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Phase transitions in two tunnel-
coupled HgTe quantum wells: 
Bilayer graphene analogy  
and beyond
S. S. Krishtopenko1,2, W. Knap2,3 & F. Teppe2

HgTe quantum wells possess remarkable physical properties as for instance the quantum spin Hall 
state and the “single-valley” analog of graphene, depending on their layer thicknesses and barrier 
composition. However, double HgTe quantum wells yet contain more fascinating and still unrevealed 
features. Here we report on the study of the quantum phase transitions in tunnel-coupled HgTe 
layers separated by CdTe barrier. We demonstrate that this system has a 3/2 pseudo spin degree of 
freedom, which features a number of particular properties associated with the spin-dependent coupling 
between HgTe layers. We discover a specific metal phase arising in a wide range of HgTe and CdTe layer 
thicknesses, in which a gapless bulk and a pair of helical edge states coexist. This phase holds some 
properties of bilayer graphene such as an unconventional quantum Hall effect and an electrically-
tunable band gap. In this “bilayer graphene” phase, electric field opens the band gap and drives the 
system into the quantum spin Hall state. Furthermore, we discover a new type of quantum phase 
transition arising from a mutual inversion between second electron- and hole-like subbands. This work 
paves the way towards novel materials based on multi-layered topological insulators.

Low energy band structure in graphene is formed by two spin-degenerate massless Dirac cones at two inequiva-
lent valleys, giving rise to four massless Dirac cones in total1,2. With one additional graphene layer added, bilayer 
graphene (BG) has an entirely different band structure. Most notably, symmetric BG is a zero-band gap semicon-
ductor with quadratic energy-momentum dispersion3. However, its band gap is continuously tunable through 
an electrical field applied perpendicularly to the sample4,5. The electronic states in BG are also four-fold degen-
erate, taking into account both spin and valley degeneracies. Recently, it has been shown that HgTe quantum 
wells (QWs) with vanishing band gap possess a single spin-degenerate Dirac cone at the Brillouin zone center6–9 
and thus can be considered as the “single-valley” analog of graphene in two-dimensional (2D) semiconductor 
heterostructures.

The central feature of the HgTe QWs is the possibility of band inversion. The barrier material (e.g., CdTe) 
has a normal band ordering, with the s-type Γ6 band lying above the p-type Γ8 band, while in the well material 
(HgTe) the Γ6 band lies below the Γ8 band, corresponding to an inverted band ordering. If the thickness d of the  
HgTe/CdTe QWs does not exceed a critical value dc, at the Γ point, the first conduction subband (E1) is 
electron-like, i.e. it is formed by a linear combination of the |Γ6, mJ = ±1/2〉 and |Γ8, mJ = ±1/2〉 states, while the 
first valence subband (H1) arises from the |Γ8, mJ = ±3/2〉 states, corresponding to the heavy-hole band. In wide 
HgTe QWs (d > dc), the E1 subband falls below the H1 subband. The inversion between E1 and H1 subbands 
leads to the formation of a 2D time-reversal invariant topological insulator (TI)10 denoted the quantum spin 
Hall (QSH) state6,7 with dissipation less edge channel transport at zero external magnetic field11. At critical QW  
thickness dc, corresponding to topological phase transition between a TI and a trivial band insulator (BI), a 
low-energy band structure mimics a massless Dirac cone at the Γ point6.

Two tunnel-coupled HgTe QWs of critical thickness may, therefore, share some properties of natural BG. 
If each of the HgTe QW has d > dc, this system offers a practical realization of tunnel-coupled layers of 2D TI. 
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Moreover, the strained HgTe thick films have been proven to be three-dimensional (3D) TIs12,13. Therefore, a wide 
double HgTe QW can be considered as two thick layers of 3D TI separated by BI (CdTe material) with the surface 
states arising at the interfaces14. A tensile strain in the HgTe films, which opens a topological gap, is induced by 
the difference in the lattice parameters of HgTe and CdTe. Thus, double HgTe QWs is a realistic system, which 
potentially paves the way towards physics of multi-layered topological insulator materials.

So far, there are just a few works devoted to double HgTe QWs15–17. All these works are based on the approach, 
in which each QW is described within Bernevig-Hughes-Zhang (BHZ) model6 coupled by a spin-conserved tun-
neling Hamiltonian. The latter will be shown to be irrelevant on double HgTe QWs, which feature a much richer 
physics than previously assumed.

