N

N

Semi-algebraic triangulation over p-adically closed fields

Luck Darniere

» To cite this version:

‘ Luck Darniere. Semi-algebraic triangulation over p-adically closed fields. 2018. hal-01469754v2

HAL Id: hal-01469754
https://hal.science/hal-01469754v2

Preprint submitted on 8 Nov 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01469754v2
https://hal.archives-ouvertes.fr

Semi-algebraic triangulation over p-adically

closed fields

Luck Darniere

November 8, 2018

Abstract

We prove a triangulation theorem for semi-algebraic sets over a
p-adically closed field, quite similar to its real counterpart. We derive
from it several applications like the existence of flexible retractions and
splitting for semi-algebraic sets.
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1 Introduction

Our knowledge of geometric objects in affine spaces over p-adic fields, that is the
field Q,, of p-adic numbers or a finite extension of it, has grown tremendously
in the past decades. Several remarkable analogies have emerged with real
geometry, in spite of the striking differences between the real and the p-adic
metrics. The present paper raises a new such analogy: we prove a triangula-
tion theorem over p-adically closed fields, quite similar to its real counterpart.
Let us first recall the classical results in p-adic geometry which will be used here.

Semi-algebraic sets over a field F' are the finite unions of sets defined by
finitely many conditions “f(x) = 0” or “f(z) has a non-zero N-th root in
F” | where f is a polynomial function with m variables. Of course if I is real
closed we can restrict the last conditions to N = 2 (that is to “f(z) > 0”)
and if F is algebraically closed to N = 1 (that is to f(z) # 0). It is shown
in [Mac76] that semi-algebraic sets over Q, are stable under the taking of
boolean combinations and projections (from Q' to Q]T’l, for every m). This
is a p-adic version of Tarski’s theorem for real closed fields (and of Chevalley’s
theorem for algebraically closed fields). Prestel and Roquette (see [PR84]) have
generalized it to arbitrary p-adically closed fields (a p-adic version of real closed
fields).



Denef has proved in [Den84] a Cell Decomposition Theorem for p-adic semi-
algebraic sets very similar to its real counterpart, and derived from it the ra-
tionality of Poincaré series. Another major application of cell decomposition is
that it provides a good dimension theory for semi-algebraic sets (see [SvdD88]).
Nowadays a cell over Q,, is generally defined as the set of (z,t) € Q' x Q, such
that

(@)Dt — (@) Talu(z)] and - e(x) € H (1)

where ¢, u, v are semi-algebraic functions (that is functions whose graph is semi-
algebraic), O0; and Oy are <, < or no relation, and H is {0} or a coset of some
semi-algebraic subgroup G of Q = Q, \ {0}. We call it a cell mod G. Denef
worked with cells mod Q, and implicitly with cells mod Py, the multiplicative

group of non-zero N-th powers. This use of cells mod Py was then made more
explicit by Cluckers. Gradually, people began to replace them by cells mod

Qv = U PN +pV2Z,)
keEZ

where Z,, denotes the ring of p-adic integers (and Z the ring of integers). Indeed
the Cell Decomposition Theorem only asserts that every semi-algebraic set S C
Q;}IH has a finite partition in cells mod Py for some N. But it usually comes
with a Cell Preparation Theorem (similar to Weierstrass preparation) which says
that, given semi-algebraic functions 6., ..., 60, from S to Q,, for some positive
integers N, M, e there is a partition of .S in finitely many cells mod Q]XV’ M on
each of which
[f(z,0)[* = |h(2)] - [t — c(2)|*

where h is a semi-algebraic function, o € Z and c s as in ([{l). Using such a prepa-
ration, Cluckers has proved in [Clu01] that for every two infinite semi-algebraic
sets A, B over a p-adically closed field, there is a semi-algebraic bijection from
A to B if and only if A and B have the same dimension.

Note that these semi-algebraic bijections are not continuous in general: for
example Clucker’s theorem applies to the valuation ring Z,, which is compact,
and to Zj, \ {0}, which is not. This lack of global continuity conditions is due
to the fact that the cell decomposition techniques treat the various cells of the
partition independently, without giving any information on how their frontiers
touch each other. This is where triangulations come into the pictur.

The real Triangulation Theorem says that every semi-algebraic set over R is
semi-algebraically homeomorphic to the union of a simplicial complex, that is
(informally) a finite family of simplexes which touch each other along their faces.
We have introduced in [DarI7] a notion of polytopes and simplexes adapted to
Q,. We delay precise definitions to Section [2 but give here some intuition
on it. The p-adic polytopes share many structural properties with their real
counterpart:

e As inverse images by the valuation (in Q7 /) of subsets of Z", they are
defined by very special (simple) systems of Q-linear inequalities.

LA different improvement of cell decompositions facing this question is given by stratifi-
cations. Such stratifications have been recently introduced in p-adically closed field [CCL12],
and in more general non-standard Henselian valued fields [Hall4]. However their relation-
ship with the p-adic triangulation is quite unclear at the moment, due to the very peculiar
conditions involved in the definition of p-adic simplexes.



e There is a notion of “faces” attached to them with good properties: every
face of a polytope S is itself a polytope; if S” is a face of S" and S’ a face
of S then S” is a face of S; the union of the proper faces of S is a partition
of its frontier.

e Among the p-adic polytopes, the simplexes are those whose number of
facets is minimald in a very strong sense: a simplex has at most one facet,
which is itself a simplex.

e Last but not least, every p-adic polytope can be divided in simplexes by
a certain uniform process of “Monotopic Division” which offers a good
control both on their shapes and their faces.

Just as in the real case, we can then define a simplicial complex over Q,, essen-
tially as a finite family of simplexes in Q7 j;, for some positive integer M, which
touch each other along their faces (again, see Section 2 for a more precise defini-
tion). A simplified version of our main result, the Triangulation Theorem 220,
can then be stated as follows.

Theorem (Triangulation). For every semi-algebraic set S C Qp' there is a
semi-algebraic homeomorphism ¢ : T — S whose domain T is the union of a
simplicial complex T .

Moreover, given semi-algebraic functions 01, . ..,0, from S to Qp, (T, ¢) can
be chosen so that on every T € T the valuation of each 6; o p(y) is a Z-linear
function of the valuations of the coordinates of y € T'.

Remark 1.1. The simplexes in the above complex 7 are not contained in
Q" but in finitely many copies of Qf for various ¢, usually much larger than
m. This is the main, but harmless, difference with the triangulation in the real
case.

In the real case, cell decomposition and triangulation hold not only for semi-
algebraic sets over R but also over any real-closed fields, and more generally for
definable sets in o-minimal expansions of such fields. In the p-adic case, Denef’s
Cell Decomposition Theorem holds in arbitrary p-adically closed fields. Several
variants of it, sometimes weaker, have been proved to hold in some, if not all,
P-minimal expansions of such fields (see [DvdD88] and [Clu04] for subanalytic
sets, [HM97], [CKDL17], [CKL16], [CCKLI17] and [DHI17] for definable sets in
P-minimal and p-optimal structures).

In the present paper we do not restrict ourselves to Q, and its finite ex-
tensions, but work in an arbitrary p-adically closed field K fixed once and for
all. Apart of the p-adic fields there are many natural examples of such: the
algebraic closure of Q inside Q, (which is not complete), the t-adic completion
of the field |J, ~, Qp((t'/™)) of Puiseux series over Q, (whose value group is not
Z, but Z x Q lexicographically ordered), and many others (every ultraproduct
of p-adically closed fields is still p-adically closed). We let v denote the (unique)
p-adic valuation of K, R its valuation ring and Z its value group. As usual Z
is augmented by an element +oco for v(0), and we let I' = Z U {0}.

Almost all the arguments in our proofs remain valid for definable sets in
p-optimal structures on K satisfying the Extreme Value Property (see [DHI1T]).

2Real simplexes can be characterised, among the polytopes of a given dimension d, as those
whose number is minimal (namely d + 1).



Unfortunately there is one single exception: the proof of the Good Direction
Lemma 3] which involves polynomial functions, does not generalize to the
more general “basic functions” involved in the definable sets in p-optimal
structures. Thus we will stick to the semi-algebraic framework in all this paper.

It is organised as follows. All the needed prerequisites, in particular those
concerning p-adic simplexes, are recalled in Section Pl which culminates with the
final statement of the Triangulation Theorem for semi-algebraic sets and func-
tions in m variables (Theorem 2:20). We denote it T,,. All the applications
presented below are then derived from T, in SectionBl By means of these appli-
cations and Denef’s Cell Preparation Theorem we prove in Section @ a “largely
continuous cell preparation up to a small deformation” for semi-algebraic func-
tions in m + 1 variables (Theorem [LT). Sections [ to [ are then devoted to
our main constructions, which are summarized in Lemma and Lemma, [Z.17]
(see also Remark below). In Section B we finally derive T,,4; from T,
by means of these two technical lemmas, which finishes the proof of our p-adic
triangulation theorem for every m.

Remark 1.2. Denef’s Cell Decomposition Theorem gives a partition of any
semi-algebraic set S C K™% in finitely many cells, but we do not control how
these cells touch each other. On the other hand, if a cell C'is defined by functions
¢, 1, v which extend to continuous functions ¢, i, 7 on the closure of C, the
frontier of C' naturally decomposes in cells, each of which is defined by means of
C, i, 7. These auxiliary cells can be seen as “faces” of C'. It allows us to speak
of “complexes of cells”, in a sense which will be made precise in sections [ and
The main results of these sections prove that after only a linear deformation
of S, which can be chosen arbitrarily “small” (that is close to the identity), it
is possible to decompose the image of S in a complex of cells. Moreover one can
require this complex to be a tree with respect to the specialisation order.

We now present several other applications of the Triangulation Theorem, all
of which will be proved in Section Bl

Theorem (Lifting). For every semi-algebraic function f: X C K™ — K such
that | f| is continuous, there is a continuous semi-algebraic function h: X — K
such that |f| = |h|.

In the above theorem |z| = p~¥(*) is the usual p-adic norm if Z = Z. Other-
wise this p-adic norm is not defined but can be replaced without inconvenience
by the following generalization: we let |a|] = aR* = {au : u € R*} for every
a € K, and |K| = {|a| : a € K}. The latter is naturally ordered by inclusion,
and isomorphic to I with the reverse order : |a| < |b] if and only if v(a) > v(b).
So |a| is just a multiplicative notation for v(a): we have |ab| = |al.]b] and
la + b] < max(|al, |b]), and of course |a| = 0 if and only if a = 0.

The real counterpart of the above result is quite obvious. On the contrary,
the next two results do not hold in real geometry. In the same vein as Clucker’s
result on classification of semi-algebraic sets up to semi-algebraic bijection
[Clu01], they confirm the intuition that the lack of connectedness and of “holes”
(in the sense of algebraic topology, see below) makes semi-algebraic sets over
p-adically closed fields much more flexible than over real closed fields.



Recall that a retraction of a topological space X onto a subspace Y is a
continuous map o : X — Y such that o(y) = y for every y € Y. When such a
retraction exists on a Hausdorff space X, then necessarily Y is closed in X.

Over the reals, the main obstruction for the existence of retractions is the
existence of “holes” which are detected by homotopy. This does not work over
p-adic fields. Indeed, replacing the unit interval [0, 1] in the reals by the unit
ball in K, that is the ring R of the p-adic valuation of K, we may say that
a non-empty semi-algebraic set X C K™ is “semi-algebraically contractible” if
there is a continuous semi-algebraic function H : X x R — X and a € X such
that H(z,1) = 2 and H(x,0) = a for every x € X. But this is always true:
given any a € X the function H(x,s) = « if s is invertible in R and H(z,s) = a
otherwise, has all the required properties. However it is another story to prove
that retractions actually exist.

Theorem (Retraction). For every non-empty semi-algebraic sets Y C X C
K™, there is a semi-algebraic retraction of X onto Y if and only if Y is closed
mn X.

It is worth mentioning that it is the next Splitting Theorem, already conjec-
tured in [Dar06], which was the main motivation for the research presented in
this paper. Here X denotes the topological frontier of X, see Section

Theorem (Splitting). Let X be a relatively open non-empty semi-algebraic sub-
set of K™ without isolated points, and Y1,---,Ys a collection of closed semi-
algebraic subsets of 0X such thafl YU - - -UY; = 0X. Then there is a partition
of X into non-emptgﬂ semi-algebraic sets Xq,..., X, such that 0X; = Y; for
1<i<s.

The trivial remark that every ball B C K™ is disconnected can be seen as
a very special case of the above Splitting Property (applied to X = B with
Y1 =Y, = (). This property is actually (in a sense which can be made precise,
see [Dar]) the strongest possible form of disconnectedness that can be observed
in a finite dimensional topological space whose points are closed. It is a ver-
satile property which we encountered in different contexts with minor changes
(see [Dar], [DJ18]). In the present paper, it plays a key role in the induction step.

A limit value for a function f: X C K™ — K at a point z adherent to X,
is a value [ € K such that (z,!) is adherent to the graph of f. Of course f tends
to [ at x if and only if [ is the unique limit value of f at x. Let us say that f is
largely continuous on a subset A of X if the restriction of f to A has a unique
limit value at every point adherent to A, that is if f extends to a continuous
function on the topological closure of A. If A is not mentioned it simply means
that f is largely continuous on its domain X. Finally f is piecewise largely
continuous if there exists a finite partition of X in semi-algebraic pieces on
which f is largely continuous. Of course in that case f has finitely many limit
values at every point adherent to X.

3Note that Y1,...,Ys are not assumed to be disjoint. All of them can be equal to 8X, for
example.

4A partition of a set X is for us a family of two-by-two disjoint subsets of X covering
X. We do not assume that the pieces must be non-empty. So when it happens by exception,
like here, that this property is required and does not follow from the context, we explicitly
mention it.



Theorem (Largely Continuous Splitting). Let f : X C K™ — K be a semi-
algebraic function whose graph has boundedd domain. If f has finitely many
limit values at every point adherent to X then f is piecewise largely continuous.

The real counterpart of this result is easily seen to be true, by means of a
triangulation and the trivial remark that every real simplex is connected (see
Section B). This last argument is no longer valid in the p-adic case but, as
we will see, the existence of retractions allows us to bypass this problem and
recover the full result in the p-adic context.

We can also mention two other applications of the Triangulation Theorem,
to p-adic semi-algebraic geometry and to model theory, which are outside of the
scope of this paper.

(i) One of the main advantages of proving the Triangulation Theorem for
every p-adically closed field, not only for p-adic fields, is that it allows us to
combine it with the very powerful model theoretic compactness theorem.
This in turn provides “uniform” triangulations, which almost give us for
free a p-adic analogue of Hardt’s Theoremld. Some difficulties still remain
because it is much less easy to construct homeomorphisms between p-adic
simplexes than between real simplexes (see Problem []). Hopefully this
will be addressed in a further paper.

(ii) By [Dar06] the Splitting Property for p-adic sets (which was only conjec-
tural at this time) ensures that the complete theory of the lattice L(K™)
of closed semi-algebraic subsets of K™ is decidable. This is in contrasts
with the real case, since we know from [Grz51] that the complete theory
of L(R™) is undecidable for every m > 2. Moreover the theory of L(K™)
only depends on m, not on the p-adically closed field involved and not
even on p, hence it is the same for L(K™) and L(Q%*) (see [Dar]).

Finally let us present a few open problems tightly connected with the present
work.

Problem 1. Extend the Triangulation Theorem to p-adic subanalytics sets, and
more generally to definable sets in some p-optimal expansions of K.

Problem 2. By giving reasonable sufficient conditions for different p-adic
simplexes to be homeomorphic, classify p-adic semi-algebraic sets up to semi-
algebraic homeomorphisms.

Problem 3. For any semi-algebraic set S C K™, construct a triangulation
(¢, T) such that the image of T by ¢ is a stratification of S. Or conversely
use existing stratifications of S (see footnoteld]) to construct a better (or a more
general) triangulation.

5This boundedness assumption could easily be removed. It suffices to add to K a point
at infinity and require that f has finitely many limit values in K = K U {oo} at every point
of the closure of X in K™, using the same construction as in the preparation of the proof of
Lemma [3.3]

6Hardt’s Theorem in real geometry says that the fibers of a semi-algebraic projection have
finitely many homeomorphism types.



2 Prerequisites and notation

We let N denote the set of positive integers and N* = N\ {0}. For all integers
k,l we let [k,[] be the set of integers ¢ such that k < i < (hence an empty set
itk >1).

Recall that we have fixed once and for all a p-adically closed field K. Fol-
lowing [PR&4], this is the fraction field of a (unique) Henselian valuation ring
R such that the residue field of R is finite, the value group Z of R has a least
strictly positive element, and Z/nZ has exactly n elements for every integer
n > 1. We fix once and for all a generator 7 of the maximal ideal of R, and let
R* = R\ R denote the multiplicative group of invertible elements of R.

Let Q denote the divisible hull of Z and Q = Q U {+00}. As an ordered
group, Z identifies naturally to the smallest non-trivial convex subgroup of Z.
We consider Z and Q as embedded into @ wia this identification.

For every subset X of K we let X* = X \ {0}. However, if X* is a subgroup
of the multiplicative group of K, we denote it X* in order to highlight this
property (so R* = R\ {0} # R* but K* = K\ {0} = K*). For every subgroup
G of K* welet G = {zg: g € G} for every z € K, and K/G = {2G : z € K}.
For example tR* = |z| and K/R* = |K|. Abusing the notation, 0G = {0} will
be denoted 0 whenever the context makes it unambiguous.

In order to ease the notation, given a € K™, AC K™ and f: X — K™ we
will often write va for v(a), vA for the direct image v(A), vf for the composite
vo f, and similarly for |A| and |f].

At some rare places it will be convenient to add to K a new element oo
(and to I' and |K| new elements —oo and +oo respectively) with the natural
convention that 07! = oo, co™ = 0, v(c0) = —00, |oo| = +00, and a.co = oo
for every a € K*. We also let 0.00 = 1 and 0" = 1 when needed.

2.a Topology and coordinate projections

When an m-tuple a is given, it is understood that (a1, ...,a,,) are its coordi-
nates, except if otherwise specified. For every a € K™ we let

va = (vay,...,vap) and |a] = (a1, ..., |am|).

This should not be confused with |a|| = max(|a1],...,|am|). For r € K* the
(clopen) ball of center a and radius r is defined as

B(a,r) = {ac eK™: |z —al| < |r|}

The valuation induces a topology on K, which is inherited by |K| and T
The topology generated on € by the open intervals and the intervals ]a, +00]
for a € Q, extends the topology of I'. The direct products of these topological
spaces are endowed with the product topology. For every subset X of any of
these spaces, X denotes the topological closure of X. In particular Z = I" and
Q = Q. Note that I' is closed in ©. The specialisation preorder on the
subsets of X is defined by B < A iff B C A.

We let 0X = X \ X denote the frontier of X. We say that X is relatively
open if it is open in X, that is if X = X \ X.

When a function f is largely continuous (see Section [I)) we usually denote
£ the continuous extension of f to the closure of its domain. On the contrary,




the restriction of f to some subset A of its domain is denoted f4.

