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Abstract

A previous study indicated that genetic information encoded on the mouse Y chromosome
short arm (Yp) is required for efficient completion of the second meiotic division (that gener-
ates haploid round spermatids), restructuring of the sperm head, and development of the
sperm tail. Using mouse models lacking a Y chromosome but with varying Yp gene comple-
ments provided by Yp chromosomal derivatives or transgenes, we recently identified the Y-
encoded zinc finger transcription factors Zfy 7 and Zfy2 as the Yp genes promoting the sec-
ond meiotic division. Using the same mouse models we here show that Zfy2 (but not Zfy7)
contributes to the restructuring of the sperm head and is required for the development of the
sperm tail. The preferential involvement of Zfy2 is consistent with the presence of an addi-
tional strong spermatid-specific promotor that has been acquired by this gene. This is fur-
ther supported by the fact that promotion of sperm morphogenesis is also seen in one of the
two markedly Yp gene deficient models in which a Yp deletion has created a Zfy2/1 fusion
gene that is driven by the strong Zfy2 spermatid-specific promotor, but encodes a protein
almost identical to that encoded by Zfy 1. Our results point to there being further genetic
information on Yp that also has a role in restructuring the sperm head.

Introduction

The mouse Y chromosome has two copies of a gene, Zfy, which together with the closely related
X chromosome linked Zfx, encode zinc finger transcription factors [1-3]. They derive from an
autosomal precursor that was added to the mammalian sex chromosomes via the pseudoauto-
somal region (PAR) subsequent to the separation of the marsupial and eutherian lineages [4,
5]. Postnatal expression of the mouse Y genes (Zfyl and Zfy2) is restricted to spermatogenic
cells [6-8]. Zfy2 encodes a much more potent transcription factor than ZfyI [9, 10] and has
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also acquired an additional strong spermatid-specific promoter [6] suggesting an important
role during spermiogenesis. Although these mouse ‘Zf genes were identified in 1989-1990 [1,
2, 11] only recently have any spermatogenic functions been ascribed to them [12-14].

This study is a sequel to our two earlier papers documenting roles for mouse Zfy with
respect to the apoptotic elimination of spermatocytes with univalent chromosomes at the first
meiotic metaphase [13] and for the completion of the second meiotic division [14]. The latter
paper has an extended introduction that describes the ‘raison d’étre’ for the Zfy transgene addi-
tions to Yp gene deficient mice; this will be unfamiliar to most readers and can be accessed via
the link http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=24967676.

In 2012 [15] we established that in X*/2% OSry males (Fig 1D) in which the only Yp genes
present are an X located Eif2s3y transgene and an autosomally located Sry transgene, there is a
block at step 7 of the round spermatid stage of sperm development, whereas in XSx+“O and
XF2355rPO males (Fig 1B and 1C) there was evident sperm morphogenesis. Sxr* provides a
near complete Yp gene content, whereas Sxr’ has a very limited Yp gene content (Fig 1A-1C);
however, Sxr” is unique in having a Zfy2/1 fusion gene that includes the strong spermatid spe-
cific promotor from Zfy2. This led us to hypothesize that this spermatid specific promotor is of
paramount importance in enabling Zfy to provide an essential function during sperm morpho-
genesis—in normal males this function would primarily be provided by Zfy2. In the current
study we show through ZfyI and Zfy2 transgene additions to Yp gene deficient models that this
is indeed the case.

Results

For our published study showing that ZfyI and Zfy2 have an important role in promoting com-
pletion of the second meiotic division to form haploid spermatids [14] we added a minute sex
chromosome (Y*¥) [16, 17]) to the three XO models. Y** (Fig 1E) comprises a complete pseu-
doautosomal region (PAR), a short X telomeric region’, some repeated sequences mapping
adjacent to the X centromere, and a presumed X-derived centromere [18-20]. Y** was previ-
ously shown to enable the formation of a sex bivalent, thus circumventing the MI SAC [21].
We abbreviate the three XY** models as XY**Sxr%, X¥Y**Sxr” and X¥Y**Sry; the X-located
Eif2s3y transgene is denoted X”. Importantly in the context of the present study, we found that
the addition of Y** had no effect on the frequency of haploid spermatids in the context of Sry,
but it markedly increased the haploid frequency in the context of Sxr” (Figure 3A in reference
[14]). Therefore, before assessing the effects of Zfy transgene additions on sperm morphogene-
sis we sought to establish: (1) whether the Y** addition per se had any discernible effect on
spermiogenic progression by comparing X*OSry with X*Y**Sry; and (2) whether the markedly
increased haploid frequency associated with the Y** addition in the context of Sxr” had any
discernible effect on spermiogenic progression by comparing X*$xr’0 with XY**$xr”.

