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Using dynamic programming to solve the
Wireless Sensor Network Configuration

Problem
Ada Gogu, Dritan Nace, Enrico Natalizio and Yacine Challal

Abstract—This work studies the problem of network
configuration for Wireless Sensor Networks (WSN), con-
sisting of two interdependent problems: sensor placement
and topology control, by taking into consideration both
the traffic pattern and the transmission range assignment.
The design objectives are i) reducing the overall energy
consumption and ii) ensuring node energy consumption
fairness between the sensors. First, the problem of placing
the sensors in the optimal positions is studied and then
a power control scheme is put in place to manage the
topology of the network. For both the two sub-problems,
the linear network case is treated and then extended to the
two-dimensional case. The two sub-problems are treated
within a unifying mathematical framework based on dy-
namic programming, in order to guarantee the optimality
of the solution. The method can easily be adapted to solve
the problem for discrete values of transmission range. The
method presented in this work shows a low computational
complexity in comparison to other methods, and, due to
its implementation simplicity, it will be of great help
to network designers in the planning phase of WSN
deployment.

Index Terms—WSN, Dynamic programming, Sensor
Placement, Network configuration;

I. Introduction

Wireless Sensor Networks (WSN) is a disruptive
technology with potentially a wide range spectrum
of applications such as remote health surveillance,
precision agriculture, air and water pollution detection
and containment, home automation, supply chain mon-
itoring, etc. [? ]. WSN development is the culmination
of recent advances in microelectromechanical systems
(MEMS) and wireless communication technologies. A
typical WSN is composed of a set of tiny motes that
sense the environment and transmit sensed informa-
tion, hop-by-hop, to a processing workstation through
the Base Station (BS). A simple WSN is presented in
Fig. 1. Each mote comprises sensors, a processing unit,
memory, radio transceiver and a battery.

Faced with stringent constraints that affect energy,
bandwidth and memory use among others, WSN
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Figure 1: Wireless sensor network

technology needs to be carefully managed in order to
meet the requirements of applications. Optimization
techniques and strategies are applied at the physical,
access control, network and application layers to
improve their performance. A primary concern in WSN
is the energy constraint. A carefully designed network
can be a very effective means to conserve energy and
therefore extend the lifetime of the network.

In this work, we focus on the network configuration
problem, which consists in assessing two main aspects
of WSN:

1) Transmission structure: The transmission struc-
ture determines the organization between the
sensors such that their data flows may reach the
Base Station (BS) through a many-to-one traffic
paradigm. For an energy constrained technology,
the design of a data transmission structure is
strategic. The design process can be even more
difficult if other application-dependent issues like
data aggregation need to be taken into account.

2) Deployment and range assignment: A many-to-
one traffic pattern tends to overuse the nodes
closest to the BS for relaying the traffic generated
by other nodes, thus causing an unbalanced
distribution of the traffic load throughout the
network known as the energy hole problem.
As remarked in different works [? ? ? ] these
nodes will be more prone to failures, and their
failure may culminate in disconnections, network
partitioning, and even complete paralysis of the
network.
Two possible ways of overcoming the issues
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raised by the mentioned aspects are1:
• Energy-aware deployment. This aims at find-

ing a deployment scheme that distributes
load fairly over all the sensors in the network.

• Transmission range assignment. An effective
transmission range assignment will balance
the energy consumption between the sensors
in the network. Obviously, the transmission
range assignment should take into account
the corresponding sensor load. Moreover,
the transmission range is closely related to
the distance from the BS which comes to
take into consideration the number of hops
needed to reach it. Trade-offs between the
load distribution and the number of hops
complicate the problem of transmission range
assignment under energy constraints.

In this study, we focus on the design of optimal
strategies in terms of a given objective (i.e.: energy
efficiency) for WSN. We examine two sub-problems,
which are derived by the aforementioned main aspects
of the network configuration problem, namely: i) sen-
sor placement and ii) topology control based on power
control. Both problems seek to extend the lifetime of
the network by finding the best combination between
a feasible transmission structure and a particular
scheme (a deployment scheme in the case of the
sensor placement problem and a range assignment
scheme in the case of the topology control problem).
Nonetheless, the context of these two problems, related
to the sensor deployment assumption, is not the same.
Sensor placement might be seen as the pre-deployment
energy-aware network configuration problem, whereas
topology control corresponds to the post-deployment
energy-aware network configuration problem. For each
of the problems we begin our investigation with a
simple case, i.e. a linear network, and then extend it
to the two-dimensional network case.

The contribution of this paper is twofold and can
be summarized as follows:
• We solve the sensor placement problem and the

topology control one at the optimality. Further-
more, we provide a complete study as we consider
several scenarios involving traffic aggregation
and equitable expenditure of energy, and provide
comparisons between discrete and continuous
power assignment scenarios.

• We propose a unifying mathematical framework to
deal with the two sub-problems, which is based on
dynamic programming. Our approach has a low
complexity compared with nonlinear program-
ming approaches proposed in the literature, and
we believe it provides a powerful tool to deal with
the high combinatorics of such problems.

The rest of the paper is organized as follows.

1Load balancing at the maintenance phase is beyond the scope of
this work.

Section II presents a brief state of the art for different
variants of the problem and position this work in
the body of existing literature. In Section III, we
examine the sensor placement problem and propose
dynamic programming approaches for both linear
and two-dimensional networks. Section IV is devoted
to the network configuration problem. Apart the
solution approaches for several scenarios, we provide
comparative computational tests. Finally, section V
concludes the paper.

II. Problem description and related work

This section gives an overview of works related to
the network configuration problem. Specifically, we
investigate the state of the art of the two sub-problems
treated in this paper: sensor placement and topology
control based on power control. In literature, only one
work has investigated these two sub-problems within
a unifying framework [? ]. However, the authors of the
mentioned work propose heuristic solutions for both
the sub-problems, and they validate the results through
simulations, without ensuring the optimality of their
solution. Our contribution aims at building an analysis
framework based on a more rigorous mathematical
approach. As, at the best of our knowledge, no other
works have investigated the two sub-problems by using
a unifying solution methodology, we will present the
literature split into two parts.

A. Sensor placement
In WSN literature the sensor placement problem may

group different optimization problems depending on
the constraints and objective function. For an extended
state of art of the sensor placement problem, the reader
is referred to [? ]. Some formulations of this problem
aims at deterministically placing the sensors in order
to meet some requirement such as minimizing energy
consumption [? ? ], fault tolerance [? ], or maximizing
lifetime under physical attacks [? ]. Other works [? ? ]
consider dynamic environments in which the objectives
and tasks can change over the time and the sensor
placement is reconfigured frequently. In [? ? ] the
authors determine the optimal placement of sensor
nodes along the straight line between a source and a
destination node. They model the energy consumed
for packet transmission in a mono-directional/bi-
directional flow between source and destination within
a mathematical framework using non-linear program-
ming. The proposed mathematical model allows the
authors to find the optimal positions for the nodes in
a closed formula. In this work, we use a more general
framework for the sensor placement problem, which
generalize the mentioned works, as we also consider
traffic aggregation at the intermediate relays. The
problem discussed in [? ] consists in deciding how to
place N sensors in a linear network topology, such that
all the sensors expend the same amount of energy. This
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Table I: Related works

Scheme Sensor placement Topology control Objective(s) Methodology
[? ] l m Energy consumption Multi-variable nonlinear programming