In our theoretical investigation of double HgTe QWs (see Fig. 1), we first start from band structure calcu-
lations on the basis of an eight-band Kane model18. By using realistic material parameters, we obtain the phase 
diagram for symmetrical double QW as a function of the layer thicknesses. We discover a specific metal phase, in 
which the band properties in perpendicular magnetic and electric fields are very similar to the ones of natural BG. 
Then, we deduce an effective 2D Hamiltonian, involving two electron-like (E1, E2) and two hole-like (H1, H2) 
subbands, to describe quantum phase transitions in the system. On the basis of such a simplified Hamiltonian, 
we calculate dispersion of edge states in different phases. We show that inversion between E2 and H2 subbands 
induces an additional pair of helical edge states, putting the system into BI phase even in the case of inverted band 
structure. The crossing between E2 and H2 levels yields a Dirac cone in the Γ point of the Brillouin zone.

Considering double HgTe QW, shown in Fig. 1, as a whole system and by using expansion in the plane-wave 
basis set (see Supplementary Information), we calculate energy dispersions of electronic subbands. Figure 2A,B 
show positions of electron-like and hole-like subbands at k = 0 as a function of middle barrier thickness t. 
Intuitively, it is clear that at infinitely large barrier, calculated states correspond to the subband positions in two 
separated HgTe QWs, while at finite values of t each pair of the subbands is connected with even-odd state split-
ting in double QWs. If t tends to zero, the energy values transform into positions of electronic subbands in single 
HgTe QWs of 2d thickness. It is seen that the splitting between electron-like levels exceeds significantly the one of 
the hole-like levels. This is due to significant difference in effective masses at k = 0 in electron-like and hole-like 
subbands, which values determine the tunnel-coupling between the states and their even-odd splitting at given t.

There are two types of the band structure ordering, which arises depending on the HgTe layers thickness d. 
The first case shown in Fig. 2A takes place if d varies in the range from dc/2 to dc, where dc corresponds to the 
thickness of single QW with Dirac cone at the Γ point. In this case E2 subband always lies above H2 subband 
and inversion between E1 and H1 subband can take place. At higher values of t, the E1 subband gains a higher 
energy than the H1 subband, and the system has the normal band structure. When the thickness t is decreased, 
the energy of the E1 subband reduces, whereas the H1 subband energy practically does not change. The different 
dependence of E1 and H1 subbands on t implies that at some barrier thicknesses the band gap closes. In fact, the 
crossing point between E1 and H1 subbands yields a low-energy band structure with Dirac cone in the vicinity 
of k = 0 (Supplementary Information). If the values of t are small enough to induce a gap between H1 and H2 
subbands, it implies a quantum phase transition between BI and TI states, as in single HgTe QW6. However, if 
H1 and H2 subbands coincide at k = 0, it gives rise to an additional “massive” branch of valence subband at the 
crossing point, similar to the pseudospin-1 Dirac-Weyl 2D systems19, as well as a quantum phase transition into a 
specific metal phase with the following subband ordering: E2-H1-H2-E1. The reasons to assign this metal phase 
as a BG phase are discussed later.

The second type of band structure ordering, shown in Fig. 2B, is realized when d > dc. In this case E1 sub-
band always lies below H1 subband, i.e. they are inverted. At lower barrier thickness, E2 subband lies above H2 
subband, while at high values of t, they swap their positions. At specific values of t, E2 and H2 subbands cross, 

Figure 1.  Schematic representation of the double HgTe/CdHgTe QW. Here d is the thickness of HgTe layers 
and t is the middle barrier thickness. Further, we consider the double QW grown on CdTe buffer in (001) 
crystallographic direction. The concentration of mercury in the top, middle and lower barriers is assumed to be 
equal to 0.37,8.
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which also leads to the appearance of a Dirac cone at the Γ point. As for the case shown in Fig. 2A, additional 
“massive” branch arises as well. However, such branch corresponds to conduction H1 subband. Up to date, it was 
never realized that crossing between E2 and H2 subbands also induces a quantum phase transition. In this work 
we explicitly demonstrate it for the first time. In particular, we show that this crossing point in double HgTe QWs 
correspond to the quantum phase transition between BG and BI phase.