The addition of Y** does not enhance spermatid elongation or the
associated sperm morphogenesis

Fig 2 provides a summary diagram of spermiogenic progression in normal XY males based on
the classical descriptions of the spermiogenic cycle in relation to testis tubule stage assessed
from tubule sections. For the purposes of this study the key spermiogenic steps are 1-12 that
are present in tubule stages I-XII. Haploid round spermatids first appear at stage I as a conse-
quence of the two meiotic divisions occurring in the preceding stage XII. During stages I-VII
the round spermatids form an acrosomal cap covering one side of the nucleus. During stages
VIII-XII the main features of sperm morphogenesis take place (formation of the sperm tail;
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Fig 1. The XO and XY ** mouse models. (A) XY. The Y short arm (Yp) gene complement of an XY male (represented to scale in the magnified view)
comprises nine single copy genes, two duplicated genes and one multi copy gene. The pseudoautosomal region (PAR) located distally on the Y long arm
mediates pairing and crossing over with the X PAR during meiosis to generate the XY sex bivalent. Centromeres are represented by a dot on the
chromosome. (B-D) The diminishing Yp gene complements for the three XO male mouse models that lack the Y long arm. (B) XSxr?O. The Yp-derived Sxr*
attached distal to the X PAR provides an almost complete Yp gene complement. (C) XE25%Sxr°Q. The Sxr*-derived deletion variant Sxr* has a 1.3 Mb
deletion (AS?) removing 6 single copy genes and creating a Zfy2/1 fusion gene spanning the deletion breakpoint (). The deleted gene Eif2s3y is necessary
for normal spermatogonial proliferation, so an X-located Eif2s3y transgene has been added. (D) XE™5%QSry. This model has only two Yp genes—the testis
determinant Sry provided as an autosomally located transgene and the spermatogonial proliferation factor Eif2s3y provided as the X-located transgene. E.
Y*X_This mini sex-chromosome is an X chromosome with a deletion from just proximal to Amelx to within the DXHXF34 repeat adjacent to the X centromere
(+ marks the deletion breakpoint). This X chromosome derivative has a complete PAR that can pair and crossover with the PAR of XSxr#, XSxr® or X to form a

‘minimal sex bivalent’. Scale bar for magnified views is 150 kb.

doi:10.1371/journal.pone.0145398.g001

restructuring and condensation of the spermatid nucleus to form the sperm head). Spermatid
development in all three XO models (Fig 1B and 1D) is aberrant and delayed to varying degrees
[15], so assessment of tubule stage has to be based entirely on the spermatogonial and meiotic

stages (see Materials and Methods).

The spermiogenic progression in X*Y**Sry males proved to be equivalent to that in X*OSry
males (Fig 3A). In epithelial stage VIII the spermatids fail to re-orientate the acrosome to face
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Fig 2. The normal steps of spermiogenesis in relation to testis tubule stages in an XY mouse. This
figure presents a schematic depiction of the 16 steps of mouse spermiogenesis based on the stage of the
spermatogenic cycle (stages I-Xll). Photos of step 1-12 spermatid nuclei are shown with PAS staining at the
foot of the diagram. The transition from round to elongating spermatids takes place during stage VIII; this
marks the beginning of sperm morphogenesis. The shaping of the sperm head and formation of the sperm tail
are essentially complete by step 12. However, the sperm are not shed until the following stages VIII-IX;
consequently two generations of spermatids are present in stages I-VIII.

doi:10.1371/journal.pone.0145398.g002
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the basal membrane, which normally precedes spermatid elongation. Moreover, the spermatids
do not elongate and remodel the chromatin to form the sperm head (even by stage XII), and in
both models the arrested, still round, spermatids are eliminated by stages II-IV of the following
cycle. Thus the Y** addition per se has no effect on spermiogenic progression.

