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Compressed sensing in Hilbert spaces

Yann Traonmilin, Gilles Puy, Rémi Gribonval and Mike E. Davies

Abstract In many linear inverse problems, we want to estimate an unknown
vector belonging to a high-dimensional (or infinite-dimensional) space from
few linear measurements. To overcome the ill-posed nature of such problems,
we use a low-dimension assumption on the unknown vector: it belongs to a
low-dimensional model set. The question of whether it is possible to recover
such an unknown vector from few measurements then arises. If the answer is
yes, it is also important to be able to describe a way to perform such a re-
covery. We describe a general framework where appropriately chosen random
measurements guarantee that recovery is possible. We further describe a way
to study the performance of recovery methods that consist in the minimiza-
tion of a regularization function under a data-fit constraint.

1 Introduction

Many signal processing tasks aim at estimating a signal x from its observation
y. The signal x can often be described by a continuous physical phenomenon
and the observations y are made of a finite collection of scalar measurements.
The most basic example of such observations is a sampled version of the signal
x (e.g. for a sound recorded at a given sampling rate, the continuous x is the
electrical signal produced by the microphone over time). More generally, we
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consider observations y modeled as

y = Ax+ e (1)

where x ∈ H, y ∈ F andH,F are Hilbert spaces of finite or infinite dimension.
The operator A is a linear map and e is a noise whose power is bounded,
i.e. ‖e‖F ≤ η. In most cases, the operator A models a finite number of
measurements m. This Hilbert space setting is a way to have a general view
of signal recovery problems in classical finite or infinite-dimensional spaces
where signals (in a wide sense: time series, images, videos, . . . ) are modelled,
e.g. the space of continuous signals with finite energy L2(Rd), the space of
bandlimited signals with finite energy or its equivalent after sampling, `2(Rd),
or the finite-dimensional vector space Rd.

1.1 Observation model and low complexity signals

Observing a continuous signal with finitely many linear measurements in-
duces an information loss. If no further prior information on the signal is
available, recovering x from y is generally not possible. However, if an (ap-
proximate) hypothesis of “low complexity” on x is available, enforcing the
hypothesis in the recovery process can ensure that we are able to estimate
x with reasonable accuracy. Low complexity can be defined in several ways.
It often means that the signal lives in a “low-dimensional model” or can be
described by few parameters. Two classical examples where low complexity
helps to recover the signal are:

• Sampling of periodic band-limited signals in H = L2(R): if the signal is
known to be band-limited with cut-off frequency B, it is possible to recover
it perfectly provided it is sampled at a rate at least 2B.

• Compressed sensing in H = Rn: if the signal is known to have at most
k non-zero samples in Rn, it can be recovered with high probability from
m random Gaussian (or Fourier) observations provided m & k log(n) [11]
(We use the symbol & to say that there is an absolute constant C such that
if m ≥ Ck log(n) recovery is possible with high probability). Similarly, if
the signal is an n×n matrix with rank at most r, in the space H = Rn×n,
it can be recovered with high probability from m & rn random Gaussian
observations [14].

In the following, the notion of low complexity is summarized by the fact
that x is well approximated by an element of a so-called model set Σ, where
Σ ⊂ H is low-dimensional according to a notion of dimension that will be
specified. The considered notion of dimension will be defined in Section 3.1
and is related to the number of unknowns we need to estimate to characterize
the signal. In the context of linear inverse problems with such low-dimensional
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models, a first objective is to obtain conditions on the linear operator A and
the model set Σ that guarantee a possible recovery. From this perspective,
the analysis of “low complexity recovery” is an extension of classical analyses
of sparse recovery or low rank matrix recovery. A second objective, related to
the field of compressed sensing, is dimension reduction, where the goal is to
design a linear operator A (often with randomness) so that low complexity
recovery is possible, with an emphasis on allowing the dimension m of the
observation to be small.

1.2 Decoders

As the ultimate task is to recover x from y, the analysis of the observation
of x must be held together with the study of the methods used to recover
x from y, which we call decoders. In this chapter, we consider the general
class of decoders which consist in minimizing a regularizer under a data fit
constraint. We study estimates x∗ of x of the form

x∗ ∈ argmin
z∈H

f(z) s.t. ‖Az − (Ax+ e)‖F ≤ ε. (2)

Formulation (2) covers many decoders proposed in the literature, even though
other formulations exist (e.g., minimizing ‖Az−(Ax+e)‖F under a constraint
on f(z), or using a Lagrangian formulation). The study presented in this
chapter does not require x∗ to be the unique minimizer of (2). It must be
noted that this formulation somehow emphasizes practical signal processing
applications because an estimation ε of the observation noise power is often
available.

