,t) = ÃS(z,t)ES(x,y)ei(βSz−ωSt+ϕS ), (4)

ρ̃(x,y,z,t) = ρ0 + ρ̃(z,t)R(x,y)ei(βaz−�at+ϕa ), (5)

where ρ0 is the mean density of the medium, βP,S,a , ωP,S ,
and �a , and ϕP,S,a are the wave vectors, frequencies, and
phases of the optical and acoustic waves, respectively. ÃP,S ,
ρ̃(z,t) are slowly varying envelopes, and EP,S and R are the
transverse profiles of each wave. The backward propagation
of the Stokes wave is taken into account with βS < 0 and the
complex conjugates are omitted. We note that this model of
a single-plane acoustic wave readily assumes that only one
acoustic wave can be possibly coupled to the optical waves,
as in Fig. 2. Moreover, effects due to strong light confinement
do not explicitly appear but can be taken into account, as
discussed in Appendix B. We also neglect the anti-Stokes
scattering and the second-order Stokes scattering [20]. That

assumption is also discussed in Appendix F. By including the
above equations in the wave equation, one gets [20]

∂ÃP

∂z
+ ∂β

∂ω

∂ÃP

∂t
= iωP γe

2nP cρ0

1

Deff
ρ̃ÃS, (6)

− ∂ÃS

∂z
+ ∂β

∂ω

∂ÃS

∂t
= iωSγe

2nScρ0

1

Deff
ρ̃∗ÃP , (7)

where γe is the electrostriction constant, nP , nS are the
refractive indices for the pump and Stokes waves, respectively,
c is the speed of light in vacuum, and Deff is a factor coming
from normalization (for details, see Appendix B). We note that
the above coupled-amplitude equations can experience strong
coupling provided that |ρ̃| is constant, as discussed in [12]. In
this case, temporal oscillations of ÃP and ÃS can occur in a
cavity configuration where stationary waves are present. Our
aim here is to show a different strong-coupling regime between
the acoustic phonon and the optical interference pattern. For
that purpose, we will hereafter combine Eqs. (6) and (7) to get
the evolution of the optical beat note.

A. Poynting vector: Optical beat note

Since the optical beat note is an intensity modulation
induced by the coherent superposition of pump and Stokes
waves, it can be described by the z component of the Poynting
vector as

→
S = →

E × →
H , (8)

= →
S P + →

S S + →
EP × →

HS + →
ES × →

HP , (9)

where
→
S P,S are the Poynting vectors for the pump and Stokes

waves. The two first terms of the right-hand side (RHS)
of Eq. (9) describe the independent Stokes and pump wave
Poynting vectors. They are linked to power evolution by the

flux 
 = ∫
S

→
S d�s. The two last terms in the RHS display the

coherent local intensity modulation due to interference. Those
terms do not describe a power flow since they vanish after in-
tegration; however, they describe a local intensity fluctuation,
i.e., the optical beat note. Using the expressions of the pump
and Stokes waves, given by Eqs. (3) and (4), we can readily
see that this intensity fluctuations varies as ei(�βz−�ωt), where
�β = βP − βS and �ω = ωP − ωS . The optical beat note
thus travels at a speed defined by vb = �ω

�β
. It is around a few

thousands m s−1, the same speed as the acoustic wave when
phase matching is satisfied. In the following, we will transform
Eqs. (6) and (7) to derive an equation of the optical beat note
and its relationship with the phonon. Careful attention will be
paid to the omitted complex conjugate terms; however, all the
terms of Eq. (9) are not detailed and the focus is put only on
phase-matched terms. First, we introduce the amplitude of the
magnetic field B̃P . In the plane-wave approximation, it gives,
for the pump wave, B̃P (z,t) = βP

ωP μ0
ÃP (z,t). Substituting it

into Eqs. (6) and (7) yields

∂B̃P

∂z
+ ∂β

∂ω

∂B̃P

∂t
= βP

βS

iωP γe

2nP cρ0

1

Deff
ρ̃B̃S, (10)

∂B̃S

∂z
− ∂β

∂ω

∂B̃S

∂t
= − βS

βP

iωSγe

2nScρ0

1

Deff
ρ̃∗B̃P . (11)
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Multiplying Eq. (6) by B̃∗
S and the conjugate of Eq. (11) by

ÃP , we find

∂ÃP

∂z
B̃∗

S + ∂β

∂ω

∂ÃP

∂t
B̃∗

S = iωP γe

2nP cρ0

1

Deff
ρ̃ÃSB̃

∗
S ,

ÃP

∂B̃∗
S

∂z
− ∂β

∂ω
ÃP

∂B̃∗
S

∂t
= βS

βP

iωSγe

2nScρ0

1

Deff
ρ̃ÃP B̃∗

P .

