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Abstract 3 

The wine industry needs to know the yield of each vine field precisely to optimize quality 4 

management and limit the costs of harvest operations. Yield estimation is usually based on 5 

random vine sampling. The resulting estimations are often not precise enough because of the 6 

high variability within vineyard fields. The aim of the work was to study the relevance of using 7 

NDVI-based sampling strategies to improve estimation of mean field yield. The study was 8 

conducted in 9 non-irrigated vine fields located in southern France. For each field, NDVI was 9 

derived from multi-spectral airborne images. The variables which define the yield: (berry 10 

weight at harvest (BWh), bunch number per vine (BuN) and berry number per bunch (BN)) 11 

were measured on a regular grid. This data-base allowed for five different sampling schemes to 12 

be tested. These sampling methods were mainly based on a stratification of NDVI values, they 13 

differed in the way as to whether NDVI was used as ancillary information to design a sampling 14 

strategy for BuN, BN, BW or for all yield variables together.  15 

Results showed a significant linear relationship between NDVI and BW, indicating the interest 16 

of using NDVI information to optimize sampling for this parameter. However this result is 17 

mitigated by the low incidence of BW in the yield variance (4 %) within the field.  Other yield 18 

components, BuN and BN explain a higher percentage of yield variance (60% and 11 % 19 

respectively) but did not show any clear relationship with NDVI. A large difference was 20 

observed between fields, which justifies testing the optimized sampling methods on all of them 21 

and for all yield variables. On average, sampling methods based on NDVI systematically 22 

improved vine field yield estimates by at least 5-7 % compared to the random method. 23 

Depending on the fields, error improvement ranged from -2 % to 15 %. Based on these results, 24 

the practical recommendation is to consider a two-step sampling method where BuN is 25 

randomly sampled and BW is sampled according to the NDVI values. 26 
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Introduction 34 

In order to optimize harvest organization and quality management, the wine industry 35 

needs to know the yield of each vine field. Ideally, yield has to be estimated a few days 36 

before harvest with a relative error of less than 10%. Although models have been 37 

developed to forecast the yield at the regional level (Baldwin, 1964; Cristofolini and 38 

Gottardini, 2000), their results were not precise enough to manage logistic issues linked 39 

to harvest operations at the farm or at the winery level. Therefore, precise estimation of 40 

vine field yield always requires fruit sampling and counting (Clingeleffer et al. 2001).  41 

Estimation of yield must be carried out quickly (a few minutes per field) at a time when 42 

the workload at harvest or for the preparation of the harvest is important. Practical 43 

constraints, like the time available to visit all the fields before harvest, limit the number 44 

of sampled sites per field. Therefore, yield estimation is based on a low number of 45 

sampling sites (~4-5 sites) where variables which define the yield (number of clusters, 46 

number of berries per cluster, mean berry weight) are measured by an operator. These 47 

variables will be called hereafter yield components. 48 
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Accurate estimation of the yield remains difficult because of different sources of errors 49 

and/or variability:  50 

i) Errors due to the operator, mainly counting errors caused by the difficulty in 51 

visualizing properly all bunches within the canopy. To overcome this constraint, 52 

Wolpert and Vilas (1992) proposed a two-step sampling method. This considers the 53 

different yield components on which yield estimation is based, independently. Indeed, 54 

depending on the phenological stage of the vine, some of the yield components are 55 

much easier to visualize. Thus, Wolpert and Vilas (1992) proposed estimating the 56 

average number of clusters early in the season, at flowering, when they are easy to 57 

visualize, and the mean bunch weight at the end of the season (just before harvest). It is 58 

thus possible to improve yield estimation by minimizing errors on bunch counting 59 

without increasing the time required to perform these observations. This approach 60 

assumes that the number of flowers does not change over the season and corresponds to 61 

the number of bunches at harvest. 62 

ii) the second type of error is caused by the variability at the vine level (within-plant 63 

variability); bunch weight presents a high within-plant variability (Clingeleffer et al. 64 

2001). Measuring this yield component is costly and destructive. Classical methods 65 

provide an estimation of this parameter using a small number of representative clusters 66 

(Clingeleffer et al. 2001). To minimize errors of estimation due to the choice of the 67 

clusters, different systematic methods have been proposed in the literature (Wulfsohn et 68 

al., 2012, Meyers et al., 2011). Other studies propose the use of alternative sources of 69 

information to facilitate or automate BW estimates. This is the case of image analysis 70 

that has been proposed to detect, count and estimate the weight of clusters (Diago et al., 71 

2012, Reis et al., 2012, Nuske et al., 2011, Serrano et al., 2005, Dunn and Martin, 72 

2004,) or to estimate the number and the volume of berries (Grocholsky et al., 2011, 73 
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Rabatel and Guizard, 2007). Other authors have proposed continuous weighing devices 74 

positioned on the trellising system (Blom and Tarara, 2009) at a specific location in the 75 

field. These approaches aim to facilitate the work of observers and possibly reduce the 76 

estimation error by increasing n, the number of samples measured while maintaining or 77 

reducing the time required to make field observations.  78 

iii) errors can be due to the inter-plant or plant-to-plant variability. To take into account 79 

this scale of variability, yield sampling methods generally rely on the definition of 80 

sampling sites that include a variable number of vines (usually between 3 and 10). Yield 81 

components are measured or sampled across all vines corresponding to the sampling 82 

site. 83 

iv) finally, errors can also occur due to within-field variability; Taylor et al. (2005) 84 

showed that the coefficient of variation (CV) of the yield is very high in viticulture (CV 85 