The main parameter of the decoder is the regularizer f . Its role is to
force the estimate belongs to the chosen model set. The form of the data fit
constraint (‖ · ‖F ) influences the types of noise that the decoder can robustly
manage. This raises interesting questions that are, however, out of the scope
of this chapter. The main qualities required for a decoder are: 1) to provide
exact recovery of vectors x ∈ Σ in the noiseless setting; 2) to be stable to
observation noise and robust to modeling error.

We emphasize the role of two classes of decoders: “ideal” decoders and
convex decoders.

• Given a problem with a model set Σ, the ideal decoder corresponds to
minimizing (2) using f := ιΣ the characteristic function of Σ, i.e. ιΣ(x) =
0 if x ∈ Σ, ιΣ(x) =∞ otherwise. This decoder is called ideal, as it enforces
perfectly the fact that the solution must belong to Σ (the prior on the
unknown). Unfortunately, it is generally hard to calculate efficiently as the
function to minimize is both non-convex and non-smooth. Consequently,
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we often use a heuristic for the minimization or turn to a convex proxy to
this minimization.

• The decoder is said to be a convex decoder when f is convex. Such a de-
coder is often easier to compute as the minimization problem has no local
minimum other than the global minima even if it this does not guarantee
that the minimization can be efficiently performed, see e.g. tensor recovery
problems [27]. State of the art shows that having some additional hypoth-
esis on the linear operator A enables to guarantee stability and robustness
of certain convex decoders for classical model sets Σ.

1.3 The RIP: a tool for the study of signal recovery

As we just saw, studying signal recovery amounts to studying the interactions
between the model Σ, the regularization f and the measurement operator A.
We propose here to use a tool that enables us to separate the study of A with
respect to Σ from the study of f with respect to Σ: the restricted isometry
property (RIP). It is generally defined in our setting for a linear observation
operator A on the so-called secant set Σ −Σ := {x− x′ : x ∈ Σ, x′ ∈ Σ}

Definition 1 (RIP). The linear operator A : H → F satisfies the RIP on
the secant set Σ −Σ with constant δ if for all x ∈ Σ −Σ:

(1− δ)‖x‖2H ≤ ‖Ax‖2F ≤ (1 + δ)‖x‖2H (3)

where ‖ · ‖H and ‖ · ‖F are Euclidean norms on H and F .

This property is a famous sufficient condition on A to guarantee the success
of convex decoders (2) in the case of sparse and low rank signal recovery
for appropriately chosen regularization f [21, 15, 33, 13, 17, 25]. Intuitively,
the RIP requires the operator A to preserve the distance between any two
elements of Σ (see Figure 1). Moreover, a RIP is a necessary condition for
the existence of stable and robust decoders: given A and Σ, if a stable and
robust decoder exists then, up to a global rescaling, A satisfies a RIP on the
secant set Σ −Σ [18, 7].

For example, in the case of sparse recovery, it is possible to show two facts.

• Fact 1: Random Gaussian matrices of size m × n satisfy the RIP on the
set of 2k-sparse vectors (the secant set of the set of k-sparse vectors) with
constant δ < 1 with high probability, provided m & δ−2k log(n).

• Fact 2: As soon as A satisfies this RIP with constant δ < 1/
√

2, it is
guaranteed that minimization (2) with f(·) = ‖ · ‖1, the `1 norm, yields
stable and robust recovery of all k-sparse vectors [9].

We see that the study of recovery guarantees in this case is separated in two
steps: 1) a study of the behaviour of the linear operator A with respect to
the model set Σ (in terms of RIP property); and 2) a study of the behaviour
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of the regularizer f with respect to the model set Σ, that has consequences
for all operators satisfying a RIP with a small enough constant.

The framework presented in the following generalizes these features in
order to manage not only the classical sparse recovery/low-rank recovery
and related compressed sensing theory, but much beyond to many sorts of
low-dimensional model sets.

Stable & Robust 

Decoder

RIP on

Fig. 1: A graphical representation of the equivalence between the existence
of stable robust decoders and the RIP on the secant set. Operators satisfying
the RIP approximately preserve distances between elements of Σ.