Figure 2C shows the phase diagram, in which two bold lines correspond to the Dirac cones at the Γ point. 
The left one results from the crossing between E1 and H1 subbands, while the right-side curve is connected with 
the crossing of E2 and H2 levels. If the middle barrier is thin enough, a gap between H1 and H2 subbands opens, 
and the inversion between E1 and H1 levels induces a quantum phase transition between BI and TI phases. The 
latter is shown by orange region. For relatively wide QWs, the so-called semimetal (SM) phase, corresponding 
to the white-striped region, is implemented. It is characterized by a vanishing indirect band gap, when the side 
maximum of the valence subband exceeds in energy the conduction subband bottom. This phase arises in single 
HgTe QWs as well when the thickness goes beyond some critical value, denoted in Fig. 2C by dSM

20,21. BG metal 
phase mentioned above corresponds to the blue region in Fig. 2C. Dispersion curves at various values of d and t 
in the vicinity of phase transitions between BI, BG and SM phases are provided in Supplementary Information.

Let us now explain the reasons to call this specific metal phase with the ordering of electronic subbands 
E2-H1-H2-E1 a BG phase. First, we consider in details the case when both QWs have a critical thickness dc ≈ 6.5 

Figure 2.  (A,B) Energy of E1, E2 (both in blue) and H1, H2 (both in red) bands at k = 0 versus barrier thickness 
t at different quantum well thickness d: (A) dc/2 < d < dc and (B) d > dc. (C) Phase diagram of double HgTe QW. 
The values dc and dsm correspond to thickness of the single QW, at which Dirac cone and semimetal phase arise 
respectively. The white-open regions are the band insulator phase, while the white-striped region corresponds 
to the semimetal phase, when the side maxima of valence subband exceed the bottom of conduction subband. 
The orange and blue regions conform to topological insulator and BG phase, respectively. The bold black 
curves correspond to the arising of the Dirac cone at the Γ point. We note that the scales of d and t in the phase 
diagram can be efficiently increased by changing x and y in the alloys of double HgyCd1-yTe/CdxHg1-xTe QWs.
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nm, which at infinitely large barrier corresponds to two Dirac cones. The presence of the transparent barrier, for 
example of t = 3 nm, turns from two Dirac cones in the vicinity of the Γ point into a band structure very similar 
to the one of natural BG3 (c.f. Fig. 3A). In particular, it consists of two gapless isotropic parabolas, formed by H1 
and H2 subbands. Moreover, as in BG in which non-zero band gap can be induced by breaking the inversion 
symmetry of two monolayers, in double HgTe QWs it could be obtained by using QWs of different thickness or 
by adding of one-side chemically doping. Moreover, the potential of a continuously tunable band gap through an 
electric field applied perpendicularly to the sample plane is of particular importance.

The double HgTe QW in BG phase also holds this property. Figure 3B displays energy dispersion for BG 
phase in perpendicular electric field of 20 kV/cm. Even in this case the dispersion curves are very similar to the 
band structure of natural BG in external electric field3,4. However, strong spin-orbit interaction in HgTe layers 
removes the spin degeneracy away from the Γ point due to Rashba effect22. Figure 3C shows the band gap val-
ues in the double QWs in BG phase as a function of applied electric field. Indeed, the band gap in BG phase is 

Figure 3.  (A,B) Energy dispersions for BG phase, implemented at d = dc ≈ 6.5 nm and t = 3 nm, in zero electric 
field (A) and in electric field of 20 kV/cm (B), oriented perpendicular the QW plane. Solid black and dotted 
orange curves correspond to different spin states. The presence of electric field not only opens the band gap  
Δ but also leads to the Rashba spin splitting22. (C) Bulk band gap as a function of applied electric field. As it is 
in natural BG4,5, double HgTe QW in this phase has also electrically-tunable band gap. However, the presence 
of additional side maximum in the valence subband closes the gap in high electric field. The inset shows energy 
dispersions in electric field of 50·kV/cm. Solid black and orange curves correspond to different spin states.  
(D) The Landau-level fan chart for BG phase. The zero-mode LL, which has doubled degeneracy order as 
compared with other levels, is marked by bold orange line. This LL is formed by states of both H1 and H2 
subbands. LLs, containing only the states from E1 and E2 subbands in high magnetic fields, are given in blue. 
The crossing between the E1 and zero-mode LL, arising at critical magnetic field Bc ~ 3.5 T, leads to the phase 
transition into normal (non-inverted) band structure, as it is in single HgTe QW7.
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electrically-tunable, as it is in natural BG. However, its dependence on electric field has non-monotonic behav-
iour in double HgTe QWs. The reason for this is related with the additional side maximum of valence subband, 
which is also responsible for the formation of SM phase in zero electric field (see the diagram, shown in Fig. 2C). 
The top of the side maximum is increasing with the strength of electric field, and the band gap reduces (see the 
inset, shown in Fig. 3C). As a result, the band gap is closed in high enough electric field, giving rise to the forma-
tion of the SM phase. A critical electric field, corresponding to arising of indirect-band gap, coincides with the 
maximum value of Δ, shown in Fig. 3C.