Since P and S waves are counterpropagating and shifted in
frequency by only a few GHz, we can make the following
assumptions: βS

βP
� −1 and n = nS � nP . Taking the sum

of the above equations, and neglecting the group velocity, as
explained in Appendix C, we readily find

∂ÃP B̃∗
S

∂z
= − iωP ωSγeρ̃

ncρ0Deff

(
ÃP B̃∗

P

ωP

− ÃSB̃
∗
S

ωS

)
. (12)

On the RHS of Eq. (12), we see that the optical beat note
is clearly coupled with the phonon ρ̃. The term within
brackets is usually referred to as the “population inversion”
in a two-level system problem. Indeed, if both waves were

propagating in the same direction, each ÃkB̃
∗
k

ωk
term would

be proportional to the power Pk , and be denoted as the
“population” of level k. However, in the specific case of
counterpropagating waves, the name population inversion is
not appropriate. Since each population term is proportional
to its Poynting vector, its sign depends on the direction of the
power flow along the z axis. If the Stokes wave propagates in
the backward direction (BS), the flux of the Poynting vector

for the Stokes wave is negative, leading to 2ÃS B̃∗
S

ωS
= −PS

ωS
. As

a result, the term in brackets of the RHS of Eq. (12) should be
named “total population.” This situation is very specific to the
present work, and does not occur in copropagating or static
cases such as the atom-photon coupling. In the atom-photon
picture, the conservation law stipulates that the sum of the
populations is constant, ρ̇11 + ρ̇22 = 0 [20]. However, for
counterpropagating waves (pump and Stokes), the Poynting
picture shows that the conservation through a transverse plane
turns to 
̇P − 
̇S = 0, which is unusual when compared to
the atom-photon picture (see Appendix D).

In order to build a joint system where the optical beat
is coupled with the phonon, it is important that the cou-
pling rate does not vary or, in other words, that the total
population is nearly constant. To this end, we assume that
anti-Stokes and second-order Stokes scattering are negligible
(see Appendix F). Under this assumption, we can multiply
Eq. (12) with the previously omitted fast oscillating phase
term ei(�βz−�ωt), add and subtract −i�βẼP H̃ ∗

S (z,t), simplify
with Eq. (3), and take the Fourier transform, to get

∂ ̂ẼP H̃ ∗
S (z,�)

∂z
− i�β ̂ẼP H̃ ∗

S (z,�) = kop

2
ρ̂(z,�), (13)

with ẼP H̃ ∗
S (z,t) = ÃP B̃∗

S (z,t)ei(�βz−�ωt) and the hat denotes
the Fourier transform. The coupling coefficient is kop =
− ωP ωSγe

2ncρ0Deff
{PP

ωP
+ PS

ωS
}. This equation actually describes the

optical beat note in the Fourier domain, with � the frequency
detuning between the pump and Stokes waves. If the RHS
is neglected, meaning that there is no nonlinear interaction,
this equation becomes the dispersion equation of the optical

beating. We can then see that the optical beating travels with
the wave vector �β that is related to the speed v = �ω

�β
.

B. Acoustic equation

To build the other half of the joint system, a similar equation
must be derived for the acoustic phonon. Using a standard
description of a pressure wave for the acoustic model, we get

−2i�
∂ρ̃

∂t
+ (

�2
a − �2 − i��B

)
ρ̃ − 2iβav

2
a

∂ρ̃

∂z

= −γeβ
2
a

nc

1

Deff
ÃP B̃∗

S . (14)

The first and third terms of the left-hand side (LHS) of Eq. (14)
show that the acoustic wave travels at the speed va = �a

βa
. The

second term of the LHS is the mechanical stresses induced by
the phonon. At the resonant frequency �a , only the �B term
related to the damping is left. The RHS of Eq. (14) provides
the coupling rate with the optical beat note. To write this
equation, we assume that the phase matching for backward BS
is satisfied and therefore that the acoustic wave vector is twice
the optical one, as βa = 2βP . Now, we should describe the
whole dispersion curve and not restrict our study to the phase-
matching case only. We will thus not make this assumption
and let βa(�) vary in the surrounding of frequency resonance
(� − �a � �a). The �2

a − �2 − i��B term then reduces to
−i��B , which stands for the acoustic phonon losses.

To get the dispersion relation of the phonon, we rewrite
the above equation by keeping the fast oscillating phase
term ei(βaz−�at). We then add and subtract iβaρ̃ei(βaz−�at) and
straightforwardly get

{
−iβaρ̃ + �

�a

1

va

∂ρ̃

∂t

}
ei(βaz−�at) + ∂ρ̃φ

∂z

� iu(�)ρ̃φ + ikpoẼP H̃ ∗
S , (15)

where ρ̃φ = ρ̃(z,t)ei(βaz−�at) + c.c. and

u(�) = i��B

2βav2
a

, (16)

kpo = − 1

2βav2
a

γeβ
2
a

nSc

1

Deff
(17)

are the acoustic losses and the nonlinear coupling rate,
respectively. The dispersion relation can be derived from the
Fourier transform of Eq. (15). Assuming that the detuning
from the Brillouin frequency shift is low, � − �a � �a , we
find

∂ρ̂(z,�)

∂z
− iβa(�)ρ̂(z,�)

= iu(�)ρ̂(z,�) + ikpo
̂ẼP H̃ ∗

S (z,�), (18)

where βa(�) = βa + (� − �ω) 1
va

is the dispersion relation of
the phonon and ρ(z,�) is the Fourier transform of ρ̃φ .
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C. The joint system

We now combine Eqs. (13) and (19) as a joint system with

2 ̂ẼP H̃ ∗
S denoting the optical beat,

∂

∂z

(
2 ̂ẼP H̃ ∗

S

ρ̂

)
= i

(
koo kop

kpo kpp

)(
2 ̂ẼP H̃ ∗

S

ρ̂

)
, (19)

where koo = �β and kpp = βa(�) + u(�) are the eigenvalues
of the uncoupled system, corresponding to the wave vectors of
the optical beat note and of the phonon, respectively. Note that
in the expression of kpp, we have u(�a) = i �B