~ 50 %) and, what is more important, yield variation is not randomly distributed but 86 

presents a strong spatial organization (spatial autocorrelation). Surprisingly, none of the 87 

sampling methods proposed in the literature take into account the spatial organization of 88 

the yield; indeed, most of the yield estimation methods are based on a random selection 89 

of the sampling sites (Clingeleffer, 2001, Wolpert and Vilas, 1992).  90 

In precision agriculture, sampling methods defined according to auxiliary data have 91 

been successfully used for the calibration of spatial models (Lesch, 2005). However, to 92 

the authors’ knowledge, such approaches have never been used for estimating field 93 

yield and particularly vine field yield. On the other hand, NDVI may be relevant 94 

auxiliary information to optimize sampling for yield estimation. Meyers et al. (2011) 95 

proposed using NDVI information to optimize sampling to improve the estimation of 96 

vine canopy parameters. Many authors have shown that, for vines, the NDVI or a 97 

Author-produced version of the article published in Precision Agriculture, 2016, N°17, p.74-92. 
The original publication is available at http://link.springer.com 
Doi: 10.1007/s11119-015-9407-8



 

 

similar vegetation index was correlated with the yield at the within-field level 98 

(Rousseau et al., 2008; Bramley et al., 2005; Martínez-Casanovas and Bordes, 2005). 99 

Moreover, it has been shown to be appropriate to characterize the spatial variability of 100 

vine fields at high resolution and sufficiently in advance (up to 15 days before veraison) 101 

to plan sampling before harvest (Kazmierski et al., 2011).  102 

The aim of this work was to study the value of sampling based on NDVI (SBN) to 103 

improve estimation of the mean field yield. This study proposes to investigate the 104 

interest of optimizing the choice of within-field sampling sites. Considering the two-105 

stage method of Wolpert and Vilas (1992), the study, i) investigated the possible 106 

relationship between each yield component and NDVI, and ii) tested, for each stage of 107 

the sampling method, the value of a sampling strategy designed according to the spatial 108 

distribution of within-field NDVI values. 109 

Materials and Methods 110 

Experimental Site 111 

The experiment was conducted on 9 fields in the research vineyard owned by INRA 112 

Pech Rouge (Gruissan, Aude, France) (co-ordinates: E:709800, N:6226840, RGF93 113 

datum, Lambert93). Table 1 presents information on the different fields including field 114 

size, training system, age of vines and grape variety. The selected fields are all very 115 

representative of Mediterranean vineyards in Southern France. Two different training 116 

systems were considered: vertical shoot positioning (VSP) and umbrella. These two 117 

training systems are the most common in this part of France. The nine fields were non-118 

irrigated. The Pech Rouge vineyard has a Mediterranean climate with a hot dry summer. 119 

Precipitation occurs mainly in autumn and spring. A high evaporative demand usually 120 

leads to significant water restrictions in summer. The average water restriction over the 121 
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vineyard, estimated by pre-dawn leaf water potential measurements (Scholander et al. 122 

1965)  was between -0.75 MPa in August 2003 (dry year) and -0.60 MPa in August 123 

2006 (wet year) (Taylor et al., 2010). 124 

Previous work (Acevedo-Opazo et al., 2008; Kazmierski et al., 2011) showed that in 125 

this vineyard, water restriction is the main factor affecting the growth and the yield of 126 

the vines. The soil variability is the main factor explaining the within-field spatial 127 

variability of the vine water status, therefore vigour and estimated vigour through 128 

vegetation indices like the NDVI derived from airborne images, were relevant surrogate 129 

information to highlight within-field zones of water restriction (Acevedo-Opazo et al., 130 

2008). As a result, NDVI presented a significant temporal stability of the spatial 131 

variability at both an intra-annual scale and inter-annual scale (Kazmierski et al., 2011).  132 

As indicated in Table 1, the 9 fields were spread over three pedological units (PU1, PU2 133 

and PU3). Coulouma et al., (2010) showed that each PU presents a significant soil 134 

variability which explains a significant variability in vine vigour, yield and vine water 135 

status at the within-field level (Taylor et al., 2010; Acevedo-Opazo et al., 2008). These 136 

previous works pointed out the opportunity of using NDVI information to design 137 

sampling strategies for yield estimation. 138 

<Table 1> 139 

Image Acquisition and Processing 140 

Two multi-spectral airborne images were taken before veraison in 2008 (31
st
 July) and 141 

2009 (1
st
 August). Images of 1m resolution were collected by Avion Jaune (Montpellier, 142 

Hérault, France). The spectral regions captured in the images were: i) blue (445-143 

520nm), ii) green (510-600nm), iii) red (632-695nm) and iv) near-infrared (757-144 
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853nm). The 1 m square image pixels were aggregated into 3 m square pixels using the 145 

methodology outlined in Acevedo-Opazo et al. (2008), which approximates the “mixed 146 

pixel” row spacing approach of Lamb et al. (2004). The calculation of NDVI (Rouse et 147 

al., 1973) was then made on the 3 m pixels (area of 9 m²). Note that mechanical or 148 

chemical weeding was performed over the inter-row spacing; therefore row cover crop 149 

did not affect NDVI values.  150 

Sampling Sites 151 

To compare NDVI values with ground measurements, a 15 m common sampling grid 152 

was defined. This common sampling grid was implemented field by field. Sampling 153 

grid nodes were taken as sample points, and were referred to as measurement sites 154 