In agreement with our previous findings, X*Sxr’O males differ markedly from X*OSry
males (Fig 3B). In XESxr?O males spermatids do re-orientate such that the acrosomes come to
face the basal membrane and spermatid elongation and subsequent nuclear condensation do
take place. However, this spermiogenic progression is delayed relative to XY controls [15]; thus
re-orientation does not occur during stage VIII, and elongation and some shaping of the sperm
head with associated acrosome relocation are only evident by stage XII instead of stage IX. Cor-
rectly orientated spermatids with condensed nuclei are apparent by stages II-IV instead of
X-XI. A similar pattern of spermiogenic progression can be seen in X*Y**$xr” males (Fig 3B)
with elongation and condensation of the spermatid nuclei and the correct orientation of elon-
gating spermatids being most obvious in stage XII tubules and beyond.

Addition of Zfy2 (but not Zfy 1) to XEY **Sry males promotes substantial
sperm morphogenesis

The effects of the Zfy1 or Zfy2 transgene additions were assessed in X*Y**$ry males in which
the only Y genes present are Sry and the X-located Eif2s3y; the Zfy transgenes used were single
copy and also located on the X chromosome, and we denote the resulting males as X**'Y**Sry
and X®*?Y**Sry. In agreement with our expectation, addition of ZfyI had no discernible effect
on spermiogenic progression, with the spermatids failing to re-orientate or elongate. In marked
contrast, the Zfy2 addition did promote spermiogenic progression (Fig 4A). Indeed, tubule sec-
tions of X®#?Y**Sry males in stages X to VII all showed elongating spermatids with condensed
nuclei and a tail being formed.

We next wished to assess whether the Zfy2 addition reinstated spermiogenic progression to
the same extent as that supported by the near complete Yp gene complement present in Sxr”.
For this we compared spermiogenesis in X**?Y**$ry males with that in XY**Sxr* males. The

PLOS ONE | DOI:10.1371/journal.pone.0145398 January 14,2016 4/15



@‘PLOS | ONE

Zfy Role during Spermiogenesis

Fig 3. Addition of Y** to X50Sry or XESxr"O models does not improve spermiogenic progression.
Periodic acid Schiff/hematoxylin stained testis sections illustrating the extent of spermiogenic progression.
Roman numerals denote estimated tubule stages. (A) In XEOSry, the predominantly diploid spermatids do
not elongate and the acrosomes (stained dark pink) remain randomly orientated relative to the basement
membrane of the tubule (insets in VIIl and Xll). The spermatid nuclei show signs of pycnosis by stage XII
(inset) and the cells have been eliminated by stages II-1V. The abundant round cells at stages -1V are the
new generation of round spermatids with early stages of acrosome development (dark pink ‘acrosomal
granules’ in inset) [for more details see Vernet et al 2012]. In XEY**Sry the block to spermiogenesis remains
with elimination of the arrested cells once again evident by stages II-IV (see inset). (B) In XESxr°0, at stage
VIII the spermatids have not elongated and they are randomly orientated relative to the tubule basement
membrane. However, as previously reported (Vernet et al 2012), spermatid elongation is delayed rather than
absent, and is apparent by stage XII. Nuclear condensation is also delayed as it is not evident at stage X,
but many of the elongating spermatids survive to stages II-1V at which point nuclear condensation is now
evident. In XEY*XSxr® spermatid elongation and nuclear condensation is similarly delayed, but there appear
to be fewer elongating spermatids surviving to stages II-IV [note the now evident haploid (h) as well as diploid
(d) spermatids]. Scale bar is 40 um (insets are x3 magnification).