The support of an element a of K™ (or |K|™), denoted Supp a, is the set of
indexes k such that a; # 0. The support of an element b of I'"*, denoted Supp b,
is the set of indexes k such that by = 4+o00. Note that with this definition, one
has that for every a € K™

Supp @ = Supp |a| = Supp v(a).

For every subset S of K™ (resp. |K|™T! resp. I'™*1) and every I C
{1,...,m} we let
Fi(S)={a€ S:Suppa=1}.
When F;(S) # () we call it the face of S with support I. The coordinate
projection of K™ (resp. |K|™, I'™) onto its face with support I will be
denoted 7. So 7r(a) is the unique point b with support I such that b; = a; for
every i € 1.

For every a € K™*! (resp. |K|™T1, resp. I™*1) we let @ denote the tuple of
the first m coordinates of a, so that a = (@, ap+1). If A is a set of (m+1)-tuples
welet A={a:a€ A}, and if A is a family of such sets we let

.Z:{/T:AGA}.

We call A (resp. A) the socle of A (resp. A).

Given two families H, A of subsets of K™+ we say that  is finer than A
if every H € H which meets a set A € A is contained in A. If moreover H is a
partition of | J.A we say that H refines A. We will often distinguish between
“horizontal refinements” for which H= .2, and “vertical refinement’ for which
H is the family of AN (X x K) where A ranges over A and X over a refinement
of the socle of A.

2.b Semi-algebraic sets
For every integer N > 1 let P = Py \ {0} witt]
PN:{aeK:ExEK, a:acN}.

P is a clopen subgroup of K * with finite index, and P, = K*. Hence a subset
K™ is a semi-algebraic set if it is a boolean combination of finitely many sets
S; defined by conditions
fi(z) € P, (2)

where the f;’s are m-ary polynomial functions. A semi-algebraic map is a
function whose graph is semi-algebraic. Rational functions, root functions and
monomial functions (see below) are semi-algebraic, among many others.

Abusing a little bit the terminology, we also say that a subset S of K™ x| K|"
is semi-algebraic if {(x,t) € K™ : (z,|t|) € S} is semi-algebraic. Similarly a
function f : X C K™ — |K|™ is semi-algebraic if its graph is. When a map ¢
is defined on the disjoint union of finitely many semi-algebraic sets A; living in
different copies of K™, we say that ¢ is semi-algebraic if its restriction to each
A; is semi-algebraic in the classical sense.

"The notation Py is sometimes used for the set of non-zero N-th powers. The conventions

used here leads to denote it Pﬁ, so as to highlight its multiplicative group structure.



Remark 2.1. If N’ divides N then Py is a clopen subgroup of Py, with finite
index. For this reason, all the integers N; appearing in (2)) can be replaced by any
common multiple N. Note also that 0 € Py is an empty condition, equivalent
to 1 € Py, hence all the f;’s can be assumed to be non-zero polynomials.

Theorem 2.2 (Macintyre). If S C K™*! is semi-algebraic then K is semi-
algebraic.

This fundamental result has many consequences. The most prominent one
is that a subset S of K™ is semi-algebraic if and only if there is a first-order
formulel o(x) in Lring = {0,1,+, —, x} (the language of rings), possibly with
parameters in K, such that

S={acK": K[ ¢(a)}

Remark 2.3. Given m-ary definable functions f, g, the set of points in K™
satisfying the condition “|f(z)| < |g(z)|” is known to be semi-algebraid). Thus
we will consider these expressions as abbreviations for some first order formulas
in the language of rings stating the same property). Similarly, if p(z,y) is a
formula with m + n variables and S C K™ is definable by a formula 4 (y) then
we will consider Jy € S, p(x,y) as a formula since it is an abbreviation for the
genuine formula Jy, ¥(y) A p(z,y).

Another important consequence of Macintyre’s theorem is that every
p-adically closed field is elementarily equivalent to a finite extension of Q) (see
[PR84]). In other words, there is a finite extension L of Q, such that K and L
satisfy exactly the same parameter-free formulas in L,ins. The following prop-
erty transfers from L to K by means of this elementary equivalence. Recall that
a family (Cy)qea of semi-algebraic subsets of K™ is uniformly semi-algebraic
if A C K™ is definable and there is a formula ¢(x,y) with m + n free variables
such that C, = {b€ K™ : K |= ¢(a,b)} for every a € A.

Theorem 2.4. Let (Cy)acr+ be a uniformly definable family of non-empty,
closed and bounded subsets of K™, such that |B] < |a| implies that Cg C C,.
Then e+ Ca is non-empty.

The next classical properties can easily be derived from this theorem (or
transfered from L to K by elementary equivalence).

Theorem 2.5. For every continuous semi-algebraic function f : X C K™ —
K™ whose domain X is closed and bounded, f(X) is closed and bounded. As a
consequence:

1. |||l is bounded and attains its bounds.
2. If f is injective then it is a homeomorphism from X to f(X).

Corollary 2.6. For every bounded semi-algebraic subset X of K™ which is
non-empty, there is an element x € X such that ||z|| is mazimal on X.

8For the notion of first order formula, we refer the reader to any introductory book of
model-theory, such as [Hod97| for example.

9This follows from the non-trivial fact that R is definable by means of the Kochen operator
(see |PR34)).



Another crucial property of the semi-algebraic structure on a p-adically
closed fields is the existence of so called “built-in Skolem functions” (see [vdD84],
or the appendix of [DvdD88] for a more constructive proof). Basically, this
property says that for every semi-algebraic subset A of K™%" the coordinate
projection of A onto K™ has a semi-algebraic section.

Theorem 2.7 (Skolem functions). Let X C K™ be semi-algebraic set and
o(z,t) a formula with m +n free variables. If, for every a € X there is b € K™
such that K = ¢(a,b), then there exists a semi-algebraic function & : X — K™
(called a Skolem function) such that K = p(z,&(x)) for every x € X.

For example, if a semi-algebraic function f : X — K takes values in Py,
then Theorem 7 applied to the formula (z,t) saying that “f(z) =tV gives
a semi-algebraic function ¢ : X — K such that f = ¢V,

There is a good dimension theory for semi-algebraic sets over p-adically
closed fields, see [SvdD88] and [vdD89]. We will repeatedly use the follow-
ing properties of this dimension, for every semi-algebraic sets A, B and semi-
algebraic map f defined on A. By convention dim ) = —oo.

1. dim A = 0 if and only if A is finite non-empty.
2. dim AU B = max(dim 4, dim B).

3. If A# 0, dimdA < dim A.

4. dim f(A) < dim A.

The local dimension of a semi-algebraic set A C K™ at a point a € A
is the minimum of dimU, for every semi-algebraic neighbourhood U of a in
A (with respect to the relative topology, induced by K™ on A). A is pure
dimensional if it has the same local dimension at every point. Note that if
a semi-algebraic set B is open in A and A is pure dimensional then so is B,
and that a cell is pure dimensional if and only if its socle is. This last point,
combined with Denef’s Cell Decomposition Theorem [£1] and a straightforward
induction, shows that every semi-algebraic set A is the union of finitely many
pure dimensional ones.

2.c Root functions and monomial functions

Following Lemma 1.3 in [CLI2] there is for each integer M > 0 a unique
group homomorphism @cy; from K* to (R/m™ R)* such that @cy(7) = 1 and
acy (u) = u+7M R for every u € R*. The construction of @cys given in [CL12]
shows that for each integer N > 0 the set

QN,IV[ = {O}U {1' € Plé . (1 +7TMR) :ﬁM(z) = 1}

is semi-algebraic. Q]XV’M = Qn,um \ {0} is a clopen subgroup of K* with finite
index. When v(K*) = Z then QF ), = Upez @~ (1 + 7 R) so the above
definition of @, s is compatible with the notation of the introduction.

If M > 2v(N), Hensel’s Lemma implies that 1 +7™ R C Py, hence Qu s is
contained in Py. The importance of Qs comes from the following property,

which also follows from Hensel’s lemma (see for example lemma 1 and corollary 1
in [Clu01]).
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Lemma 2.8. The function © — z¢ is a group endomorphism of Qn ;- If
M > v(e) this endomorphism is injective and its image is Q:NVU(SHM.

In particular z + 2 defines a continuous bijection from Qi )41 toO
Qe,20(e)+1- We let x — x1/¢ denote the reverse continuous bijection. In particu-
lar it is defined on Qn ar for every N, M such that e divides N and M > 2v(e).

For all positive integers e, n we let
Us={xeK:2°=1}y and U.,=U.-(1+7"R).

Analogously to Landau’s notation O(z™) of calculus, we let U, (z) denote any
semi-algebraic function in the multi-variable z with values in U, ,. Any such
function is the product of two semi-algebraic functions, with values in U, and
14 7™ R respectively. So, given a family of functions f;, g; on the same domain
X, we write that f; = U, ,g; for every ¢, when there are semi-algebraic functions
wi: X = Rand x; : X = U, such that for every = in X

file) = xi(x) (1 + 7"wi(@)) gi ().
U1 n(z) is simply denoted U, ().

Remark 2.9. If f(x) = U, (x) for some n > 2v(e) then f/¢ is well defined and
takes values in 1 4+ 7" ~"(®) R. Therefore we can write Uy, (z) = (Up—y(e) (2))°.

A function g is N-monomial on S C K1 if either it is constantly equal to
oo or there exists £ € K and B, ..., 84 € Z such that

q

Ve = (x1,...,24) €5, g(x) :gnxi\[ﬁz

i=1

In this definition we use when necessary our convention that 0° = 1. A function
f is N-monomial mod U, if f = U, ,g with g an N-monomial function.

2.d Discrete and p-adic simplexes

We say that f: .S C Fr(T'?) — Q is affine if either it is constantly equal to +oo,
or there are elements ag € Q and «; € Q for ¢ € I such that

Ve e S, f(z) =ap+ Zaixi.
iel

Polytope@ in T'Y are defined by induction on ¢. The only polytope in I'°
is 'Y itself (which is a one-point set). For every I C [1,q + 1], a subset A of
F;(T9+1) is a discrete polytope of T4+ if 4 is a discrete polytope of I'? and
if there is a pair (u,v) of largely continuous affine maps from A to Q, called a
presentation of A, such that 0 < y < v and

A= {a € Fy(T%") :a € A and p(@) < agsr < u(a)}.

Example 2.10.

10Tn [Dari7] we introduced discrete polytopes in 'Y as “largely continuous precells mod N”,
for an arbitrary g-tuple N of positive integers. In the present paper N = (1,...,1) will not
play any role so we remove it from the definition.
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e A =N x N is a discrete polytope with two facets Fy;3(A) = N x {+o0}
and F{Q} (A) = {+OO} x N.

e B={(z,y) € Z2:0 <y < 2} is a discrete simplex, with proper faces
Fiay(B) = {+00} x N and Fy(B) = {(+00, +00)}.

o C={(z,y,2) € Z3: (x,y) € B and 2z = 2y — 2z} is a subset of Z> defined
by linear inequalities, whose proper faces Fysy(C) and Fy(C) are linearly
ordered by specialization. However the linear map v(x,y) = 2y — 2z
defining C' is not largely continuous on B: it has no limit when (z,y)
tends to (+00,+00) in B. Note that Fi3;(C) = {+00}? x 2N can not be
defined by linear inequalities. Thus F3)(C) is definitely not a polytope,
and so neither is C.

All the references in the next proposition are taken from [DarI7].

Proposition 2.11. Let ¢ > 1 and A C F;(T'?) be a discrete polytope. Let (p,v)
be a largely continuous presentation of A, let J be a subset of I, and J = J\{q}.

Finally letY = F3(A). Then Fy(A) # 0 if and only if either ¢ € J and ji < +00
onY, orqé¢ J and v =400 on'Y (Proposition 3.11). When this happens:

1. Fj(A) = n;(A) (Proposition 3.3).

-~

2. The socle of F;(A) is a face of A: m = F';(A) =Y (Proposition 3.7).

3. Fj(A) is a discrete polytope and (fijy,D)y) is a presentation of it (Propo-
sition 8.11):

~

Fy(A)={be F;(T):beY, and a(b) < b, <v(b)}.

We will also use the next result (Proposition 3.5 in [Darl7]).

Proposition 2.12. Let A C T'? be a discrete polytope, f : A — Q be an
affine map and B = Fj(A) = n;(A) a face of A. Assume that [ extends to
a continuous map f* : AUB — Q. Then f* is affine and if f* # 400 then
f=Igomsa- In particular if f* # +oo then f(A) = f*(B).

A discrete simplex is a discrete polytope whose faces are linearly or-
dered by specialization. This is a “monohedral largely continuous precell mod
(1,...,1)” in [Darl7]. Of course every face of a simplex is a simplex (see Re-
mark 3.12 of [Darl7]).

For every M > 1 we let DM R? = (RNQ1,5)¢ and define p-adic simplexes
of index M as the inverse images of discrete simplexes by the restriction of
the valuation to D™ R4, The faces of a simplex S of index M are obviously the
pre-images in DM R? of the faces of vS. In particular they are linearly ordered
by specialization. S is closed if and only if vS is a singleton in I'?. If S is not
closed, its largest proper face T is called its facet and 9S = T.

Remark 2.13. With the notation of Proposition 212 if S = v=1(A) N DM RY
and T = v=Y(B) N DMRY then T = F;(S), and so by Proposition ZI2 T' =
m7(S). We will sometimes refer to the restriction of 7y to A (resp. S) as to
“the coordinate projection of A onto B (resp. of S onto T')”.
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Example 2.14. S = {(z,y) € D'R?:0 < |z| < |y| < 1} is a simplex of index
1 (it is the inverse image in D' R? of the discrete simplex B in example 2.10).
Intuitively we can visualise it (more exactly its image in | K| x |K|) in the next
figure, with its faces Fy13(S) = D'R x {0} and Fy(S) = {(0,0)}. More general
simplexes will be defined by triangular systems of inequalities between norms
of largely continuous monomial functions with rational exponents, hence their
intuitive representations will usually have curved shapes.

2.e Simplicial complexes

We will have to consider complexes of sets, of cells and of simplexes. All of them
are finite families of subsets of a topological space X, organised in a such a way
that one controls how the closures of these sets intersect.

Recall first that an ordered set A is a tree if for every A in A, the set of
elements in A smaller than A is linearly ordered. It is a rooted tree if it
has one smallest element. A lower subset of A is a subset B of A such that
whenever an element of A is smaller than an element of B, it belongs to B.

Now, given a finite family A of pairwise disjoint subsets of X, we call A a
closed complex if every A € A is relatively open and if its frontier 0A is a
union of elements of A. The specialization preorder is then an order on A. If
A, ordered by specialization, is a tree (resp. a rooted tree) we call it a closed
monoplex (resp. rooted closed monoplex). A complex (resp. monoplex)
is then an arbitrary subfamily of a closed complex (resp. closed monoplex). Of
course a complex A is a closed complex if and only if | A is closed.

Remark 2.15. Using that every semi-algebraic set is the disjoint union of
finitely many pure dimensional ones, and that dim dA < dim A for every semi-
algebraic set A, a straightforward induction shows that every finite family of
semi-algebraic subsets of K™ can be refined by a complex of pure dimensional
semi-algebraic sets.

A simplicial complex S in D™ R? (resp. in I'Y) is a complex of simplexes
in DM R (resp. in T'Y).

Remark 2.16. We do not require in our definition of a simplicial complex S
in DM R? that different simplexes must have different supports. However it will
follow from our construction that the simplicial complexes produced by T,, do
have this additional property and more: for every S, 5’ € S, S’ < S if and only
if Supp S’ C Supp S (see Remark [ I0)). So the tree S, ordered by specialisation,
is isomorphic to the set {Supp S : S € §} ordered by inclusion.

Let S be a finite family of simplexes in ijRq_(or I'?). Then S is a simplicial
complex if and only if for every S,T € S, SN T is the union of the common
faces of S and T'. When this happens:

13



1. § is a monoplex;
2. every subset Sy of S in DM R is again a simplicial complex;
3. |JSo is closed in |J S if and only if Sp is a lower subset of S.

Let S denote the family of all the faces of the elements of S. We call it the
closure of S, and say that S is closed if S = S. Note that S is a complex
(resp. a closed complex) if and only if S C S (resp. S = S) and the elements
of S are pairwise disjoint.

If S is a simplicial complex, we say T is a simplicial subcomplex of S of
if 7 is a simplicial complex such that T refines a lower subset of S, and |J 7T is
a closed subset of |JS.

The following results are respectively Theorem 6.3 and Proposition 6.4 of
[Dar17].

Theorem 2.17 (Monotopic Division). Let S be a simplex in DM RY and T a
simplicial complex in DM RY which is a partition of 0S. Let ¢ : S — KX be
a definable function such that the restriction of || to every proper face of S is
continuous. Then there exists a finite partition U of S such that U U T is a
simplicial complez in DM R, U contains for every T € T a unique simplex U
with facet T, and moreover ||u — ms(u)| < |e(ms(u))| for every u € U, where
J = Supp(T).

Proposition 2.18. Let A C DM RY be a relatively open set. Assume that A is
the union of a simplicial complexr A in DM R, Then for every integer n > 1

there exists a finite partition of A in semi-algebraic sets Ay, ..., A, such that
0A, = 0A for every k.

Finally, a simplicial complex of index M is a collection & = {S;}ics of
finitely man rooted simplicial complexes S; in DM R% | for various integers ¢;.
The closure of § is the collection of the closures of the S;’s. It has separated
supports if each S; is. If T = (7;);ez is a collection of families 7; of subsets of
DM R? we let |47 denote the disjoint union of the |J7;’s. We say that T is a
simplicial subcomplex of S if each 7; is a simplicial subcomplex of S;.

Given a semi-algebraic homeomorphism ¢ from | S to a subset X of K™,
we will let

o(S) = {p(9) : S € S}.

If S is closed, ¢(S) is obviously a closed monoplex of pure dimensional semi-
algebraic sets partitioning X.

Remark 2.19. With ¢ as above, S is closed if and only if X is closed and
bounded. Indeed, each |JS; is clopen in |4 S, hence its homeomorphic image
X, by ¢ is clopen in X. In particular X is closed and bounded in K™ if and
only if so is each X;. Let ¢; be the semi-algebraic homeomorphism from |JS;
to X; induced by restriction of ¢. Note that (JS; is bounded (it is contained
in R%). By Theorem 25l applied to ¢; and ¢; it follows that | JS; is closed in
K% that is §; is closed, if and only if X; is closed and bounded in K™.

We can now state precisely our main result.

11 Possibly zero if the index set I is empty.
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Theorem 2.20 (Triangulation T,,). Given a finite family (0; : A; C K™ —
K)ier of semi-algebraic functions and integers n, N > 1, for some integers e, M
which can be made arbitrarily larg, there exists a simplicial complex T of
index M and a semi-algebraic homeomorphism ¢ from the disjoint union of the

simplexes in T to J;c; Ai such that for every i in I:

1. {o(T): T €T and o(T) C A;} is a partition of A;.
2. VI € T such that o(T) C A;, 0; o @ is N-monomial mod Uep,.