(hereafter sites). To avoid border effects, on each side of each field, a buffer of 5 m was 155 

excluded from the sampling scheme. The resulting sampling rate was averaged over 40 156 

measurement sites per hectare.   157 

Depending on the shape and the area of the field, the number of sites per field was 158 

therefore different. The highest number of sites was obtained for the largest field (P22) 159 

with 45 sites and the lowest number of sites was obtained for the smallest field (P77) 160 

with 19 sites (Table 1). Given the precision level of image geo-referencing (+/- 1 m.), 161 

the smoothing introduced with image processing and the spatial footprint of field 162 

measurements (see next section), NDVI value was assigned to each site as the mean of 4 163 

pixels corresponding to a square of 36 m².  164 

Field Measurements 165 

Yield components (berry weight at veraison (BWv), berry weight at harvest (BWh), 166 

bunch number per vine (BuN), bunch weight (BuW) and berry number per bunch (BN)) 167 
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were measured in 2009. Each site was considered as 5 consecutive vines in the row. BW 168 

(at veraison and harvest) was estimated by the average weight of 100 berries randomly 169 

taken from the 5 consecutive vines. BuW was estimated at harvest by weighting 10 170 

bunches (2 bunches per vine) also randomly taken from the same 5 consecutive vines. 171 

For each site, BN was then calculated as the ratio between BuW and BWh. Finally, 172 

BuN was determined by counting all bunches of the 5 consecutive vines of each 173 

sampling point. Note that BWv (berry weight at veraison) was measured to test the 174 

possibility of estimating mean field yield at an early stage of the growing season (6-7 175 

weeks before harvest), although the study was focused on the yield estimation at 176 

harvest. This is why some yield components, such as BN and BuW, were measured or 177 

calculated only at harvest. The distance between vines along the row was 1 m. Data 178 

were associated with the spatial co-ordinates of the central vine. 179 

The final data base was a set of 313 sites over the 9 different fields. Each site was then 180 

characterized by 5 field parameters (BWv, BWh, BN, BuN, and BuW) and 2 remote 181 

sensing parameters (NDVI08 and NDVI09), i.e. NDVI values measured in 2008 and 182 

2009, respectively.  183 

Data Analysis 184 

A principal component analysis (PCA) was used to evaluate correlations between each 185 

yield component and NDVI values measured either in 2008 or 2009. Data were 186 

standardized on a per field basis before PCA was performed. 187 

Variance-Based Sensitivity Analysis 188 

A variance-based sensitivity analysis was carried out to assess the relative importance of 189 

the sampled parameters in explaining the variability of the mean field yield. More 190 
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specifically, the mean field yield (Y) was determined from the yield components (BuN, 191 

BN and BWh). This analysis involves the decomposition of variance following the 192 

method proposed by Sobol (1993). The variance of the mean field yield estimation 193 

(Var(Y)) was decomposed into terms attributable to each yield component as well as 194 

each interaction effect between them (Eq. 1). 195 

𝑉𝑎𝑟(𝑌) = ∑ 𝑉𝑖 +3
𝑖=1 ∑ 𝑉𝑖𝑗 +3

𝑖<𝑗 … + 𝑉123 (1) 196 

 where: 197 

Y: Mean grape yield of the field (kg ha
-1

). 198 

Vi: Variance of each yield component. 199 

Vij: Variance of the interaction effects between yield components. 200 

The first-order sensitivity index Si was then used to estimate the relative importance of 201 

the yield component “i” in the variability of the mean field yield (Eq. 2). Note that 202 

higher order interaction indices Sij, Sik… were also computed. 203 

𝑆𝑖 =
𝑉𝑖

𝑉𝑎𝑟(𝑌)
 , with  ∑ 𝑆𝑖 +3

𝑖=1 ∑ 𝑆𝑖𝑗 +3
𝑖<𝑗 … + 𝑆123 = 1 (2)  204 

where: 205 

Si: Main effect index for the i-th component of mean field yield.Sij: Higher order 206 

sensitivity index, or effect of the ij-th interaction on mean field yield. 207 

Proposed Sampling Methods 208 

As proposed by Wolpert and Vilas (1992), Eq. 3 presents how the mean field yield (Y) 209 

is estimated using the mean field BuN and the mean field BuW. The distinction between 210 

these two yield components is justified by practical considerations related to optimal 211 
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periods of observation to provide relevant measurements. Indeed, BuN is more easily 212 

estimated at flowering by counting the number of inflorescences while BuW must be 213 

estimated as close as possible to harvest to provide the best yield estimation. Yield 214 

component BuW may be estimated directly by sampling bunches or by measuring two 215 

additional yield components: the mean field BN and the mean field BW.  216 

𝑌 = 𝐵𝑢𝑁 ∗ 𝐵𝑢𝑊  (3) 217 

with 𝐵𝑢𝑊 = 𝐵𝑁 ∗ 𝐵𝑊 218 

The two-step approach proposed by Wolpert and Vilas (1992) allowed consideration of 219 

different sampling approaches. Depending on how the NDVI variable is used as a 220 

surrogate to design a target sampling strategy for BuN or BuW or both, 5 different 221 

sampling strategies were proposed and tested: i) random method (RM), ii) random-222 

target method (RTM), iii) target method (TM), iv) random-model method (RMM) and 223 

v) model method (MM) (Table 2). 224 

<Table 2> 225 

Each sampling strategy is a combination of different sampling methods applied to yield 226 

components. All sampling methods are based on the selection of n sample sites. They 227 

differ in the way of selecting these sites. Tests were performed with a number of sites 228 

varying from n = 3 to n = 7. This interval was chosen to encompass current practices 229 

that correspond to a number of measurement sites equal to 5. Sampling methods are 230 

detailed hereafter.  231 

- Random Sampling (RS) 232 
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Random sampling was based on the selection of n sites randomly chosen among all the 233 

available sites. Yield components BuN and BuW are then computed from observations 234 

of the n sites to provide an estimate of the mean field yield, following Eq. 3. 235 