[? ? ] l m Energy consumption Nonlinear programming
[? ] l m Energy consumption Dynamic Programming
[? ] l m Fault tolerance in terms of connectivity Heuristic based on Steiner Tree (STP-MSP)
[? ] l m Resistance to physical attacks Heuristic based on binary search
[? ] l m Dynamic Distributed heuristic
[? ] l m Dynamic Heuristic based on Dijkstra
[? ] l m Multiobjective Genetic algorithm
[? ] m l Multiobjective Genetic algorithm
[? ] m l Load balancing Distributed annealing algorithm
[? ] m l Energy consumption Heuristic based on spanning tree
[? ] m l Energy consumption Analytical method
[? ] m l Energy consumption Heuristic based on clustering&energy harvesting
[? ] m l Coverage&Energy consumption Heuristics based on clustering
[? ] l l Energy consumption Heuristic based on virtual tree

work assumes a linear transmission structure where
each node has to relay all the collected and generated
data towards the immediate one-hop neighbor. The
problem is formulated as a multi-variable nonlinear
programming problem and solved to optimality, but
without considering the idle and receiving energy. A
more general formulation is given by [? ], where the
problem is to find the optimal number of sensors and
their respective positions. The optimization problem is
solved in two steps. First, the sensor position problem
for a given number of sensors N is formulated as
a nonlinear programming problem similar to that of
[? ]. In the second step, the goal is to optimize the
number of sensors such that the ratio of network
lifetime to the number of sensors N is maximized.
Notice that the network lifetime is highly dependent
on the number of sensors N calculated in the first
step. This ratio represents a new metric for evaluating
trade-offs between network lifetime and the cost of
sensors. In contrast to sensor placement, the density
control problem seeks to distribute load uniformly
over the monitoring area so that traffic per node is
balanced over the whole area. Density strategies [?
? ] are defined as part of the pre-deployment phase
and provide a non-uniform random deployment in
which the density increases closer to the BS. In this
study we do not consider this problem but the density
changes may be extrapolated from the results of the
sensor placement problem. Another solution approach
used in literature for the sensor placement problem is
the multi-objective optimization. In fact, the sensor
placement can serve simultaneously to reduce the
energy consumption, increase the connectivity and the
coverage. In [? ], the authors propose a multi-objective
evolutionary algorithm that uses a decomposition
approach for converting the problem of approximation
of the Pareto fronts (PF) into a number of single-
objective optimization problems. Even if the multi-
objective approach seems promising, in this work, we
focus on the energy efficiency of the WSN, as our main
contribution is the unified solution methodology for

the two sub-problems. However, our work could be
easily extended to treat multiple objectives.

B. Topology control based on power control
The topology control problem is a very important

problem in WSN as it includes several sub-problems,
which have been grouped in literature according to
their main objective and to the approach used to
reach this objective. Specifically, In [? ] and in [? ] the
authors classify topology control schemes according
to different attainable objectives: network coverage,
network connectivity, network lifetime extension. For
each of these categories they present protocols and
techniques with a focus on blanket coverage, barrier
coverage, sweep coverage, power management, and
power control. According to the classification proposed
in these papers, our work would fall in the category
that concerns power control approaches for network
lifetime extension. Originally, this approach has been
proposed by Santi et al [? ]. In this paper, we take
into account only the topology control based on power
control, and we redefine the problem as it follows. We
divide the network into coronas or grids of different
lengths such that the energy is balanced in each of
them. This problem assumes a uniform node distribu-
tion and hence may be defined in a post-deployment
phase. To take account of the energy hole problem, a
corona-based model is usually employed, the reader
is referred to [? ] for an extensive survey on corona-
based deployment strategies. In this model the network
area is assumed to be circular, and it is divided into
concentric circles forming coronas. Just like in a linear
network topology, nodes belonging to a corona will
forward the data generated by the nodes themselves
together with data generated by higher-level coronas.
In the case of linear or rectangular networks, a grid is
generally employed, corresponding to a unit division
of the network. The network configuration problem
is discussed in [? ], which proposes a method for
dividing the network into coronas, then the coronas
into subcoronas and finally the subcoronas into zones
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such that the load in every zone is balanced. In
this model, there is always a mapping between the
sensors of a given zone belonging to a corona, and
the sensors of another zone, belonging to an upstream
corona. The problem of finding the optimal number
of coronas is modeled as an optimization problem
and a simulated annealing algorithm is proposed.
The problem of dividing the coronas into subcoronas
and zones is solved iteratively. This network division
scheme assumes that the coronas and the subcoronas
have the same width and that the number of zones
is the same for each of them. In [? ], on the other
hand, the number of coronas and their respective
lengths are assumed to be known, and the transmission
range must be assigned for each corona so as to
maximize network lifetime. The transmission range
will actually determine the next hop corona. The
algorithm proposed for this problem builds a graph in
which the nodes represent the coronas and the edges
represent the feasible wireless communication links
between any two coronas. The algorithm builds a set
of spanning trees for each node, and those having
the best performances in terms of network lifetime
are selected. Among the spanning trees that include
the most distant corona and the BS, the one with
the longest lifetime is retained as the solution to the
problem. In [? ] the authors discuss the same problem,
however their transmission structure is different than
ours. According to [? ] sensors in a corona transmit
their data to any of sensors in the downstream corona.
In our model, the sensors are grouped in clusters
and it is only the cluster head that transmit the data.
By considering only the transmitting energy, in [? ],
the authors prove that the total energy consumption
minimization is achieved when the coronas have the
same length. They also propose an iterative algorithm
to consider the uneven energy depletion of energy
and avoid the energy holes. Even for the topology
control based on power control there are some works
that deal with multiple objectives. For example, in [?
] the authors assume eight predefined transmission
range levels for each sensor, and propose a genetic
algorithm for optimizing coverage, connectivity and
lifetime of the sensor network. As already mentioned
for the sensor placement sub-problem, our approach
focuses on a single objective in order to offer a more
performing solution.

In order to simplify the further reading of the paper,
we present below the table of notations.

III. Sensor placement problem

In this section the goal is to find the network
dimensioning where the sensors consume the least
energy in transmitting their data to the destination.
Given a number of source nodes at a distance d
from the BS, the sensor placement problem is to
determine the number of sensors and their respec-
tive positions from the BS such that the total energy
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Figure 2: The multihop transmission for linear network

consumption is minimized. In Section III-A we solve
the problem for a linear topology. This type of topology
has applications in border surveillance, highway traffic
monitoring and oil pipelines. Subsequently, in Section
III-B we generalize the problem to the two dimensional
network in which a given number of source nodes are
placed in the surveying area.

A. Linear network

Here we assume that the sensors will be deployed
in a linear network as in Fig. (2).

The energy model that we use to estimate the energy
consumed by them is proposed in [? ]. ETX denotes
the energy used for transmitting and ERX the energy
used for receiving, as in equation (1).{

ETX = (Eelec + Eampdγ) · B
ERX = Erec · B

(1)

In these equation, d corresponds to the distance of
communication. However, practically the sensor range
of communication is upper limited by Txmax. Besides
the energy spent for receiving and transmitting the
data, sensors consume energy also in the idle mode.
At this stage, we assume that the MAC protocols
guarantee perfect synchronization and successful trans-
missions between sensors, therefore we do not take
the idle energy into consideration. For this problem
we examine two scenarios: (a) the source sensor node
has to send data to the BS and all the intermediate
sensor nodes act simply as relaying nodes and (b)
the intermediate sensors add their own information
before relaying. Fig. 2 illustrates these two cases
for the linear network. The solution for scenario
(a) places the sensors equidistantly (see [? ]). While
obtaining an optimal solution for this first scenario
is fairly straightforward, solving the second is more
complex. The problem corresponding to scenario (b)
is formulated as follows:
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Table II: Table of notations

Type Parameter Description

Network
d Network length.