1.4 A general compressed sensing framework

The remaining part of this chapter shows how it is possible to generalize the
steps we just mentioned. The proposed framework consists in answering the
following questions (summarized in Figure 2):

• Low-dimensional model: when is Σ “low-dimensional”? (Section 2)
• Dimension-reduction: given Σ, is there an operator A that satisfies the RIP

on Σ −Σ? What level of dimension reduction can it achieve? (Section 3)
• What is a good regularizer? Given Σ and f , does a RIP of A on Σ − Σ

guarantee that f recovers the elements of Σ? (Section 4)

Section 5 mentions generalizations that were left out of the main of the
chapter in order to keep the exposition accessible, and discusses what chal-
lenges we face to go beyond this general compressed sensing framework in
Hilbert spaces.
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Low dimensional model

RegularizationMeasurement

Dimension 

reduction

Stable and robust 

decoding
RIP +

Fig. 2: Structure of the framework: the RIP framework allows to separate the
study of dimension reduction and of decoding.

2 Low-dimensional models

We begin by precisely describing the low-dimensional models that will be
considered in this chapter. We then focus on a model of structured sparsity
in levels, which we will use as a running example to illustrate the different
concepts used in this chapter.

2.1 Definition and examples

The results presented in [32] show that one can always construct a linear
operator A that satisfies the RIP on Σ−Σ if its normalized secant set S(Σ)
has a finite intrinsic dimension. The normalized secant set of Σ is defined as

S(Σ) :=

{
z =

y

‖y‖H
: y ∈ (Σ −Σ) \ {0}

}
.

We substitute S for S(Σ) hereafter to simplify notations. We illustrate in
Figure 3 the RIP on the normalized secant set which is equivalent to the RIP
on the secant set.

RIP on

:
:
:

Fig. 3: A characterization of the RIP: the RIP on the normalized secant set.
The image of the secant set must lie within a distance δ of the unit sphere.

In this chapter, we measure the intrinsic dimension of S using the upper
box-counting dimension, which is linked to the notion of covering number.
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Definition 2 (Covering number). Let α > 0 and S ⊂ H. The covering
number N(S, α) of S is the minimum number of closed balls (with respect
to the norm ‖ · ‖H) of radius α, with centers in S, needed to cover S.

The upper box-counting dimension is then defined as follows.

Definition 3 (Upper box-counting dimension). The upper box-counting
dimension of S is

boxdim(S) := lim sup
α→0

log[N(S, α)]/log[1/α].

Hence, as soon as k > boxdim(S), there exists a model-set dependent con-
stant αS ∈ (0, 1/2) such that N(S, α) ≤ α−k for all α ≤ αS . Further, if the
covering number satisfies

N(S, α) ≤
(
C

α

)k
(4)

then boxdim(S) ≤ k.
We choose this definition of intrinsic dimension for two reasons. First, for

many useful signal models – e.g., sparse vectors, low-rank matrices, smooth
manifolds – the upper box-counting dimension of the normalized secant set is
known. The results presented in this chapter can thus be directly applied to
these sets, without additional work. Second, one should be careful with the
definition of intrinsic dimension used in an infinite-dimensional space. Indeed,
for some definitions of dimension, there are examples where it is impossible
to perform dimension reduction on vectors belonging to a set having a finite
dimension (i.e. the set cannot be linearly and stably embedded in a finite-
dimensional space [34]). The upper box-counting dimension of the normalised
secant set does not suffer from this issue.

In the following we will say informally that a model Σ is low-dimensional
if boxdim(S(Σ)) is small compared to the ambient dimension of the Hilbert
spaceH (which may be infinite). In many examples, the dimension boxdim(S)
is of the order of the number of parameters needed to describe elements of the
model, as in the case of classical sparsity or low rank matrices. For k-sparse
vectors, the dimension of the normalized secant set S is of the order of k.

2.2 Structured sparsity ...

As a running example, we use a refinement of the notion of sparsity as a
way to introduce the general framework: we consider a model of structured
sparsity in levels.

We start by describing structured sparsity, a now classical generalization
of the plain sparsity model. In many applications, signals are not only sparse
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but also clustered in groups of significant coefficients in a transformed domain
(Fourier domain, Radon domain,...). Structured sparsity (also called group-
sparsity) is the assumption that the signal is supported on a few groups of
coefficients [26, 5, 24].