We call the pair (T,¢) given by T, a triangulation of the 6;’s with pa-
rameters (n, N,e, M). When a finite family (A;);c; of semi-algebraic sets is
given, the result of the application of T, to the indicator functions of the A;’s
is called a triangulation of (A;)c;.

3 Applications

In all this section we assume T,, and derive some applications. The proof of
the Triangulation Theorem goes by induction on m, and most of the following
applications are actually needed in the induction step. So it is important to
emphasize that throughout this section, the integer m will be fixed.

Theorem 3.1. If f : X C K™ — K is semi-algebraic and |f| is continuous,
then there exists a function h : X — K semi-algebraic and continuous such that
£ = |hl on X.

Proof: T, gives a triangulation (7,¢) of f with parameters (1,1, e, M).
On every S € T, fog = Ue1tp with ¢ : § — K a 1-monomial function.
Thus for some ggs such that S is contained in DM R%S | there are A\g in K and
01,5, .., 0qg,s in Z such that:

Ve e S, |foyp(x) = (3)

qs
i
)\S H :L_i i,S
i=1

Let ap,s = vAg and &g : vS — I' be defined by:

qs

Va € vS, &s(a) = ap,s + Z 0,5

=1

By construction g(va) = vf(p(x)) for every € S (in particular g only
depends on fo ¢, even if the coefficients «; s in (B]) are not uniquely determined
by fop on S). By assumption vf is continuous on X hence sois vfop on |4 7T.
In particular g extends continuously to vT" for every face T of S in T, and the
restriction to v7T" of such an extension &g is precisely &7. By proposition it
follows that if &7 # 400 (that is if fo@ # 0 on T') then £ = &7 o mp where Tp
denotes the coordinate projection of vS to vT (see Remark 2.T3]).

Now, for every S in T let gs : S — K be defined (by induction on 7 ordered
by specialization) as follows:

12The exact meaning of “e, M can be made arbitrarily large” is a bit special here: it says
that for any given integers e, > 1 and M, > 1, the integers e, M can be chosen so that e
divides e and M, < M.
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1. If fop=0o0nlS, gs=0.

2. If S is minimal (with respect to the specialisation preorder) among the
simplexes in 7 on which f o ¢ # 0 then for every z € S:

qs
gslw) = noos [ [
=1

3. Otherwise gs = gr o mp where 7p is the coordinate projection (see Re-
mark 2.13]) of S onto its smallest proper face T in T on which f o ¢ # 0.

By construction vgs(xz) = {s(vz) for every x € S hence |gs| = |f o ¢| on S.
Moreover for every face T of S in T and every y € T, gs(z) tends to gr(y) as
x tends to y in S (because gs(x) = gr(mr(z)) if g7 # 0, and otherwise because
lgs| = |fowlon S, |gr|=|foel=0o0nT and |f o ¢| = |f| o ¢ is continuous
by assumption).

The function h : X — K defined by h = ggs o ¢! on every ¢(S) with S in
T, is clearly semi-algebraic. By construction |f| = |h| on X, and by the above
argument h is continuous on X.
[

Theorem 3.2. For all non-empty semi-algebraic sets Y C X C K™, there is a
semi-algebraic retraction of X onto Y if and only if Y is closed in X.

Proof: One direction is general. For the converse we assume that Y is closed in
X. Let (S, ) be a triangulation of X, Y given by T,,,, and let 7 be the family
of simplexes T in S such that ¢(T) C Y. It suffices to construct a continuous
retraction of 4 S onto |4 7.

Let Sp = T and o be the identity map on |+ 7. Because Y is closed in X,
T is a lower subset of S. Let k be a positive integer and assume that there is
a lower subset Sg_1 of S containing T, and a retraction ox_1 of |4/ Sx—1 to 7.
If Sp—1 = S we are done. Otherwise let S be a minimal element (with respect
to the specialisation order) in S\ Sk—1, and letld Sk = Sk—1 U{S}. It only
remains to build a retraction 7 of | Sy onto [+ Sg—1. Indeed oj_; o 7 will then
be a continuous retraction of S; onto 7, and the result will follow by induction.

If S has no proper face in S then it is clopen in [+ Sk. So the map 7 which is
the identity map on { Sy and which sends every point of S to an arbitrary given
point of [§ Sk—1 is continuous on |+ Sk, and a retraction of [+ S onto | Si—1.

Otherwise let T" be the largest proper face of S in §. By minimality of S, T
belongs to Si_1. Let mp be the coordinate projection of S onto T'. The frontier
of S inside |4 Sy, is the closure of T in ) S, hence the function 7 which coincides
with the identity map on [ Sx—1 and with 77 on S is continuous. It is then a
retraction [ S onto |4 Sk—1, which finishes the proof.
]

The Splitting Theorem B4 is a strengthening of the next lemma using re-
tractions.

13We are abusing the notation here: S is a finite collection of simplicial simplexes S(®) in
DM R4 for various ¢;, Sy_1 is a collection of lower subsets S ,(cl_)
such that S belongs to S(?0), and what we have denoted abusively Sj_; U {S} is actually the
collection of all the S,gizl’s for i # ig and of S,glf)l U {S}.

, of S(i)7 there is an index ig
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Lemma 3.3. Let X C K™ be a relatively open semi-algebraic set without iso-
lated points and n > 1 an integer. Then there exists a partition of X in semi-
algebraic sets Xy, for 1 <k <n such that 0X = 0X for every k.

We are going to prove Lemma B3] by using a triangulation (U, ¢) of (X,9X)
and applying Proposition to »~1(X). In order to ensure that this set is
still relatively open, we first reduce to the case where X is bounded by means
of the following construction.

Let K = K U {oc} and for every I C {1,...,m} let K" = K7 N K™ where

KP={zeK":z, e R < kel

Let Rf* = {x € R™ : Vk ¢ I, z;, # 0}, and for every x € R} let ¢;(z) =
(yk)1<k<m be defined by yx, = xy if k € I, and y, = 1/(wzy) otherwise. Clearly
1 is semi-algebraic homeomorphism from R}* to K}* which extends uniquely
to a homeomorphism ¢ from R™ to I~(}”

Proof: Note first given a partition of X in finitely many semi-algebraic pieces
Ui, ...,U, which are clopen in X, it suffices to prove the result separately for
each U;. Indeed, each U; will then be relatively open with 0U; C 0X (because
Uj is clopen in X), and |J,., 0U; = 0X (because OU; = U; \ X and Uj<r U; =
X). So, if a partition of each U; in semi-algebraic pieces (U; )1<k<n is found
such that 0U;, = OU; for every k, then the union Xy of Uy for 1 < j < r
defines a partition of X in semi-algebraic pieces and we have 0Xy, = |J.., OU; k
(same argument as above) hence 90X = {J, ., 0U; = 9X.

Now, as I ranges over the subsets of {1,...,m}, the sets X N K}* form a
partition of X in semi-algebraic sets clopen in X. By the argument above we
can deal separately with each of these sets, hence we can reduce to the case
where X C K" for some I.

Let Y =7 (X) and X be the closure of X in K7". Note that 0r(Y) = X.
The fact that X \ X is closed in K™, hence in K7*, implies that X\ X is closed
in IA(}” It follows that its image under 1/3;1, which is precisely Y\ Y, is closed in
R™ hence in K™. Thus Y is relatively open. It then suffices to prove the result
for Y, that is we can assume that X =Y is bounded. Of course we can assume
as well that X is non-empty (otherwise X; = X and X =0 for 2 < k < n is
obviously a solution).

T, gives a triangulation (U, ) of (X,0X). U is the disjoint union of finitely
many simplicial complexes U; in DM R% for 1 < j <r. Let U; = p(UU;) N X
for every j, this defines a partition of X in semi-algebraic sets clopen in X. By
using again the initial remark in this proof, it suffices to check the result for
each U; separately. So we can assume that U/ itself is a simplicial complex in
DM R for some q.

By construction X is semi-algebraic, closed and bounded, and ¢~ is semi-
algebraic and continuous, so p~}(Y) = p=1(Y) for every semi-algebraidd Y C
X. Let A= ¢ 1(X), we have A = ¢(X) hence A\ A = (X \ X) is closed, that
is A is relatively open. Proposition 2218 then applies to A and gives a partition
of A in semi-algebraic sets Ay, ..., A, such that 0A; = JA for every k.

j<r

j<r

1

fFor every continuous map f : X C K9 — K" and every Y C X, if X is closed then
f(Y) C f(Y). The reverse inclusion holds if X is compact, or if f, Y, X are semi-algebraic
and X is closed and bounded (see Theorem [2ZH]).
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For 1 < k < nlet X;, = ¢(Ag). These semi-algebraic sets form a partition
of X, because Aj,..., A, form a partition of A. Moreover, since | JU is semi-
algebraic, closed and bounded, we have p(B) = ¢(B) for every semi-algebraidd
set B contained in [ JU. Tt follows that for 1 < k < n we have 0X}, = p(0A;) =
©(0A) = X, which proves the result.
|

Theorem 3.4. Let X be a relatively open mon-empty semi-algebraic subset of
K™ without isolated points, and Y1,---,Ys a collection of closed semi-algebraic
subsets of 0X such that Y1 U---UYs; = 0X. Then there is a partition of X in
non-empty semi-algebraic sets X1, ..., Xs such that 0X; =Y; for 1 <i<s.

Proof: X is non-empty and has no isolated point, hence is infinite. The result
is obvious for s = 0 (there is nothing to prove) and s = 1 (take X; = X). By
induction it suffices to prove it for s = 2. Indeed, if s > 3 and the result is
proved for s — 1, then the result for s = 2 applied to X with Z; = Y1 U---UY,_1
and Zy = B gives a partition in two pieces X{, X} such that 9X| = Z; for
I = 1,2, and the induction hypothesis applied to X] with Y3,...,Ys_; gives a
partition of X in pieces X1,...,Xs—1 such that 0X; =Y, for 1 <i < s. The
conclusion follows, by taking Xs = XJ. So from now on we assume that s = 2.

It suffices to prove the weaker result that a partition (X7, X3) exists with all
the required properties for (X1, X2) except possibly the condition that they are
non-empty. Indeed, if such a partition is found and for example X} = @ then
necessarily Y2 = 90X} = (. In that case pick any x € X, and choose a clopen
neighbourhood V' of & such that V' N9X is empty (this is possible because X is
relatively open). Then X; = X \ V and X, = X NV give the conclusion.

Let p: X — 0X be a continuous retraction of X onto X given by Theo-
rem Let V C 0X be any semi-algebraic set open in X, Z its closure and
A=p1(Z)Nn X. We are claiming that 94 = Z. Note that A is closed in X by
continuity of p, because A is the inverse image of the closed set Z by p|x. So
it suffices to prove that AN 90X = Z, or equivalently that A N X contains V
and is contained in Z. For the first inclusion let y be any element of V', and W
any neighbourhood of . We have to prove that W N A # (). By continuity of
p at y = p(y) there is a neighbourhood U of y such that U N X is contained in
p YW NV). In particular

UNWnXCcUnXCptWnv)Cp (V)=4

soUNWNA=UNWNX. On the other hand, UNW NX # () because U NW
is a neighbourhood of y and y € V.C X. A fortiori W N A is non-empty. This
proves that y € A, hence that V' C AN 0X. Conversely, if 4 is any element
of 0X \ Z, there is a neighbourhood W’ of y’ such that W' N 9X is disjoint
from Z. By continuity of p, p~*(W) is then a neighbourhood of ' in X. It is
disjoint from p~!(Z) = A hence y' ¢ A. So A is disjoint from dX \ Z. That is
ANOX C Z, which proves our claim.

Let Z1 = Yl\YQ and ZQ = }/2 \Y1 For k = 1,2 let Ak = pil(Zk) Let ZO
be the closure of X \ (Z1 U Z2) and Ay = p~1(Zp). The above claim gives that
0A, = Zy, for 0 < k < 2. Let By be the set of non-isolated points of Ag. Clearly
0By = 0Ag = Zp since Ag \ By is finite. In particular By is relatively open,

15See footnote [I4]
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and Lemma gives two semi-algebraic sets By, By partitioning By such that
8B1 = 8B2 = Zo. So if we set Xl = Al UB1 and X2 = A2 UB2 U (A()\Bo> we
get the conclusion.

]

Theorem 3.5. Let f: X C K™ — K be a semi-algebraic function with bounded
graph (that is f is a bounded function on a bounded domain). If it has finitely
many limit values at every point of X then f is piecewise largely continuous.

Note that the counterpart of Theorem 3.5 for real-closed fields holds. Indeed,
by triangulation we can reduce to the case of a continuous function f on a
simplex S C K™. The assumption that f has finitely many limit values at
every point of S then implies directly that f is largely continuous. Indeed, this
follows easily from the fact that over real-closed fields the direct image by a
continuous semi-algebraic map of any semi-algebraically connected set (such as
SN B with B a ball centered at any point of S) is again semi-algebraically
connected.

On the contrary, p-adic simplexes are not at all semi-algebraically connected
and it can happen that a function satisfying all these assumptions on a p-adic
simplex is not largely continuous. For example on the simplex S = D'R* the
semi-algebraic function f defined by f(z) = 0 if v(z) € 2Z and f(z) = 1
otherwise is a continuous, bounded function having two distinct limit values at
0. Thus f is not largely continuous. It is obviously piecewise largely continuous,
though.

Proof: Every semi-algebraic function is piecewise continuous (see for example
[Mou09]). So, replacing f by its restriction to the pieces of an appropriate
partition of X if necessary, we can assume that f is continuous. Removing
X NOX if necessary (using a straightforward induction on dim X and the fact
that dim 90X < dim X) we can even assume that X is relatively open. The
proof then goes by induction on the lexicographically ordered tuples (e, e’) where
e =dim X and ¢’ = dim 0X. If 9X is empty, that is X is closed, then f is largely
continuous and the result is obvious. So let us assume that ¢’ > 0 (hence e > 1)
and the result is proved for smaller tuples (e, e’).

Let D = (0X x K)N Gr f. The projection of D onto X has finite fibers
hence D is a union of cells of type 0. The number of these cells, say N, then
bounds the cardinality of these fibers, that is the number of limit values of f
at every point of 0X. For every a € 0X let D, = {t € K : (a,t) € D}. We
first show that D = 0X, that is D, # () for every a € dX. For every ¢ € R*
let Ce = (B(a,e) x K) N Gr f. This is a uniformly semi-algebraic family of
closed and bounded semi-algebraic subsets of K”. Each of them is non-empty
because C; contains (z, f(z)) for any x in B(a,e)NX (which is non-empty since
a € 0X). Obviously C:, C C., whenever |e1| < |e2], 50 [].c g~ Ce is non-empty
by Theorem .41 This last set is equal to D,, which proves our claim.

For 1 < ¢ < N let W; be the set of a € 9X such that D, has exactly i
elements. These sets W; form a partition of D in semi-algebraic pieces. By
Theorem 27 (and a straightforward induction) there are semi-algebraic func-
tions f;; : W; — K such that D, = {f; ;(a)}1<,<; for every a € D,. Since
dim 0X < dim X, by the induction hypothesis these functions f; ; are piece-
wise largely continuous. This gives a partition of 0X in semi-algebraic pieces
Vi for 1 < k < r, and a family of largely continuous semi-algebraic functions
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gk @ Vi = K for 1 <1 < sj such that V, C W, and D is the union of the
graphs of all these functions gy ;.

Theorem [3.4] applied to X and the sets Vj, for 1 < k < r gives a partition of
X in semi-algebraic pieces X such that 0X; = Vj. It suffices to prove that the
restrictions of f to each X}, is piecewise largely continuous. So we can assume
that » = 1 and X = X;. That is, we have a semi-algebraic set V' = V; dense
in 0X and largely continuous functions g = g1; : V — K for 1 <[ < s =57
such that D, = {gi(a)}1<i<s has s elements for every a € D,. Replacing V by
V' \ OV if necessary we can assume that V is relatively open.

Let p : X — V be a continuous retraction given by Theorem For
1<l <slet

U={zeX:Vk£L |f(x)—a(p())| <|f(x) = gx(p(=))]}.

Each U; is open in X by continuity of f, p and the gi’s. Their complements
X" = X\Uj_, Ui are closed in X, hence X’ C 9X. Moreover, for every a € V,
the limit values of f at a being by construction the pairwise distinct g;(a) for
1 <1 < s, there exists ¢ € R* such that every point of B(a,e) N X belongs to
one of the U;’s. In other words B(a,) N X’ = @) hence a does not belong to the
closure of X’. So X C 0X\V = 9V, in particular dim X’ < dimV = dim 0X
hence the induction hypothesis applies to the restriction of f to X'.

It only remains to check that the restrictions of f to each U; are piecewise
largely continuous. We are claiming that f has only one limit value at every
point a of U; \OV. Note that U, is the disjoint union of U;NX and U;NJX, and
that 9X = V UAV. Obviously, if a € U;NX then by continuity of f, f(x) tends
to f(a) as x tends to a in U;. Now if a € (U; \ 0V)\ X then a € V, p(a) = a
and gi(p(a)) = gr(a) for every k. Hence by definition of U;, f(z) is closer to
g1(a) than to every other gi(a), so g;(a) is the only possible limit value of f(x)
as x tends to a in U, which proves our claim. So the semi-algebraic function g
which coincides with f on U; N X and with g; on V is continuous. The frontier
of its domain is contained in U; N X C X = V UV and is disjoint from
V', hence is contained in dV. By the induction hypothesis, g is then piecewise
largely continuous, hence so is fjy, since f and g coincide on U;.

]

4 Largely continuous cell decomposition

This section recalls the main theorem of [Den84] in order to emphasize some
details which appear only in its proof. These details are important for us because
they ensure that the functions defining the cells involved in the conclusions
inherit certain properties, defined below, from the functions in the assumptions.
Using them we are going to derive from T,, a new preparation theorem for
semi-algebraic functions “up to a small deformation” (Theorem[ZL7]). The point
is that after such a deformation, we get a Cell Preparation Theorem involving
only cells defined by largely continuous functions.

In order to do so, it is crucial for us to control the boundary of any cell C' we
are dealing with. Ideally, we would like it to decompose naturally in cells defined
by functions obtained for the functions defining C' by passing to the limits, just
as it is done for the faces of discrete polytopes (Item [ of Proposition 2Z1T]).
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With this aim in mind, we now introduce a sharper notion of cell mod G, for
any clopen semi-algebraic subgroup G of K* with finite index.

A presented cell A mod G in K™ is a tuple (ca,va,pa,Ga) with ca
a semi-algebraic function on a non-empty domain X C K™ with values in K
(called the center of A), v4 and p4 either semi-algebraic functions on X with
values in K or constant functions on X with values 0 or co (called the bounds
of A), and G4 an element of K/G (called the coset of A), having the property
that for every x € X there is t € K such that:

va(@)] <[t —ca(@)] < |pa(z)| and ¢ —ca(z) € Ga (4)

We say that A is largely continuous if its center and bounds are. In any case
the set of tuples (z,t) € X x K satisfying () is a cell, in the general sense given
in the introduction. When we want to distinguish this set from the presented
cell A we call it the cellular set underlying A. Nevertheless, abusing the
notation, we will also denote it A most often. The conditions enumerated above
(@) ensure that the domain X of ca, 4, V4 is exactly the socle A of A. When
two presented cells A and B have the same underlying cellular set we write it
A~ B.