- Target Sampling (TS) 236 

Sites are chosen according to the distribution of NDVI values. For the field under 237 

consideration, NDVI values are divided into 100/n % quantiles, with n corresponding to 238 

the desired number of sites. Among sites corresponding to each quantile, one site is 239 

randomly selected. Therefore, TS is a way to stratify the site selection according to 240 

NDVI values. Figure 1 illustrates the TS method with n=5 sites. This example led to the 241 

consideration of 5 intervals on the NDVI values corresponding to quantiles 0-20 %, 20-242 

40%, 40-60%, 60-80%, and 80-100%. For each interval, one site is randomly chosen. 243 

Then, an estimation of the mean field yield is computed following Eq. 3. 244 

<Figure 1> 245 

- Model Sampling (MS) 246 

The model sampling was only used to estimate BW (Eq. 3). This approach was defined 247 

to take advantage of having NDVI values with a high spatial resolution. The overall 248 

idea is to use a regression model (Hengl et al., 2003; Lesch et al., 1995) that provides an 249 

estimate of BW at each location where a NDVI value is available. A regression model 250 

was then considered between BWh and NDVI08 where BWh is the explanatory variable 251 

and NDVI08 is the dependent variable (Eq. 4). Note that both NDVI08 and NDVI09 252 

were taken into account as dependent variables. However, NDVI08 and NDVI09 253 

presented a significant correlation. Therefore, only NDVI08 was considered to present 254 

detailed results obtained with MS. 255 
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This procedure was considered as a possibility to better take into account the spatial 256 

variability observed over the fields. The regression model was only used to provide an 257 

estimate of BWh according to NDVI values (Eq. 4). 258 

𝐵𝑊ℎ̂(𝑠) = 𝑎 ∗ 𝑁𝐷𝑉𝐼(𝑠) + 𝑏 (4) 259 

The regression model provides estimates of berry weight at harvest (𝐵𝑊ℎ̂(𝑠)) for each 260 

site (s) for which a NDVI value (NDVI(s)) is available. a and b are the coefficients to be 261 

calibrated for each field. 262 

The model method involved 4 steps: i) selection of the sites to calibrate the model; ii) 263 

model calibration; iii) estimation of BWh on each available site; iv) calculation of BW 264 

from 𝐵𝑊ℎ̂(𝑠). Each step is detailed hereafter. 265 

i. To select the sites, the target method (TS) was used. As two coefficients (a and 266 

b) have to be calibrated for each field, the method could apply to only two sites.  267 

For practical reasons, a minimum of three sites were considered in this study.  268 

ii. Classical least squares method was used to identify both parameters (a and b) of 269 

the model.  270 

iii. The calibrated model was used to estimate 𝐵𝑊ℎ̂(𝑠) on each within-field 271 

location where a NDVI value was available. 272 

iv. BW was calculated as the mean of 𝐵𝑊ℎ̂(𝑠) measurements. 273 

Combining these 3 sampling methods (RS, TS, and MS), 5 different sampling strategies 274 

to estimate mean field yield were tested (Table 2). 275 

Evaluation of Sampling Methods 276 
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The uncertainty of the sampling methods was estimated by bootstrapping (Efron, 1979). 277 

The same methodology was applied to each sampling method. Generically, n sampling 278 

sites were drawn and the estimated mean grape yield (𝑌�̂�) corresponding to the 279 

bootstrap sample b was calculated. This process was repeated B times, which provides 280 

B bootstrap samples. Bootstrapping was implemented with B=1000. 281 

The estimated mean field yield was then computed as indicated in Eq. 5. 282 

�̂� =
1

𝐵
∑ 𝑌�̂�

𝐵
𝑏=1   (5) 283 

The estimated variance of the considered sampling method was defined as indicated in 284 

Eq. 6. 285 

𝑉(𝑌)̂ =
1

𝐵
∑ (𝑌�̂� − �̂�)2𝐵

𝑏=1  (6) 286 

The error in % (Eq. 7) corresponding to the standard error of the mean was derived from 287 

the estimated variance 𝑉(𝑌)̂ and the estimated mean field yield.  288 

𝐸𝑟𝑟𝑜𝑟 (%) =
𝜎(𝑌)̂

�̂�
𝑥100 with   𝜎(𝑌)̂ = √𝑉(𝑌)̂      (7) 289 

Assuming 𝑌�̂� is normally distributed, the interval corresponding to +/- Error(%). �̂�/100 290 

encompasses 68% of the samples. In order to verify the results obtained from a 291 

bootstrapping approach, THEO (%), the relative error computed from a theoretical field 292 

with a normal distribution of yield values corresponding to a coefficient of variation 293 

(CV) of 65 % was computed (Eq. 8). The value of 65 % was chosen as the mean CV of 294 

the yield for the overall fields of the database (Table 3). 295 

𝑇𝐻𝐸𝑂 (%) =  
1

√𝑛
. 𝑡. 𝐶𝑉   (8) 296 
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where : 297 

n : is the number of sites 298 

t : is the value from the Student’s table corresponding to the chosen p-value, 299 

CV (65%): the coefficient of variation, 300 

THEO (%): the percentage of error (%) defines the relative interval in which the true 301 

value may be found with a probability 1-p. 302 

Note that THEO (%) was only used to verify the relevance of the results obtained by 303 

our bootstrapping approach with the Random Sampling (RS) strategy. Once verified, 304 