R Network radius.

x Network length from the source.

ki = xi
d Ratio between the sensors’ distances.

n Number of hops, deployment problem.

Number of cells, network configuration problem.

γ0 The angle between two nodes in the uppermost circle.

r Ratio between the nodes in two consecutive circles.

li Transmission range for nodes in the ith circle.

Ni
Number of nodes placed in the ith circle, deployment problem.

Number of zones in the ith corona, network configuration
problem.

Application
β Data generation rate in bps

α Data traffic per node in Erlang

ε A very small constant

m Compression ratio

c Coefficient c = α · β
fn(d) The total energy function for a network with a length (d) and

n hops.

δy = 1 Distance discretion

Energy

Eelec Energy/bit consumed by the transmitter electronics.

Eamp Energy/bit consumed by the amplifier.

Erec Energy/bit consumption of the receiving circuitry

Eidle Energy consumption during the idle mode.

B Number of bits

Txmax Maximal transmission range

γ Path loss exponent [2− 6]

L = {l1, l2, · · · lm} Discrete distance transmission of a sensor

E = {e1 , e2 , · · · em} Discrete energy transmission of a sensor

Problem Definition P1.
Input : A source node at distance d from the BS
has to transmit its own information to the BS
across n intermediate nodes such that:
• every intermediate node (sensor) transmits

to the downstream neighbor its own infor-
mation as well as the information received
from the upstream neighbor;

• the information is not aggregated.
Objective : Minimize total energy consumption.
Output : The number n of intermediate nodes
and their respective distances di 1 ≤ i ≤ n from
the source node.

We remark that the total energy consumption func-
tion is convex (the proof is omitted on this paper),
therefore it exists a global minimum of energy. In
contrast to the first scenario, in this problem each
intermediate node adds a given amount of traffic

(see Fig. 2 scenario (b)). Two parameters have to be
calculated, namely the number of relaying sensor
nodes and the distances between them, in order to
attain the minimum of the associated energy function.
The difficulty and the combinatorics of this problem
lie in the interdependence of two terms: the number
of intermediate nodes and the respective distances
between them. Nonetheless, there is a nice property
regarding these parameters.

Let us suppose that xn is the optimal location of the
last relay node in a linear network of length d where n
relay nodes are employed. Given the energy formula
(1), it can be shown that the value kn = xn/d does not
depend on the distance d. The following proposition
holds:

Proposition 1. ki values depend only on the number n
and not on the distance d.

Proof: This result can be proved by mathematical
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induction on the number n. Let us take n = 1. Clearly,
the energy function associated with the transmission
through an intermediate sensor placed at x1 is at a
minimum when the derivative is 0. The energy function
is of the form

α1(x1)γ + α2(d− x1)γ + ζ = α1dγ(k1)γ + α2dγ(1− k1)γ + ζ
(2)

where α, β and ζ are constants. The derivative gives
α1dγγ(k1)γ−1 − α2dγγ(1− k1)γ−1. Simple calculations
show that this function attains 0 for some k1 =

1
(α1/α2)1−γ+1

that depends only on the values of α1, α2

and γ. The same reasoning can be applied to any
higher n, provided that the result holds for n − 1.
Then, from the recurrence assumption we can deduce
that also for some n the energy function is similar
to the energy function given in (2) (apart from using
other constants). Let explain this in details below. We
suppose that n sensors are placed between the source
and the BS and xi give the distance of sensor i from
source. Then, the energy formula has the following
form:

(3)
α1(x1)γ + α2(x2 − x1)γ + α3(x3 − x2)γ

+ · · · + αn−1(xn−1 − xn−2)γ

+ αn(xn − xn−1)γ + βn(d − xn)γ + ζn

As we are looking for minimum energy formula,
the placement of x1 to xn−1 is done optimally and
the recurrence hypothesis applies. Hence, we have
xn−1 = kn−1 · x, xn−2 = kn−2 · kn−1 · x, ..., x1 = k1 ·
k2 · · · kn−2 · kn−1 · x. Replacing xi in formula (3), we
obtain an energy formula similar to (2):

α′(xn)γ + β′(d− xn)γ + ζn = α′dγ(kn)γ + β′dγ(1− kn)γ + ζn
(4)

Then we can therefore apply the same schema as for
n = 1 which ends the proof.

We will consider in the following the case with γ = 2.
The objective function representing the overall energy
consumption of the network is given by equation
(5). It is obtained by summing the energy expended
by all sensors according to equation (1). Regarding
the sensors, we assume that n sensors are placed
respectively at distances d1, d2, · · · , dn and each of
them generates one unit traffic.

(5)E(n,d1 ,d2 ,···dn) = (Eelec + Eampd2
1) + Erec + 2(Eelec + Eampd2

2)

+ · · · + nErec + (n + 1)(Eelec + Eampd2
n)

We solve this problem using a dynamic program-
ming approach. Let us first briefly recall the principle
of Dynamic Programming (DP). DP is a sequential
approach, proposed by Bellman [? ] for optimizing a
given objective function. The problem is thus broken
down into stages and the aim at every stage is to
select the optimal decision so that the objective is
optimized over the current number of stages. Hence,
in each stage we solve only once the corresponding

subproblem. The results of each stage are stored and
later used to backtrack the optimal values. The most
typical example of a DP implementation is the shortest
path. If the path (A− > B− > C) is the shortest path
between the points A and C that passes through B,
then AB is evidently the shortest path between the
points A and B.

More particularly, our problem is separated into
stages determined by the number of intermediate
sensor nodes (or by the number of hops). At some
stage n we determine the minimum energy necessary
for transmitting the information if n sensor nodes are
placed between the source node and the base station,
using the energy values obtained from the previous
stage. The optimal solution for an instance of a problem
with n hops and a given distance d can be seen as
equivalent to the optimal solution for some distance
x < d and n− 1 hops, plus a final hop from this point
(x) to the BS. Let fn(d) denote the minimum energy for
transmitting from the source node to the BS where the
information passes through n intermediate relaying
nodes that add their own information to the flow (
Figure 2 scenario (b)). Applying this principle to our
problem we obtain the following energy recurrence
formula:

(6)
fn(d) = min

0≤x≤d
(d−x)≤Txmax

{
fn−1(x) + (n − 1)Erec + n

·
(

Eelec + Eamp(d − x)2
)}

where fn−1(x) is the minimum energy used over a
distance x from the source, passing through n − 1
intermediate sensors, and the remainder of the formula
represents the energy added by the nth sensor placed
at x. We note that at each step n we only need to
know the minimum value for the energy function
fn−1(x), 0 ≤ x ≤ d. Moreover, the distance d should
be updated (d = d − Txmax) if the distance (d − x)
becomes bigger than Txmax. In the following, we will
analyze the problem for a distance d and assuming
that in each step the the transmission range will not
overpass the maximal transmission range. Hence, we
start with { f1(x)|0 ≤ x ≤ d}, and build the energy
function recursively for the upper levels. In our case
the problem can be solved analytically. We begin by
expressing the function fn−1(x) included in the right-
hand term of equation (6) through fn−2(x), and so
on. Then, we replace fn−1(x) by the obtained recursive
expression in (6) and derive the right-hand term, which
allows us to find fn(d). Let us assume that we have
0 ≤ xn−1 ≤ x such that:

fn−1(x) = fn−2(xn−1) + n · Eamp(x− xn−1)2

+nEelec + (n− 1)Erec .
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Let kn−1 denote xn−1
x . We have:

fn(d) = min0≤x≤d { fn−2(x · kn−1)

+nEamp(1− kn−1)2x2 + nEelec + (n− 1)Erec

+(n + 1)Eamp(d− x)2 + (n + 1)Eelec + nErec}.