From now onwards we will use the word “cell” mostly for presented cells but
also very often for the underlying cellular sets, the difference being clear from the
context. For instance we will freely talk of disjoint (presented) cells, of bounded
(presented) cells, of (presented) cells partitioning some set and so on, meaning
that the corresponding cellular sets have these properties. Also for any Z C A
we will write AN (Z x K) both for this (cellular) set and for the presented cell
(cajz:va|z, a1z, Ga). The latter will also be denoted (ca,va,pa,Ga)jz. Sim-
ilarly Grca both denotes the graph of c4 and the presented cell (ca,0,0,{0}).

A presented cell A is of type 0 if G4 = {0}, of type 1 otherwise. The type
of A is denoted tp A. We say that A is well presented if either vvq — v 4 is
unbounded or v4 = pa. We call A a fitting cell if it has fitting bounds, that
is, for every = € A:

lpa(z)| = sup{[t — ca(z)| : (z,t) € A}
[va(z)| = inf{|t — ca(x)] : (z,t) € A}

Sometimes it will be convenient to write G4 = A4 G for some Ay € G4.
We will always do this uniformly, so that A4 = Ap whenever G4 = Gp. To
that end a set Ag of representatives of K/G is fixed once and for all, and when
we consider a presented cell A mod G it is understood that A4 is the unique
element of G4 N Ag. In addition, we require from this set of representatives
that every A € Ag has the smallest possible positive valuation. In particular if
G = Py or Qy 5 and A is a cell mod G of type 1 then 0 < wAs < N.

For every family A of presented cells in K™+ we lefd CB(A) denote the
family of all the functions ca, pa, va for A € A. Given another family D of
presented cells in K™ *! we say that:

1. D belongs to Vect A if for every D € D, c¢p,vp are K-linear combinations
of functions f 5 for f € CB({A € A: D C A}), and either pp is such a
linear combination as well or up = oc.

16Here the letters CB stand for “center and boundaries”.
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2. D belongs to Alg, Aif D is finer than A and for every A € A, every D € D
contained in A and every (z,t) € D:

(a) either t — ca(z) = Un(x,t)(t — cp(x));

(b) or t — ca(z) = Up(x,t)hp, a(x) where hp 4 : D — R is the product
of (finitely many) linear combinations of functions ¢p|p such that

BecAand D C B.

These somewhat cumbersome definitions help us to express Denef’s Cell
Decomposition Theorem in a slightly more precise way than in [Den84].

Theorem 4.1 (Denef). Given a semi-algebraic subgroup G of K* with finite
indez, let A be a finite family of presented cells mod G in K™ 1. Then for every
positive integer n there exists a finite family D of fitting cells mod G refining A
such that D is a partition of |J A and D belongs to Vect A and to Alg, A.

This is essentially theorem 7.3 of [Den84]. Indeed, for any given integer N,
if n is large enough then 1+ 7" R C Py N R*. Hence U, (z,t) in conditions (2al),
([2B) of the definition of Alg,, A can be written u(x,t)" with u a semi-algebraic
function from A to R* (thanks to Theorem 7). This is how the above result
is stated in [Den84] with G = K*. Our slightly more precise form, as well as
the additional properties involving Vect A and Alg,, A, appear only in the proof
of theorem 7.3 in [Den84] (still with G = K*). The generalization to fitting
cells mod an arbitrary clopen semi-algebraic group G with finite index in K *
is straightforwar.

Given a polynomial function f, we say that a function h : X C K™ — K
belongs to coalg(f) if there exists a finite partition of X into definable pieces
H, on each of which the degree in ¢ of f(x,t) is constant, say ey, and such
that the following holds. If ey < 0 then h(z) is identically equal to 0 on H.
Otherwise there is a family (&1,...,&., ) of K-linearly independent elements in
an algebraic closure of K and a family of definable functions b; ; : H — K for
1<i<egandl1<j<ry,and ae, : H— K* such that for every z in H

fet) =an@ I (1= X bat)

1<i<enm 1<j<rm

and

W)= Y Y aighij)

1<i<en 1<j<rm
with the «; ;’s in K. If F is any family of polynomial functions we let coalg(F)

denote the set of linear combinations of functions in coalg(f) for f in F.

Theorem 4.2 (Denef). Let F C K[X,T] be a finite family of polynomials, with
X an m-tuple of variables and T one more variable. Let N > 1 be an integer
and A a family of boolean combinations of subsets of the form f~1(Py) with

"Here is a sketchy proof. For each A € A let B4 be the cell mod K* with the same
center of bounds as A. Denef’s construction applied to the family 5 of all these cells B4 gives
a family C of cells mod K* refining B. Each C in C is the union of a finite family D¢ of
cells mod G with the same center and bounds as C, each of which is clopen in C' (because
G is clopen in K* with finite index). For each A € A let D4 be the family all the cells in
U{Dc¢ : C € C} contained in A. The family D =|JD4 : A € A} gives the conclusion.
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f € F. For every integer n > 1 there is a finite family of fitting cells mod Py
refining A, with center and bounds in coalg(F), and for every such cell H a
positive integer oy g and a semi-algebraic function hy g : H — K such that for
every (r,t) € H:

flz,t) = Un(z, t)hp ma(z)(t — ch(z))H7.

Proof: W.l.o.g. we can assume that every f in F is non constant and that n
is large enough so that 1 + 7™ R C Py. Theorem 7.3 in [Den84] gives a finite
family of cells B mod K* partitioning K™, and for each of them a positive
integer oy p and semi-algebraic functions uyp : B — R* and hyp : B — K
such that:

V(x,t) € B, f(x,t) = up.p(,t)Vhyp(x)(t - cp(x) (5)

Moreover the functions uﬁcv p constructed in the proofs of lemma 7.2 and theo-
rem 7.3 in [Den84] are precisely of the form 1+ 7wy g for some semi-algebraic
function wy g on B, and the functions cp, pp, vp constructed there belong to
coalg(F). Refining the socle of B if necessary we can ensure that hy p(x)Py is
constant as (z,t) ranges over B. On the other hand B splits into finitely many
cells mod Py, with the same center and bounds as B, because Py has finite
index in K*. On each of these cells H, f(z,t)Py is constant by (E). Hence
H is either contained or disjoint from A, for every A € A. So the family of all
these cells H which are contained in |J.A gives the conclusion.

]

Using that every semi-algebraic function is piecewise continuous, the cells
mod Py given by Theorem .2 can easily be chosen with continuous center and
bounds. However it is not possible to ensure that they are largely continuous
(think of the case where A consists of a single semi-algebraic set which is itself
the graph of a semi-algebraic function which is not largely continuous). Our
aim, in the remainder of this section, is to find a work-around. We are going
to prove that it can be done, not exactly for 6 but for a function 6 o u, where
n € K™ can be chosen arbitrarily small and w,, is the linear automorphism of
K™*1 defined by:

V(z,t) e K™ x K, uy(z,t) = (z+1n,t). (6)

Remark 4.3. The smaller 7 is, the closer w,, is to the identity map since ||7]| is
also the norm (in the usual sense for linear maps) of u,, — Id. So the functions
6 o u, can be considered as “arbitrarily small deformations” of .

In [vdD98§] a good direction for a subset S of K™*! is defined as a non-zero
vector x = (21, ...,Tme1) € K™ such that every line directed by x has finite
intersection with S. It is more convenient to identify such collinear vectors
hence we redefine good directions for S as the points © = [z1,...,Zymy1] in
the projective space P (K) such that every affine line in K™% directed by x
has finite intersection with S.

Analogously we call x € P™(K) a geometrically good direction for a
family F of polynomials in K[X,T] if for every algebraic extension F' of K and
every f € F, = is a good direction for the zero set of f in F™*1,
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Remark 4.4. With the above notation, [n, 1] is a good direction for S if and
only if the projection of u, L(S) onto K™ has finite fibers. Indeed for every
a € K™ and every t € K we have:

(a,0) +t(n,1) €S < (a+tnt) €S < (a,t) €u '(9)

n
Therefore [n, 1] is a geometrically good direction for F if and only if for every
algebraic extension F' of K and every f € F, the projection onto F'™ of the zero
set of fowu, in F™*! has finite fibers.

Lemma 4.5 (Good Direction). For every finite family F of non-zero poly-
nomials in K[X,T], the set of geometrically good directions for F contains a
non-empty Zariski open subset of P™(K). In particular, for every non-zero
€ € R there is n € R™ such that ||n|| < |g| and [n,1] is a good direction for F.

Proof: Let pr be the product of the polynomials in F, and d its total degree.
Then pr can be written as pr = p% — gr with p% a non zero homogeneous
polynomial of degree d and ¢ a polynomial of total degree < d.

Let b € K™% be non-zero and z the corresponding point in P™(K). It
is not a geometrically good direction for F if and only if for some algebraic
extension F' of K and some a € F" the line a + F'.b is contained in the zero
set of pr in F™*! that is pr(a + th) = 0 for every t € F or equivalently
pF(a + Th) = gr(a + Th). This implies that the degree in T of p%(a + Tb) is
< d. In particular the coefficient of T in p%(a + Tb) is zero. A straightforward
computation shows that this coefficient is just p%(b).

So every element in P (K) which is outside the zero set of p% is a geometri-
cally good direction for F. This proves the main point. Now if K™ is identified
with its image in P™(K) by the mapping a +— [a, 1] then every ball in K™ is
Zariski dense in P™(K), so the last claim of the lemma holds.

]

Lemma 4.6. Assume T,,. Let n € K™ be such that [n,1] is a geometrically
good direction for F. Let u, be as in (@) and F,, = {fouw, : f € F}. Then every
function in coalg(F,) whose graph is bounded is piecewise largely continuous.

Proof: ~ The functions in coalg(F,) are linear combinations of functions in
coalg(fy) for f € F, hence it suffices to fix any f in F and prove the result for
coalg(f,). Let d be the degree in T of f, and F' a Galois extension of K in which
every polynomial in K[T] of degree < d factors. Given a basis B = (&1,...,&)
of F over K, for each integer e < d let a. € K[X] be the coefficient of T° in f;,
let Ac € K™ be the set of elements € K™ such that f,(x,T) has degree e in
T, and choose a family of semi-algebraic functions b; ; : Ac — K such that for
every x € A,
fo@,T) = ac@ T (T = bis(@)). (7)
i<e j<r
Let Zp(f,) denote the zero set of f, in F, and o1,...,0, be the list of
K-automorphisms of F'. Fix an integer i < e, and for every z € A, let

Ai(z) = Z bij()&;-

Jj<r
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For every k < r we have

or(Xi(2)) = Z bij(@)ow(&;)-

Jj<r

Inverting the matrix (0% (&;))j<rk<r gives for every j < r the function b; ; as a
linear combination of o o A; for k < r. By construction Gr oy o \; is contained
in Zp(f,). This set is closed, hence Groy o A; is contained in Zg(f,) too.

The projection of Zr(f,) onto F™ has finite fibers since 7 is a good direction
for F (see Remark[d.4]). So the same holds for the closure of the graph of o0 A;.
This means that each o o A; has finitely many different limit values at every
point of A.. Obviously each b;,; inherits this property, hence so does every
h € coalg f,. If moreover the graph of h is bounded, it then follows from
Theorem (using T,,) that h is piecewise largely continuous.
]

Now we can turn to the “largely continuous cell preparation up to small
deformation” which was the aim of this section. We obtain it by combining
the above construction based on good directions and the classical cell prepara-
tion theorem for semi-algebraic functions from Denef (Corollary 6.5 in [Den84])
revisited by Cluckers (Lemma 4 in [Clu01]).

Theorem 4.7. Assume T,,. Let (0; : A; € K™ K);c1 be a finite family
of semi-algebraic functions whose domains A; are bounded. Then for some
integer e > 1 and all integers n, N > 1 there exists a tuple n € K™, an integer
My > 2v(e), an integer Ny divisible by eN, and a finite family D of largely
continuous fitting cells mod Q§07M0, such that D refines {u;l(Az) c i€ I}
and such that for every i € I, every D € D contained in u;l(Ai) and every
(x,t) €D

0; 0 uy(w,t) = Ue,n (@, )i, p(2) A5 (t — ep(2))] -

where u, is as in (@), hip: D> Kisa semi-algebraic function and oy p € Z.

Moreover the set of n € K™ having this property is Zariski dense (in par-
ticular n can be chosen arbitrarily small), and the integers e, M can be chosen
arbitrarily large (in the sense of footnote[12).

Remark 4.8. The above expression of §; o u,, is well defined because e divides
No, My > 2v(e) and A5'(t — ep(x)) belongs to Qn, ., for every (z,t) € D (see
the definition of z — ¢ on Q Ny, M, after Lemmal[Zy)). Of course if D is of type
0, then A\p =t — ¢p(z) = 0 and we use our conventions that 071 = oo and
00.0 =1.

If we were only interested in the existence of such a preparation theorem
with largely continuous cells for 6; o u,, the integer N would be of no use and
could be taken equal to 1. However it will be convenient to allow different values
of N when we will use Theorem 7] in the proof the Triangulation Theorem.

Proof: Let e, M, > 1 be arbitrary integers. Corollary 6.5 in [Den84] applied to
each 6; gives an integer e¢; > 1 and a family 4; of semi-algebraic sets partitioning
A; such that for every every A in A; and every (z,t) in A:

fi,a(z,t)

951(!@,1‘:) :UZ,A((E,t)m (8)
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where u; 4 is a semi-algebraic function from A to R* and f; 4, g; 4 are polyno-
mial functions such that g; a(x,t) # 0 on A. Replacing if necessary each e; by
a common multiple e of them and of e,, we can assume that e; = e for every i
and e is divisible by e.. Let A be a refinement of J,; A;.

Fix any two integers n, N > 1 and any integer ng such that ng > n + v(e)
and ng > 2v(e). Since D™ R* is a subgroup of R* with finite index, every
A € A splits into finitely many semi-algebraic pieces on each of which wu; 4 is
constant modulo D™ R* (for every ¢ € I such that A C A;). Thus, refining A
if necessary, (8) can be replaced, for every A in A contained in A; and every
(x,t) in A, by

ialx,t
05 (x,t) = Un, (x, t)ﬂiﬁA% (9)
with @; 4 € R*.

Each A in A is semi-algebraic. So there is a finite family B of semi-algebraic
sets refining A, an integer Ny > 1 and a finite list F of non-zero polynomials
in m + 1 variables such that every element of B is a boolean combinations of
sets f~1(Py,) with f € F. By Remark 21 Ny can be chosen divisible by eN.
Expanding F if necessary, we can assume that all the polynomials f; 4 and g; 4
in (@) also belong to F, except those which are equal to the zero polynomial.

Lemma L5 gives n € K™ such that [, 1] is a geometrically good direction
for F,, where F, = {f ou, : f € F}. Note that every set in A, = {u;'(A) :
A € A} is a boolean combination of sets f,!(Pn,) with f, € F,. Denef’s
Theorem .2 applied to F,, gives a finite family C of fitting cells mod Pﬁo which
refines A;, and whose center and bounds belong to coalg F;,, such that for every
f e F, every C € C and every (z,t) € C

Fa(@,t) = Uny (@, )hs0 (@) (t = co(x)) ™ (10)

where hy o : C — K is a semi-algebraic function and o #,c is a positive integer.
We removed the zero polynomial from F, but obviously (I0) holds for f = 0
as well, by taking hyc = 0 in that case. Each A; is bounded hence so is their
union |J A as well as |JA;,. So the center and bounds of every cell in C must be
bounded functions with bounded domain. By Lemma [0 (assuming T,,,) these
functions are piecewise largely continuous. Refining the socle of C if necessary,
and C accordingly, we can then reduce to the case where every cell in C is largely
continuous. Note that U,, o u, = Uy, so by combining (@) and (I0) we get that
for every i € I, every C € C contained in u; *(4;) and every (z,t) € C

Oin(z,1)° = Upn, (2, t)hic() (t — cc(:n))ai’c (11)

where 0;, = 0; o uy, h;c : C > Kisa semi-algebraic function and a; ¢ € Z.
For any integer Mo > 2v(e), Qn, s, 18 @ subgroup with finite index in Py
hence every such cell C' mod Pﬁo splits into finitely many cells D mod Q]>\<[01 Mo
with the same center, bounds and type as C. The integer My can be chosen
arbitrarily large, in particular greater than M,. Let D be the family of all these
cells D. From () and Lemma [Z8 we derive that for every i € I, every D € D

contained in u, *(A4;) and every (z,t) € D

010 1)° = Uy . )i (@) (A5 (¢~ ep(@))] 7 ) (12)
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where ﬁin = hjc and a;p = ;¢ with C the unique cell in C containing
D. The factor Up, in [I2)) can be written U _u(e) DY Remark 29 Thus ([I2))
implies that h; p takes values in P.. So by Theorem 2 there is a semi-algebraic
function h; p such that Bi, p = h{ p. As a consequence, from ([@2) it follows that
there is a semi-algebraic function x; p with values in U, such that for every
(z,t) € D

@4, D

Oin(z,t) = Xi,0 (2, 1)Uy —v(e) (T, 1) hi D () [)\Bl (t—cp(x))] (13)

By construction ng — v(e) > n hence the factor Uy,_,) can a fortiori be
replaced by Uy,. Then x; plU,, (which is just Ue ) replaces xi pUp,—v(e) in (L3,
which proves the result.

|

5 Cellular complexes

For this and the next section, let G be a fixed semi-algebraic clopen subgroup
of K* with finite index. Then vG is a subgroup of Z with finite index, hence
vG = Ny Z for some integer Ny > 1. Our aim in these two sections is to prove
that every finite family of bounded largely continuous fitting cells mod G, such
as the one given by Theorem .7 can be refined in a complex of cells mod G
satisfying certain restrictive assumptions defined below.

Notation. For every largely continuous fitting cell A mod G in K™*! with
socle X, recall that A = (ca,pua,va,Ga) is a presented cell. For every semi-
algebraic set Y contained in X, (Ca, DA, 1A, GA)‘Y is then also a largely contin-
uous presented cell mod G, provided the restrictions to Y of U4 and fi4 either
take values in K* or are constant, and the underlying set of tuples (y,t) € Y x K
defined by

[pa(y)| <[t —ca(@)] < [Pa(z)| and t—ca(z) € Ga (14)

is non-empty. Similarly, the sets 95- A and 9} A defined below are (if non-empty)
largely continuous fitting cells mod G contained in AN (Y x K).

o 0V A = (24,0,0, {0})y if7a=0o0nY, 9% A = () otherwise;
] 8}1/14 = (EA, EA;ﬁAaGA)|Y if iga #0onY, 8}1/14 = () otherwise.