doi:10.1371/journal.pone.0145398.9003

latter have Zfy1 and Zfy2 encoded within Sx7* but, like X*#?Y**Sry males, lack genetic infor-
mation encoded by the mouse Y long arm that is important for sperm head shaping [22-25].
We also included wild type XY controls in order to check at what tubule stage the abnormal
sperm head shaping in XY**Sxr* became evident. Detailed analysis of staged seminiferous epi-
thelium revealed spermiogenic anomalies in X*#?Y**Sry males relative to both XY**$xr* and
wild type control genotypes (Fig 4B). At stage XI, there was a marked delay in spermatid elon-
gation and nuclear condensation, and by stages I-III the spermatids looked unhealthy with
darkly stained nuclei. Silver stained testicular cell smears showed that these abnormal sperma-
tids were nevertheless capable of developing tails (Fig 4C). We then examined epididymal
tubule sections in order to assess the relative numbers of testicular sperm passing from the
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Fig 4. Addition of Zfy2 (but not Zfy1) to XY *XSry enables re-orientation of spermatids, together with clear head and tail morphogenesis; however
the Zfy2 transgene is not as effective as Sxr” in supporting sperm morphogenesis. Hematoxylin and eosin (H & E) stained testis tubule sections. (A) By
comparison with XEY*XSry, it is clear that the Zfy7 transgene addition has no beneficial effect on spermiogenic progression whereas the Zfy2 addition leads
to the formation of correctly orientated elongated spermatids which have condensed sperm heads and some tail formation. (B) By comparison of XE42Y*XSry
with XY*XSxr? (and XY controls) it is clear that Sxr? is more effective than the Zfy2 transgene in supporting the sperm morphogenesis. In agreement with the
illustration in Fig 2, in XY males at stage X| sperm head morphogenesis has progressed to the early ‘hooked tip’ stage and nuclear condensation is evident.
As previously reported, in XY **Sx/? at this stage some of the sperm from the previous cycle have not yet been shed (stained dark blue); the spermatids from
the new cycle are retarded with respect to elongation and nuclear condensation is not evident. In XE2Y *XSry spermatid elongation is further retarded.
Nevertheless, by stage I-lIl many spermatids with condensed chromatin are found in XY, XY**Sx® and XE42Y*%Sry. (C) Images of testicular sperm found in
silver stained testicular cell smears. All three genotypes proved to have some sperm present in testicular cell smears. In XY *XSxr?, as previously reported for
epididymal sperm and testicular sperm, the sperm heads rarely have a hooked tip. In XE42Y*XSry the developing sperm heads show limited elongation. In all
three genotypes the tails were well developed. (D) Hematoxylin/eosin stained epididymal tubule sections. In XY there are abundant sperm present with the
heads showing the characteristic hooked tip. In XY**Sx? the sperm heads rarely have a hooked tip. In XE22Y*XSry males no sperm could be identified;
instead degenerating round spermatids are found suggesting that there has been some shedding of round spermatid stages despite the addition of Zfy2.
Scale bars: A =30 pm, B=40 um, C =20 pm, D =100 pm. Insets in D = 3x magnifications.

doi:10.1371/journal.pone.0145398.g004

testis into the epididymis (Fig 4D). As previously established [21], in XY**Sx7* males substan-
tial numbers of sperm reach the epididymis although these sperm have abnormally shaped
heads that rarely have a hooked tip. However, no sperm were seen in epididymal sections from
X5”?Y*XSry males. Instead, there were many round spermatids, indicating that substantial
numbers of these cells slough off from the seminiferous epithelium in the Zfy2 transgenics.
Finally we assessed sperm morphogenesis by electron microscopy. Sperm heads from
XY**Sxr" males elongate similarly to those of wild type males except for some acrosome invag-
ination. In contrast, X®#?Y**Sry males have compromised sperm head morphogenesis with
signs of necrosis, acrosome invagination, incomplete elongation, and formation of cytoplasmic
vacuoles (Fig 5A). Degenerating condensed spermatids were often present in large cytoplasmic
inclusions within the epithelium, indicative of removal by apoptosis (not shown). However,
cross sections of developing sperm tails appeared grossly normal with the classic axoneme
structure composed of a central microtubule pair and nine outer doublets (9x2+2) (Fig 5B).
Clearly, although addition of the Zfy2 transgene overcomes the step 7 round spermatid
arrest to allow substantial sperm morphogenesis, qualitatively and quantitatively it does not
match that achieved with the near complete Yp gene complement present in XY**Sxr* males.

Discussion

The starting point for the present study was our finding that in X*OSry males (Y gene comple-
ment Eif2s3y and Sry) there is a clear-cut and unique arrest of spermiogenesis at step 7 of sper-
matid development [15]. In the present study we showed that this arrest is also seen in
X"Y**Sry males that have the same Y gene complement, but also have the minute Y** chromo-
some that enables the formation of a sex bivalent, thus avoiding MI SAC responses. The transi-
tion from spermatid step 7 to step 8 is pivotal in spermiogenesis: at step 7 the spermatids are
round and randomly oriented with respect to the basal membrane, whereas at step 8 the sper-
matids have re-orientated so that the developing acrosomal cap is now facing the tubule
periphery. This re-orientation heralds the dramatic restructuring of the round spermatids to
form spermatozoa (‘sperm morphogenesis’). We hypothesized that the arrest at step 7 was a
consequence of a lack of Zfy2-dependent transcriptional changes, and that the expression of
Zffy2 at the critical stage was dependent on the alternative, strong, Cypt-derived, spermatid-spe-
cific promotor acquired by Zfy2 during the evolution of mice (muridae) [15]. Our present
results clearly demonstrate that Zfy2 supports sperm morphogenesis, while Zfy1, which lacks
this promotor, does not.