Formally, we consider an orthonormal Hilbert basis (ei)i∈N ofH and a finite
collection G of non-overlapping finite groups of indices, i.e. subsets g ⊂ N with
|g| <∞ and g ∩ g′ = ∅ whenever g 6= g′. The restriction of the vector x ∈ H
to the group g is xg :=

∑
i∈g〈x, ei〉ei. A group support is a subset T ⊂ G

and the restriction of x to the group support T is xT :=
∑
g∈T xg. The group

support of x ∈ H, denoted gsupp(x), is the smallest T ⊂ G such that xT = x.
The size of the group support of x, denoted |gsupp(x)|, is the cardinality of
gsupp(x) (to be distinguished from the number of non zero coordinates in x).

Given an integer k, the k-group-sparse model is defined as

Σk := {x ∈ H, |gsupp(x)| ≤ k}. (5)

Let d be the size of the biggest group. We have the following covering of
S(Σk):

N(S(Σk), α) ≤
(
C
α

)dk
(6)

where C is a constant depending on d.

2.3 ... in levels

Consider a collection of J orthogonal spaces Hj ⊂ H each equipped with a
kj-group-sparse model Σj as defined in (5) (each with its Hilbert basis and
its set Gj of groups). Since the subspaces are orthogonal, there is a natural
isomorphism between their direct sum and their Cartesian product. It is
simpler to work with the latter, and structured sparsity in levels is associated
to the model (see Figure 4)

Σ :=

x ∈ H, x =

J∑
j=1

xj , xj ∈ Σkj

 , (7)

which is identified to the Cartesian product of the modelsΣk1×Σk2×. . .×Σkj .

Fig. 4: A representation of structured sparsity in levels in H. A structured
sparsity in level model is formed by different structured sparsity models in
orthogonal subspaces.
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Two examples were this model is useful are: medical imaging (MRI) and
simultaneous signal and noise sparse modeling [1, 35, 37]:

• In MRI, the different levels where the signal is sparse are wavelet scales.
MRI images are generally sparser at fine wavelet scales than large wavelet
scales. This allows for more flexibility in the modeling of the signal than
the simple sparsity model.

• Simultaneous signal and noise sparse modeling is a convenient setting for
the separation of a signal sparse in some domain from noise that is sparse in
another domain. An observed signal y is modeled as the super-imposition
of two components, y = A1x1+A2x2 where A1x1 is the signal of interest, x1
lives in the (structured) sparse model Σk1 , A2x2 is noise, and x2 lives in the
(structured) sparse model Σk2 . This model is also related to the separation
of transients from stationary parts in audio, or for the decomposition of
images into cartoon and texture [31]. As y = [A1 A2]x with x = [xT1 , x

T
2 ]T ,

this corresponds to a two-level (structured) sparse model for x.

For structured sparsity in levels, we have [36]:

N(S, α) ≤ N(S(Σk1 , α)× . . .×N(S(Σkj ), α)

≤
(
C1

α

)d1k1 × . . .× (CJα )dJkJ (8)

where Cj are constants that are of the order of the dimension of each level
times the maximum size of groups dj in level j. Hence up to log factors, the
upper box-counting dimension of S in this case is of the order of

∑
djkj .

3 Dimension reduction with random linear operators

Now that we have defined the notion of dimension of a model Σ that we work
with, and the desirable RIP property of a linear operator A, the remaining
question is: how to construct a dimension-reducing linear operator A : H →
Rm that satisfies the RIP on Σ −Σ?

Consider an MRI-like scenario with a sparsity in levels signal model
Σk1 × . . . × ΣkJ in a wavelet basis. The fact that the signals in Σ have a
support restricted to the first J wavelet scales implies that their energy de-
creases at high frequencies. Intuitively, it thus seems unnecessary to probe
very high frequencies in the measurement process for this type of signals [2].
A good approximation of the signals can be obtained by probing all frequen-
cies up to a certain bandlimit B. This process corresponds to a projection
from the infinite-dimensional space H to a finite-dimensional space of size B.
However, the dimension B, though finite, might still be reduced. Indeed, the
signals are not just concentrated in the first J wavelet scales, they are also
sparse in levels. A dimension-reducing step can thus be envisioned after the
projection onto the first B Fourier coefficients with, e.g., a random Gaus-
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sian matrix. Ideally the final dimension m should satisfy, up to log factors,

m = O
(∑J

j=1 kj

)
(of the order of the number of parameters describing the

model). Intuition thus suggests to build the operator A in two steps: a pro-
jection onto a finite (but high) dimensional space followed by a multiplication
with a random matrix.