If non empty the underlying set of 9% A is the graph of the restriction of ¢4 to
Y, while the underlying set of ¢} is the set of (z,t) € Y x K satisfying (I4).
For example, when 74 = 0 # fig on Y and v4 # 0 on X, we can intuitively
represent these sets as follows.
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Provided that on Y, 74 and fi4 either take values in K* or are constant, 9 A
and 0y A are (if non-empty) largely continuous fitting cells mod G contained in
AN(Y x K).

Remark 5.1. If X is a partition of Y_, the family of non-empty 9% A for
i €{0,1} and Y € X form a partition of A.

Given two cells A, B in K™% and an integer n > 1, we write B <" A if
B C A and if there exists o € {0, 1} and a semi-algebraic function hp 4 : B — K
such that for every (z,t) in B:

l—o

t—ca(@) =Uy(z,t)hp.a(z)*(t — cp(x))

We call hp 4 a <"-transition for (B, A). If A, B are families of cells in K™*!
we write B <™ A if B <™ A for every B € B and A € A such that B meets A.

A <"-system for (B, A) is then the data of one <1"-transition for each possible
(B,A)in B x A.

Remark 5.2. For any two finite families A, B of cells mod G, if B refines A
and belongs to Alg,, A then B <™ A.

A closed <1™-complex of cells mod G is a finite family A of largely con-
tinuous fitting cells mod G such that [ J.A is closed, the socle of A is a complex
of sets and for every A, B € A if B meets A then for some i € {0,1}, 0L, A is a
celld and B <™ 9% A, with Y = B. If moreover B = 9% A we call A a closed
cellular complex mod G. As the terminology suggests, we are going to prove
that closed <™~ and cellular complexes are complexes of sets in the general
sense of Section [2 (see Proposition B3). Any subset of a closed <1™-complex
(resp. closed cellular complex) is a <"-complex (resp. a cellular complex.
As usually we call them monoplexes if they form a tree with respect to the
specialization order. R

When A is a <t"-complex of cells mod G, for all Y € A and for all cells A,
B in A such that B meets A, there is an integer a € {0, 1} and a semi-algebraic
function hp 4 : B — K such that for every (z,t) in B:

-«

t —ca(z) =Uy(z, t)hp a(2)*(t — cp(z))

An inner <"-system for A is the data of one function hp 4 as above for every
possible A, B € A.

Proposition 5.3. Let A be a closed <"-complex of cells mod G. Then A is
a closed complex of sets. Moreover, for every A,B € A and every Z € A if B
meets 0% A then B = 0%,A = Greyz.

Proof: By assumption the socle of every cell A in A is relatively open and
pure dimensional. Thanks to the restrictions we made on the bounds in our
definition of presented cells, it follows that A is also relatively open and pure
dimensional.

In order to show that A is a partition, let A, B be two cells in A which are
not disjoint and let X = A. Both B and X belong to A and are not disjoint,

18The condition 9*Y A is a cell means that on Y, fig and o4 either take values in K* or
are constant.

28



hence B = X. Since B meets A C A, by assumption B is contained in 9% A with
i = tp B. But then 0% A meets A, hence obviously is equal to A. So B C A,
and equality holds by symmetry. R

Now let A be any cell in A and X = A. Since A is a closed complex,
every point of A belongs to a unique B € A. Since B meets A, by assumption
B C 9% AwithY = B and i = tp B. In particular B C A, which proves that A
is a union of cells in A (hence so is A since A is a partition and 9A is disjoint
from A). This proves that A is a closed complex of sets.

The last point follows. Indeed, if B meets 95 A C A then it is contained in
0% A for some i € {0,1}, with Y = B. In particular 0% A meets 9% A. They are
two pieces of a partition of A (see Remark [5.1]) hence 0% A = 9, A. Therefore
Y =Zandi=0, SOBQG%A. That is, B is of type 0 and cp = C4 onézZ,
so B = Greéaz = 0%A.
]

Proposition 5.4. Let A be a finite family of largely continuous fitting cells mod
G and n > 1 an integer. There exists a <""—complex D of cells mod G refining
A such that D <™ A.

In the next section we will prove that one can even require that D is a cellular
monoplex mod G.

Proof: The proof goes by induction on d = dimU.Z. If a <t™-complex D; is
found which proves the result for a family A; of cells mod G containing A;
then obviously the family D of cells in D; contained in |J.A proves the result
for A. Thus, enlarging A if necessary, we can assume that |J.4 and U.Z are
closed. By Denef’s Theorem 1] and Remark there is a finite family B of
largely continuous fitting cells mod G refining A such that 5 <™ A. Replacing
A by this refinement if necessary we can also assume that A is a partition.

If B is any vertical refinement of A then obviously B<1" A. Thus, by taking if
necessary a finite partition &X' refining A and replacing A by the corresponding
vertical refinement (that is the family of all cells AN (X x K) with A € A
and X € X contained in E)’ we can assume that A = X is a partition. By
the same argument we can assume as well that for every A € A and every
X € X contained in X, the restrictions of ji4 and 74 to X take values in K*
or are constant, hence 0% A (resp. 9% A) is a cell with socle X whenever it is
non-empty. By Remark we can even assume that it is a complex of pure
dimensional sets. Let Xy be the family of X € X with dimension d. Note that
every X € Xy is open in |J X because X is a complex and dim | X = d.

For every X € X, let Ax be the family of cells in A with socle X. For every
cell A € Ax of type 1 such that v4 = 0, Greya is contained in A hence in | J Ax
since | JA is closed and Ais a partition. It may happen that Grcy does not
belong to .A. With Proposition[5.3]in view we have to remedy this. Every point
(x,ca(x)) in Grey belongs to some cell B in Ax. This cell must be of type 0
otherwise the fiber B, = {t € K : (z,t) € B} would be open, hence it would
contain a neighbourhood V' of c4(z) and so {z} x V would be contained in B
and meet A, which implies that B C A since Ax is partition, in contradiction
with the fact that B meets Grcy. So there is a finite partition V4 of X in
semi-algebraic pieces Y on each of which there is a unique cell B € Ax of type
0 whose center coincides with ¢4 on Y. Repeating the same argument for every
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A € Ax and every X € X, gives a finite partition ) of |J Xy finer then every
such V4. Let X’ be a complex of pure dimensional semi-algebraic sets refining
X UY. Replacing if necessary A by the vertical refinement defined by X’, we
can then assume from now on that for every X in Xy and every A € A with
socle X, if vy =0 thenAGr ca belongs to A.

Let Ay ={A € A: Aec X;} and B be the union of A\ Ay and of the family
of non-empty 9% A for i € {0,1}, A€ Agand Y € X\ X,. Clearly dim|{JB < d
so the induction hypothesis gives a <1”—complex C of cells mod G refining B
such that C <™ B. A fortiori C <™ (A \ Ag) because the latter is contained in
B. So if we let D = C U Ay, then D refines A and D <" A. It only remains to
check that D is a <"-complex, and first that D is a complex of sets.

Note that Ay = &y hence D = CU Ag = C U &y is a partition, and every
set in D is pure dimensional and relatively open (by induction hypothesis for C
and by construction for Xy). For every X € 13, we have to prove that 90X is a
union of sets in C U Xy f X € C this is clear because C is a complex. Otherwise
X € X; hence 0X is a union of sets in X' (because X is a complex). All these
sets have dimension < d = dim X hence belong to X \ X;. But C refines B,
which contains A\ Ag, whose socle is X \ Xy, hence C refines X \ X. Thus dX
is also the union of sets in C, , hence of D. R N

Now let D, E € D be such that F meets D, let X = D and Y = E. By
construction 9% D and 9% D are cells (if non-empty) and cover DN (Z x K). So
there is i € {0,1} such that 9% D is a cell which meets E. We have to prove
that F <™ 0% D. Note that Y meets the socle of D, which is contained in X,
hence Y = X or Y C 0X because Disa complex. So, if dim X < d then also
dimY < d hence D, E € C. In that case E <" 8% D because C is a <"—complex.
Thus we can assume that dim X = d, that is D € Ay. We know that ¥ = X
or Y C 9X. In the first case Y = X hence 05D € Ay C D by construction,
so E = 9% D because D is a partition. In the second case Y € C hence E € C.
Now Y is contained in some Z € X'\ Xy because C refines X \ X4, and F meets
0% D. By construction 8%, D belongs to B. Since C <" B it follows that E <" 9%, D
hence a fortiori E <™ 8% D because E CY x K and 8}, D = 9,D N (Y x K).
]

Before entering in more complicated constructions, let us mention here two
elementary properties of fitting cells which will be of some use later.

Proposition 5.5. Let A C K™% be a cell mod G of type 1. Then:

® (4 is a fitting bound if and only if ua = oo or U,uA(g) CovGa.

-~

e v, is a fitting bound if and only if va =0 or vva(A) CvG4).

Proof:  The case where ua = oo being trivial, we can omit it. If pa # oo
is a fitting bound then obviously vua(A) C vG 4 because v(t — ca(x)) € vGa
for every (z,t) € A. Conversely assume that vpa(A) C vG4. Let o be any
clement of A. We have to prove that |pa(z)| = max{|d| : d € D} where D, =
{t—ca(z) : (x,t) € A}. D, is bounded since p4g # 00, hence by Corollary [2.6]it
contains an element d of maximal norm. By construction |d| < |ua(z)|. Assume
for a contradiction that |d| < |pa(z)], that is v(d/pa(x)) > 0. By construction
v(d) and vpa(z) belong to vGa4 = vAa + vG hence v(d/pa(z)) € vG = NoZ.
Thus v(d/pa(x)) > No, that is |d| < |7Nopa(z)|. Pick any g € G such that
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v(g) = Ng and let t = ca(x) +d/g. We have t/ —ca(x) =d/g € Ga, |va(z)] <
|d| < |d/g| and |d/g| < |pa(z)|, hence (z,t") € A. So t' — ca(x) € D, and
|d] < |t' — ca(z)], a contradiction. The proof for v4 is similar and left to the
reader.

[

Proposition 5.6. For every fitting cell A mod Qn, ., in K™, if AC R™T!
then viua > —Mp.

Since A C R™*!  one may naively expect that [ua| < 1, that is vua > 0.
The presented cell A = (—g~Mo g=Mo 7=Mo Qny,M,) 18 a counterexample in
K: it is contained in R (it is actually equal to R) and vus = —Mjy < 0.

Proof: Assume the contrary, that is vua(x) < —Mj for some x € A. Since A is
a fitting cell there is t € K such that (z,t) € A and v(t—ca(x)) = vua(z). Since
A C R™1 ¢t € R hence v(t — ca(z)) < 0 = v(t) implies that vea(z) = v(t —
ca(z)) = vpa(z). So there are a € R and g € Qn, s such that ca(z) = ax™Mot!
and t — ca(z) = Aag. In particular v(Aag) = v(t — ca(x)) = vpa(z) < —My
so ™™MoN g ¢ R. Now let t' = t + 7MoX,g, then t' ¢ R since t € R and
7Mo)4g ¢ R. On the other hand 1+ 7™ € Qn, us, and

t' —ca(x) =t —ca(x) + 7 Nag = Aag + +7MoNag = Aa(1 + 7M0)g.

So t' — ca(@) € AaQny,m, and v(t' — ca(z)) = v(Aa(l + 7M0)g) = v(Aag) =
vpa(x). Thus (z,t') € A, a contradiction since ¢’ ¢ R and A C R™T1.
[

6 Cellular monoplexes

We keep as in Section [l a semi-algebraic clopen subgroup G of K* with finite
index, and Ny > 1 an integer such that vG = Ny Z. Lemmal6.Il below (together
with Lemma [Z.TT]) is the technical heart of this paper. This section is entirely
devoted to its proof.

Lemma 6.1. Assume T,,. Let A be a finite set of bounded, largely continuous,
fitting cells mod G in K™t Let Fy be a finite family of definable functions
with domains in A. Let n, N > 1 be a pair of integers. For some integers e,
M > 2v(e) which can be made arbitrarily large (in the sense of footnote [13),
there is a tuple (V, p, D, Fp) such that:

e D is a cellular monoplex mod G refining A such that D <™ A.
o Fp is a <"-system for (D, A).

e (V,p) is a triangulation o 7 U Fp U CB(D) with parameters
(n,N,e, M), such that D = p(V).

Note that, in order to obtain this result, it does not suffice to find a contin-
uous monoplex D of well presented cells mod G refining A such that D <™ A,
and then to select an arbitrary <"-system Fp for (D,.A) and to apply T,, to

19Recall that CB(D) denotes the family of center and bounds of the cells in D.
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FoUFpUCB(D). Indeed, this will give a triangulation (V, ¢) of FoUFpUCB(D).
But ¢(V) will then be a refinement of D, not D itself. It is then tempting to
vertically refine D, that is to replace D by the family & of cells DN (p(V) x K)
for D € D and V € V such that ¢(V) C D. This ensures that & = ¢(V) and &
is a cellular complex such that £ <™ A. But £ is no longer a monoplex.

In order to break this vicious circle we have to build V, D and Fp simul-
taneously. The remainder of this section is devoted to this construction. It is
divided in three parts: (B.al) preparation, (6.1) vertical refinement, (6.d) hori-
zontal refinement.

6.a Preparation

Given a family & of subsets of K™, we let Fyx denote the family of all the
restrictions fix with f € Fo and X € X contained in the domain of f. By
the same argument as in the beginning of the proof of Proposition 5.4l we can
assume that | JA is closed. Finally, replacing if necessary A by a refinement
D given by Proposition 5.4 and Fy by Fojx with X' = 13, we are reduced to
the case where A is a closed <1"—complex of bounded cells mod G. Enlarging
Fo if necessary, we can, and will, assume that it contains CB(A) and an inner
<g™-system for A. For some integers e, M > 2v(e) which can be made arbitrarily
large, T, gives a triangulation (S, ¢) of Fy with parameters (n, N,e, M). For
every A € A we let S4 = o1 (A).

Since |J A is bounded and closed in K m+lits image |J A by the coordinate
projection is closed in K™ by Theorem 2.5 Now ¢ is a homeomorphism from
IS to |JA, hence S is closed by Remarkm

Let A’ be the family of cells AN (p(S) x K) for A € A and S € S such that
»(S) C /Al, and let F = Fop(s)- Since every cell in A" has the same center
and bounds as the unique cell in A which contains it, clearly A’ is still a closed
<g"—complex, F{ contains CB(A’) and an inner <"-system for A’, and (S, ¢) is
still a triangulation of F). Thus, replacing (A, Fo) by (A’, 7)) if necessary, we
can assume that ¢(S) = A, that is 54 € S for every A € A.

A preparation for (S, ¢, A, Fy) is a tuple (T, B, Fg) such that:

(P1) T is a simplicial subcomplex of S. We let S5 = {S € S:5 C YT}, and
Aj7 be the family of cells A € A such that S4 € §j7. Note that:
e T is closed because | T is closed in 4 S.

e By Remark it follows that the image by ¢ of |J 7, that is the
socle of A7, is closed too.

e Hence A|7 is closed because | J. A7 is the inverse image of its socle

by the (continuous) coordinate projection of | J.4 onto J A

(P2) B is a cellular monoplex mod G refining A7 such that ¢(7) = B. For

every B € B we let Tp = <p_1(§). Note that B is closed because |JB =
UAT

(P3) B<™ Ajr and Fp is a <"-system for (B, Ajr).

(P4) T together with the restriction of ¢ to [t 7, which we will denote ¢|7, is
a triangulation of Fi U CB(B) with parameters (n, N, e, M). Note that,
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since T refines Sj7 and (S, ¢) is a triangulation of Fo, (T, ¢|7) is also a
triangulation of Fox with & = o(T).

Remark 6.2. Obviously (0,0,0) is preparation for (S, ¢, A, Fo). Given an
arbitrary preparation (7,8, Fg) for (S, p, A, Fo) such that |JT # S, and S
a minimal element in S\ §)7, it suffices to build from it a preparation (U, C, F¢)
such that U = YT U S. Indeed, Sy contains one more element of S than
Sj7 thus, starting from (0,0,0) and repeating the process inductively we will
finally get a preparation (V, D, Fp) such that |V = | S, hence A, = A. (P4)
then implies that (V, ¢) is a triangulation of Fo U F U CB(B) with parameters
(n,N,e, M). So the tuple (V, ¢, D, Fp) satisfies the conclusion of Lemma [G.T]
which finishes the proof.

So from now on, let (7, B, Fi) be a given preparation for (S, ¢, A, Fo) such
that ) 7 # Y S. Let S be a minimal element in S\ S}y and As = {4 € A:

A= ©(S)}. The minimality of S ensures that every proper face of S belongs to
Sj7, hence i SU S and |J(Aj7 U As) are closed.

Claim 6.3. Let A be a cell of type 1 in Ags, T a simplex in T contained in S,
andY = o(T). If va =0 onY then Greay = 9% A belongs to B. If moreover
fia #0 onY then 03 A is covered by the cells in B that it meets, and among
them there is a unique cell B: whose closure meets % A. More precisely:

B'% = (EA\Ya 07 /’LB%J GA)

and either |upy| = |pal on Y, or |upy| < |7Nofia| on Y. In particular the
closure of B contains 9 A.

Proof: Note first that for every i € {0,1}, 0% A is contained in A hence in |J.A
since it is closed by assumption. Every cell in A which meets 9% A is contained
in it since A is a <"-complex, and belongs to Ajr (otherwise its socle would
not meet Y since Y C (Jo(T)). Since B refines A7 it follows that 0% A is the
union of the cells B in B which it contains.

In particular, if 74 = 0 on A then 9% A # () hence it contains a cell B € B.
Necessarily B is of type 0 since so is 9% A, and thus B = 9% A since they have
the same socle Y. This proves the first point.

For the second point, since 74 = 0 # fig on Y both %A and 93 A are
non-empty. Now 0% A is contained in the closure of 8- A, which is the union of
the closure of the cells in B contained in 8- A. Hence necessarily the closure of
at least one of them, say B, meets 0% A.

B meets Y and both of them belong to B so B =Y. Since BN (Y x K)
meets 9% A and B C 91 A is disjoint from 8% A, B must be of type 1 with vp = 0
because otherwise B would be closed in Y x K. Tt follows that BN(Y x B) is the
union of B and 8% B, and the latter meets 9% A. By the first point 9. A € B. By
Proposition 5.3 applied to B, 8% B € B. Thus 8{-B = 5. A, in particular they
have the same center so cp = €4|y. Pick any (z,t) € B, so that t —cp(x) € Gp.
B is contained in 9% A hence t — é4(z) € G4. Since cp(z) = ¢a(z) it follows
that Gg N G4 # () hence G4 = Gp.

This proves that B = (Ca|y,0, #B, G ). The uniqueness of B follows. Indeed
if B’ is any cell in B contained in 93 A whose closure meets 9%-A, the same
argument shows that B’ = (Ca}y,0, up’, Ga). This implies that for any ' € K
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such that ¢ — ¢4(z) is small enough and belongs to G4, the point (z,t") will
belong both to B and B’, so B = B’.