RS was considered as a reference to compare the different sampling strategies proposed 305 

in this paper.  306 

Results and Discussion 307 

Results are reported and discussed in two sub-sections. The first one aims at analyzing 308 

the variability of each yield component at the within-field level as well as the 309 

relationship between each yield component and NDVI. The second sub-section deals 310 

with the results of the sampling methods. 311 

Yield Spatial Variability at the Within-Field Level 312 

Table 3 summarises mean field yields and coefficients of variation (CV) observed for 313 

each field of the data-base. Mean field yields are low which is common in non-irrigated 314 

conditions on this type of soil under Mediterranean climate with high deficit in water 315 

balance.  316 

<Table 3> 317 

A significant heterogeneity in mean yields was observed between fields: the lowest 318 

yield was 2.76 t/ha (field p76) while the highest is 7.06 t/ha (field p22). The coefficient 319 

of variation (CV) showed a significant within-field variability in almost all the fields 320 
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(CV values are above 35%), confirming what Taylor et al. (2005) had already observed 321 

for a larger data-base obtained with grape harvesters and yield monitoring systems. In 322 

the current case, 4 fields (p65, p76, p77 and p80) presented very high CV values, above 323 

70%. This result confirms the significance of the within-field variability for grape yield, 324 

and the potential interest of proposing sampling methods adapted to this yield 325 

variability. 326 

Relationship Between Yield Components and NDVI 327 

Figure 2 shows that, over the 9 fields of the experiment, the within-field variability may 328 

be summarized by two sets of parameters correlated to the first and second factor of the 329 

PCA. These factors represent 62 % of the variability of the 9 fields. One group was 330 

correlated to Factor 1, including NDVI at both dates (2008 and 2009) and BW at both 331 

stages (harvest and veraison). The second group was mainly correlated to Factor 2, 332 

which included BuN and BN.  333 

<Figure 2> 334 

Regarding the first set, as it includes both NDVI parameters, it was considered as 335 

representative of the vegetative expression. Therefore, as represented on Figure 2 with 336 

an arrow, an axis of vegetative expression can be defined. The position of the sites 337 

along this axis was in relation to their level of vegetative expression; sites located on the 338 

right present high vegetative expression and conversely for sites on the left. Note that 339 

this trend was temporally stable since both NDVI parameters measured either in 2008 or 340 

in 2009 were strongly correlated. This is consistent with the results obtained by 341 

Kazmiersky et al. (2011). This result also justifies the choice of considering only the 342 

NDVI measured in 2008 in the rest of the analysis. Hereafter, the NDVI terms will refer 343 

exclusively to NDVI08.  344 

Author-produced version of the article published in Precision Agriculture, 2016, N°17, p.74-92. 
The original publication is available at http://link.springer.com 
Doi: 10.1007/s11119-015-9407-8



 

 

Figure 2 highlights a correlation between NDVI and BW either at veraison or at harvest. 345 

Therefore, sites with high vegetative expression correspond to sites with high BW and 346 

conversely for sites with low vegetative expression. Moreover, this correlation was 347 

temporally stable over the two years of NDVI acquisition. It was also temporally stable 348 

from veraison to harvest (at least over the two years of NDVI acquisition). However, no 349 

correlation was observed between NDVI and BuN or BN. Furthermore, trends 350 

highlighted by the PCA masked some disparity between the different fields as shown in 351 

Table 4 where the correlation coefficients between NDVI and yield as well as between 352 

NDVI and each yield component (BWh, BN and BuN) for the nine fields were 353 

calculated.  354 

<Table 4> 355 

Confirming the results of the PCA, a significant correlation between NDVI and BWh 356 

was observed for 5 fields (P22, P63, P65, P88, and P104). However, fields P76 and P80 357 

show a low correlation, being practically non-existent for the other two fields (P77 and 358 

P82). Conversely, the results showed a low correlation between NDVI and BN except in 359 

the fields P65 and P80. Similarly, a low correlation between NDVI and BuN was 360 

observed except for field P82, P65 and P80. This resulted in a high variability of the 361 

observed correlations between yield and NDVI (Table 4). Considering all the fields of 362 

the database together, the observed correlation (r) between NDVI and yield was rather 363 

low (r = 0.31), although it was statistically significant (p = 0.05). 364 

Sensitivity Analysis 365 

The incidence of each yield component in the within-field yield variance was studied 366 

through a sensitivity analysis (Table 5). In addition, this analysis allowed calculation of 367 

the interactions between different components in the case that they were not 368 
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independent. According to Table 5, BuN explained over 60% of yield variance while 369 

BN and BWh explained 11% and 4%, respectively. An important interaction (second 370 

order sensitivity index) between BuN and BN was observed (20 % of the yield 371 

variance). This interaction means that BuN and BN were not independent. This 372 

observation is logical considering the correlation observed between these two 373 

parameters in the PCA (Figure 2). No other interaction was highlighted by the 374 

sensitivity analysis. 375 

<Table 5> 376 

As already observed (Rousseau et al., 2008; Santesteban et al., 2013), the results 377 

confirm the possibility of observing a relationship between the NDVI and yield at the 378 

within-field level. Considering each yield component, the results provided further 379 

information on a significant data-base which encompasses 9 different fields and two 380 

different varieties. Indeed, under study conditions, the results showed that among all the 381 

yield components, BW (BWv and BWh) was the most closely correlated with NDVI for 382 

most of the vine fields. 383 

The low correlations observed between NDVI and BuN or BN can certainly be 384 

explained by the impact of winter pruning which tends to control the BuN at the within-385 

field level. Despite the significant impact that BuN has on yield variability, pruning is a 386 

manual operation adapted for each vine which may tend to smooth environmental 387 

effects and its potential correlation with vegetative expression (NDVI). In similar 388 

conditions, non-pruned vineyards show a decrease in BuN in low vegetative expression 389 

zones compared to high vegetative expression zones (Rousseau et al, 2013). It is not 390 

clear why BN is not affected by the vegetative expression in the current experiment, 391 

when, on the contrary, Champagnol (1984) reported that BN may be affected by vigour. 392 
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However, BN is determined by many factors whose incidence is complex. 393 