In fact, the authors of [32] present such a construction in the general setting
that first projects the signal onto a subspace H ⊂ H of finite (but potentially
large) dimension, then reduces the dimension using a random linear operator
on H (see Figure 5).

Projection Reduction

Σ ⊂ H → Linear space H ⊂ H → Linear space = Rm

Low-dimension Finite dimension Low dimension

boxdim(S(Σ)) <∞ dim(H) = d <∞ m� d

Fig. 5: Strategy for dimension reduction: we aim at reducing the dimension
of vectors belonging to Σ leaving an infinite-dimensional space H.

3.1 Projection on a finite-dimensional subspace

Assuming that boxdim(S) is finite we will see that, given 0 < α < 1, there
always exists a finite-dimensional subspace H ⊂ H such that

(1− α)‖x‖H ≤ ‖PHx‖H ≤ ‖x‖H (9)

for all x ∈ Σ −Σ, where PH denotes the orthogonal projection onto H.
In the example of Fourier sampling of signals sparse in a Haar basis, it is

possible to directly exhibit such a projection PH by sampling low Fourier fre-
quencies. However, one can generally construct H as follows. First, build an
α-cover of the normalized secant set S. As boxdim(S) is finite, N(α,S) < +∞
balls are sufficient to build this cover. Let now C be the set containing the
center of these balls. It is then sufficient to take H = span C, see Figure 6
and [32]. We, remark that in the worst case the cardinality of C is exponen-
tial in the dimension of S, hence H can have a dimension of the order of
ec(α)×boxdim(S). Yet the important message to take away at this stage is that:

If the normalized secant set S(Σ) has a finite upper box-counting
dimension, then there exists a finite-dimensional subspace H ⊂ H that

approximates all vectors in S with precision α.
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In the next section, we describe how to further reduce the dimension to
m = O(boxdim(S)) after this first projection.

Fig. 6: Construction of H. Top left : cover of S with N(S, α) balls of radius
α. Top right : the centers of the balls, indicated by the red crosses, form an
α-cover, denoted by C, for S. Bottom left : H is defined as the linear span of
the vectors in C. Bottom right : H approximates S with precision α.

3.2 Dimension reduction step

After the projection onto the finite-dimensional space H of the previous sec-
tion, the goal is now to reduce the dimension down to O(boxdim(S)). As
most compressive sensing techniques use random observations to reduce the
dimension, it seems natural to follow this route.

Denote by d the dimension of the subspace H and (e1, . . . , ed) an arbi-
trary orthonormal basis of H. By abuse of notation, identify the projection
onto H with the linear operator PH : H → Rd that returns the coordi-
nates of the orthogonal projection onto H in the basis (e1, . . . , ed). The
idea is now to compose PH with a random matrix M ∈ Rm×d to build
A : H → Rm, i.e., A = MPH . Ideally, we would like A to satisfy the RIP,
and m ≈ O(boxdim(S)): a number of measurements of the order of the di-
mension of the model. In this case, we would be assured that the ideal decoder
is stable and robust and that the reduction of dimension is close to optimal.

3.2.1 Randomized dimension reduction

To exhibit a linear operator A satisfying the RIP with constant δ, one can
first identify a finite-dimensional subspace H ⊂ H such that (9) holds with α
small enough, then build a random M : Rd → Rm satisfying a RIP with small
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enough constant δ′. Sometimes one is directly provided with a random linear
operator from H → Rm and needs to check whether the RIP holds with high
probability. The approach described in [32] makes it possible to handle both
cases. With a slight abuse of notation, in this subsection H stands either
for the original Hilbert space (case of a given random operator) or for Rd
(two-step construction considered above).

Consider M a random linear operator from H to Rm. An example results
from the independent draw of m identically distributed random vectors ai ∈
H, so that for x ∈ H, Mx := (〈ai, x〉)mi=1. A convenient way to help M satisfy
the RIP is to choose its probability distribution so that, for any vector x ∈ H,

EM‖Mx‖22 = ‖x‖2H. (10)

With the above isotropy assumption, a draw M of the random linear operator
satisfies the RIP on Σ −Σ if, and only if,∣∣∣‖Mx‖22 − EM̃‖M̃x‖22

∣∣∣ ≤ δ‖x‖2H, (11)

for all x ∈ Σ −Σ, where we emphasize with the M̃ notation that the expec-
tation E is with respect to a linear operator with the same distribution as the
one from which the particular M is drawn. As discussed in Section 5, even
without the isotropy assumption (10), one can establish dimension reduction
results using (11) as a generalized definition of the RIP [32].