If |up| = |fiay | we are done, so let us assume the contrary. Then |up(z)| #
|fa(x)| for some x € Y. B is a fitting cell so let t € K be such that (z,t) € B
and |t — cp(z)| = |up(z)|. We have |t — ¢a(x)| < |fa(z)| because (z,t) € 0)-A,
so |up(x)| < |fia(z)|. We are going to show that |up| < |fia| on Y. Since 03 A
is a fitting cell it follows that 94 A is not contained in B, so there is at least one
other cell C in B contained in 9. A. Now C is contained in Y and both of them
belong to B so B =Y. For each y in Y fix ty in K such that (y,t,) € C. Since
C is contained in dy A we have:

0 < |ty —caly)| < |pa(y)| and t, —ca(y) € Ga

Necessarily |pup(y)| < [ty — ¢a(y)| because otherwise (y,t,) would belong both
to C and B, a contradiction. Hence a fortiori |up(y)| < |fa(y)|. By Proposi-
tion [5.5] this implies that [up(y)| < |70 jia(y)| because B and A are fitting cells
mod G, vG = NoZ and Gg = Ga. So |up| < |[7™°[i4)y| in that case, which
proves our claim.

[

We can now begin our construction of a preparation (U,C,Fe) for
(S, ¢, A, Fo) such that HU = |4 T US. We are going to refine Ag twice. First
“vertically”, according to the image by ¢ of a certain partition of S which,
together with 7, forms a simplicial subcomplex U of S refining S5 U {S}
(Claim [63). Then “horizontally” by enlarging the cells in B contained in the
closure of | J Ag in such a way that the family of these new cells, together with B,
forms a cellular monoplex C mod G refining Aj7-UAg = Ajy, such that C <™ Ay,.
The point of the construction is to ensure that C comes with a <"-system F¢
for (C, Ap) such that (U,C, F¢) is a preparation for (S, ¢, A, Fo).

6.b Vertical refinement

Let Ts be the list of proper faces of S. We first deal with the case where S is
not closed, that is T # 0. For every A in Ag let:

(03)471/27#?4) = (CA OCPY,VAOC P, hA OQO)|S

For every T € Tg and every A € Ag let ®p a(t,€) be the formula saying
that (¢,e) € T x R* and that one of the following conditions hold, with ny =
max(n, 1+ 2vN):

(A1), .: 75(t) # 0 and for every s € S such that ||s —¢]| < |e]:
|ca(s) = ca(®)] < [7™ P4 ()]
and [ (s)] = [73 ()] and [uG (s)] =[5 (1)]
(A2);: 75(t) =0, 5% (t) # 0 and for every s € S such that ||s — ¢]| < |e|:
[ca(s) = ea(®)] < |7 = opug(t)]
and |v5(s)] < |p% )] < a5 (8)] = |15 (s)] where B is the cell Bk given by

Claim 631
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(A3).: 75(t) = 5 (t) = 0.

Let ®(t,¢) be the conjunction of the (finitely many) ®r 4(t,€)’s as T ranges
over Tg and A over Ag. Finally let ¥(¢,) be the formula saying that that |e] is
maximal among the elements ¢’ in R* such that K |= ®(t,&’). Obviously U(t, )
implies ®(t, ).

By continuity of the center and bounds of A, for every ¢ € T there exists
eer,A € R* such that K |= @7 4(t,er,7,4). Hence for every t € 0S there is
¢ € R* such that K = ®(t,e) (every € € R* such that |e| < |e;,1 4| for every
(T, A) € Ts x Ag is a solution). For every t € 95, the set F; of elements ¢
of R* such that K | ®(t,¢) is semi-algebraic, bounded and non-empty. So
by Corollary there is e, € E; such that |e¢| is maximal in |E:|, that is
K |= ¥(t,e). Theorem 2.7 then gives a semi-algebraic function € : 9S — R*
such that K |= U(t, e(t)) for every t € 35, hence a fortiori:

vt € 08, K = ®(t,e(t)). (15)

Claim 6.4. Lete : 0S — R* be the semi-algebraic function defined above. Then
the restriction of || to every proper face T of S is continuous.

Proof: Note first that if K = ®p a(t,e’) for some ¢t € T and ¢’ € R* then
K = ®p a(t',¢’) for every t' € T N B where B = B(t,¢’) is the ball with center
t and radius €’

Indeed, assume for example that 7 (¢) # 0, hence (Al); . holds. It claims
that for every s € SN B

|a(s) —ea ()] < 7™ va(t)] (16)

and |v4(s)] = |#5(t)] and |pa(s)| = |E5(¢)]- Now T'’N' B C SN B hence, as s
tends in S N B to any given t’ € TN B we get

4 (t) = a(®)] < |7 va(t))| (17)

and |va(t)| = |75 (¢)] and |pa(t')| = |55 (t)]. By combining ([I8) and (7)) with
the triangle inequality we obtain that for every s € SN B

|5 (s) — 4 (t)] < 7™ va(t)] = [7™ Da(t))]

and |pa(s)| = |55, that is (Al)y o

Assume now that 9 (t) = 0, hence 79 (t) = 0, that is (A3); holds. Then
o(T) € A and fia(p(t)) = 0 imply that jis = 0 on o(T) because A is a closed
<"—complex (see footnote [I§). So % = 7% =0 on T, and (A3)y follows.

The intermediate case (A2), . where 79 (t) = 0 and 1% () # 0 is similar, and
left to the reader.

Now it follows that if K |= U(t,e’) and ||t' —t|| < |¢'|, then K = ¥(¢,e”) if
and only if |'] = [¢”]. So |e(t)| = |e(t')] for every ¢,¢ € T such that ||t — /| <
le(t)]. Thus |e]| is locally constant, hence continuous on 7.

[

Theorem 217 applies to S, Ts and the function e. It gives a partition Ug of
S such that Ugs U Tg is a simplicial complex, for each T" € Tg there is a unique
U € Ug with facet T, and for every u € U:

[u = 7o (w)]| < le(mo ()] (18)
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where 7y is the coordinate projection of U onto T' (see Remark 2ZT3]). On ¢(U)
let oy = @ oy o 1. This is a continuous retraction of p(U) onto o(T).
For every U € Us and every A € Ag let

Ay = An (p(U) x K). (19)

Let Ty = 0 if U is closed, and Ty € Tg be the facet of U otherwise. Finally let
U=UsUTs.

Claim 6.5. With the notation above, U is a simplicial subcomplezx of S refining
Sj7U{S} and containing T. For every U C S inU and every A € As, Ay s
a largely continuous fitting cell mod G. Moreover if U is not closed then:

1. If |[pa] # 0 on ©(Ty), then for every x € Ay:
|ea(z) = ealou ()] < |7 7a(ov ()] (20)
lva(z)| = [Palou ()] and |pa(z)| = |falov(z))] (21)
2. If [pa] = 0 < |fia| on o(Ty), then for every x € Ay :
lea() — ealou ()| < |7 N pp(ov ()] (22)

lva(x)] < [pplov ()] < |palov(@))| = |pa(z)] (23)
where B is the cell BY. given by Claim [6.3

Proof: By construction U is clearly a simplicial complex refining 7 U {S},
hence refining &7 U {S} since T refines Sj7. For every U C S in U and every
A€ Ag, Ay is a largely continuous fitting cell mod G by (3], because so is A.
If moreover U is not closed let T = Ty € Ts be its facet, let x be any element
of Ay = ¢(U), s=¢ (x) €U and t = 7y (s) € T, where 7y is the coordinate
projection of U onto T (see Remark 2.13). Note that oy (z) = ¢ oy (s) = ¢(t)
hence ¢4(oy(z)) = 4 (t), and similarly for 74 (oy(2)) and fa(oy(x)). By ([I5)
we have K |= ®(t,e(1)).

If |74l # 0 on @(T) then 75 (t) = va(ou(z)) # 0 hence ®(¢,e(t)) says that
(Al)¢er) holds for t. By ([I8), [[s — t]| < |e(t)] so @0) and (1)) follow from
(Al)¢ep)- Similarly, if [7a] = 0 < [fa] on ¢(T') then (22)) and (23) follow from
A2)t (1)

[

This finishes the construction of the vertical refinement of Ag if S is not

closed. When S is closed we simply take & = S} U{S}. Claim[G.5holds in this
case too, for the trivial reason that there is no non-closed U C S in U.

Remark 6.6. For every U € Ug, if v4, = 0 then Grey, = By for some
B € As. Indeed vy,w) = va, = 0 implies that v4 = 0 (thanks to our
definition of presented cells) hence Grea = 02( S)A belongs to A: it is contained

in A, hence in | J A since the latter is closed, in particular it meets at least one
cell B in A, and the last point of Proposition then gives that B = Grea.
Thus B = Grea € Ag, and clearly Grea,, = By.
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6.c Horizontal refinement

For every A € Ag we are going to construct for each U € Ug a partition £4 ¢ of
Ay, and for each E in €4 ¢y a semi-algebraic function hg 4, : ¢(U) — K such
that:

(Pres) E = ¢(U) = Ay and E is a largely continuous fitting cell mod G.
(Fron) One of the following holds:

(81) 90E =.
(02) OF = Grceg and Greg € oy for some C € Ag.

(83) OE = B for some B € B, in which case U is not closed, B = ¢(Ty)
and:

(cB,vB, 1B) = (CB, VE, IE) |p(Ty)-
(Out) E <™ Ay and hg 4, is a <"-transition for (E, Ay).
(Mon) cgogy, ppo@y, vEowy and hg a, oy are N-monomial mod U ;.

This last construction will finish the proof of Lemma Indeed, assuming
that it is done, let C be the union of B and all the cells £ in €4y for A € Ag
and U € Ug. Let F¢ be the union of the family of the corresponding functions
hg a, and of Fg. By Claim [65] U is a simplicial subcomplex of S such that
WU =T US. The assumption (P2) for B, together with (Pres) and (Fron),
give that C is a cellular monoplex mod G refining A7 U As and that p(U) = C.
The assumption (P3) for B and Fp, together with (Out) above, give that
C <™ Ay and Fe is a <"-system for (C, Ap,). Finally the assumption (P4)
for (T, ¢7) together with (Mon) ensure that (U, ),) is a triangulation of
Fe U CB(C) with parameters (n, N,e, M). So (U,C,Fc) is a preparation of
(S, ¢, A, Fo), and since U = |§ T U S we conclude by Remark [62

Solet A e Ag and U € Ug be fixed once and for all in the remainder.

Remark 6.7. Recall that (S,¢) is a triangulation of Fy, and Fy contains
CB(A). In particular cs o ¢|g is N-monomial mod Ue,, hence a fortiori so is
cao . By () ca, = cajpw) hence ca, o @y = caopy. Thus ca, 0@y
is N-monomial mod U ,, and so are pa, o ¢y and va, o ¢y by the same
argument.

Let us first assume that U is closed. We distinguish two elementary cases.

Case 1.1: 4, =0o0r vy, #0.
Then Ay is closed. We let €4y = {Av} and ha, a4, = 1. (Pres), (01), (Out)
and (Mon) are obvious (using Remark [6.7 for the latter).

Case 1.2: 0= |va,| < |payl|

We let Eav = {Au} and ha, 4, = 1. Again (Pres), (Out) and (Mon) are
obvious (same as Case 1.1). Moreover 0Ay = Grca,, = Grea, which belongs
to As by Remark 6.6l If we let B = Grea, we have By = Grega,, and pug, =0
hence Ep v = {By} by the previous case. So Ay = Grea and Grey € Ep v,
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which finishes the proof of the statement that (92) holds.

These cases being solved, we assume in the remainder that U is not closed.
Recall that Ty is then the facet of U and belongs to 7. By construction dp(U) =
©(0U) = o(Ty) = ¢(Ty). For the convenience of the reader, each of the
following cases is illustrated by a geometric representation of its conditions
(almost like if we were dealing with a cell A over a real closed field, except

that the vertical intervals representing the fibres of A over A can be clopen).
In these figures Ay is represented by a gray area in K2, its bounds by dotted
lines, its socle ¢(U) by the horizontal axe, dp(U) = ¢(Ty) by a dot on the left
bound of ¢(U), and AN (¢(Ty) x K) by a thick line or dot on the vertical axe
above p(Ty).

Case 2.1: |fia,| =0 on ¢(Ty).

or

Welet E4v = {Au} and ha, a4, = 1. (Pres), (Out) and (Mon) are obvious
as in the previous cases.

o Sub-case 2.1.a: va, # 0 or pa, = va, = 0. Then 0Ay is the closure of
GrCay|p(1y) = GrCajp(1y)- The latter belongs to B by Claim [6.3] which
proves (93).

o Sub-case 2.1.b: vy, = 0 # pa,. Then 0Ay is the closure of Grey,,. By
Remark[6.6] there is a cell C' € Ag such that Cy = Grega,,. Then pe, =0
(because Ay is a fitting cell) hence ¢,y = {Cy} by the previous sub-case.
So 0Ay = Grea, and Grea,, € Ec,u, which proves that (02) holds.

Case 2.2: 0 < |7a] on ¢(Ty).
33 '/33// CB2 cou = EB2
B> Ep, U

In this case, by Claim [6.3] aé(TU)A = AN (p(Ty) x K) is the union of the
cells B € B which it contains. For every such B, B = o(Ty) (because B = ¢(T)
and B C ¢(Ty)) and we let:

Ep = (cgooy,vpooy,upooy,Gg)

These Ep’s form a family €4, of two by two disjoint largely continuous cells
because the various cells B involved are so and:

(1,t) € BEp < z € Ay and (oy(x),t) € B. (24)
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Each Ep has socle p(U) = Ay and for every z € o(U), oy(x) belongs to
o(Ty) = B. If B is of type 0, then so is Ep and pg(oy(z)) = 0 (because
B is a fitting cell of type 0) hence Ep is a fitting cell. If B is of type 1, then
up(ou(x)) € vGp by Proposition[5.5] (because B is a fitting cell of type 1). That
is pg, (¢) € Gy hence g, is a fitting bound by Proposition5.8 Similarly vg,
is a fitting bound, so Fp is a fitting cell. This proves (Pres), and one can easily

derive from (24) that OEp = B so that (03) holds. Note also that cg, o ¢y is
N-monomial mod U, , because so is c¢p o P11y and cg, o YUy =cpooyopy =
cgoypomy = cpoyr,. The same reasoning applies to vg, and pg,. So the
next claim finishes to prove that £4 ¢ is a partition of Ay and that (out), (Mon)
hold.

Claim 6.8. Ep <" Ay and there is a semi-algebraic <" -transition hg, a, for
(EB, Av) such that hg, A, © @u is N-monomial mod Ue .

Proof:  For every (z,t) in Ep, let us prove that (z,t) belongs to Ay. Since

x € Ay it suffices to prove that (z,t) € A. By construction (oy(z),t) belongs
to B hence to ai(TU)A s0:

|7a(ou(2))| < |t — ealou(2))| < |Ealou(x))| and t — ca(ou(x)) € Ga  (25)
By @I [va(@)| = [74(0u ()] and |5a(2)] = |ia(ow(2)]- Moreover by ():

|(t —calx)) = (t—calou(x))| = |ca(x)—calov(z)|
< |r™Moa(ou ()| (26)
< ‘t—EA(O’U(.T))‘

Thus |t — ca(z)| = |t — ¢a(oy(z))| and by ([25):
a(@))] < [t = ca(@)] < |pa(z)]
Moreover by (28]):

m_Palou())

t_CA(‘T) _ )
1‘ t—ca(ou(z) <[] 27)

t —caloy(x))

Recall that n; = max(n, 14 2vN), in particular n; > 20N hence 1+7™ R C Py
by Hensel’s lemma. Since t — ¢a(ou(z)) € Ga by @25) and G4 € K* /Py, it
follows that t — ca(x) € G4. So (z,t) € A which proves that Eg C A.

It remains to check that Ep <" Ay, and to find a <™-transition for (Eg, Ay ).
For every (x,t) € Ep let:

wp(z,t)y=n"" (% - 1)

t—caloy(x
By [27) wp takes values in 7™~ ™R hence in R since ny > n, thus for every
(.’L‘,t) € Ep:
t —ca(®) =Up(z,t)(t — calou(2))) (28)
with U, = 1+ 7"wp in this case. We have B C 8;(TU)A and by (P3) B<"™ Ajr.
Since A is a closed <™-complex this implies that for some A’ € A we have

Bam A Q” 8;(TU)A. Let hg € Fo be a <™-transition function for (4, 8;(TU)A),
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and hy € Fp a <"-transition function for (B, A’). Then for some ag, oy € {0, 1}
and every (z/,t') in B we have

17&0

t'—ca(a") = Uy (@', t)hg° (") (T — car(2))

and 1
V' —car(a') = Un (@, )R (@) () — eplal)) ™

hence ' — ca(a’) = Un (', t')h(2)*(t' — cp(a’))' = with h = hi~0h{! =)™
and a = ap + a1 — apay. So h is a <"-transition function for (B,@;(TU)A).
Moreover hg o @1, and hy o g, are N-monomial mod U, by (P4), hence so
is h o g, . For every (z,t) in Ep, (ou(x),t) € B so

-«

t—=<Ca (O’U(SC)) = Uy, (z, t)h(O'U(:L'))a [t —cB (O’U(:L'>)}
Combining this with (28]) and the definition of cg, = cp o oy we get
t—ca(x) = Un(z, t)h(oU(:E))a [t — CEg (x)} oo

So Ep <™ Ay and hooy is a <"-transition for (Ep, Ay). Moreover hooyopy =
h o ¢ oy by definition of oy. The coordinate projection 7y of U onto Ty is
obviously 1-monomial, and % o o7, is N-monomial mod U, by construction.
So h ooy oy is also N-monomial mod U, ,, and we can take hg, 4, = hooy.
[

Case 2.3: 0= |7a| < |fa| on ¢(Ty) and v4 # 0.

..B3, By ?——""“BIOJU:'U‘E

By

Bob—1

Let By = B%U and By = B%U the two cells in B given by claim [6.3] Let:
E = (ca,va,pB, ©0u,Ga)p)

If |up,| = |Ea] on o(Ty) then |up, o ou| = |pal on ¢(U) by [23). Thus E and
Ay have the same underlying set. In this case we let £4 v = {E'} and properties
(Pres), (Mon), (93) are trivially true. So is (out), using RemarkG.7for c4 0,
va oy, and (P4) for up, o oy o gy = B, © V|1, -

Otherwise |up, | < |fa| on ¢(Ty) by Claim and we let:

D = (ca,m Moup, oou, pa,Ga)pw)

5, < 7% 1] on (Ty) by Claim B33 |1 0 0| = ua| on o(U) by @), so
lvp| = |7 Nopug, o oy| < |fia o ou| < |ual = |up| on @(U). Moreover A is a
fitting cell hence for every x € ¢(U) there is t € K such that (x,t) € A and
[t —ca(z)| = |pa(z)|, so (z,t) € D. Thus D is indeed a cell, with socle p(U).
It is actually a largely continuous cell, and pup = p4 is a fitting bound. Let us
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check that vp = 7~ Nopup, ooy is a fitting bound too. By is a fitting cell of type 1

with socle ¢(Ty7) hence pp, (¢(Tv)) € vGp, by Proposition[5.5l But G, = Ga
by Claim[63] G4 = Gp and ¢(Ty) = ou(p(U)) by construction, and Ny € vG
so vp(p(U)) C vGp. Thus vp is indeed a fitting bound by Proposition (.5

Clearly Ay is the disjoint union of £ and D. Moreover the cells in B con-
tained in D N (p(Ty) x K) are exactly those contained in A N (¢(Ty) x K)
except By and B;. Thus the construction that we have done for Ay in case 2.2
applies to D because vp = 7~ Noup, # 0 on ¢(Ty) and because the analogues
of conditions ([20) and ([2I)) that we used for Ay in case 2.2 hold for D in the
present case. Indeed by ([22]) we have

|cay (@) = eay (ov(2))| < |7~ fip, (ou(2)].