The transcription factors encoded by ZfyI and Zfy2, together with their X-linked homo-
logue Zfx, are predicted to bind the same DNA sequence [26-28]. In most eutherian mammals
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Fig 5. Sperm head and tail morphogenesis in XE22Y*XSry males as compared to controls. (A) Electron
micrographs of developing sperm heads from 6 week old XY, XY**Sx/* and X5#2Y **Sry males. Spermatids
at round to elongating transitional stage in X£22Y*XSry present no apparent ultrastructural defects (bottom
left picture). However, vacuoles (V) appear in the cytoplasm of elongating and condensing spermatids.
Irregular spread of the acrosomal cap (arrows) distorting the spermatid nuclei is observed in X522Y*XSry and
XY*XSxr2. It was again evident that the sperm heads in XE22Y*XSry fail to elongate properly (stars). (B)
Electron micrographs of sperm tail sections showing a normal 9x2+2 axoneme pattern with a central
microtubule pair (p) in addition to the nine outer doublets (d) in all three genotypes. Scale bars: A =1 um,

B = 0.5 um (Insets = 3x magnification).

doi:10.1371/journal.pone.0145398.9005

Zfx and Zfy are widely expressed, and Zfx is exempt from X dosage compensation, suggesting a
constraining dosage requirement in somatic tissues [29, 30]. However, in the myomorph
rodent lineage, Zfx became subject to X-dosage compensation and the Zfy-encoded proteins
diverged [1, 29, 31], and mice (muridae) ended up with two copies of Zfy with postnatal tran-
scription restricted to spermatogenic cells [6-8]. We have previously discussed the evolution-
ary pressures that may have led to ZFY2 having a more potent transactivation domain than
ZFY1, and ZFY1 frequently lacking the transactivation domain as a consequence of alternative
splicing [14]. Here we consider the acquisition of the additional Cypt-derived promotor in the
muridae [6, 9]. It is clear from recent studies that the mouse Y chromosome gene complement
has been markedly affected by a post-meiotic X-Y genomic conflict, with the round spermatid
specific genes Sly and Six being key protagonists [22, 32-36]. As a consequence of this conflict
there has been co-amplification of Sly and Six (50-100 copies located on the mouse Y long arm
[35]) with Sly expression serving to damp down transcription of the X and Y chromosomes in
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denotes Cypt-dependent Zfy2/1 transcripts and 2 denotes Cypt-dependent Zfy2 transcripts). (A) The PCR primers for this assay amplified Zfy2/1 and Zfy2
transcripts; only XYSxr® has both transcripts. It can be seen that the level of Cypt-Zfy2/1 transcripts in XEY**Sxr? is comparable to the level of Cypt-Zfy2
transgene transcripts in XE22Y*XSry. (B) For the left panel the PCR primers are specific for Zfy2/1; the second and third genotypes lack the Zfy2/1 fusion
gene so the low level signal represents ‘background’. For the right panel the PCR primers are specific for Zfy2; in this case it is the fourth genotype that lacks
Zfy2. The genotypes lacking the Y long arm (Yg-) have substantially higher transcript levels than the genotypes with a complete Y (Yg+).

doi:10.1371/journal.pone.0145398.g006

spermatids [22]. Progressive reduction of Zfx and Zfy gene transcription in spermatids as the
genomic conflict continued will have provided a strong selective force for the recruitment of
the strong Cypt-derived spermatid-specific promotor to Zfy2, in order to maintain sperm
morphogenesis.