By developing further we obtain the following recur-
sive formula for fn(d):

fn(d) = min0≤x≤d {∑n−1
l=0 ((l + 1)Eamp(1− kl)2

·∏n−1
p=l+1 k2

p · x2) + (n + 1)Eamp(d− x)2

+ ∑n
k=1 ((k + 1)Eelec + kErec)}.

(7)

Considering the derivative function of (7) with
respect to x and using the result of Proposition 1,
which proves the independence of kp with respect to
x, we obtain:

n−1

∑
l=0

(l + 1) · (1− kl)
2

n−1

∏
p=l+1

k2
p

 · x + (n + 1)x = (n + 1)d. (8)

From (8) we find that the minimum of the right hand
term of (7) is attained for the value of x = kn · d where

kn =
n + 1

∑n−1
l=0 (l + 1) · (1− kl)2(∏n−1

p=l+1 k2
p) + n + 1

(9)

Hence, we deduce:

fn(d) = ∑n−1
l=0 (Eamp(l + 1)(1− kl)2 ·∏n−1

p=l+1 k2
p · (knd)2)

+(n + 1)(1− kn)2d2 + Eelec(n + 1)(n + 2)/2

+Erecn(n + 1)/2

= Eampd2 ∑n
l=0(l + 1)(1− kl)2(∏n

p=l+1 k2
p)

+Eelec(n + 1)(n + 2)/2 + Erecn(n + 1)/2.
(10)

This formula generalizes the work of [? ] aimed at
finding the most energy efficient position for a sensor.
Values kp for any p do not depend on the distance
d (Prop. 1) and can be computed beforehand like in
formula (11).

kp =
j + 1

∑
j−1
l=0 (l + 1) · (1− kl)2(∏

j−1
j=l+1 k2

j ) + j + 1
(11)

For scenario (b), these values are k0 = 0, k1 = 2/3 =
0.66, k2 = 9/11 = 0.82, k3 = 0.88, and so on. Then, given
the distance d between the source node and the BS
we can compute the distance from the source node for
each intermediate node (see also Fig. 1, scenario (b)).
Finally, from Formula (10), we deduce the minimum
amount of energy used for problem P1. Given the
above, the following proposition holds:

Proposition 2. For any distance d and number of interme-
diate nodes n for problem P1, the total energy consumption
is minimized when each intermediate node i is placed at
distance xi, calculated by formula xi = ∏n

p=i kpd, with
coefficients kp computed according to (11).

We simply need to calculate fk(d) iteratively for k > 0
and stop for n such that fn+1(d) ≥ fn(d).

In Fig. 3 we show the behavior of the energy function
for d = 100 and 250m when the number of intermediate
sensors is made to vary. In this work, the numerical
results are calculated using Matlab 7.11.0. In Fig. 4 the
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Figure 3: Energy versus the number of relay sensors for d = 100
and d = 250 meters

graphics present the optimal number of sensors versus
distance for the two scenarios (a) and (b). The number
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Figure 4: Optimal number of sensors

of hops obtained for scenario (a) is larger than for (b).
This is because each additional hop for scenario (b)
increases the traffic to be transmitted and hence the
energy function. In other words, in contrast to scenario
(a), decreasing the number of hops for scenario (b) may
lead to energy conservation at a certain level. The main
interest of scenario (b) is that for minimum energy
consumption and a given number of hops n we know
the distances between the relaying nodes exactly, as
shown in Fig. 1.b). Furthermore, the distances from the
base station are proportional to a constant sequence
of n values determined by k1, k2, ...kn.

B. Two-dimensional network

In this section, we extend the study to a two-
dimensional network. Here, we assume that the nodes
will be uniformly placed in circles. The general prob-
lem is defined as follows:
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Problem Definition P2.
Input : We have N0 sensor nodes uniformly de-
ployed according to a circle with radius R from the
BS, which need to transmit their information to the
BS. We assume that:
• the information is transmitted through several

relaying nodes placed on intermediate circles.
Each intermediate node transmits the traffic
received from the upstream neighbor;

• all sensors placed in the same circle will trans-
mit with the same transmission range;

Objective : Minimize the total energy consumption.
Output : The distance di from the BS, for all
intermediate circles i and the number of nodes in
each circle.

For the above problem, we use an aggregation model
proposed in [? ], which has the form y = mx + c where
x and y are the node input and output information
quantities respectively, m varies in [0, 1] and c is a
constant. For the sake of simplicity, we assume that
each node will generate an unit traffic.

The total energy consumption for a scheme with
N0 sensor nodes placed in the outer circle and N1
other nodes placed in an intermediate circle is given
in equation (12).

E = Eouter + Einner with :

Eouter = N0
(
Eelec + Eamp · l2)

Einner = N0Erec + N1
(
Eelec + Eampd2) (12)

where l is the transmission range of the sensors
belonging to the outer circle (path loss exponent is
equal to 2). Hence, Eouter is the energy expended by
N0 nodes of the outer circle, and Einner is the energy
expended by N1 = N0

r nodes placed in the inner circle.
To calculate the transmission range l (Fig. 5) we apply
the cosine formula (13) on the triangle delimited by
sides of length R, d and l:

l2 =
(

d2 + R2 − 2Rd cos(
r− 1

2
γ0)
)

(13)

in which γ0 gives the angle between two successive
sensors in the outer circle and the BS (i.e. γ0 = (2 ·
π)/N0). As it can be observed, we have r nodes of the
outer circle that will transmit to a node in the inner one.
This is why the variable r has to take integer values.
The equation (13) is true for every even or odd value
of r. Moreover, as we assume that the transmission
range of the nodes in the outer circle is the same for all
the nodes, the distance l is computed as the maximal
distance between a sensor in the outer circle and his
respective receiver in the inner circle.

Using the same reasoning as in the linear case, and
considering the energy function in (12), we find that
the minimum energy consumption is attained for some
r such that:

r2 sin(
r− 1

2
γ0) =

Eelec + Eampd2

dREampγ0
.