This is just condition (20) for D since c¢p = ca,, and vp = 7~ Noup,. Moreover
condition (2] for D is:

lvp| = |vpooy| and |up|=|ip ooyl

The first equality is true by definition of vp as m= o

is true because up = pa and because of (23)).

So the construction of Case 2.2 gives a partition £ of D and for each E' € &’
a semi-algebraic function®d h 5.4y - p(U) — K satisfying conditions (Pres),
(03), (out) and (Mon). Since E also has these properties (with hg 4, = 1 since
cp =cy on p(U)) we can take E4y = {E}UE".

wp, o oy. The second one

Case 2.4: [ig # 0 on ¢(Ty) and v4 = 0.

...B2, B .- E

BoV—n

Let again By = By, be the cell given by claim[6.3l We are going to split Ay
in two cells E and D to which previous cases apply. In order to do so, choose
any i € Supp U \ Supp Ty For every u € U let ;(u) = u;, the i-th coordinate
of u. Clearly &; is largely continuous and & = 0 on OU = Ty. So the function:

p= (& o HN.(up, oov)

is largely continuous on Ay = ©(U) and i = 0 on ¢(Ty), hence also on ¢(Ty) =
dp(U). Note that po ¢y is N-monomial mod U . Let:

E = (ca,0,7Yu, Ga) o)

D = (ca, p, ta, Ga) )

20Case 2.2 applied to D actually gives for each E’ € £ a <"-transition hg/ p for (E’, D).
But D C Ay and cp = ca, so hgs p is also a <"-transition for (E', Ay) and we can set
hg/ a, =hg D

41



E and D are largely continuous fitting cells mod G which define a partition of
Ay. (Here we use that A is a fitting cell: for every x € o(U) there is t € K
such that (z,t) € A and |t — ca(x)| = |pa(z)| so (z,t) € D, which proves that
D is really a cell. That D, E are fitting cells and Ay = EU D then follows from
Proposition [581) In particular E satisfies condition (Pres). Since vg = 0 and
fip =7 =0 on dp(U), we have F = Grcg. By Remark 6.6 Grea,, = Cu
for some C € Ag, and by Sub-case 2.1.1 applied to Cy, Grea, € Ec,u. This
proves (02) for F since cg = ca,. Let hg 4, = 1, this is a <"-transition for
(E, Ay) since they have the same center, so E satisfies (out). It also satisfies
(Mon), thanks to Remark 6.7 for cg = ca,, and because pg o o)y = aNoy o YU
is N-monomial mod Uk, .

Case 2.3 applies to D because vp = u # 0, |Up| = || = 0 on ¢(Ty) and
lEp| = |fal # 0 on ¢(Ty), and because the analogues of conditions ([22) and
([23) that we used for Ay in case 2.3 hold for D in the present case. Indeed
([22) holds for D because it holds for Ay, and because D and Ay have the same
center. Condition (23) for D is:

lvp| < |up, coul| < |iip o ou| = |upl

The first inequality is true because |vp| = |u| < |uB, 0 ou| by construction, the
second one is true by claim and because up = 4, and the last equality is
true because it is true for Ay by 23) and because up = pa, = pajpv)-

So the construction of case 2.3 gives a partition £ of D and for each E' € &’
a semi-algebraic function] heray @ ¢(U) — K satisfying conditions (Pres),
(Fron), (out) and (Mon). Since E also has these properties we can take £4.y =
{E}U¢&'.

7 Cartesian morphisms

Let A be a cellular monoplex mod G such that [ J A is a closed subset of R™+1,
Let (U, 1)) be a triangulation of CB(.A) with parameters (n, N, e, M) such that
for every A € A, ¢~1(A) € U (we will denote it U,). Note that this is essentially
the data given by the conclusion of Lemma The aim of this section is to
build a triangulation (S, ¢) of A with the same parameters (n, N, e, M), together
with a continuous projection @ : |§ S — U such that the following diagram is
commutative.

UA=<=-lgs
b
U_Z<¢— HU

We will make the assumption that G = Qn a with M’ = M 4 v(N) and
M > v(N). In addition we temporarily assume that A is a rooted tree, and U a
simplicial complex in D™ R% for some ¢q;. We keep these data and assumptions
until the end of this section, where we finally state our result in a more precise
and slightly more general form.

The construction is done below through a series of claims, which are con-
nected in the following way. The idea is to prepare the construction of S, ¢, ®

2lSame remark as in footnote
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by building first the tree H of support of S for § € S, together with an epi-
morphism of trees from H to Y. In order to do so, we construct a pair of trees of
finite subsets of N* ordered by inclusion, H = (H(A))ac4 and P = (P(A)) aca,
which come naturally with increasing maps?J making the following diagram
commutative (see Claim and the comments after).

A<y (29)
i :\'P

¥
A<= L{/

For each A € A, a simplex S4 will then be constructed inside Fyy(4)(DM R%)
(for some ¢ga € N* large enough), together with a semi-algebraic isomorphism
@4 and a semi-algebraic projection ® 4 defined by means of these maps from H
to A and from H to U. This will ensure not only that the following diagram is
commutative (Claim [7.7])

PA

A<=-84

but also that S = (S4)ae4 is a simplicial complex (Claim [(.§]) and that the
resulting maps ¢, ® defined by glueing all the local maps ¢4, ® 4 are continuous
on S (Claims and [Z.9).

Claim 7.1. The faces of Ua are exactly the sets Ug with B < A in A.

Proof: Let B< Ain A, Y = B and i = tpB. Then, with the notation of
Section Bl B = 9% A because A is a cellular complex. Since A is bounded, the
socle of A is closed hence Y must be contained in it. Since ¢ ~}(Y) = Ug, it
follows that Up is a face of Ua. Conversely for every face V' of U4, the set B =
63}(‘/)14 (resp. B = 6&}(‘,)14) is non-empty if 74y = 0 (resp. fia)y # 0) hence
belongs to A. One of these two cases necessarily happens (because |74| < |4l
on Y'), which gives B € A such that Up = V.

]

Claim 7.2. Given any two cells B < A in A, B < A if and only if either
Up < Uy ortpB < tpA. In particular if B is the predecessor of A in A then
either Up s the facet of Ua, or Ug = Uy, in which case tp B =0 and tp A =1

Proof: Recall that B = 8{,/1 withY = B = Y(Up) and j = tp B. In particular
A = 0% A with X = Aandi= tpA. Thus B # A if and only if Ug # Uy or
tp B # tp A. Since Up < Uy by the previous claim, and obviously tp B <tp A
(otherwise 9, A = ()) this proves the equivalence. In particular if Ug = Uy then
tpB <tpA hencetpB=0and tpA = 1.

If B is the predecessor of A in A and Up # Ua, then Up < Uy by Claim [
Let V be the facet of Uy. Then Ug < V < A hence B < (’%(V)A < A. On the

22See Remark 2,10
23 A, A and U are ordered by specialisation, while H and P are ordered by inclusion.
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other hand B is the predecessor of A in A, hence B = 8w(V)A. So B = (V)
and finally Ug = V.

Given a strictly increasing map o : I — J with I C [1,r] and J C [1, 5], we
let [o] : K* — K" be defined by [0](y) = u where u; = yo(;) if i € I, and u; =0
otherwise. We say that a function f : S C K™ — K? is a Cartesian map if for
every I C [1,r] the restriction of f to SNEF(K") is of that form, that is if there
is J C [1,s] and a strictly increasing map o : I — J such that f(y) = [0](y)
for every y € S with support I. If X is the disjoint union of finitely many sets
X € K" for various k, then a Cartesian map on X is simply the data of a
Cartesian map on each Xj. A Cartesian morphism is a continuous Cartesian
map.

Claim 7.3. There exists a pair of functions H, P from A to P(IN*) such that
H is strictly increasing and for every B < A and every C in A:

(CO) Iftp A =0 then H(A) = P(A).

(C1) IftpA =1 then H(A) = P(A) U {ra} for some r4 > max P(A).

(C2) Card P(A) = Card(Supp Us).

(C3) P(B) = H(B)NP(A) (in particular P is increasing and P(B) C H(B)).

(C4) If o4 : SuppUs — P(A) denotes the increasing bijection given by (C2)
then o4(SuppUg) = P(B).

(C5) If P(C) C P(A) then Uc < Ua.

According to this claim, H : A — H is an increasing bijection and P : A — P

an increasing surjection. Thus Po H~! : H — P is an increasing surjection.

Land Po H™! are respectively the maps H — A and H — P in the diagram

@3] at the beginning of this section. The maps A Aand Uy — A are A — A

and U — A respectively. The last?d 1 map, from P to U, is P(A) — U,. This

is a well defined increasing map by (C5), and obviously a surjective one. The
commutativity of the diagram follows by construction.

Remark 7.4. Since 04 and op are strictly increasing, (C4) implies that 04 (i) =
op(i) for every i € Supp Up.

Proof: The construction goes by induction in Card.A. For the root A of A we
let P(A) = Supp Uy, H(A) = P(A) if tp A =0, and H(A) = P(A) U{q1 + 1}
if tp A = 1 (recall that U is a simplicial complex in DM R%). If A = {A} we
are done. Otherwise let A be a maximal element of 4 and apply the induction
hypothesis to A \ {A}. This defines P(A’), H(A') for every A’ € A\ {A} so
that H is strictly increasing on A\ {A} and properties (CO0) to (C4) hold for
every B’ < A" in A\ {A}.

Let B be the predecessor of A in A and k = Card(Supp U4 \ SuppUg) + 1.
For every A" € A\ {A} let Py(A’) = {ki}icpay and Hp(A") = {ki}icma
Clearly P, and Hj inherit all the properties of P and H. Thus, replacing 1f
necessary P and H by Py and Hj we can assume that H(A') C kIN* for every
A e A\ {A}.

24The dashed map from H to U is just the compositum of H — P — U.
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Let ¢’ be the maximum of the integers in all these sets H(A’). We have to
define P(A) and H(A) so that the resulting maps P, H satisfy: (C0) to (C5)
for every B’ < A’ and every C' in A; H(B') C H(A') and H(B') # H(4') if
B’ £ A’. By the induction hypothesis it suffices to check these properties when
A=A B'=Band C' € A'.

We are going to build o4 first, and then let P(A) = oa(SuppUa). Let
j1 < -+- < jr be an enumeration of Supp Ug. Let jo = 0 and j,41 = ¢ + 1. For
every i € Supp U4 there is a unique ! € [0,7] such that j, < i < jj4+1. We then
let 04(i) =op() +i— i (if ji = jo = 0 we let op(j;) = 0 in this definition).
Note that j; + k < ji4+1 and op(ji+1) € P(B) C kN* hence

oa(i) <oali) <op(i)+ii+1— 5 <o) +k <op(jit1)-

It follows immediately that o4 is strictly increasing. Let P(A) = o4 (SuppUa),
by construction (C2) and (C4) hold, P(A) N kN* = P(B) and P(B) is strictly
contained in P(A) except if SuppUs = SuppUp. Note also that in any case
¢ +k¢ H(B)UP(A). Finally (C5) holds because:

e If P(C') C P(A) then P(C") C P(B) by construction (because C' € A’
hence P(C") C kN*). So Ucr < Up by the induction hypothesis, and
since Ugp < Uy we get U < Uy.

o If P(A) C P(C') then in particular P(A) C kEN*, hence by construction
P(A) = P(B) = P(C’") and SuppU, = Supp Up. This last point implies
that dimU4 = dim Up, hence U4 = Up since Ug < Uy. On the other
hand P(B) = P(C") implies that Ug = U by the induction hypothesis.
So altogether Uy = Uer and a fortiori Uy < Ucr.

It remains to define H(A) and to check (C1) and (C3). We distinguish four
cases, according to the types of A and B, and apply Claim to each of them.

Case 1: tpA = 0, hence tpB = 0 and Up is the facet of A. In particular
Supp Up is strictly contained in Supp Uy, hence so is P(B) in P(A). By the
induction hypothesis (C0), H(B) = P(B). Let H(A) = P(A), then H(B) C
H(A), H(B) # H(A) and (C0), (C3) are obvious.

P(A) by

Case 2: tpA =1, tpB and Ug = Uy. Then P(B)
= Let

construction, and P(B) H (B) by the induction hypothesis (CO0).

H(A) = H(B)U{¢ + k}, then H(B) C H(A), H(B) # H(A) and (C1) are
obvious because ¢’ + k ¢ H(B), and H(B) N P(4A) = P(B)n P(A) = P(B)
which proves (C3).

Case 3: tpA =1, tpB =0and Up is the facet of Uy. We let H(A) = P(A)U
{¢’ + 1}. By the induction hypothesis (C0) H(B) = P(B). By construction
P(B) C P(A) C H(A). So H(B) C H(A), H(B) # H(A) and (C1) are obvious
because ¢ +k ¢ H(B)U P(A). Asin Case 2, H(B)N P(A) = P(B)NP(A) =
P(B) which proves (C3).

Case 4: tpA = tpB = 1 and Up is the facet of Uas. By the induction
hypothesis (C1), P(B) is strictly contained in P(A). Let H(A) = P(A)UH(B).
Then H(B) C H(A), H(B) # H(A) because H(A) \ H(B) = P(A) \ kN* =
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P(A)\ P(B) # 0, H(A)N P(B) = (P(A) N P(B)) U (H(B) N P(B)) = P(B) U
(B) = P(B) which proves (C3), and (C1) follows because then H(A)\ P(A) =
(B)\ P(A) = H(B) \ P(B) is a singleton by the induction hypothesis (C1).

BN

With the notation of Claim[Z.3] let g2 be the maximal element of |J 4. 4 H(A)
and ST = {Fya)(DMR%2)}aca. For every A € A let &4 = [o4]
Fray(DMR®2) — DMR%. Finally let @ : |JST — DMR% be the resulting
Cartesian map.

Claim 7.5. ® is continuous, hence a Cartesian morphism.

Proof: We have to show that for every T < S in ST and every z € T, ®(y)
tends to ®(z) as y tends to z in S. By construction there are A, B in A such
that H(A) = Supp S, H(B) = SuppT, ®(y) = [04](y) and ®(z) = [o5](2).
Since [0 4] is obviously continuous, it tends to [c4](z) so we have to prove that
[04](2) = [0B](2). Let u = [04](2) and v’ = [05](2). Recall that u,u’ € DM R%
and for every i € [1,q1], ui = 25 ,(;) if i € Supp Ua, u; = 0 otherwise, uj = 2, (;)
if i € Supp Up, and u} = 0 otherwise.

Since T < S we have SuppT < Supp S, that is H(B) < H(A), hence
B < A since H is strictly increasing. In particular Supp Ug C Supp U4 hence
for every i € [1,q1], we have u; = u; = 0 if i ¢ Supp U, and by Remark [T4]
Zo4 (1) = 20, (i) if i € Supp Up, that is u; = u} in this case too. The remaining
case occurs when i € SuppUy \ Supp Up, so that u; = 2,,¢;) and u} = 0.
We have to prove that z,,;) = 0, that is 04(i) ¢ Suppz. By (C4) and the
assumption on i, o4 (i) € P(A)\ P(B). By (C3), P(A)\ P(B) = P(A) \ H(B).
So 04 (i) ¢ H(B), and we are done since Supp z = SuppT = H(B).
|

For every A € A, pa o is N-monomial mod Uk, so there are ¢ € K and
some integers [3; 4 for ¢ € Supp U4 such that for every u € Uy

HA © w(u) = Uem(u) . C H uivﬁi,A-

i€Supp Ua

-~

If ua # 0 then vua(A) = vGa = vAa + NZ by Proposition B35 and by
the above displayed equation v(¢) = v(Aa) [N]. So there is 8y 4 € Z such
that v(¢) = v(Aa) + NBo,a. Let p% : vUs — Z be defined by wh(a) =
M’ + Bo,a + ZiGSuppUA Bi,aa;. If pg = 0 then we let pa(a) = o0 for every
a € vUy. Define v accordingly. By construction, for every v € U4 we have

vpa(Y(u)) = vAa+ Nph(ou) — NM' (30)

wwa(P(u)) = vAa+ Nvj(ou) — NM' (31)
In particular p% (resp. vY4) is uniquely determined by pa (resp. va), even if
the coefficients [5; 4 are not.

Remark 7.6. Since A is a fitting cell mod @y, y- contained in R, vus+M' > 0
by Proposition On the other hand 0 < vAy < N — 1 (see Section 2]). So,

25We remind the reader that A is a cell mod Qp ar with M’ = M + v(N).
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for every u € Us we have by B0):

pa(vu) = vpa((u) + NM' —vda
M+ NM' — (N 1)
(N-1)(M =1) =0

Y

Let S4 € DM R be defined as follows.

o IftpA =0, Sa is the set of y € Fya) (DM R?2) = Fp(4)(D R%2) such
that ®(y) € Ua.

o IftpA =1, Sy is the set of y € Fy(a)(D™ R%) such that ®(y) € Uy and
pa(W®(y)) < vyra < va(WR(Y)).

In both cases, for every y € Sy let

paly) = (Vo d(y), ca(od(y)) +r VM AuyN)

where 4 = max H(A) (if H(A) = 0, which happens when A is a point, then r4
is not defined but in that case tp A = 0, hence A4 = 0 and we can let )\Ay,{\; =0
by convention).

Claim 7.7. ®(Sa) =Uy and p4 is a bijection from Sy to A.

Proof: If tp A = 0 the result is trivial because in that case H(A) = P(A) hence
the restriction of ® to Fyy(4) (DM R%) is a bijection onto Fsupp v, (DM R™). So
from now onwards we assume that tp A = 1, hence H(A) = P(A) U {ra} and
ra ¢ P(A) by (C1).

Let y,3' € S4 be such that p4(y) = @a(y’). Then (P(y)) = (P(y')) and

ca(o®(y)) + W_NM/AA%{\; =ca(o®(y')) +n VM Aay

These two equations imply that y,]_\; = yﬁX Since Y., y;., € DMR=Q,uNR
and M > v(N) it follows that y,., = y,, by Lemma 2.8 On the other hand
»(@(y)) = ¥(®(y')) implies ®(y) = ®(y’) (because 1) is one-to-one), that is
y; = y, for every i € P(A) (because ®(y) = [0a](y) by construction). Thus
y; = yi for every i € P(A)U{ra} = H(A), that is y = ¢y’ since Suppy =
Suppy’ = H(A). This proves that ¢4 is one-to-one.