2va
that is related

to the Brillouin linewidth �B , and thus the phonon decay rate
or lifetime. Since this term is imaginary, it gives an imaginary
part to kpp that stands for the phonon propagation losses. The
coupling coefficient kpo was previously defined in Eq. (17).
The eigenvalues K± of the joint system are solutions of the
characteristic polynomial as

(K± − koo)(K± − kpp) − kopkpo = 0. (20)

If kopkpo = 0, the coupling rate is zero and there are two
independent eigenvalues with dispersion curves that cross each
other. If the coupling term is nonzero, it is more convenient to
provide the equation in the form

K2
± − (koo + kpp)K± + kppkoo − kopkpo = 0, (21)

with

kopkpo = βa�Bc

8nva

g0

Aeff

{
PP

ωP

+ PS

ωS

}
, (22)

where g0 is the Brillouin gain defined in Appendix D, and
Aeff = D2

eff is the effective area of the mode-field diameter
(MFD). This equation possesses two solutions if the discrimi-
nant is positive,

� = (koo + kpp)2 − 4(kppkoo − kopkpo) � 0. (23)

At the crossing of two dispersion curves (� = �a), where
the phase-matching condition is fulfilled, �β = βP − βS =
βa , neglecting the phonon losses leads to koo = kpp. We can
rewrite this equation as

� = (koo − kpp)2 + 4kopkpo � 0. (24)

Here we see that at the crossing point of the uncoupled
dispersion curves, where the real part of koo equals the real
part of kpp, only the coupling term and the imaginary parts of
koo and kpp still remain in the equation. Therefore, if the sum
of the remaining terms is positive, the eigenvalues are

K± = 1
2 {koo + kpp ±

√
�}. (25)

We first compute the result of this equation, neglecting the
phonon losses u(�) = 0. This is illustrated in Fig. 3 that shows
the wave vector K± as a function of frequency detuning �

for a 1-μm-diameter chalcogenide tapered optical fiber, with
40 W and 1 mW pump and Stokes power (for parameters, see
Appendix E). The Rabi splitting is clearly visible in Fig. 3 as
an avoided crossing between the optical beat note and phonon
branches. Specifically, the splitting is characterized by a clear
gap between the two curves of

√
�. As a comparison, the

dashed gray lines show the intersecting dispersion curves
without any coupling. Note that for the simulation shown

FIG. 3. Dispersion curves K±(�) showing acoustic Rabi splitting
and anticrossing in a 1-μm-diameter As2Se3 tapered optical fiber with
40 W pump power and 1 mW Stokes power. The parameters are from
Appendix E and the phonon losses were neglected. Dashed gray lines
show the intersecting dispersion curves when there is no coupling.

here, we considered a chalcogenide glass fiber taper [13].
In the following, we will investigate the pump and Stokes
equations to find what lies behind the constant total-population
assumption we previously made.

IV. THE CONSTANT TOTAL-POPULATION ASSUMPTION

Similar calculations can be done to describe the intensity
fluctuations of both pump and Stokes waves,

∂ÃP B̃∗
P

∂z
+ ∂β

∂ω

∂ÃP B̃∗
P

∂t
= κ{ρ̃ÃSB̃

∗
P + ρ̃∗ÃP B̃∗

S}, (26)

− ∂ÃSB̃
∗
S

∂z
+ ∂β

∂ω

∂ÃSB̃
∗
S

∂t
= κ{ρ̃∗ÃP B̃∗

S + ρ̃ÃSB̃
∗
P }, (27)

with κ = iωγe

2ncρ0

1
Deff

. Subtracting both equations, we can write
in the steady-state regime the spatial evolution of the total
population as

∂

∂z

(
ÃP B̃∗

P

ωP

− ÃSB̃
∗
S

ωS

)

= iγe

2nP cρ0

1

Deff
2{ρ̃∗ÃP B̃∗

S + ρ̃ÃSB̃
∗
P } = 0. (28)

The constant total-population assumption then implies that the
RHS of the equation is zero, leading straightforwardly to

ϕa = ϕP − ϕS + π [2π ], (29)

for nonzero fields. This is an important result because Stokes
or anti-Stokes generation processes are generally associated
with different phase relationships, as summarized in Table I.
This table shows that in this phase configuration, neither the
Stokes nor the anti-Stokes process is dominant, leading to
nonfluctuating pump and Stokes power. This counterintuitive
result is confirmed by Eqs. (26) and (27), where the RHS be-
comes zero. We must stress that it does not prevent the optical
beat note from fluctuating. An optical beat is an interference
fringe pattern that results from the coherent superposition of
two waves, whether they are coupled or not. The Rabi splitting
only describes the periodic loss of visibility of those fringes.
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TABLE I. Table of phase relationships in BS processes. Note that
ϕP − ϕS = ϕa[2π ] does not draw any interest since all amplitudes
must be zero to prevent gain or depletion. We focus on ϕP − ϕS =
ϕa + π [2π ] cases since they describe nonzero solutions.

Process Pump Stokes Phonon Phase relationship

Stokes ↘ ↗ ↗ ϕP − ϕS = ϕa − π

2 [2π ]
Anti-Stokes ↗ ↘ ↘ ϕP − ϕS = ϕa + π

2 [2π ]
Rabi splitting ∼ ∼ ∼ ϕP − ϕS = ϕa + π [2π ]

The phenomenon is purely phase sensitive. If the phase is
halfway between a constructive and destructive interference,
thus the optical beat “disappears” without any change of the
pump or the Stokes intensities. From an experimental point of
view, it means that we need first to generate the phonon in a
standard stimulated Brillouin scattering (SBS) configuration
and then apply a phase shift using standard radio-frequency
components to observe the Rabi splitting.