Another characteristic of natural BG is the unconventional quantum Hall effect, related with the absence of 
zero-Landau level (LL) plateaus in Hall conductivity23. For natural BG, plateaus in the Hall conductivity σxy, occur 
at integer multiples of 4e2/h. This is similar to a conventional semiconductor with level degeneracy g = 4 arising 
from the spin and valley degrees of freedom. Deviation from the conventional case occurs at low density, where 
there is a step in σxy of height 8e2/h across zero density, arising from the eightfold degeneracy of the zero-energy 
LL. This specific LL is formed by atomic orbitals of different sublattice sites from both layers24.

Figure 3D shows LL fan chart in double HgTe QW with BG phase, calculated within the eight-band Kane 
model. In the BG phase, in perpendicular magnetic field a specific zero-mode LL with degeneracy two times 
higher than other LLs also arises. This zero-mode LL is shown in Fig. 3D, by bold orange line. For double HgTe 
QW, plateaus in the Hall conductivity are expected to occur at integer numbers of e2/h. However, the doubled 
degeneracy of zero-mode LL requires twice as many carriers to fill them, so the transition between the corre-
sponding plateaus should be twice as wide in density, and the step in σxy between the plateaus are expected to be 
twice as high, 2e2/h instead of e2/h. Since the zero-mode LL in double HgTe QW is formed by the states of both 
H1 and H2 subbands, the presence of inversion asymmetry of two HgTe layers not only opens the band gap 
between H1 and H2 subbands (see Fig. 3B) but also splits the zero-mode LLs, removing the double degeneracy 
order. Therefore, we also expect recovering of sequence of equidistant plateaus in the Hall conductivity as it is for 
gate-biased natural BG5.

Besides the zero-mode LL, there are two additional specific LLs, which in high magnetic fields are formed 
only by the states from E1 and E2 subbands. These LLs are shown in Fig. 3D by blue curves. In moderate mag-
netic fields, these E1 and E2 LLs are mixed with the states from H2 and H1 subbands respectively. It results in 
anticrossing between E1 (E2) LL and LLs from H2 (H1) subband, which is clearly seen in magnetic fields below 1 
T. The crossing between the E1 and zero-mode LL, arising at critical magnetic field Bc ~ 3.5 T, corresponds to the 
transition from inverted into normal band structure, similar to this observed in single HgTe QW7.

We have considered in details the case of double HgTe QW, when both HgTe layers have a critical thickness 
dc. However, all the mentioned properties of BG phase hold for any double QW with the values of d and t, corre-
sponding to the blue region in Fig. 2C. The only difference is the ratio M1 over M2, where M1 parameter describes 
the energy gap between E1 and H1 subbands, while M2 corresponds to the half of the gap between E2 and H2 lev-
els. If d < dc, 2M2 exceeds 2M1, while in the opposite case of d > dc, the gap between E2 and H2 subbands is lower 
than 2M1. An amazing property of double HgTe QW is that it shares some characteristics of natural BG even in 
the BI phase at d > dc. In particular, the possibility of tuning the band gap by electric field and of observing the 
unconventional double step in plateaus in the Hall conductivity still persists.