Meteorological conditions and vigour during bunch initiation the previous year as well 394 

as meteorological conditions at flowering largely determine BN (Carbonneau and Ollat, 395 

1993). Although meteorological conditions can be considered uniform at the within-396 

field level, the complexity of the phenomena involved may explain the lack of clear 397 

correlation between NDVI and BN in this experiment. 398 

Regarding the sensitivity analysis, note that a very similar analysis was carried out by 399 

Clingeleffer et al. (2001). These authors considered the impact of each yield component 400 

on the yield variability from one year to another. They showed that BuN explains 60 to 401 

70% of the seasonal variation in vine yield. Yield fluctuation over the years was less 402 

sensitive to BN (~20%) and less sensitive again to berry weight (~10%). It is interesting 403 

to note that the relative importance of the yield components which affect yield 404 

variability is rather consistent both spatially and temporally. 405 

Regarding the use of NDVI values to optimize the estimation of yield components, it is 406 

difficult to make a clear recommendation. BW presents the highest correlation with 407 

NDVI, therefore target sampling BW according to NDVI values could improve mean 408 

yield field estimation. However BW is the yield component with the lowest impact on 409 

yield variability (4%). Therefore, the expected improvement using BW in an optimized 410 

sampling strategy may have a limited effect on the quality of mean yield estimation. 411 

Conversely, BuN and BN present low correlations with NDVI for most of the fields, but 412 

these components have a high impact on yield variability. Therefore incidence of both 413 

BuN and BN optimized sampling may be significant on yield estimation (at least for 414 

some fields). This observation justifies testing all the sampling strategies (Table 2) with 415 

all the yield components. 416 
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Results of the Sampling Strategies 417 

Figure 3 shows the mean error (%) (Eq. 7) observed over the nine fields with the 418 

different sampling strategies and for a number of sampling sites ranging from 3 to 7.  419 

<Figure 3> 420 

Three additional pieces of information were added to Figure 3 in order to analyse the 421 

results properly:  422 

- THEO, the error computed from a theoretical field (Eq. 8),  423 

- operative number of samples (5 samples) corresponding more or less to the current 424 

methods used by the wine industry to estimate the mean field yield at harvest 425 

- and expected error (10 %) by the wine industry. 426 

As expected, whatever the sampling strategy, the error (%) decreases with an increased 427 

number of sampling sites. The decrease is consistent for each method from 3 to 7 428 

sampling sites; the error decreases by ~13%. THEO superimposes perfectly with error 429 

from RM. This result demonstrates the relevance of the bootstrapping method to 430 

approximate the distribution of mean yield estimations from a random sampling. 431 

Although they are not statistically different, errors observed for each sampling method 432 

are ordered in the same way whatever the number of sites. Sampling strategies based on 433 

NDVI values (SBN) systematically improve the estimation by at least ~5-7 % compared 434 

to the random method (RM). A lower error is consistently observed when both yield 435 

components BuN and BuW (Eq. 2) are estimated from a NDVI distribution (TM or 436 

MM). Random selection of sites for estimating yield component BuN (RTM or RMM) 437 

therefore results systematically in a higher error. Note however that the difference 438 

between both sets of approaches (TM or MM vs RTM or RMM) is very low (~ 2 %) but 439 

consistent whatever the number of sites considered. Although BuN has a low correlation 440 
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with NDVI, the implementation of a target sampling for this yield component seems to 441 

be of interest to improve yield estimation. 442 

The sampling approach currently used by the wine industry is similar to the RM method 443 

with 5 sites. This approach results in a mean error of ~29 %. This high value shows the 444 

uncertainty of the current methods caused by the large within-field variability of yield in 445 

viticulture. This also highlights the necessity to provide the wine industry with more 446 

efficient sampling methods. Figure 3 confirms the value of using sampling strategies 447 

based on NDVI values. However, regarding current operational constraints (5 sites), the 448 

best sampling method still leads to an error of ~ 23 %. Thus, none of the methods tested 449 

in this experiment achieve the error (10%) expected by the wine industry. As shown by 450 

error trends (Figure 3), to satisfy their expectations, the solution would be to increase 451 

the number of sampling sites in order to decrease the error. However, this solution is 452 

costly and would increase the working time.  453 

Table 6 shows the large diversity of results observed for the nine fields of the database. 454 

It only focuses on RM, TM and MM with five sites, which may approximate the current 455 

sampling strategy used by the wine industry. For four fields (P65, P76, P77 and P80) a 456 

rather large decrease of the error was observed when implementing a sampling strategy 457 

based on NDVI values. These fields also present the highest CV (~77-80 %) (Table 3). 458 

For two fields (P82 and P88), a small decrease of the error was observed, and for the 459 

remaining fields (P22, P63 and P104) no decrease of the error was observed. This 460 

heterogeneity in the results could explain the lack of significance observed in Figure 3. 461 

As no clear relationship could not be demonstrated between field characteristics (soil 462 

unit, variety, mean yield) and the decrease in the error, it was assumed that the database 463 

may not be large enough to identify any clear relationship. 464 

<Table 6> 465 
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Sampling strategies based on NDVI are of value to improve grape yield estimation. 466 