Now, we will take into account the phonon losses and see
how it will affect the Rabi splitting. Furthermore, we will
define a criterion for the strong-coupling regime and study
how this criterion evolves with the material nonlinearity and
the pump power.

V. PHONON LOSSES AND SPLITTING RATIO

In the last section, the imaginary parts of koo and kop were
neglected, making each wave lossless. In the exciton-polariton
picture, the weak- and strong-coupling regimes are usually
separated by comparing the coupling rate g and the exciton-
photon decay rates γph and γex. If g � γex,γph, the system
is in the strong-coupling regime, whereas if g � γex,γph, the
system is in the weak-coupling regime [21]. Our case using
BS is very similar. If we do not neglect the phonon losses in
(24), we get the following inequality:

√
� = 2

√
kopkpo � |u(�)|, (30)

where the right-hand side
√

� plays a role similar to the
coupling rate g, with the difference that our eigenvalues
are wave vectors, and

√
� is thus homogeneous to m−1,

instead of s−1. The LHS term u(�) defined by Eq. (16) is
related to the phonon decay rate γex in the exciton-polariton
picture. To discriminate the weak-coupling from the strong-
coupling regime, it is convenient to rewrite Eq. (30) with the
splitting ratio p =

√
�

|u(�)| . If p � 1, the joint system is in the
weak-coupling regime, whereas if p � 1, it is in the strong
optoacoustic coupling regime.

Figure 4(a) compares the splitting ratio p for different
waveguides and different pump power. The blue dashed curve
corresponds to a silica tapered fiber with a 1 μm mode-field
diameter. As can be seen, the splitting ratio p never exceeds
one. The green dotted line represents a similar tapered fiber
made of As2Se3 chalcogenide glass. Thanks to the strong
Brillouin gain, the Rabi splitting occurs for pump powers
superior to a few watts. Finally, the blue dashed curve
represents what we would expect from a suspended silicon
nanowire that would experience the giant enhancement of SBS
gain predicted in Refs. [18,19]. Note that whether backward

FIG. 4. (a) Wave-vector splitting ratio p for silicon nanowire or
cooled As2Se3 (solid line), room temperature As2Se3 (dotted line),
and silica (dashed line) fiber taper vs the pump power. p measures
the gap between two split curves in number of linewidth. The gray
area delimits the weak-coupling regime. All of the parameters used
to make the calculation are listed in Appendix E. (b) Dispersion
curves K±(�) for 2.5 W pump power and 1 mW Stokes power in a
1 μm mode-field diameter tapered As2Se3 fiber. (d) Dispersion curve
K±(�) for 20 W pump power and 1 mW Stokes power in a silicon
nanowire as described in [19] or for 43 W pump power in the previous
tapered As2Se3 fiber. Optical loss is 1 dB m−1.

Brillouin scattering can be observed in silicon nanowire is still
under debate, but it does not question our theory since a similar
curve can be readily obtained with the previous chalcogenide
tapered fiber provided that the Brillouin linewidth is reduced
to 8 MHz. Le Floch and Cambon have demonstrated that such
significant reduction can be achieved by cooling [22]. Fig-
ure 4(a) also illustrates the weak- and strong-coupling regimes
for p = 0.75 (circle in the gray area) and p = 3 (square). In the
weak-coupling regime p < 1 shown in Fig. 4(b), the nonlinear
process is not strong enough and no splitting can be observed.

On the contrary, Fig. 4(c) clearly shows a strong gap
√

�

between the two branches. Rabi splitting occurs when the gap
exceeds a certain number of Brillouin linewidths defined by
|u(�)|.

This number of linewidths is indeed the splitting ratio p that
is plotted in Fig. 4(a) as a function of the pump power. One
can see that for a silica-based taper, the Brillouin gain is not
strong enough to induce any splitting even at high pump power,
whereas the chalcogenide fiber taper enables splitting from a
pump power just above 5 W. This is simply due to the fact that
Brillouin gain in As2Se3 fiber taper is about 200 times that of
silica and a smaller linewidth (see Appendix E). The splitting
ratio is further illustrated in Fig. 4(c) for a silicon nanowire or
a cooled chalcogenide fiber taper. In this case, p = 3, we find
a gap between the two branches of 3 linewidths.
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FIG. 5. Squared amplitude of the phonon and the optical beat vs
the z axis. We use 40 W pump power and 1 mW Stokes power in a
1 μm mode-field diameter tapered As2Se3 fiber. The parameters are
from Appendix E.

A further comparison between Figs. 3 and 4 shows that the
optical beat branch vanishes in Fig. 4. This is due to the fact
that the optical beat experiences negligible loss (1 dB m−1),
and thus its branch is very thin and beyond image resolution.
Unlike the optical beat, acoustic phonon experiences much
larger loss, leading to a much wider branch than the optical
one. Consequently, we can deduce that the resonant nature of
the process is definitely related to the phonon lifetime.

Once we have seen how the splitting ratio p evolves with the
optical power, it is interesting to investigate the influence of
the waveguide geometry. It is indeed inversely proportional
to

√
Aeff , making it stronger for submicron waveguides.