Our original focus on the alternative Cypt-derived Zfy2 promotor was triggered by our find-
ing of substantial sperm morphogenesis in X*/*#Y**$x+* males in which a 1.3 Mb Yp deletion
(A" —see Fig 1C) has created a Zfy2/1 fusion gene that includes the same promotor. We have
developed a new PCR assay that specifically amplifies Cypt promotor dependent transcripts
with exon 6 that encodes the transactivation domain (S1 Appendix and S1 Fig). Our primary
interest was to see if the Cypt promotor generated comparable levels of full length transcripts
from the Sxr’-located Zfy2/1 fusion gene in X"/ Y**$xr" males as compared to those from
the Zfy2 transgene in X*2%42y*X males. Quantification of the Cypt-driven transcript bands
indicates that this is indeed the case as can be seen from the last two pairs of columns of Fig
6A. It is these transcripts that we contend are supporting the sperm morphogenesis evident in
the two models. From Fig 6B it can be seen that the Zfy2/I fusion gene present in XEif2-
s3yY*XSxrb is expressed at twice the level of the XYSxrb control; furthermore, the Zfy2 trans-
gene in X529 #02y+X g als0 expressed at a substantially higher level than the endogenous
Zfy2 gene of the XYSxr” and XY controls. This elevated expression of Zfy2 is to be expected in
the genotypes lacking the Y long arm gene complement because they lack the repressive effect
of the estimated 50-100 copies of Sly that are involved in the post-meiotic genomic conflict. In
whole testis samples from XY males with a targeted knockdown of Sly transcripts there is wide-
spread up-regulation of spermatid expressed X and Y genes and this includes Zfy2 (see [22],
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Tspy-ps

Atr

Fig 7. Mapping of Prssly and Teyorf1 to Sxr® and Sxr”. Prssly and Teyorf1 map to the Yp-derived Sxr?
chromosomal fragment (here attached distal to the PAR of one X of an XXSxr® male). As expected from the
known breakpoints for the AS*"® deletion, Prssly and Teyorf1 are also present in Sxr°, whereas the Tspy
pseudogene is absent.

doi:10.1371/journal.pone.0145398.g007

Fig 4B). This up-regulation of Zfy2 is also seen with purified round spermatids (Julie Cocquet,
personal communication).

Our finding that sperm morphogenesis in X“72%*%52y*Xgp males is inferior to that in
XY**$xr* males points to there being other Yp genes that contribute to sperm morphogenesis.
We have generated transgenic lines that express other Yp-located genes (Ubelyl/Ubaly,
Smcy/Kdmb5d, Uty, Dby/Ddx3y, Usp9y, H2al2y) that may have functions during spermiogene-
sis. Since our current study was completed two more male germ-line expressed genes, Prssly
and TeyorfI, have been mapped to Yp [36]; these are present in Sxr? (Fig 7), so they are also
candidates for the improvement in sperm morphogenesis in XY**Sxr* males relative to
XEPs3 22y X gy males. However, the breeding required to generate XY** males with four or
more transgenes is now prohibitively expensive. It is therefore encouraging that recent
advances in Y gene targeting [37-39] promise simpler and more rapid advances in understand-
ing mouse Yp gene functions than our onerous strategy of Yp transgene addition.

The present findings with respect to the pivotal role of Zfy2 (but not ZfyI) in enabling the
transition from randomly orientated round spermatids to spermatids undergoing sperm mor-
phogenesis, are an important addition to our recent findings documenting sometimes overlap-
ping but nevertheless distinct roles for Zfyl and Zfy2 during earlier stages of spermatogenesis.
It will be a substantial challenge for the future to document the direct and indirect transcrip-
tional changes triggered by these transcription factors, which underlie their distinct roles.

Materials and Methods
Animals

The mice utilized in this study had a limited Y gene complement (see below and Fig 1). Details
of their production are provided in Vernet et al., 2014 [14]. All males were examined at 6
weeks of age.
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1. XE3Q8ry (abbreviated as X“OSry) males carry an X-located transgene encoding the sper-
matogonial proliferation factor Eif2s3y [40] and an autosomally-located transgene of testis
determinant Sry [41, 42].

2. XEI2y+Xgry (abbreviated as X¥Y**Sry) males have the same Y gene complement as
X"OS8ry but carry a minute X chromosome derivative (Y**) with a complete pseudoautoso-
mal region (PAR) [18-20].

3. XE2Y8xr°0 (abbreviated as X“Sxr°0) males have the X chromosome carrying an Eif2s3y
transgene [40] together with Tp(Y)1Ct""? attached distal to the X PAR. Tp(Y)1Ct*" is an
Sxr* derivative with a 1.3 Mb deletion that has removed the majority of the Yp gene comple-
ment and created a Zfy2/1 fusion gene [9, 43].