To prove that M satisfies the RIP, the authors in [32] require it to satisfy
two concentration inequalities. Define

hM : H −→ R
x 7−→ ‖Mx‖22 − ‖x‖2H.

The assumption is that there exists two constants c1, c2 ∈ (0,∞] such that
for any fixed y, z ∈ S(Σ) ∪ {0},

PM {|hM (y)− hM (z)| ≥ λ ‖y − z‖H} ≤ 2e−c1mλ
2

, for 0 ≤ λ ≤ c2/c1 (12)

PM {|hM (y)− hM (z)| ≥ λ ‖y − z‖H} ≤ 2e−c2mλ, for λ ≥ c2/c1. (13)

By taking z = 0 in (12) and (13), we see that the above properties imply that,
for any fixed vector in the normalized secant set, y ∈ S, ‖My‖22 stays close to
its expected value EM‖My‖22 = ‖y‖2H = 1 with high probability. Proving that
the RIP holds consists in showing that, with high probability on the draw of
M , this property actually holds uniformly for all vectors in S, not just for any
fixed vector y ∈ S. Among other properties, this generalisation to the entire
set S is proved by using the fact that for any fixed y, z ∈ S, if ‖y − z‖H is small

then the difference between ‖My‖22 − ‖Mz‖22 and EM̃‖M̃y‖22 − EM̃‖M̃z‖22 is
also small with high probability.
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These concentration inequalities together with the finite dimension of S
suffice to conclude on a sufficient number of measurements for M to satisfy
the RIP [32, Theorem II.2].

Theorem 1. Let M : H → Rm be a random linear map that satisfies (12)
and (13). Assume that boxdim(S) < s (there exists 0 < αS <

1
2 such that

N(S, α) ≤ α−s for all 0 < α < αS).
Then for any ξ, δ0 ∈ (0, 1), M satisfies the RIP on Σ − Σ with constant

δ ≤ δ0 with probability at least 1− ξ provided that

m ≥ 1

δ20

C

min(c1, c2)
max

{
s log

(
1

αS

)
, log

(
6

ξ

)}
, (14)

where C > 0 is an absolute constant.

This theorem states that if the random operator M satisfies appropriate
concentration inequalities and the set S has finite upper box-counting di-
mension, then reducing the dimension of the vectors in Σ is possible (recall
that these vectors possibly live in an infinite-dimensional space). A number
of measurements m of the order of the dimension of the secant set S (only)
is sufficient to be able to recover elements of Σ, whatever the ambient di-
mension of H (which can be infinite). We remark that the sufficient number
of measurements grows as the RIP constant decreases (the closer A is to an
isometry for elements in S). In particular, the typical log n factor appearing
in standard results for compressed sensing of k-sparse vectors in H = Rn
is in fact related to αS rather than the ambient dimension. Related results,
independent of the ambient dimension, have been achieved for manifold em-
bedding [23, 20].

For a fixed dimension of S, if we wish to ensure an arbitrarily small prob-
ability that the RIP fails to hold, ξ ≤ 6 (αS)

s
, then the number of measure-

ments m also grows as ξ approaches zero. Vice-versa, as the ratio between

m and its minimum value m0 = 1
δ2

C
min(c1,c2)

s log
(

1
αS

)
grows, the RIP holds

with probability exponentially close to 1.

Remark 1. The sufficient condition m ≥ m0 is not necessary. There are ac-
tually sets Σ whose normalized secant set has an infinite upper box counting
dimension and for which some operators M : H → Rm with only m = 1
measurement satisfy the RIP [32].

3.2.2 Some examples

When given a random linear operator A : H → Rm, one can leverage the
above result to check whether A satisfies the RIP with high probability. Al-
ternatively, one can construct such an operator by pursuing the strategy
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described at the beginning of this section. We now need to choose the ma-
trix M ∈ Rm×d. Examples of matrices M ∈ Rm×d such that the operator
A = MPH satisfies (12) and (13) are:

• matrices with independent random Gaussian entries with mean 0 and vari-
ance 1/m;

• matrices whose entries are independent random Bernoulli variables±1/
√
m;

• matrices whose rows are independently drawn from the Euclidean sphere
of radius

√
d/m in Rd using the uniform distribution.