However, for such dimension, one has to pay attention to
the radiation pressure due to strong electric-field variation at
the waveguide boundaries. For relatively modest refractive
index contrast, as in chalcogenide glasses (n = 2.4), radiation
pressure can be considered negligible for a 1 μm mode-field
diameter (MFD). Radiation pressure has a noticeable impact in
high-confinement waveguides such as silicon nanowires with
few-hundred-nm width and high-index contrast (nSi = 3.4)
and can be taken to our advantage [19,23,24]. These effects
could be more explicitly taken into account using another set of
coupled equations similar to Boyd’s model including radiation
pressure [24] or by the introduction of the Rakich et al. Bril-
louin parameter, as we did in Fig. 4(a) (see Appendix A for de-
tailed explanation). In the next section, we will investigate the
spatial oscillating behavior that results from the Rabi splitting.

VI. SPATIAL BEHAVIOR

Following the computation of the eigenvalues depicted in
Fig. 3, we can calculate the spatial behavior. At the degeneracy
frequency, the eigenvectors are (1,

√
�

kop
) and (1, −

√
�

kop
). Nor-

malizing ρ̃ to ρ̃N = ρ̃
kop√

�
, the new eigenvectors are (1,1) and

(1, − 1). The damped oscillations of the two eigensolutions
are depicted in Fig. 5. This figure shows that the direct sum
of both eigenvectors leads to the initial conditions where there
is no phonon and maximum optical beat intensity. Then the
normalized phonon intensity rises as the optical beat vanishes.

FIG. 6. Scheme of the local Poynting vector oscillation due to the
strong coupling with a single acoustic wave. Note that the fringe’s
visibility reaches zero with full contrast, which may not always be the
case, depending on the initial conditions. The optical beat amplitude
is overemphasized for better visibility.

After a few microns, the process is reversed as the system
oscillates with a Rabi period of a dozen microns. As illustrated
by Fig. 3, the oscillation must be faster than the acoustic decay
rate which is satisfied if the splitting ratio p > 1.

Here, the “intensity” of the optical beat |̂ẼP H̃ ∗
S |2 is not

related to the optical mean power. The optical beat is a local
fluctuation of the optical intensity, in other words, a set of

interference fringes. The oscillation of |̂ẼP H̃ ∗
S |2 is thus an

oscillation of the fringe’s visibility. As explained in Table I,
we do not describe a process phase matched to provide optical
gain or depletion. As a result, the two first terms of the Poynting
vector in Eq. (9) that are related to the pump and Stokes power
remain constant. It is also confirmed by the fact that in this
regime, the RHS of Eqs. (26) and (27) is zero. This is shown
schematically in Fig. 6 by the strong constant mean value of
the local Poynting vector. On top of that, the oscillation of the

third term of the Poynting vector |̂ẼP H̃ ∗
S |2 in Eq. (9) translates

in the oscillation of the optical beat amplitude and thus a
periodic alteration of the visibility of the interference. The
consequence is that the strong-coupling regime corresponds
to the periodic loss of visibility of the optical beat. Note that
for better visibility of Fig. 6, we have limited ourselves to one
acoustic wave and overemphasized the optical beat amplitude
fluctuation. In reality, the optical intensity is much more
important compared to the local fluctuation and the fringes
result from the superposition of many acoustic waves along z.

VII. CONCLUSION

In conclusion, we have demonstrated from the theory of
Brillouin scattering in optical waveguides that strong coupling
can be achieved between the acoustic wave and the two optical
waves, giving rise to anticrossing and Rabi-like splitting. This
was demonstrated by deriving from the coupled equations of
BS a joint system that combines both the phonon and the
optical beat note resulting from the coherent superposition
of the pump and Stokes waves. It has been shown that
when the nonlinear coupling rate becomes comparable to
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the phonon decay rate, the joint system enters the strong-
coupling regime and exhibits two split eigenvectors K±(�).
We found numerically that this regime should be accessible
in highly nonlinear subwavelength waveguides. Finally, this
work contributes to the further understanding of strong photon-
phonon interactions and also proves that effects familiar to
cavity optomechanics can also occur in Brillouin scattering,
as recently suggested in Ref. [12].
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APPENDIX A: PHASE-MATCHING MAP FOR
CHALCOGENIDE FIBER

In Fig. 7, we report the same calculation as in Fig. 2, but for
a chalcogenide fiber taper using parameters in Appendix E.
Compared to silica, the lower acoustic velocity. allows a
greater number of acoustic modes and a bulk frequency around
8 GHz.

APPENDIX B: NORMALIZATION AND SUBMICRON
TREATMENT

The fields are normalized so that the modulus |2ÃB̃∗| in
Eq. (12) is the optical power. Thus the effective distance Deff

can be written as

Deff =
∫∫ |ES |2dxdy

√∫∫ |R|2dxdy∫∫
R(x,y)ESE

∗
P dxdy

= √
πσ,

FIG. 7. Color plot of the Brillouin spectrum related to the
coupling strength between longitudinal acoustic modes with the
fundamental optical mode of a silica fiber taper as a function of
the acoustic frequency (horizontal axis) and of the taper diameter
(vertical axis). The color scale describes the normalized overlap
between the acoustic and optical modes. The absolute effective area
Aeff is not taken into account; it would show an enhancement for
small diameters.

where σ = MFD
2 is the waist and MFD is the mode-field

diameter (after Ref. [25]). We can also define the effective
mode area as Aeff = D2

eff . In this case, we assume that both
pump and stokes lights are in the fundamental mode of the
waveguide.