We now discuss quantum phase transitions in double HgTe QWs. For this purpose, we derive an effective 2D 
Hamiltonian, which describes the band structure in the vicinity of k = 0 in the phases shown in Fig. 2C. To infer 
this simplified model, we start from eight Bloch basic states, combined into an eight-component spinor:

Ψ = Γ Γ − Γ Γ Γ − Γ − Γ Γ − .( , 1/2 , , 1/2 , , 3/2 , , 1/2 , , 1/2 , , 3/2 , , 1/2 , , 1/2 ) (1)6 6 8 8 8 8 7 7

For the QWs grown in [001] direction, projection mJ of total angular momentum at k = 0 on the growth direction 
is still a good quantum number. At the Γ point all QW subband states are formed by linear combination of the 
mentioned eight bulk bands. To describe BI, TI and BG phases, one should consider E1, E2, H1 and H2 subbands 
(see Fig. 2A,B). At k = 0, the |E1, ±〉 and |E2, ±〉 subband states are formed from the linear combination of the  
|Γ6, mJ = ±1/2〉, |Γ7, mJ = ±1/2〉 and |Γ8, mJ = ±1/2〉, while the |H1, ±〉 and |H2, ±〉 QW states are formed from 
the |Γ8, mJ = ±3/2〉 states. Away from the Γ point, the E1, E2, H1 and H2 states are mixed. To construct the effec-
tive Hamiltonian one should carefully take into account different parities of the envelope function components 
from |Γ6, ±1/2〉, |Γ7, ±1/2〉, |Γ8, ±1/2〉 and |Γ8, ±3/2〉 bulk bands into formation of given subband state25. For 
instance, E1 state is formed by even function corresponding to |Γ6, ±1/2〉 band and by odd envelope functions 
corresponding to |Γ7, ±1/2〉 and |Γ8, ±1/2〉 bands, while parities of their contributions into E2 state are changed. 
In previous works15–17, this point was missed; it results in the wrong description of double HgTe QWs. Detailed 
explanation is given in Supplementary Information.

After straightforward calculations, we obtain the following form of the effective 2D Hamiltonian for the E1, 
E2, H1, H2 states, expressed in the basis of two Kramer’s sets |E1, +〉, |H1, +〉, |H2, −〉, |E2, −〉 and |E2, +〉, |H2, 
+〉, |H1, −〉, |E1, −〉:
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with K stands for complex conjugation and σy is one of the Pauli spin matrices. Each block in (1) is described by 
a four-component spinor with pseudospin J = 3/2 degree of freedom (see Supplementary Information). H(kx, ky) 
is written as
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Here, kx and ky are momentum components in the plane of double QW, and C, M1, M2, A1, A2, BE1, BH1, BH2, 
BE2, ΔH1H2, R1, R2, S0 are specific heterostructure constants, being defined by QW geometry and materials. The 
Hamiltonian Heff (kx, ky) has block-diagonal form because we keep the inversion symmetry and axial symmetry 
around the growth direction (see Supplementary Information). We note that Heff (kx, ky) is valid for any values 
of d and t. In particular for t = 0, it describes energy dispersion in the vicinity of the Γ point in single HgTe 
QW beyond the BHZ model. Parameters ΔH1H2, R1, R2, S0 significantly depend on t, and all tend to zero at large 
middle barrier thickness, while BE1 = BE2 coincides. As it is easy to see, in this case the system is described by 
two non-interacting BHZ models, written for two pairs formed by E1, H1 and E2, H2 subbands. We note that 
BH1 = BH2 if ΔH1H2 = 0.

The most important quantities in H(kx, ky) are two mass parameters M1 and M2. Almost all phases in Fig. 2C 
can be grouped into three types according to the sign of M1 and M2. The BI phase at normal band structure, 
shown in the left part of the diagram, corresponds to positive values of M1 and M2. The BG and TI phases arise if 
M1 < 0 and M2 > 0, and the difference between these phases is connected with ΔH1H2, which equals to zero in the 
case of BG phase. The second BI phase, shown in the right from the BG phase, corresponds to negative values of 
M1 and M2, and ΔH1H2 = 0. The SM phase, arising at all values of M2 and M1 > 0, cannot be described within the 
simplified model because it is only valid near the Γ point, while the SM phase is formed by non-local overlapping 
of the valence band and conduction band bottom20,21. Comparison between calculations of subband curves, per-
formed within the simplified model and on the basic of an eight-band Kane Hamiltonian for different phases is 
given in Supplementary Information.