Unlike the linear network case, the problem with
traffic aggregation is difficult to solve analytically
by the DP method. We opt for a method based on
parameter discretization of the distance and the number
of sensor nodes associated with the distance from the BS
respectively, and apply the DP principle. Hence, for
a given number of sensors N placed uniformly at
distance d from the base station, with n intermediate
levels up to the BS, we compute the energy function
using the following recursive formula:

En
d,N = minx≤d,P≤N {( m·N

P + 1) · En−1
x,P + NEelec + NErec

+NEamp(d2 + x2 − 2dx cos(
N
P −1

2 γ0))}
(14)

Here the variables x and P correspond respectively to
the distance and the the number of sensors in the level
n− 1. Based on the DP algorithm, the energy of the
n− 1 level, En−1

x,P , is optimal. We add the energy added
by the nth hop which consists of the transmitting and
receiving energy of N sensors placed at the distance
d to P sensors in the distance x. The coefficient m
determines the aggregation data ratio, where the two
extreme cases are with aggregation (m = 0) and
without aggregation (m = 1). In each step (the step
is determined by the number of hops) we build a
matrix containing the energy values for an interval of
distances x ≤ d and number of sensor nodes P ≤ N.
Hence, we begin by computing the first matrix E1

containing values of {E1
d,N |d ≤ R, N ≤ N0}. This

corresponds to the case when nodes transmit directly
to the BS. In the next step, from the recursive formula
(14) for which n = 2 (that is, a single intermediate
circle), we calculate all {E2

d,N |d ≤ R, N ≤ N0} values.
We continue like this with {En

d,N |d ≤ R, N ≤ N0} for
subsequent values of parameter n. We stop the calcula-
tions when we reach some n such that En−1

R,N0
≤ En

R,N0
,

as shown in Algorithm 1.
At the end of the computations we obtain the

number of intermediate levels (n), or the number
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Algorithm 1: 2D network
Input: The number of nodes N0, Radius R, Max

transmission range Txmax;
Output: Number of intermediate circles n,

Minimal energy E;
Initialization : {E1

d,N |d≤R,N≤N0}, n=1;
repeat

Calculate {En+1
d,N |d≤R,N≤N0} matrix:

En+1
d,N =minx≤d,P≤N {( m·N

P +1)·En
x,P+NEelec+NErec

+NEamp(d2+x2−2dx cos(
N
P −1

2 γ0))}

Calculate the transmission range lk according
to 15;

if (lk>Txmax) then
lk=Txmax

n←n+1;
until En−1

R,N0
≤En

R,N0
;

display n,E.

of hops necessary to achieve a minimum energy
scheme. From this we can derive as well the number
of nodes (Nk) and the distance (dk) from the BS for
each k intermediate level. These values are stored in
the matrix Ek

d,N of the Algorithm 1. The associated
transmission range can now be calculated for nodes
in each k intermediate circle using formula (15):

lk =

√
d2

k + d2
k−1 − 2dkdk−1 cos(

Nk
Nk−1
− 1

2
γ0) (15)

The following proposition holds:

Proposition 3. For any given number of sensors N0
placed at a distance d from the BS, problem P2 can be
solved through dynamic programming using the recurrence
formula (14).

The case in which the nodes act only as relaying
nodes2 is easier. The nodes will transmit to the BS
via the shortest path. The number of nodes on each
intermediate circle will be the same as for the outer
circle (N0) and the distances from the BS are the same
as with scenario (a) for the linear network.

1) Numerical results for the 2D Network: Numerical
results are provided in table III to illustrate the
application for both algorithms with a radius R = 100m
and the number of nodes N0 = 50 and N0 = 60.

Regarding the first algorithm, we stopped at the
fourth iteration for the scenario with N0 = 50. We
remark that in this case only four hops are necessary
to transmit the information to the BS with minimum
energy, whereas for N0 = 60, one additional hop is
needed. On the other hand there are less hops for
Algorithm 2 applied to the same scenarios. This is

2The sensor will neither generate nor aggregate the data traffic
but simply forward it.

Table III: Energy values (in 10−4 J) for each n

With Aggregation Without Aggregation
N0 = 50 N0 = 60 N0 = 50 N0 = 60

n = 1 0.5250 0.6300 0.5250 0.6300
n = 2 0.1641 0.1855 0.3669 0.4351
n = 3 0.1280 0.1414 0.3895 0.4587
n = 4 0.1249 0.1334 - -
n = 5 0.1253 0.1326 - -
n = 6 - 0.1337 - -

obvious as the intermediate nodes increase the traffic
load.

However, the above model remains essentially theo-
retical, because in real world applications a node may
receive and transmit a certain quantity of traffic based
on a network traffic pattern or the nodes can be already
deployed and one needs to take decisions only for the
range assignment. Nevertheless, it may be useful to
calculate the lower bounds of energy consumption.
This work gives a solid basis for tackling the topology
control problem, which is discussed in the following
section.

IV. Topology control problem based on power

control

In some WSN applications the sensors may be
already deployed in the monitoring area, the require-
ment being to transmit the data as energy-efficiently
as possible. Here the problem is how to configure the
network so as to meet this objective. Configuring a
linear network involves creating a feasible division of
the network into cells and determining their respective
sizes (see Fig. 6). In the case of a two-dimensional
network, the problem involves not only dividing the
network into coronas of different lengths, but also
subdividing these coronas into different zones (see Fig.
9). Regarding these objectives, we consider two strate-
gies: (i) minimizing the overall energy consumption in
the network (which we shall call Strategy 1) and (ii)
guaranteeing a fair allocation of energy consumption
between the sensors (which we shall call Strategy 2).

In this section we adapt the mathematical model
used for the sensor placement problem to solve the
topology control problem. We propose a method for
optimally solving this problem under different condi-
tions of traffic load. Finally, we show how to adapt
the method to different energy consumption models
without increasing the computational complexity of
the solution.

A. Linear network
We consider a linear network with a length d from

the BS, where the nodes are uniformly distributed,
as in Fig. 6. The network will be divided into cells. The
transmission structure is quite similar to the cluster-
based scheme. For any cell there will be only one node,
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Figure 6: Network model

known as the cluster head, which receives the informa-
tion from the other nodes in the same cell and from
the cluster head of the upstream cell. The transmission
range of a sensor corresponds to the length of the
respective cell. Communication between sensors can
be guaranteed as the sensors deployment is dense and
the length of each cell can not exceed the maximal
transmission range Txmax. The received data are then
transmitted to the cluster head of the downstream
cell without performing any type of aggregation. The
network model considered here is proposed in [? ]. We
assume that each node has α Erlang of traffic, and the
radio data rate is β bps. Regarding the data aggregation
model (see sectionIII-B), we take c = α · β and m = 1.
The nodes are uniformly distributed with a density
nd. The ith cell in the network (Figure 6) will consume
a quantity of energy equal to ETX when transmitting
the information (see equation (16)).

ETX(i) = (Eelec + Eamp · (xi − xi−1)γ) · xindαβ (16)

where xi and xi−1 are the distances of the ith and
(i − 1)th cells respectively and γ as before presents
the path loss exponent. As regards the reception of
information, the energy consumed by the ith cell when
receiving is expressed by equation (17).

ERX(i) = Erec · xi−1ndαβ (17)

Besides the energy dissipation for receiving and
transmitting, we take into account the energy spent
during the idle state noted as Eidle. Based on the
network model presented in [? ], the idle energy for a
cluster head of the ith cell is calculated as follows:

EIdle(i) = Eidle · (1− 2xi−1ndα) · β (18)

Here it is assumed that each node requires a time
window equal with (δt) to transmit its own data. For
receiving all the data, a cluster head of the ith cell
needs a time3 equal to (xi−1ndδt). If T is the time of
a round for the data collection, then the time the
cluster head passes in the idle mode is (T − 2xi−1ndδt)
and the division with T leads to (1− 2xi−1ndα). The
network configuration problem consists in determining
the optimal number of cells and the length of each cell
such that (i) the total energy consumption is minimized

3The cluster head will spend the same time either for receiving
or transmitting the data.

(Strategy 1) and (ii) energy fairness is obtained by
ensuring that every cell in the network consumes the
same amount of energy (Strategy 2). So far we have
assumed that the node transmission energy depends
on the communication distance. Since real sensors
have discrete levels of power transmission we focus on
minimizing the total energy consumption of nodes in
the linear network using only discrete energy values.
More specifically, given a linear network, we need
to find the optimal number of cells, together with
their respective distances, that guarantees not only a
lower bound of energy consumption, but also energy
balancing between cells or the minimizing of energy
consumption for discrete energy levels (in IV-A1). As
we can see, for any of these problems the number of
possible combinations is exponential, and therefore we
propose a method based on dynamic programming.