Note that this is a standard treatment of the transverse fields
and that the specific case of submicron waveguides requires
more complex calculations without changing the main results
of this paper. In standard fibers, the main contribution of
electrostriction comes from one component of the stress tensor.
In submicron devices, all of the components contribute to this
effect. Moreover, in high-index nanowires, the continuity of the
normal component of the displacement vector induces strong
discontinuities of the electric field. It leads to an enhancement
of radiation pressure that must be taken into account. All of
those aspects have been treated in Refs. [19,26] and do not
fundamentally question our model. Equations (14)–(16) in
[26] are very similar to the nonlinear coupled mode equation
system that we have used. The main difference is that one has
to sum the contributions of all the components of the electric
field and all the components of the displacement vector. In our
case, we consider optical and acoustic modes. It means that all
the components (Ez,Eθ ,Er,Hz,Hθ ,Hr ) of the optical mode are
coherent and bound by the dispersion equation (1). Since the
mode is an electromagnetic eigensolution of the waveguide, all
those components are proportional to one amplitude related to
the optical power carried by the optical mode. As a result,
the different components of the electrostriction tensor in
Ref. [26] can be simplified by factorizing the optical mode
amplitude. Similarly, the same treatment can be applied to the
acoustic mode. We can factorize the acoustic mode amplitude
from all of the components of the displacement vector (uk,l).
After factorization, we find a standard nonlinear coupled
mode equation similar to the one in Boyd [20], where only
the optical and acoustic mode amplitude appear. The only
difference comes from a term that replaces γe

Deff
that eventually

results from the sum of all tensorial contributions. The same
arguments apply to radiation pressure. For example, in Fig. 4,
we use the Brillouin parameter calculated by Rakich et al. [19]
and replace g

Aeff
in our model to take those considerations into

account.

APPENDIX C: GROUP VELOCITY OF THE OPTICAL
INTERFERENCE PATTERN

If we do not neglect the group velocity in Eq. (12), we get

∂ÃP B̃∗
S

∂z
+ ∂β

∂ω

{
∂ÃP

∂t
B̃∗

S − ÃP

∂B̃∗
S

∂t

}

= − iωP ωSγeρ̃

2ncρ0Deff

(
ÃP B̃∗

P

ωP

− ÃSB̃
∗
S

ωS

)
.

Note that if the two pump and Stokes waves were propagating
along the same direction in the fundamental mode, the left-

hand side (LHS) would become ∂ÃP B̃∗
S

∂z
+ ∂β

∂ω

∂ÃP B̃∗
S

∂t
, giving

rise to a forward optical beat with its envelope traveling at the
group velocity. In the counterpropagating case, it is much more
difficult to define a group velocity for the optical interference
pattern. However, we can show that the effective group velocity
is somehow bounded and has a negligible effect on our main

043847-8



STRONG COUPLING BETWEEN PHONONS AND OPTICAL . . . PHYSICAL REVIEW A 94, 043847 (2016)

FIG. 8. (a) Pump in gray is a continuous wave and travels forward along the z axis; Stokes pulse light travels backward. (b) Pump pulse
in black travels forward along the z axis; Stokes light in gray is continuous and travels backward. (c) Pump and Stokes are pulses and travel
in opposite directions. The resulting wave packet is static. (d) Same computation as in Fig. 3, but with 1

vg
= − ∂β

∂ω
in green (circles) and blue

(diamonds) and with 1
vg

= + ∂β

∂ω
in markers.

results. We can see in Fig. 8(a) three different scenarios. First,
if the pump is a continuous wave, ∂ÃP

∂t
= 0, and the Stokes

wave is an optical pulse, the intensity fluctuations due to the
superposition of both waves are located at the same location
as the Stokes pulse. The optical beat pattern thus follows the
Stokes pulse and propagates at the same group velocity. Note
that the interaction with the phonon is not likely to disturb
this equilibrium if the pump is sufficiently strong compared to
the Stokes wave, |ÃP | � |ÃS |. Figure 8(b) shows the opposite
scenario where the Stokes is a continuous wave and the pump a
pulse. In this case, the optical beat follows the pump pulse and
its group velocity is therefore the pump group velocity. The
striking consequence is that this group velocity is the opposite
of the previous case, as pump and Stokes propagate in opposite
direction. From the equation, we can address a third interesting
example: if ÃP = B̃∗

S , the group velocity of the optical beat
is then null. This is depicted in Fig. 8(c), where both pump
and Stokes waves are optical pulses and the barycenter of both
pulses is static. This last case is, however, very unlikely to
happen since an increase of B̃∗

S over time due to the phonon
is clearly related to a depletion of the pump ÃP with much
impact on the group velocity.

As a result, if the group velocity of the optical interference
pattern may be uncertain, it is certainly bounded by the relation
1
vg

∈ [− ∂β

∂ω
, + ∂β

∂ω
], where the limits correspond to the first two

cases. More intriguingly, though these boundaries are wide
apart, they do not affect our main results. Figure 8(d) shows a
similar numerical simulation of the anticrossing as in Fig. 3,
but with 1

vg
= − ∂β

∂ω
in green (circles) and blue (diamonds)

and 1
vg

= + ∂β

∂ω
with markers. There is no noticeable difference

because | 1
vg

| � | n
c
| is very small compared to | 1

va
| and thus

negligible, whatever the sign is. The second point we want to
stress is that in most Brillouin experiments, the group velocity
is always positive since the pump power is much greater than
the Stokes power and does not suffer from depletion. Such as-

sumption leads to | ∂ÃP

∂t
B̃∗

S | � |ÃP
∂B̃∗

S

∂t
|, and we can thus write

∂ÃP B̃∗
S

∂t
= ∂ÃP

∂t
B̃∗

S + ÃP

∂B̃∗
S

∂t
� +ÃP

∂B̃∗
S

∂t
, (C1)

which is a positive group velocity.