4. XEP3y+Xgx® (abbreviated as XEY**XSxr®) have the same Y gene complement as XESxrPO

but also carry Y*.

5. XSxr"O have the X chromosome carrying the Yp derivative Tp(Y)1Ct>"“ [44] attached dis-
tal to the X PAR.

6. XY**Sxr* males have the same Y gene complement as XSxr"O but also carry Y**.

7. XEPZDA1y X gry (abbreviated as X®#'Y**Sry) males are genotype 2 males to which a single
copy, X chromosome-located, Zfy1-Ubaly BAC (RP24-327G6) transgene [12] has been
added.

8. XEUZ»42y+X Gy (abbreviated as X™“*Y**Sry) males are genotype 2 to which a single copy
Zfy2 BAC transgene inserted by cassette mediated exchange (CME) into the Hprt locus on
the X chromosome [12, 13] has been added.

The mice were fed ad libitum with a standard diet and maintained in a temperature and
light-controlled room (22°C, 14h light/10h dark). The protocols for animal handling and treat-
ment procedures were reviewed and approved by the Crick Biological Research Facility Strate-
gic Oversight Committee (BRF-SOC) and Animal Welfare and Ethical Review Body(AWERB),
in accordance with the United Kingdom Animal Scientific Procedures Act 1986 (Procedure
Project Licence: 80/2186).

Histology and analysis of sperm head morphology

For histology analysis, part of the testes were fixed in Bouin overnight and then stored in 70%
ethanol prior to embedding in paraffin wax, sectioning at 5 um, and staining with hematoxy-
lin-eosin (H&E) or periodic acid Schiff and hematoxylin (PAS-H). The stages of seminiferous
tubules were identified based on the composition of cells near the basal membrane according
to the method described by Ahmed [45]. This was necessary because of meiotic and post-mei-
otic arrests present in males with limited Y gene complement, which prevented staging based
on the changes of acrosome and nuclear morphology of spermatids. As a consequence, some
tubule stages cannot be distinguished reliably so a range has to be given.

Sperm smears obtained from the testis were silver stained and analyzed as described previ-
ously [41].

Transmission electron microscopy

Mice were perfused, through the left ventricle [46], with ice-cold 2.5% glutaraldehyde fixative
diluted in PBS. The testes were dissected, left for 1h in the fixative, and cut into small blocks
that were kept at 4°C in the same fixative until embedding. Testes were post-fixed for 1h in 1%
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osmium tetroxide, stained ‘en bloc’ for 1h with 1% aqueous uranyl acetate, dehydrated with
graded alcohol series and embedded in Epon. Ultrathin sections (60nm) were contrasted 7min
with uranyl acetate and lead citrate and then examined using JEOL 1200EX electron microscope.

RT-PCR band quantitation for Fig 6

Band intensity was quantified using Image], background subtracted and intensity normalised
to Lemdl in each sample. For further details see S1 Appendix, S1 and S2 Figs.

PCR analysis for Fig 7

Standard PCR on genomic DNA was used to map the Y chromosome genes Prssly and Teyorf1.
The controls are Tspy-ps, present in the Sxrb deletion interval, and the autosomal gene Atr. For
primers and annealing temperatures see S1 Table.

Supporting Information

S1 Appendix. Duplex RT-PCR assays.
(DOCX)

S1 Fig. Duplex RT-PCR assays for Cypt-driven transcript. (A) Genomic structure of the
mouse Zfyl, Zfy2 and Zfy2/1 fusion genes are shown. Exons are represented by boxes (black for
Zfy2 and white for ZfyI) and are not to scale. The position of the primers used for amplifying
Cypt promotor dependent transcripts with exon 6 is depicted below each gene (see S1 Table for
the primer sequence). (B) Gel picture of the RT-PCR assays showing amplification Cypt-
dependent transcripts for XYSxr?, XY, X572y*X§ry and XEY*XSxr”. Lemd] is a round sperma-
tids expressed gene used as a control.

(TIF)

S2 Fig. RT-PCR analysis of staged mouse testes. Lemd]1 transcription begins between 20 and
27 dpp. RT-PCR for LemdI and loading control Hmbs were performed separately with stan-
dard Taq polymerase and mixed for migration. Primers used are in S1 Table.

(TTF)

S1 Table. List of primers used.
(DOCX)
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