If M is one of the above matrices (or more generally a matrix with inde-
pendent subgaussian rows), considering the orthogonally projected model set
Σ′ = PHΣ, its normalized secant set S ′ = S(Σ′), and s > boxdim(S ′) =
boxdim(S), we have [32]: M satisfies the RIP on Σ′ − Σ′ with constant
δ′ < δ0 with high probability provided

m ≥ C ′

δ20
max

{
s log

(
1

αS′

)
, log

(
6

ξ

)}
, (15)

where C ′ is a constant that depends on the distribution of M .

3.3 Summary

To summarize, a generic strategy (a way to implement the strategy in Fig-
ure 5) to build a compressive sensing measurement operator for a set Σ that
has a normalized secant set S of finite upper box-counting dimension is :

1. Find a (potentially high-dimensional) finite-dimensional space H whose
orthogonal projection operator satisfies (9). A generic construction ofsuch
a space is presented in Section 3.1.

2. Compose this projection operator with a random projection operator M
(a random matrix) such that (12) and (13) holds.

Now that we have described how a we can build operators preserving low
complexity models, we can turn to the study of the performance of methods
used to recover x from y.

4 Performance of regularizers for the recovery of
low-dimensional models

As they satisfy the RIP, the linear operators A built with the technique
just described in Section 3 preserve the low-dimensional model Σ in the
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sense that stable reconstruction of vectors from Σ is possible with the so-
called “ideal decoder”. Yet, this decoder is often intractable in practice as
it involves possibly non-convex and/or non-smooth optimization. We now
turn to general decoders, with an emphasis on convex decoders: minimization
algorithms are well known for such decoders and they are often possible
to implement with off-the-shelf algorithms, as in the classical cases of basis
pursuit (`1 norm minimization) or nuclear norm minimization.

4.1 Convex decoders and atomic norms

In the framework of minimization (2), it is interesting to consider a particular
class of convex functions: atomic norms with atoms included in the model
set Σ [17]. Considering a set A ⊂ H, commonly called the set of atoms, the
corresponding atomic “norm” is built using the convex hull of A .

Definition 4 (Convex hull). The convex hull of a set A is:

conv(A) :=
{
x =

∑
ciai : ai ∈ A, ci ∈ R+,

∑
ci = 1

}
(16)

Definition 5 (Atomic norm). The atomic “norm” induced by the set A is
defined as:

‖x‖A := inf {t ∈ R+ : x ∈ t · conv(A)} (17)

where conv(A) is the closure of conv(A) in H. The function ‖x‖A is a convex
gauge that is not always a norm. It is a norm ifA is symmetrical and bounded.
We will keep the term atomic norm in the general case as an abuse of notation.
This norm is finite only on the set

E(A) := R+ · conv(A) = {x = t · y, t ∈ R+, y ∈ conv(A)} ⊂ H. (18)

It can be extended to H by setting ‖x‖A := +∞ if x /∈ E(A).

Atoms are often normalized : a vector u is normalized if ‖u‖H = 1.

Remark 2. Atomic norms are interesting because given any convex regular-
ization function it is always possible to find an atomic norm that performs
noiseless recovery better (in the sense that it permits recovery for more mea-
surement operators A [36]).

4.1.1 Classical examples of atomic norms

As pointed out in [17], many well know norms used for low complexity re-
covery are atomic norms:
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• `1 norm in Rn: A is the set of canonical orthonormal basis vectors multi-
plied by a real scalar with modulus 1, i.e. the normalized 1-sparse vectors.

• Nuclear norm: A is the set of normalized rank one matrices.
• Gauge generated by a finite polytope: A is composed of the vertices of a

polytope.
• Spectral norm: A is the set of normalized orthogonal matrices.

4.1.2 Group norms in levels

For our running example, the model Σ = Σ1×. . . ΣJ associated to structured
sparsity in levels, we consider a similar class of atomic norms: the group norms
in levels.

Given the subspace Hj associated to the j-th level, Sj(1) ⊂ Hj its unit
sphere, Gj its set of groups, and Σ1,j the associated 1-group sparse model,
consider the collection of atoms of the j-the level:

Aj := Σ1,j ∩ Sj(1). (19)

The corresponding atomic norm is associated to the finite-dimensional space

E(Aj) = span({ei}i∈∪g∈Gj )

and simply given by

‖x‖Aj =

{∑
g∈G ‖xg‖H, x ∈ E(A);

+∞, x /∈ E(A)
(20)

The norm ‖x‖Aj is called a group norm, a structured norm or a mixed `1− `2
norm [39].