APPENDIX D: BRILLOUIN GAIN

The Brillouin gain was defined using the method described
in [27]. From the above Eqs. (6) and (11), we find

∂ÃP B̃∗
P

∂z
+ ∂β

∂ω

∂ÃP B̃∗
P

∂t
= κ(ρ̃ÃSB̃

∗
P + ρ̃∗ÃP B̃∗

S ),

−∂ÃSB̃
∗
S

∂z
+ ∂β

∂ω

∂ÃSB̃
∗
S

∂t
= κ(ρ̃∗ÃP B̃∗

S + ρ̃ÃSB̃
∗
P ).

These equations first show that the optical powers propagate at
the same group velocity. Moreover, if we neglect the nonlinear
coupling term and then subtract both equations, we can use

the Poynting theorem for plane waves, div
→
S= 0, to remove

the spatial derivative and get the conservation law ∂ÃS B̃∗
S

∂t
−

∂ÃP B̃∗
P

∂t
= 0, or ∂PS

∂t
+ ∂PP

∂t
= 0. If the nonlinear coupling term

is kept, we must integrate from one fiber end to the other. In
the steady-state condition, we get PS(L) + PP (0) + Pρ(0) =
PS(0) + PP (L) + Pρ(L) that ensures the energy conservation.

Using the phonon equation (14) in the steady-state regime,
in order to substitute ρ̃, we find

ρ̃(z,t) = − 1

�2
B − �2 − i��B

γeβ
2
a

nc

1

Deff
ÃP B̃∗

S ,

and assuming ωP � ωS , we thus obtain the usual power
equation evolution of SBS, as in Ref. [27],

∂PP

∂z
= − g

Aeff
PP PS,

∂PS

∂z
= g

Aeff
PP PS,

where Aeff = D2
eff , κ1 = ωSγe

2nScρ0
, and κ2 = γeβ

2
a

2nc
1
�

= γeωS

c2va
, with

g(�) = g0
(�B/2)2

(�B − �)2 + (�B/2)2 ,

where g0 = 4κ1κ2
1

�B
= 2 ωSωP γ 2

e

nSc3vaρ0�B
is the Brillouin gain [27].
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TABLE II. Table of optical and acoustical parameters of silica-
based and chalcogenide-based glass materials and silicon.

Silicaa As2Se3
b Siliconc

Refractive index at 1.5 μm 1.45 2.8 3.5
Brillouin frequency shift (GHz) 11 8 39
Brillouin linewidth (MHz) 30 13 40
Acoustic velocity (m s−1) 5600 2250 8433
Brillouin gain (m W−1) 3.3 × 10−11 600 × 10−11 d

Mean mass density (Kg m−3) 2200 4640 2328

aSee [27].
bSee [29,30].
cSee [16,19].
dSince silicon nanowires are very sensitive to radiation pressure, it
is not convenient to separate the geometry of the waveguide from
the Brillouin gain. Rakich et al. predicts Brillouin parameters up
to 104 m−1 W−1 for 300 × 280 nm effective area nanowires for
resonances around 13 GHz [19].

APPENDIX E: MATERIAL PARAMETERS

In our simulations, we used and compared silica-based fiber
tapers and chalcogenide As2Se3 glass-based fiber tapers, as
they are readily available and manufactured [28]. Moreover,
recent experiments have shown the great potential of these
glass materials for SBS applications [13,14]. In addition, much
attention has recently been paid to silicon photonics with the
prediction of giant enhancement of the Brillouin gain through
the radiation pressure [19]. Table II summarizes the optical
and acoustical parameters of these three materials. Note that
the As2Se3 Brillouin linewidth can be as low as 13 MHz when
no substrate or coating is used [13,29,30].

APPENDIX F: ANTI-STOKES SCATTERING

One of the main hypotheses for the strong-coupling
Brillouin regime was to consider both the anti-Stokes and

FIG. 9. Scheme of the anti-Stokes scattering process above the
joint pump-Stokes system.

second-order Stokes scattering as negligible. This assumption
is valid in the weak pump-to-Stokes conversion regime.
However, adding the anti-Stokes wave as a higher-energy
level in the system equation does not significantly change
our results. As shown in Fig. 9, anti-Stokes scattering involves
an oncoming acoustic phonon A that must not be mistaken
for the forwardpropagating phonon B, involved in the joint
pump-Stokes system [20]. The scheme illustrates that anti-
Stokes scattering can then be considered as an additional loss
for the pump level. As a result, the model could be considered
as a three-level system [5]. The pump depletion due to this
phenomenon would then be associated with a decay rate
related to the room-temperature phonon population. However,
in optical fibers, anti-Stokes scattering is much weaker than
Stokes scattering due to the low-phonon population and the
fast phonon decay rate. Therefore, it is usually neglected,
particularly in the stimulated regime [31]. In the strong-
coupling regime, the coupling must be stronger than the
phonon decay that is around a few tens of microns. Over such a
short distance, the pump decay rate associated with anti-Stokes
scattering is thus negligible. Note that second-order Stokes
scattering can be neglected for the same reasons. For example,
experiments were reported with 3.5 ns pulses with peak power
40 W in 10-cm-long and 6-μm-diameter As2Se3 fiber, where
the second-order Stokes peak is 20 dB smaller than the first
order [32].
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[7] S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer,
Nature (London) 460, 724 (2009).