Indeed, with the same number of samples and MM method, the grape yield estimation 467 

can be improved by 10 %, compared to conventional sampling (random). Depending on 468 

the fields, grape yield estimation can be improved from 20% to 0%. This shows that 469 

yield estimations may only be improved (and never damaged) when based on a 470 

sampling strategy based on NDVI values.  471 

However, the proposed sampling strategies do not allow achieving the accuracy 472 

expected by the wine industry. Several issues deserve further consideration:  473 

i) Significant improvements may be proposed in order to better take into account the 474 

distribution of NDVI values, but also the spatial structure of this information to 475 

optimize the location of the measurement sites as proposed by Stein and Ettema (2003), 476 

ii) Sampling within sites was assumed to be optimal. Therefore, errors due to the 477 

operator in counting the number of clusters, incidence of berry selection as well as 478 

cluster selection to approximate BuW were assumed to be low. As investigated by other 479 

authors (Meyers et al. 2011; Wulfsohn et al. 2012), methods aiming at optimizing 480 

sampling within the plant or between plants at the within-site level may improve the 481 

yield estimation. These approaches deserve to be tested in addition to a sampling 482 

strategy based on NDVI. 483 

iii) Incidence of the variety as well as training systems must be investigated. In 484 

particular, there is little work on the effect of these parameters on the relationship 485 

between BuN, BN and the NDVI. On non-pruned vineyards or mechanically pruned 486 

vineyards, a better correlation between NDVI and BuN is expected (Rousseau et al., 487 

2013). Therefore, significant gain in yield estimation may be observed using sampling 488 

strategies based on NDVI in these training systems. BuN and BN are yield components 489 

which impact significantly the yield variance at the within-field level. If, for a given 490 
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variety or  training system, the correlation between these components and the NDVI is 491 

higher than that observed in this experiment, then better results could be expected with a 492 

sampling strategy based on NDVI values.  493 

iv) The work assumed that NDVI information is available before flowering to design a 494 

sampling strategy. The spatial organization of NDVI values can vary between flowering 495 

and harvest (Kazmiersky et al., 2011, Hall et al., 2011). In this case, the NDVI image 496 

acquired before flowering may be more appropriate to design a sampling strategy for 497 

BuN. In the case where NDVI information would not be available for the first stage of 498 

the method (estimation of BuN, Eq. 3) at flowering, RTM or RMM (Table 3) should be 499 

recommended.  500 

v) Practical aspects related to the measurement of some yield components were not 501 

considered in this work. Indeed, BuN is quick and easy to measure at flowering (< 1 502 

min. per site), and it also presents the advantage of being non-destructive. Conversely, 503 

BuW (BN and BW) estimation is a destructive method and takes longer (> 5 min. per 504 

site). A simple recommendation would be to increase the number of sites randomly 505 

distributed for BuN at flowering while maintaining a limited number of sites defined 506 

with NDVI for BuW at harvest. This recommendation corresponds to RTM or RMM 507 

methods with a different number of sites at each stage. It has the advantage of limiting 508 

the sampling effort at harvest when technicians of wineries are usually very busy. 509 

Figure 4 shows the results obtained with this approach using the database. RMM and 510 

RTM were implemented with a number of sites between 5 to 15 for the first stage 511 

(flowering) and a limited number of sites between 5 to 7 for the second stage (harvest). 512 

Figure 4 shows that the combination of these two approaches improves yield estimation 513 

by 9 %. The lowest mean error observed (15 %) is close to the expected error. 514 

< Figure 4 Near here>. 515 

Author-produced version of the article published in Precision Agriculture, 2016, N°17, p.74-92. 
The original publication is available at http://link.springer.com 
Doi: 10.1007/s11119-015-9407-8



 

 

vi) In this study, it is assumed that the mean of all sites within a field is the true mean. A 516 

more reliable reference would be to compare the estimations with the total amount of 517 

harvest weighed at the winery. In the current case, this was not possible because 518 

differentiated harvests (manual and mechanical) were carried out on several parts of 519 

each field. Differentiated harvests were due to the experiments undertaken by other 520 

researchers on the Pech-Rouge Vineyard. In manual harvesting, the whole bunch 521 

including the stalks is collected while in mechanical harvesting, only berries are 522 

collected. Stalks represent approximately 5 % of the bunch weight. These two types of 523 

harvest induced an inaccuracy in the total weight measured at the winery justifying the 524 

method used in this paper to estimate the mean grape yield. 525 

vii) Finally, this study assumed that the number of missing or unproductive vines is 526 

correctly estimated. In some situations, the percentage of missing plants is an important 527 

source of imprecision in yield estimation. Furthermore, in areas with high levels of 528 

missing plants, a negative correlation was observed between NDVI and some yield 529 

components (low values of NDVI for high values of BW and BuN) because the few 530 

remaining vines had high vigor individually. Note that the use of remote sensing images 531 

with a suitable resolution can be used to count the missing plants (Robbez-Masson and 532 

Foltete, 2005) and may be helpful in detecting these specific situations. 533 

Conclusions 534 

This study, based on a database from nine different fields, showed the value of NDVI 535 

information to optimize yield sampling. NDVI presents the highest correlation with berry 536 

weight (BW) which, unfortunately, is the yield component with the lowest impact on yield 537 

variability. As a result, depending on the field considered, sampling based on NDVI provides 538 

marginal improvements on yield estimation. On average, yield estimation can be improved by 539 

10%. Therefore target sampling based on NDVI can be recommended to the wine industry. 540 

Using NDVI as auxiliary information is particularly interesting to stratify sampling (target 541 
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sampling) for berry weight (and bunch weight) estimation but no significant value was 542 

demonstrated when trying to model the number of bunches. Note however that for some fields, 543 

yield estimation was significantly improved when target sampling was applied to the number of 544 

bunches, showing the potential interest of the approach in specific conditions. 545 
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Table 1 Description of the characteristics and management practices of the 9 fields used in the study. 706 