Let us check now that A C p4(Sa). Pick any (z,t) € A, let u = ¢~ 1(x)
and § =t —ca(z). Since § € AaQn p and aNM' ¢ QnN, v+ we have alNM's ¢
AaQn, . Recall that M’ = M + v(N), hence by Lemma there is a unique
z € Q1,0 such that VM5 — Aaz, hence t = ca(x) + 7= NM' )\, 2N On the
other hand we have v (¥(u)) = vpa(z) < vé so by (B0)

(M § /A 4) o VM’ 4 opa(@h(w) —vda
N - N

vz = = pY (vu).

In particular vz > 0 by Remark [.6lso z € Q1 s N R = DMR. Similarly vz <
vY(vu) by @BI). Let y € DM R% be such that y; = Ug iy if i € P(A), yi = 2
if i = ra, yi = 0 otherwise. Then y € Fy(a)(DMR%), ®(y) = [0a](y) = u and
w4 (vu) < vy, < v4(vu) since y,, = z, so y belongs to S4. By construction
va(y) = (x,t) € A, which proves that A C p4(Sa).
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We turn now to ®(S4). For every u € Uga, ¥(u) € A so there is (z,t) € A
such that u = 1 ~1(x). The above construction gives y € Sa such that 4 (y) =
(x,t). In particular ¥ o ®(y) = x, so ®(y) = ¥ ~!(x) = u, which proves that
®(S4) D Us. Since (S4) C Uy by definition of S4 we get that ®(S4) = Ua.

It only remains to show that ¢4(S4) C A. Pick any y € Sy, let (z,t) =
pa(y) and 6 =t — ca(z) = ﬁ’NMl)\Ay,{\L. Since ®(y) € ®(S4) = Ua, we have
z = P(®(y)) € Yp(Ua) = A. Since y,, € DMR = Q. N R, by Lemma 28
yi\g € QN M+v(N) = @n,mr. Hence § = W_N”I/)\Ayi\g belongs to AaQn, pr. We
have % (v®(y)) < vy,, by definition of Sy4, so by (B0)

vpa(Y(®(y))) = vAa + Nux(v@(y)) — NM' < vha + Nvy,, — NM'.
The left hand side is equal to v (z). For the right hand side we have
vAa + Noy,, — NM' = v(ﬁfNM/)\AyivA) = 4.

So vpa(x) < wd, that is |§] < |ua(z)|. Similarly |va(z)| < |§] hence (z,t) € A.
[

Claim 7.8. S4 is a simplex in DM R, whose faces are exactly the sets Sp
with B < A in A.

Proof: Let ¢ = Card P(A) and ¢’ = Card H(A). Let 74 (resp. 7)) be the
strictly increasing map from P(A) to [1,q] (resp. from H(A) to [1,¢']). By
construction and by Claim the following diagram is commutative (vertical
arrows are the natural coordinate projections).

[T4]

DMRY —2 Fy4)(DMRI2)

l [oa]=2

DM Ra ﬂ> Fp(a) (DM R42) [oa]=2

FSUPP Ua (DMqu )

The horizontal arrows in this diagram are isomorphisms. All of them are ob-
tained simply by an order-preserving renumbering of the coordinates, hence
they preserve the faces and the property of being a simplex. It will then be
convenient here to identify isomorphic spaces, hence to consider Uy € DM R4
and S4 C DMRY'. Since ®(S4) = Ua by Claim [T, after this identification Ua
is just the image of S4 by the coordinate projection of DMRY to DM R, Since
H(A) = Supp Sa we identify also H(A) with [1,¢'], and P(A) with [1, ¢].

If tp A =0 then H(A) = P(A), ¢’ = q and the vertical arrows are identity
maps. Thus S, identifies with Uy4. In particular S4 is a simplex. Every B < A
is also of type 0 and Sg identifies to Ug. The conclusion follows by Claim [7.11

From now on, let us assume that tp A = 1. Then ¢’ = ¢+ 1 hence Uy, is just
the socle of S4. Similarly, Ug is the socle of Sp for every B < A (if tp B =0
we have Sg = Ug x {0}). By construction S4 is the inverse image of vS4 by
the valuation (restricted to DM RI*1) and

vS4 = {a € 291 .G e vU, and ph (@) < ager < ug(a)}.
Since p4 o ¢ and v4 ot are largely continuous on Uy, [B0) and BI)) imply

that pY is largely continuous on vU,4. They are affine maps by definition. Since
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0 < u% by Remark [T0] and p% < vY because |va| < |pal, it follows that v.Sy4
is a polytope in I'%*!. We are going to check that its faces are exactly the sets
vSp for B < A in A. This will finish the proof since S4 will then have the
expected faces, which implies that S4 is a simplex because these faces form a
chain by specialisation (because A is a tree).

Step 1. Let B < Ain A, then B = 9L, A with Y = Band i = tpB. Let
J=H(B)CH(A)=[1,q+ 1] and J = P(A) = J\ {¢+ 1}. Since (up,vp) =
(A, 7a)jy, if tp B = 1 we have by construction

vSp ={a € F;(T""):a € vUp and % (a) < ag41 < 74(a)}. (32)

This remains true also if tp B = 0 because in that case ¢+ 1 ¢ J and 7Y = +00
on vUp (because 74 = vp = 0 on Y) so the right hand side is just vUp x {+0o0},
that is vSp (because Sp = Up x {0} when tp B = 0). In both cases we also
have vUp = F'3(Ua), because vUp is a face of U4 by Claim[Z.Iland Supp vUp =
P(B) = J. So the description of vSp given by (B2 coincides with the description
of Fj(vS4) given by Proposition 2.1} which proves that vSp = Fj(vS4).

Step 2. Conversely let F;(vS4) # 0 be a face of vS4, for some J C [1,q+1],
and let J = J\ {q+ 1}. By Proposition ZZI1] the socle of F;(vS4) is F3(vUa)
(because vUy is the socle of vS4) and two cases can happen: ¢+ 1 € J and
A% < +oo on F3(vUy), or ¢ +1 ¢ J and Yy = +o00 on F3(vUa). In both cases

Fj(vSa) ={a € F;(T7") :a@ € F3(vUy4) and 1%(a) < ags1 < v4(a)}. (33)

Since F';(vU,) is a face of vUy, by Claim [Z1] there is C' < A in A such that
F3(vU4) = vUc. Let Y = C = ¢(Uc).

If ¢ +1 ¢ J then by Proposition 211} 7} = 400 on F3(vUas) = vUc. That
isvg =0o0nY = (Uc), hence 0% A € A. Let B = 9% A and apply Step 1 to
B. Since J = J is the support of vUx = vUp and of Sp (because tp B = 0), we
deduce from ([B2) and (B3) that vSp = Fy(Sa).

If ¢+ 1 € J then by Proposition 211l iy # +oo on F(vU,s) = vUc. That
is fia # 0 on Y = ¢ (Uc), hence 9y A € A. Let B = 93 A and apply Step 1 to
B. Since J is the support of vUes = vUp and J = JU {q+ 1} is the support of
Sp (because tp B = 1), we deduce from [B2)) and (B3) that vSp = Fj(Sa).
|

Finally let S = {Sa: A€ A} and ¢ : [JS — |J A be defined by ¢|s, = ¢4
for each A € A.

Claim 7.9. ¢ is a homeomorphism from |JS to |J A.

Proof: We already know by Claim [[.7] that ¢ is a bijection from [JS to |J A. Tt
follows from Claim [[.8 that |J S is closed, and it is obviously bounded. Thus by
Theorem 2.Alit suffices to show that ¢ is continuous. Since each 4 is obviously
continuous on S4, we only have to prove that for every z € 0S4 and y € Sy,
v (y) tends to ¢(z) as y tends to S4. By Claim [(.§ there is B < A in A such
that z € Sp, hence p(z) = pp(z). By Claim [[H] ¢ o ®(y) tends to ¢ o (z).
By Claim [Z77, v o ®(y) € A and ¥ o ®(2) € B hence c4 () o ®(y)) tends to
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¢a(tp o ®(z)), which is equal to cp(y) o ®(2)) since ¢yp = cp- Thus it only
remains to check that A\ Ay,{\; tends to A Bz,{\; .

If tp A = 0 then also tp B = 0 hence and we are done, since )\AyTZ\; =0=
)\BzT]\L. If tp B = 1 then Ap = A4 (because A is a cellular complex) and r4 = rp
(because by (C1) and (C3), H(B) # P(B) = H(B)NP(A) implies that H(B) is
not contained in P(A), hence r4 € H(B) since H(B) C H(A) = P(A)U{ra}).
Hence obviously )\Ayi\; tends to )\Az,{\; = AB zﬂ\; in that case. Finally if tp A =1
and tp B = 0 then r4 ¢ H(B) (because by (C0) and (C3), H(B) = P(B) C
P(A)), hence z,, = 0 since Supp z = Supp Sp = H(B). Thus Ay, tends to
)\Ang = 0, which proves the result because /\Bzrj\ég = 0 since tp B = 0.

]

Remark 7.10. By construction Supp S4 = H(A) and Supp Sa» = H(A') for
every A, A’ € A, hence Supp Sa C Supp S4 if and only if A" < A (because H
is strictly increasing), which implies that S4. < S4 by Claim So for every
S, 5" € S we have

S’ <8 <= SuppS’ C SuppS.

We can recap now our construction and state the result which was the aim
of this section.

Lemma 7.11. Let A be a cellular monoplex mod Q y, Mo(M) such that |J A is a

closed subset of R™*L. Let (U, 1)) be a triangulation of CB(A) with parameters
(n,N,e, M) such that M > v(N) and for every A € A, v~1(A) € U (let us
denote it Uy ). Then there exists a simplicial complex S of index M, a Cartesian
morphism @ : | S — WU and a semi-algebraic homeomorphism ¢ : 4§ S — |J A
such that for every A € A, ¢=Y(A) € S (let us denote it Sa) and for every
UESES )

o(y) = (Yo @(y).ca( o @(y)) + 7 ¥ A4yl

wherd r4 = max(Supp Sa).

Proof: Let (Ag)1<k<r be the list of minimal elements in A, and for each & let
Ay be the family of elements in A greater than Ag. This is a rooted, cellular
monoplex mod Q§7M+U(N). For every A € Ay, A is the union of the cells B < A
in A since A is a cellular complex and A is closed. All these cells B belong to
Ay, hence | J Ay, is closed. Since |J.A\J Ay, is the union of the finitely many other
Ay it is closed, hence | J Ay is clopen in |JA. Let Uy = {1p~1(A) : A € Ay}, this
is a lower subset of ¢ with smallest element ¥~!(Ay) hence a rooted simplicial
complex in DMt R%:k for some ¢1 ;. Finally let ¢ be the restriction of 1 to
UJU.

Claims [Z1] to apply to (Uy, ¥, Ar) and give a simplicial complex Sk
in DMR%:F for some g, a Cartesian morphism ®; : (JSx — JUx and a
semi-algebraic homeomorphism ¢y, : S — |J Ax satisfying all the required
properties. Since each | J Ay is clopen in | A, and each Uy is clopen in [HU,
the conclusion follows by taking for & the family {Uy}1<k<, and for @ (resp.
) the map obtained by glueing together the various ®; (resp. ¢y).
]

261f Supp S4 = 0 then r4 is not defined but in that case S, is a point, hence so is A so
A4 = 0 and we can let )\Ayi\; = 0 by convention.
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8 Triangulation

We have come up to the moment when we can show that T,,, = T,,+1. As Ty
is rather obvious, this will finish the proof of T, for every m.

Theorem 8.1. Assume T,,. Let (0; : A; € K™ — K);e1 be a finite family of
semi-algebraic functions, and n, N > 1 be any integers. Then for some integers
e, M > 1 which can be chosen arbitrarily large (in the sense of footnote[I), there
exists a simplicial complex T of index M and a semi-algebraic homeomorphism
0: T = U,er Ai such that for every i in I:

1. {o(T): T €T and o(T) C A;} is a partition of A;.
2. YT € T such that o(T) C A;, 0; o @1 is N-monomial mod Uey,.

Proof: By using the same partition of K™ *! as in the proof of Lemmal[3.3l we are
reduced to the case where each A; is contained in R™T1. We can also extend
each 6; to R™*! by an arbitrary value, and add to this family the indicator
functions of each A; inside R™*!, hence assume that all these functions have
domain R™*! which is closed and bounded. Let e, > 1 and M, > 1 be any
integers.

Theorem [ applies to (0;);cr. It gives an integer ey > 1, a tuple n € R™,
a linear automorphism u,(z,t) = (z + tn,t) of K™*! (note that u,(R™*') =
R™F! since n € R™*1), a pair of integers Ny > 1 and My > 2v(eq) such that
eoN divides Ny, and a finite family A of largely continuous cells mod QJ>\<]01 Mo
partitioning u, ' (R™*!) = R™*! such that for every i € I, every A € A and
every (z,t) € A

)

@A

0; 0 up(x,t) = Uegn(z,t)hi a(x) [)\;11 (t — cA(x))] Teo (34)

where h; 4 : A Kisa semi-algebraic function and a; 4 € Z.

Let ny = max(1+2v(ep),n+v(ep)), Lemma [6I] applied to A and the family
Fo={hia:i€I, Aec A} gives a pair of integers e; > 1 and M; > 2v(e1), a
cellular monoplex B mod @ n,,a, refining A such that B <™ A, a 9™'-system
Fi for (B,.A), and a triangulation (U, ) of Fo U Fy U CB(B) with parameters
(n1, No,e1, M1). Moreover ey, My can be chosen arbitrarily large, in the sense
of footnote 2] so we can require that e, divides e; and M; > M,, and that
My > My — ’U(No) and M; > ’U(No) > ’0(60).

Q]XVliJFU(NU) is a subgroup of Qy, ;. (because My+v(Nog) > My) with finite
index. Hence every cell in B is the disjoint union of finitely many cells C' mod
QEO,]\/Il"FU(NO) with the same socle and bounds as B. Since UQIXVU,M1+U(NU) =
NoZ = UQEO,]\/IO’ these cells C' are still fitting cells by Proposition One
easily sees that they form a cellular monoplex C refining A such that C <™ A
and F; is a <™-system for (C,.A). Moreover CB(C) = CB(B) and C = B
so (U, 1) is a triangulation of B(C) with parameters (n1, No, e1, M;) such that
»~1(C) € U for every C € C.

Since M7 > v(Np), Lemma [T.TT] applies to C and (U, ). It gives a simplicial
complex 7 of index M, a Cartesian morphism @ : 7 — U and a semi-
algebraic homeomorphism ¢ : [ 7 — |JC such that ¢~ maps each C in C onto
some T in 7, and for every y in T

w(y) = (Yo B(y), co(v o B(y)) +n N M Acylo) (35)
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wherd?] ro = max(Supp T'). Let ¢, = u,0¢, this is a semi-algebraic homeomor-
phism from [ 7 to R™!. We are going to check that 6; o @y is N-monomial
mod Ugye, n for every i € I and every 1" € 7. This will prove the result, with
e = epgey and M = M.

So pick any T € T, let C = ¢(T) and r¢ be as above. There is a unique
B € B containing C, a unique A € A containing B. For every (z,t) € C let
dc(x,t) =t —co(x). Let 04 and dp be defined accordingly. Note that ¢ = dp
on C because C has the same center as B by construction. For every y € T', by

B4) and (B3) we have

0: 0 0 (y) = Uey m (0()) hioa (4 0 D()) (N7 264 (0(1))] -

We have Uey n(p(y)) € Ueyn C Ueges n S0 the factor Ue, n((y)) can be replaced
by Ueye, n(y). Recalling that (V, 1) is a triangulation of FoUF; with parameters
(n1, No,e1, My), that ® is a Cartesian morphism and h; 4 € Fo, we get that the
second factor h; 4 (1o ®(y)) = hi a0 (P(y)) is No-monomial mod Ue, ,, hence
a fortiori N-monomial mod Uge, » since N divides Ny and n; > n. So it only
remains to prove that the last factor [\ 64 o <p|T]0‘ivA/50 is N-monomial mod
Ueyer.n- It suffices to prove it for [\ ;164 o p]'/€0.

We can assume that tp A = 1 otherwise /\;115 4 = 1 and the result is trivial
(see Remark [L.8]). Recall that C <™ A and F;i is a <™-system for (C,.A). For
every (z,t) € C' we then have

t —ca(z) =Up, (, ﬁ)hqA(l‘)B (t — cc(x)) =5

with ho 4 € F1 and § € {0,1} (depending on A, C). So by (B0 we have

54(p(y)) = Un, () he,a (o ‘I)(y))ﬂ (F_NM)\cyi\g’)l_ﬂ- (36)

(V, ) is a triangulation of F7 with parameters (nq, No, e1, M1) hence he 4(¢) o
®(y)) is No-monomial mod U,, ,,. So (B6) implies that 64 0y is No-monomial
mod Ug, n,, hence so is )\;11(5,4 opir. Let x : T'— U, and g : T'— K be semi-
algebraic functions that for every y € T

Ax'0a 0 o(y) = X(W)Un, (y)Co(y) and g(y) = [] v

1<i<gq
with¢ € K, a1,...,0q € Z. Let k = No/(eoN), by construction eg N divides Ny
hence k € N*. Since T C DM RY | each y; € DMR C Qi a1, C Q1,0(e0)+1 (be-

cause M; > v(eg)) hence y° € Qey 2v(eq)+1- A fortiori y@iNo = yeoNkai helongs
t0 Qeg,20(e0)+1 hence g takes values in Q¢ 24(ep)4+1 and g1/¢ is N-monomial:

(9(»)) ™ =( 11 yfoNkai)% = T

1<i<q 1<i<q

But )\;16,4 also takes values in Qc, 20(eg)+1 because da(x,t) € AAQ Ny, for
every (z,t) € A, and Qny,my € Qep20(e0)+1 Since eg divides No and Mo >
2v(ep). Thus ()\215,4 o r)/g = Un,Cx takes values in Q¢ 20(c)+1 as well. So

27See footnote
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does the factor Uy, since ny > 2v(eg). Hence finally ({(y) € Qey,20(c0)+1 for
every y € T, so (Cx)'/ is well defined. Note that (¢t = €1y = [(Cx)Y/e0]coer
hence (** € P,,.,. Pick any n € K such that ¢* = n®°!, and for every y € T'
let x'(y) = (¢x(y))'/¢ /n. This is a semi-algebraic function taking values in
Ucye, because

[(QQ)M] ™ = ¢ = o,

By Remark [Z9 L{}l{eo = Uy, —v(e,) because ny > 2v(eg), and by definition
X'Un, —v(eo) = Uegey ni—v(eq)- Altogether this gives that
= L 1 1
Maldacer]™ = Ui (Cx)7g™
, 4, L
= X unl —v(eg) ((CX) €0 /X Z)geo

1

uegel,nlfv(eo)ng%

1
Thus [A; 64 0 @]/ is N-monomial mod Uy, n, —u(eq) (because so is g% ). It
is a fortiori N-monomial mod Upe, » since ny; — v(eg) > n by construction.
]
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