1) Optimization criteria for the linear network:
a) Total energy minimization: Here the objective

is to minimize the total energy consumption for the
linear network presented in IV-A. The total energy
consumption function is convex, therefore it exists a
global minimum of energy. We have proved the con-
vexity of the function but for reason of space we have
omitted it in this paper. As in the previous scenarios,
the problem can be separated into a number of stages
depending on the number of cells. At some stage n
we determine, using the energy values obtained from
the previous stage, the minimum energy necessary to
transmit the data. Hence, the optimal solution for an
instance of a problem with n cells and a given distance
d can be seen as equivalent to the optimal solution for
some distance x < d and n− 1 hops, plus a final hop
from this point (x) to the BS. In the nth iteration, the
distance (d− x) represents the length of the nth cell.
The Algorithm 2 begins with n = 1 which assumes
that all the nodes transmit with a range d. Next, n
is incremented and for each distance y (1 ≤ y ≤ d)
the best division is depicted by x. Importantly, when
the optimal n is found out, the x value is identified
as well. We backtrack all the xi values for each stage
ni to construct the whole solution and the difference
(xi− xi−1) represents the length of each cell. The energy
added by the last hop E(y− x) is calculated according
to formula (19).

(19)E(y − x) = e1 + e2 + e3 + e4

where:
e1 = Erec · xndαβ

is the energy spent for receiving the data of the
upstream cell,

e2 = (Eelec + Eamp(y − x)γ) · yndαβ

gives the energy dissipated by the cluster head to
transmit all the collected data,

e3 = (Eelec + Eamp(y − x)γ + Erec) · (y − x)ndαβ
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Algorithm 2: Strategy 1

Input: Distance d, node density nd;
Output: Optimal number of network division n,

Minimal energy E;
Initialization : {E1

y |y≤d}, n = 1;

repeat
for y←1 to d do

En+1
y =∞;

for x←1 to y−δy do
En+1

y ←min{En+1
y , En

x +E(y−x)}

n←n+1;
until En−1

d ≤En
d ;

display n,E.

corresponds to the energy consumed for transmitting
and receiving the data of the other sensors deployed
in the cluster,

e4 = Eidle · (1− 2xndα) · β

and finally the e4 is the energy spent during the idle
state. Note that En

y represents the total energy con-
sumption where the network length is y and divided
into n cells. The distances x and y are discretized using
a distance discretization step δy. The initialization
phase of the algorithm requires O(y/δy) computations
to construct the vector En

y . The calculation procedure
costs at most O

(
(y/δy)2) and it will be repeated

n times. Finally, the computation complexity of the
algorithm is O(n · (y/δy)2).

Remark 1. Energy minimization with discrete transmis-
sion levels

In the above strategy while using the energy model
described in (1), we estimate the sensor transmission
energy according to the exact distance of transmission.
However, the transmission power of sensor nodes is
discrete and therefore it takes only some given values.
In this section, we provide Algorithm 3, a modified
version of Algorithm 2, which addresses this problem.

In the Algorithm 3, the term (E dy− xe) is com-
puted using equation (19) while the formula of the
transmission energy is modified. Hence, (dy− xe) is
matched with the closest element4 of the list L. We
associate to each distance li from the list l a power
vale ei belonging to list e. Then, the terms e2 and e3 of
the equation (19) will be computed using the ei power
values as following:

e2 = ei · yndαβ

and
e3 = (ei + Erec) · (y − x)ndαβ

4We use the ceiling value of the distance (y− x) to ensure that
the closest matched element in the list L is not less than (y-x).

Algorithm 3: Energy minimization with discrete
transmission levels

Input: Distance d, node density nd, the list of
energy power levels e={e1 ,e2 ,...en}, the
corresponding list of the respective
distances L={l1 ,l2 ,..lm};

Output: Optimal number of network division n,
Optimal cell sizes x, Minimal energy E;

Initialization : {E1
y |y≤d}, n = 1;

repeat
for y←1 to d do

En+1
y ← min 0<x<y

dy−xe∈L
{En

x + E dy− xe }

n←n+1;

until En−1
d ≤En

d ;

display n,E.

b) Energy fairness: In order to avoid the energy
hole problem, we need to guarantee that each node
in the network will consume the same amount of
energy, independently of the quantity of received and
generated data. This is the motivation behind our
second strategy which seeks to ensure the equitable
expenditure of energy in the network. One way to
solve this problem is to divide the network into k cells
and write a system of k equations, where for each cell
the total energy consumption Ei is given by equation
(20).

Ei = (Eelec + Eamp(xi − xi−1)γ) · xindαβ

+(Eelec + Eamp(xi − xi−1)γ) · (xi − xi−1)ndαβ

+Erec · ndαβxi−1 + Eidle · (1− 2xi−1αnd) · β
(20)

The equation ∑k
i=1(xi − xi−1) = d enables us to have

k equations and to find all the variables xi for all
i ∈ 1 . . . k and E. However, this method proposed in [?
] needs to solve a system of k nonlinear equations for
k cells. Instead, we propose Algorithm 4, also based
on the dynamic programming method.

Here En
y represents the total energy consumption

while
En

y
y·nd

is the average energy consumption of a
sensor in a cell5 when the network of length y is
divided into n cells. E(y− x) is the energy added only
by the last hop (see equation (19)). The ratio E(y−x)

(y−x)·nd
calculates the sensor node energy consumption for the
last cell. The IF condition in the algorithm identifies
the solutions which guarantee a fairness dissipation of
energy with a given threshold. The algorithm works
as follows: it finds the network division (xi values) for
a given n such that energy is balanced. Next, it repeats
this procedure till it reaches the n which minimizes
the total energy consumption. At the end of execution,

5The sensors in all cells will consume an identical amount of
energy.
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Algorithm 4: Strategy 2

Input: Distance d, Node density nd, Coefficient ε;
Output: Optimal number of network division n,

Minimal energy E;
Initialization : {E1

y |y≤d}, n = 1;
repeat

for y←1 to d do
En+1

y =∞;
for x←1 to y−δy do

if ( En
x

x·nd
− E(y−x)

(y−x)·nd
<ε· E(y−x)

(y−x)·nd
then

En+1
y ←min{En+1

y , En
x +E(y−x)};

n←n+1;
until En−1

d ≤En
d ;

display n,E.

the algorithm displays the number of cells and the
total energy consumption while the length of each cell
is found by backtracking the xi values.

2) Numerical results: We tested our algorithms with
respect to optimization strategies 1 and 2 and com-
pared their results with the best case of uniform cell
division. Uniform cell division means that the network
is divided into n equal size cells, and the best case
corresponds to the n that minimizes the energy value.
The results of total energy consumption for the three
cases with respect to the distance are shown in Fig 7.
For this simulation we set the simulation parameters
as shown in Table IV.