[8] E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J.
Kippenberg, Nature (London) 482, 63 (2012).

[9] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys.
Rep. 408, 131 (2005).

[10] J. Le Gall, M. Olivier, and J.-J. Greffet, Phys. Rev. B 55, 10105
(1997).

[11] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang,
J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
(London) 431, 162 (2004).

[12] R. Van Laer, R. Baets, and D. Van Thourhout, Phys. Rev. A 93,
053828 (2016).

[13] J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte,
and T. Sylvestre, Opt. Lett. 39, 482 (2014).

[14] J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and
T. Sylvestre, Nat. Commun. 5, 5242 (2014).

[15] D. Royer and E. Dieulesaint, Elastic Waves in Solids I - Free
and Guided Propagation (Springer, Berlin, 2000).

[16] R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, Nat.
Photon. 9, 199 (2015).

[17] A. W. Snyder and J. D. Love, Optical Waveguide Theory
(Springer, Boston, MA, 1984).

[18] P. T. Rakich, Z. Wang, and P. Davids, Opt. Lett. 36, 217
(2011).

043847-10

https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1038/nphys2206
https://doi.org/10.1038/nphys2206
https://doi.org/10.1038/nphys2206
https://doi.org/10.1038/nphys2206
https://doi.org/10.1038/nphys3236
https://doi.org/10.1038/nphys3236
https://doi.org/10.1038/nphys3236
https://doi.org/10.1038/nphys3236
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1038/nature08171
https://doi.org/10.1038/nature08171
https://doi.org/10.1038/nature08171
https://doi.org/10.1038/nature08171
https://doi.org/10.1038/nature10787
https://doi.org/10.1038/nature10787
https://doi.org/10.1038/nature10787
https://doi.org/10.1038/nature10787
https://doi.org/10.1016/j.physrep.2004.11.001
https://doi.org/10.1016/j.physrep.2004.11.001
https://doi.org/10.1016/j.physrep.2004.11.001
https://doi.org/10.1016/j.physrep.2004.11.001
https://doi.org/10.1103/PhysRevB.55.10105
https://doi.org/10.1103/PhysRevB.55.10105
https://doi.org/10.1103/PhysRevB.55.10105
https://doi.org/10.1103/PhysRevB.55.10105
https://doi.org/10.1038/nature02851
https://doi.org/10.1038/nature02851
https://doi.org/10.1038/nature02851
https://doi.org/10.1038/nature02851
https://doi.org/10.1103/PhysRevA.93.053828
https://doi.org/10.1103/PhysRevA.93.053828
https://doi.org/10.1103/PhysRevA.93.053828
https://doi.org/10.1103/PhysRevA.93.053828
https://doi.org/10.1364/OL.39.000482
https://doi.org/10.1364/OL.39.000482
https://doi.org/10.1364/OL.39.000482
https://doi.org/10.1364/OL.39.000482
https://doi.org/10.1038/ncomms6242
https://doi.org/10.1038/ncomms6242
https://doi.org/10.1038/ncomms6242
https://doi.org/10.1038/ncomms6242
https://doi.org/10.1038/nphoton.2015.11
https://doi.org/10.1038/nphoton.2015.11
https://doi.org/10.1038/nphoton.2015.11
https://doi.org/10.1038/nphoton.2015.11
https://doi.org/10.1364/OL.36.000217
https://doi.org/10.1364/OL.36.000217
https://doi.org/10.1364/OL.36.000217
https://doi.org/10.1364/OL.36.000217


STRONG COUPLING BETWEEN PHONONS AND OPTICAL . . . PHYSICAL REVIEW A 94, 043847 (2016)

[19] P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang,
Phys. Rev. X 2, 011008 (2012).

[20] R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, Burlington,
MA, 2008).

[21] Y. Yamamoto, F. Tassone, and H. Cao, Semiconductor Cavity
Quantum Electrodynamics (Springer, Berlin, 2000).

[22] S. Le Floch and P. Cambon, Opt. Commun. 219, 395 (2003).
[23] H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson III, A.

Starbuck, Z. Wang, and P. T. Rakich, Nat. Commun. 4, 1944
(2013).

[24] C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, Phys.
Rev. A 92, 013836 (2015).

[25] K. Miyagi, Y. Namihira, S. M. A. Razzak, S. F. Kaijage, and
F. Begum, Opt. Rev. 17, 388 (2010).

[26] Y. Pennec, V. Laude, N. Papanikolaou, B. Djafari-Rouhani, M.
Oudich, J. S. El, J. C. Beugnot, J. M. Escalante, and A. Martnez,
Nanophotonics 3, 413 (2014).

[27] G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic,
Amsterdam, 2006).

[28] C. Baker and M. Rochette, IEEE Photon. J. 4, 960 (2012).
[29] K. S. Abedin, Opt. Express 13, 10266 (2005).
[30] R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E.

Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J.
Eggleton, Opt. Express 19, 8285 (2011).

[31] A. Kobyakov, M. Sauer, and D. Chowdhury, Adv. Opt. Photon.
2, 1 (2010).
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