Zero values of M1 and M2 both conform to quantum phase transitions at which Dirac cone at the Γ point 
occurs. The left and right bold black curves in the phase diagram, shown in Fig. 2C, are related with M1 = 0 and 
M2 = 0 respectively. Figure 4 presents energy dispersion for the bulk and edge states in various phases in double 
HgTe QWs obtained within the simplified model. Dispersion of the bulk states are shown in black, while the 
orange and blue curves are the edge states, described by different blocks of Heff (kx, ky). The electrons in the edge 
states, marked by different colors, move in opposite directions. Figure 4 demonstrates that each change of sign of 
mass parameter M1 or M2 yields a pair of helical edge states, providing a quantum phase transition at M1 = 0 or 
M2 = 0. In particular, BG phase arising at M1 < 0 and M2 > 0 has a single pair of the edge states, coexisting with 
the gapless bulk states. If M1 < 0 and M2 = 0, the double HgTe QW mimics a 2D system with the presence of both 
bulk and edge massless fermions, which energy dispersions are shown in Fig. 4C.

Figure 4D shows special case with inversion between E2 and H2 subbands, which was not considered in 
2D systems so far. It perfectly illustrates that each crossing between electron-like and hole-like levels of higher 
indexes, also results in the appearance of a pair of helical edge states. Topological properties of corresponding 
insulator phase are determined by amount of inverted levels, which are connected with the number of pairs of 
the edge states. In the particular case of inversion of both E1 with H1 subband and E2 with H2 subband, the 
terms proportional to R1, R2 and S0 induce the coupling between counter-propagating states with the same spin 
orientation. The latter could be interpreted as a spin-dependent tunneling between two layers of 2D TI (see 
Supplementary Information). It is clear from the inset that such tunnel-coupling opens the gap in the energy 
spectrum of the edge states even without external one-particle scattering processes. Thus, we prove that double 
HgTe QW with M1 < 0 and M2 < 0 has a BI phase.

Let us now remark the main difference between BG phase in double HgTe QW and natural BG. The electrons 
in natural BG are chiral particles with S = 1/2 pseudospin of freedom23,24 and pseudospin winding number of 225. 
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It results from the commutation of operator ⋅




k S with the low-energy Hamiltonian of natural BG. As it is shown 
above, the simplest Hamiltonian, required for the description of bulk and edge states in the BG phase, has J = 3/2 
pseudospin of freedom. Moreover, it can be shown that operator ⋅




k J  does not commute with H(kx, ky), proving 
the non-chiral character of electron in double HgTe QWs. Thus, even though BG phase mimics some character-
istics of natural BG, it is a novel and fascinating state of matter, exhibiting the coexistence of gapless bulk states 
and spin-polarized edge channels.

Since we have demonstrated the existence of gapless spin-polarized counter-propagating edge channels in 
double HgTe QWs, they should exhibit QSH effect in both TI (ΔH1H2 ≠ 0) and BG (ΔH1H2 = 0) phases. Intuitively 
it is clear that QSH effect in the TI phase could be observed on the sample with a six-terminal Hall bar, as it has 
been previously proposed for single QW6,7. However, the measurements of two-terminal conductance in the 
BG phase contain contributions both from the bulk states and from the helical edge modes. To separate these 

Figure 4.  Energy dispersions, calculated by using effective 2D Hamiltonian for (A) M1 = 0 and M2 > 0, (B) 
M1 < 0 and M2 > 0 (BG phase), (C) M1 < 0 and M2 = 0, (D) M1 < 0 and M2 < 0. Other band parameters are 
given in Supplementary Information. Bulk states are shown in black. Orange and blue curves correspond to the 
dispersion of the edge states, obtained with open boundary conditions. Kramer’s partners of the edge states, 
moving in opposite directions, are shown in different colors. The insets show the behavior of the dispersion 
curves in the vicinity of k = 0. It is seen from (A) and (C) that M1 = 0 or M2 = 0 corresponds to topological phase 
transition with arising of Dirac cone at the Γ point of the Brillouin zone, while each negative values of M1 and 
M2 results in appearance of additional pair of the helical edge states. The BG phase (B) with M1 < 0 and M2 > 0 
is nontrivial and characterized by coexistence of gapless bulk states with single pair of the helical edge states. 
The case of M1 < 0 and M2 < 0 shown in (D) is characterized by the presence of two pairs of the edge states. Two 
edge states with the same spin couple to produce a gap in the spectrum, destroying the QSH effect and putting 
the system into trivial phase even with inverted band structure in double HgTe QW.
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contributions, we propose to introduce inversion asymmetry between the HgTe layers. If the band gap for the 
bulk states is open, for example by an external electric field, the system is driven to the TI regime, and the detec-
tion of the QSH effect becomes possible6.
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