Table IV: Simulation parameters for the linear network

Type Parameter Value

Network
Network Length 200 ∼ 2000m

Node distribution Uniformly

Node density 0.4

Application
Data generation rate β 485 bps

Data traffic per node α 0.003 Erlang

ε 0.07

Compression ratio m = 1 | c = α · β

Energy

Eelec 50nJ/bit

Eamp 100pJ/bit/m2

Erec 50nJ/bit

Eidle 40nJ/bit

γ 2

L = {l1 , l2 , · · · lm} [20, 40, 60, 80] in meters

E = {e1 , e2 , · · · em} [0.09, ..., 0.69] · 10−6J/bit

Method Distance discretization δy = 1

We notice that strategies 1 and 2 outperform the best
case of uniform cell division considering the overall
consumption energy. If we zoom out the results for
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Figure 7: Energy consumption

the extremity points taken in our simulation (200m
and 2000m), the strategy 1 consumes 15% (resp. 36.2%)
less energy than uniform cell division for 200m (resp.
2000m). On the other hand, strategies 1 and 2 divide
the network such that the energy consumption is more
balanced compared to the uniform one. Strategy 1
gives a lower bound for total energy consumption,
but remains comparable to Strategy 2. For a network
with a distance of 200m (resp. 2000m) the difference
is around 4% (resp. 4.5%) in energy saving compared
to Strategy 2.

Table V gives the cell divisions, beginning with the
cell closest to the Base Station, generated by strategies
1 and 2. We notice that these strategies yield different
network scenarios, even where they both have the same
optimal number of cells. As the distance increases,
the configuration scenarios different more obviously
from each other. The radio parameters also strongly
influence this behavior.

Network length Network Division

(250 m ) Strategy 1 Strategy 2 Uniform

cell 1 35 36 41.66

cell 2 37 37 41.66

cell 3 39 40 41.66

cell 4 42 42 41.66

cell 5 47 45 41.66

cell 6 50 50 41.66

Table V: Linear network configuration

As expected, for the energy discretization problem
the sensors consume more energy. For this simulation
we assume that each node can achieve the distances
L = l1, l2, . . . , lm using the respective energies E =
e1, e2, . . . , em. Fig. 8 shows that the continuous energy
value still remains an acceptable approximation of
energy behavior (the gap between the discrete and the
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continuous case reaches 6% for 400m). Energy does
not diverge between the discrete and continuous cases,
regardless of the distance, given that they both use the
same energy model.
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Figure 8: Energy discretization

B. Two-dimensional sensor network

The second problem considered here is the two-
dimensional sensor network configuration problem.
We assume that the sensors are uniformly distributed
in a circular monitoring area. There is only one sink,
positioned at the center of the zone.

The sensors will transmit their information accord-
ing to a many-to-one traffic pattern using a multihop
scheme. Total energy consumption will be minimized
by optimally dividing the area into concentric coronas
C1, C2, ...Cn centered at the sink and then subdividing
each corona into a given number of zones. Fig. 9
gives an example of network division with 3 coronas
containing respectively 1, 4 and 8 zones. Moreover,
the length of every corona can be varied. For each
zone there is only one sensor, the cluster head, that
is able to receive information from other sensors in
the zone, aggregate this information and transmit it to
the downstream zone closer to the BS. We assume
that any sensor in the zone is a potential cluster
head. Notice that we can easily shift from this model
to a specific-sensor placement model in which the
cluster head position must be explicitly determined
by adapting the radio transmission range allocated to
each zone. In accordance with the aggregation model
introduced in Section III-B, here we analyze the case
with m = 0 in which a node will totally aggregate
the information and transmit only a fixed amount
of information. If we assume that no aggregation of
sensor information will be performed by the cluster
heads then the problem is reduced to the linear
network case, because sensors will choose the shortest
path when transmitting information. Finally, for the
network model as described above, the questions to
be answered are:
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Figure 9: Two-dimensional network

• What is the optimal number of coronas that
minimizes energy across the whole network?
What are their respective radii?

• What is the optimal number of zones that a corona
is divided in?
Here we assume that each zone has a cluster
head that will aggregate the traffic and transmit it
towards the cluster head of the downstream zone
closer to the BS. For the sake of the simplicity, the
idle energy is not considered for this problem.

1) Optimization criteria:
a) Minimal energy consumption - Strategy 1: The

problem for a two-dimensional network with traffic
aggregation is more complex than the linear case. We
opt once again for a method based on parameter
discretization of the radius and the number of zones
for each corona respectively, and apply the dynamic
programming principle. We assume that the sensor
network has an uniform node distribution nd and each
sensor generates a constant traffic α · β. Hence, for a
such network with radius R and number of zones N,
we apply Algorithm 5.

In the initialization phase, the algorithm computes
the energy spent in a simple cell (N = 1) in which all
the sensors transmit their information directly to the
BS using the same transmission range y. The energy
values for the first vector E1

y,1 are computed according
to formula (21).

E1
y,1 = (Eelec + Eamp · yγ) · ndπy2αβ (21)

In the next step, the number of coronas is two (n = 2)
and the algorithm computes the matrix {E2

y,Q|(y ≤
R, Q ≤ N)}. For each n coronas’ number, a new matrix
{En

y,Q|(y ≤ R, Q ≤ N)} is generated where N gives
the maximal number of the zone divisions of the last
corona. The elements of each matrix for a given n
are computed based on the dynamic programming
principle where the last hop term is represented by
E(y− x, Q− P) and computed according to formula
(22). Here (y− x) gives the length of the last corona
and Q (resp. P) gives the number of zones in the last
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Algorithm 5: Network area configuration - Strategy
1

Input: Node density nd, Network area radius R,
Maximal number of zone divisions N,
Generated traffic per node αβ;

Output: Minimal energy E, Optimal number of
coronas n;

Initialization :
{

E1
y,1|y≤R

}
, n=1;

repeat
for ((y←1 to R) and (Q←2 to N)) do

En+1
y,Q =∞;

for ((x←1 to y) and (P←2 to Q)) do

En+1
y,Q←min{En+1

y,Q , En
x,P+E(y−x,Q−P)}

n←n+1;
En

y←minQ≤N{En
y,Q};

until En−1
R ≤En

R;

display n,E.

(resp. last but one) corona. A simple illustration is
given in Fig. 9.

E(y− x, Q− P) = Q · f1(y, x, P) + f2(y, x, Q) (22)

where:

f1(y, x, P) =
(
Eelec + Eamp · (Rt(y, x, P))γ + Erec

)
· αβ (23)

with

Rt(y, x, P) =
(

y2 + x2 − 2yxcos(
2π

P
)
) 1

2

(24)

Equation (23) gives the energy used by the cluster
head of each zone in the nth corona to transmit the
information towards the next cluster head closer to
the BS while using a transmission range defined by
the Rt(y, x, P) function. As in the sensor placement
problem, the transmission range is calculated based
on the cosine formula. However, in this problem we
do not know the cluster head placement, therefore
we consider the maximal angle for computing the
transmission range which depends only on the number
of zones P of the precedent level n− 1.

f2(y, x, Q) =
(

Eelec + Eamp
(

Rt(y, x, Q)
)γ + Erec

)
· ndπ(y2

− x2)αβ

(25)

Equation (25) gives the energy consumed by all
the sensors in a corona for performing intra-zone
transmissions6. Regarding algorithm 5, we calculate the
matrix {En

y,Q|(y ≤ R, Q ≤ N)} for subsequent values
of parameter n. Next, we find the En

R which is the
minimal value of the last row of the matrix {En

R,N}. We
stop the calculations when we reach some n such that
En

R ≤ En+1
R . During the execution of the algorithm we

6Intra-zone transmissions include the receiving and transmitting
operations inside a zone between the cluster head and the other
sensors in the zone.

keep track of those values (xi , Pi) that allow to achieve
the minimum of energy at the current iteration. The
solution can then easily be built by backtracking these
stored values. At the end of the algorithm we obtain
the optimal number of coronas for minimum energy
consumption, as well as the number of zones for each
intermediate corona and the corresponding radius.