Field 

(Id) 
 

Area 

(ha) 
Variety 

Date of 

plantation 

Training 

system 

Row 

spacing 

(m) 

Vine 

spacing 

(m) 

Pedological 

Unit 

Sampling 

sites 
 

P22  1.72 Syrah 1995 VSP 2.5 1 PU3 45  

P77  1.24 Syrah 1990 VSP 2.5 1 PU2 19  

P76  1.14 Carignan 1990 VSP 2.25 1.5 PU2 37  

P63  1.33 Syrah 1993 VSP 2.5 1 PU2 42  

P80  0.54 Syrah 1978 VSP 2.5 1 PU2 40  

P65  0.69 Syrah 1974 VSP 2.5 1 PU2 33  

P82  1.15 Syrah 1977 Gobelet 2.5 1 PU2 53  

P88  0.85 Syrah 2004 VSP 2.25 1.5 PU2 21  

P104  0.81 Carignan 1961 Gobelet 2.25 1.5 PU1 23  

VSP: Vertical Shoot Positioning. PU1: Calcisols/Regosols (clayic); PU2: Calcisols (skeletic); PU3: Endosalic Arenosols. 707 

  708 

Author-produced version of the article published in Precision Agriculture, 2016, N°17, p.74-92. 
The original publication is available at http://link.springer.com 
Doi: 10.1007/s11119-015-9407-8



 

 

Table 2 Sampling strategies  709 

Methods  1
st
 step  (BuN) 

2
nd

 step  (BuW) 

BN BW 

Random (RM)  
Random sampling 

(RS) 

Random sampling 

(RS) 

Random sampling 

(RS) 

Random-target (RTM)  
Random sampling 

(RS) 

Target sampling 

(TS) 

Target sampling 

(TS) 

Target (TM)  
Target sampling 

(TS) 

Target sampling 

(TS) 

Target sampling 

(TS) 

Random-model 

(RMM) 
 

Random sampling 

(RS) 

Target sampling 

(TS) 

Model sampling 

(MS) 

Model (MM)  
Target sampling 

(TS) 

Target sampling 

(TS) 

Model sampling 

(MS) 
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Table 3. Statistics over the 9 fields used in the study. 712 

Field (Id) Mean yield (t/ha) 
Coefficient of 

variation (CV) % 
Min. yield (t/ha) Max. yield (t/ha) 

p22 7.06 56.20 0.20 19.62 

p63 4.42 61.18 0.36 13.83 

p65 4.59 77.07 0.05 13.73 

p76 2.76 80.24 0.27 9.48 

p77 5.71 71.89 1.01 13.76 

p80 3.31 76.60 0.07 10.40 

p82 3.80 63.42 0.13 11.11 

p88 6.88 35.81 3.21 14.65 

p104 7.01 39.81 2.22 13.13 

 713 
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Table 4. Correlation coefficients (r) between NDVI (2008), and each yield component, and the yield for 715 
the nine fields of the experiment. (BWh, Berry weight at harvest, BN; Berry number, BuN; Bunch 716 
number, Y; Yield) 717 

Field (Id) BWh vs. NDVI BN vs. NDVI BuN vs. NDVI Y vs. NDVI 

p22 0.49* -0.12 0.07 0.04 

P63 0.55* 0.05 0.22 0.25 

P65 0.83* 0.82* 0.84* 0.81* 

P76 0.28 0.11 0.20 0.25 

P77 -0.02 0.33 0.43 0.51* 

P80 0.16 0.32* 0.61* 0.47* 

P82 0.03 0.08 0.35* 0.34* 

P88 0.71* 0.27 -0.28 0.52* 

P104 0.64* -0.16 0.18 -0.04 

*Significant at the 0.05 probability level  
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Table 5. Sensitivity analysis by Sobol’s method. 719 

Yield components 
BWh 

% 

BN 

% 

BuN 

% 

Interaction BuN and BN 

% 

Sobol index 4 11 60 20 

 720 
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Table 6. Error on yield estimation for the random (RM), target (TM) and model (MM) strategies, for a 5-722 
sites sampling. 723 

Field (Id) RM % TM % MM % 

P22 24.90 25.15 25.97 

P63 26.88 25.43 25.61 

P65 35.03 15.42 20.48 

P76 34.80 30.69 28.63 

P77 33.51 26.68 25.61 

P80 32.85 27.17 25.77 

P82 27.37 25.12 22.72 

P88 11.96 9.66 8.78 

P104 17.84 19.46 19.50 
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725 
Fig. 1 Example of 20% percentile division of NDVI distribution to define intervals used to perform 726 
targeted sampling for 5 sites.  727 
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 748 
Fig 2, Scattered plot and correlation coefficients of the principal component analysis (first 2 Factors) with 749 
data centered and reduced according to a field by field basis.  750 
  751 
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 752 

Fig 3. Mean field error (%) of the different sampling strategies in relation to the number of sampling 753 
sites. Mean error is computed over the nine fields of the experiment for the different sampling 754 
approaches: RTM: Random-Target, TM: Target, RMM: Random-Model, MM: Model, THEO: random 755 
sampling for a theoretical normal distribution corresponding to CV = 65% (mean CV of yield observed 756 
on the data base). 757 
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 759 

Fig 4. Mean error (%) from the nine fields of the database obtained for RTM and RMM as a function of 760 
the number of sampling sites for BuN (Bunch Number) and for BuW (bunch weight) independently. 5p, 761 
6p and 7p correspond respectively to 5, 6 and 7 sampling sites for BuW. RTM: Random-Target, RMM: 762 
Random-Model. 763 
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