For the simulations, the nodes are uniformly de-
ployed in the circular area and generate a constant
amount of traffic. The cluster head of each zone aggre-
gates all the information that it receives and transmits
a constant amount of traffic to the closest cluster head.
Table VI lists the system configuration parameters in
detail whereas the values of the energy model are given
in Table IV. For these parameters, some experimental
results for Algorithm 5 are presented in Table VII. As
we can observe, the optimal number of coronas is 9,
and the algorithm determines the radius of each corona
and the number of zones, both of which decrease
uniformly.

Table VI: Simulation parameters

Type Parameter Value

Network
Area radius 50m - 300m

Node distribution Uniformly

Node density 0.02

Application
Data generation rate β 100 bps

Data traffic per node α 0.003 Erlang

ε 0.07

Compression ratio m = 0 | c = α · β

Cell sizes Algorithm results

Radius of each Number of zones
corona from the BS

corona 9 100 27

corona 8 90 24

corona 7 80 21

corona 6 70 18

corona 5 60 15

corona 4 50 12

corona 3 40 9

corona 2 30 6

corona 1 22 1

Table VII: Optimal configuration for overall energy
consumption, network radius R = 100m

The energy consumptions of the whole network
for different network radii and node densities are
presented in Fig. 10.

b) Energy fairness - Strategy 2: Assuring energy
fairness between the network clusters is an alternative
objective to minimizing total energy consumption.
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Figure 10: Energy versus network area radius

Here the optimal solution to the problem gives a
network configuration such that differences in the
energy consumed by the sensors of different cells
and the overall energy consumed are minimized. To
solve this problem, we propose the Algorithm 6. Here

Algorithm 6: Network area configuration - Strategy
2
Input: Node density nd, Network area radius R,

Maximal number of zone divisions N,
Generated traffic per node αβ, Coefficient ε
;

Output: Minimal energy E, Optimal number of
coronas n;

Initialization :
{

E1
y,1|y≤R

}
, n=1 ;

repeat
for ((y←1 to R) and (Q←2 to N)) do

En+1
y,Q = ∞;

for ((x←1 to y) and (P←2 to Q)) do

if (
En

x,P
N1 −( f1(y,x,P)+ f2(y,x,Q)

N2 )<ε·
En

x,P
N1 ) then

En+1
y,Q←min

{
En+1

y,Q , En
x,P+E(y−x,Q−P)

}

n←n+1;
En

y←minQ≤N{En
y,Q};

until En−1
R ≤En

R;

display n,E.

En
y,Q represents the total energy consumption while

En
y,Q

N1 is the average energy consumed by a sensor
when the network’s radii is y and its nth corona is
divided into Q zones. The term N1 is the number
of the sensors deployed in the area with a radii
y. In the initialization phase, matrix E1

y,1 is com-
puted according to equation (21). The E(y− x, Q− P),
f1(y, x, P), Rt(y, x, P) and f2(y, x, Q) functions are given
by the corresponding equations (22), (23), (24) and

(25). The ratio f1(y,x,P)+ f2(y,x,Q)
N2 gives the sensor’s energy

in the respective zone while N2 = (y2−x2)·2π·nd
Q is the

corresponding number of the sensors in this zone.
At first, the algorithm finds the network division

(xi , Pi values) for a given n which guarantees a fairness
consumption of energy for each sensor in the network
with a coefficient ε. Second, by iterating this procedure
for different n, it seeks the minimal value of total
energy consumption. This value is reached for some n
which satisfies the inequality En−1

R ≤ En
R. Algorithm 6

is implemented for the scenario described in Section
IV-B. The application and parameter values are defined
in Table VI wheres the energy parameters are given
in Table IV. The results are shown in Table VIII. For
application needs, the number of zones in one corona
should be a multiple of this in the downstream corona.
However, this can be easily taken into account by
assuming that the number Q of zones, in algorithm 6,
is a multiple of P.

Cell sizes Algorithm results

Radius of each Number of zones
corona from the BS

corona 8 100 30

corona 7 86 27

corona 6 72 21

corona 5 60 15

corona 4 48 12

corona 3 36 9

corona 2 24 6

corona 1 12 1

Table VIII: Optimal configuration for energy fairness,
network radius R = 100m

2) Numerical results: We remark that Strategy 1
builds a multi-hop tree rooted at the BS which mini-
mizes the total energy consumption for the communi-
cations. One basic assumption of this strategy is full
aggregation, meaning that each node will transmit
only one packet to its parent regardless of the number
of received data packets. The work in [? ] considers
the same constraints and objective function to build a
multi-hop tree and propose a protocol PEDAP(Power
Efficient Data Gathering and Aggregation Protocol).
The algorithm behind the PEDAP protocol builds a
near optimum spanning tree and is designed for data
gathering in sensor networks. One basic assumption
of this algorithm is full aggregation, meaning that
each node will transmit only one packet to its parent
regardless of the number of received data packets.
In both cases, we assume that nodes are uniformly
distributed in a circular area. To calculate the energy
consumed by PEDAP we construct a spanning tree
that includes all the nodes. In the spanning tree we
differentiate between terminal and in-network nodes.
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Figure 11: PEDAP and Strategy 1
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Figure 12: Energy consumption

The terminal nodes use energy only for transmitting,
while the others use energy for transmitting and
receiving, in accordance with equations (1). In both
scenarios each node has α Erlang of traffic, and the
radio data rate is β bps. The results of the comparison
between Strategy 1 and PEDAP are given in Fig. 11.
Our algorithm outperforms PEDAP, and more so in
the case of large dense networks, which shows that it
is quite scalable. The overall energy consumption for
Strategies 1 and 2 is given in Fig. 12.

Through simulation we also remarked that the
behavior of energy function toward the node density
changes is similar for both strategies.

For the topology control problem we have looked at
two strategies which seek respectively to i) minimize
the energy consumption and ii) ensure a fair energy
distribution while minimizing the total energy con-
sumption. The trade-offs between the two strategies are
in terms of global energy, fairness and complexity. The
results show that Strategy 1 presents a lower bound
of network energy consumption, but also that Strategy
2 is very close to this bound (see Fig. 12).

V. Conclusions

In this paper we analyzed the network configura-
tion problem for a many-to-one WSN. For a given

network where the nodes are uniformly distributed,
the problem is to determine the optimal number
of sensors, their positions and their transmission
range such that some energy objectives are met. We
showed that an appropriate configuration of the WSN,
addressing the sensor deployment and the respective
power assignments, leads to considerable savings in
energy. Our algorithms, whose aims are to minimize
the total energy consumption and to ensure fairness in
the energy consumption by different nodes, are based
on the dynamic programming method. We showed
how this method can be adapted even to the discrete
case of the energy consumption minimization problem.
Then, we extended the linear network case to the case
of a two-dimensional network. Our overall observation
is that dynamic programming is an effective method
for handling trade-offs between the parameters for a
number of variants of the network configuration prob-
lem. It provides an optimal solution to the problem
for a given objective function and reduces the compu-
tational complexity in comparison with other methods
proposed in the literature. Moreover, the method can
be adapted to different energy consumption models
without increasing the computational complexity of the
solution. In the future we shall be looking at the effects
of combining different routing protocols with solutions
obtained for the network configuration problem. We
think that this sort of combination will be of interest
at the maintenance phase and for implementation in
real world applications.
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