A natural regularizer for the structured sparsity in levels model is defined
as follows in H1 × . . .×HJ :

fw : (x1, . . . xJ) 7→ w1‖x1‖A1
+ . . .+ wJ‖xJ‖AJ (21)

with weights wj > 0. We will show in the next sections that setting appro-
priately the weights in each level can yield recovery guarantees of various
strengths.

4.1.3 Atomic norm associated to a union of subspace model

Many classical model sets Σ (the set of sparse vectors, the set of low-rank
matrices, etc.) are homogeneous: if x ∈ Σ then αx ∈ Σ for any scalar. As such
they are (finite or infinite) unions of subspaces. Given any union of subspaces
Σ ⊂ H, the norm associated to its normalized atoms
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A(Σ) := Σ ∩ S(1) (22)

will be of particular interest for the RIP analysis described in the next sec-
tions. As a shorthand notation, we define

‖ · ‖Σ := ‖ · ‖Σ∩S(1). (23)

This norm is sometimes useful as a regularizer to perform recovery (i.e. by
choosing f(z) = ‖z‖Σ in minimization (2)). For the particular case where
Σ is the set of k-sparse vectors, ‖ · ‖Σ is know as the k-support norm [3].
It is known to yield stable recovery guarantees for certain k-sparse vectors
[3], however it has been shown that these results cannot be made uniform
for all k-sparse vectors (and consequently similar negative results hold for
structured sparsity in levels) [36]. We show in Figure 7 a representation of
the `1-norm and of the k-support norm ‖ · ‖Σ for k = 2 in 3D (H = R3),
which are two atomic norms induced by normalized atoms included in the
model set Σ.

(a) ‖ · ‖1 (b) ‖ · ‖Σ

Fig. 7: The unit ball of ‖·‖1 (left) and the unit ball of ‖·‖Σ (k-support norm)
for Σ = Σ2 the set of 2-sparse vectors in 3D (right).

4.2 Stable and robust recovery of unions of subspaces

The main result from [36] states that the stability of any decoder of the form
(2) is guaranteed provided the linear operator A satisfies a RIP on the secant
set Σ − Σ with a constant δ < δΣ(f) holds, where δΣ(f) is a constant that
depends only on the regularizer f and the model set Σ (we give and discuss
the definition of δΣ(f) in Section 4.3 below).



18 Yann Traonmilin, Gilles Puy, Rémi Gribonval and Mike E. Davies

4.2.1 Stable recovery in the presence of noise

Elements of the model can be stably recovered [36, Theorem 1.2]:

Theorem 2 (RIP condition for stable recovery of a union of sub-
spaces). Assume that Σ is a union of subspaces. Then, for any continuous
linear operator A on H that satisfies the RIP on the secant set Σ − Σ with
constant δ < δΣ(f) we have: for all x ∈ Σ, e ∈ F such that ‖e‖F ≤ η ≤ ε,
with x∗ the result of minimization (2),

‖x∗ − x‖H ≤ CΣ(f, δ) · (η + ε) (24)

where CΣ(f, δ) < +∞.

We refer the reader to [36, Theorem 1.2] for an explicit expression of CΣ(f, δ).
It is increasing with respect to the RIP constant δ : the worse the RIP
constant is, the worse the stability constant is (see for example its expression
for structured sparsity in levels in Theorem 4).

4.2.2 Robustness to modeling error

Regarding robustness to modeling error, generic results often use the so-called
A-norm [7] (not to be confused with the atomic norm: here the A refers to the
measurement operator) as an intermediate tool to measure the distance from
a vector x to the model set Σ. Given a constant C, the A-norm is defined by

‖ · ‖A,C := C · ‖A · ‖F + ‖ · ‖H. (25)

It is more convenient to express robustness results with respect to a norm
that does not depend on the measurement operator A. We provide here a
robustness result where the modeling error with respect to the regularizer f
is used (this is more in line with the classical literature for `1 minimization
of nuclear norm minimization). Consider the (symmetrized) distance with
respect to f :

df (x,Σ) = inf
x̃∈Σ

f(x− x̃) + f(x̃− x)

2
. (26)

When f is a positively homogeneous, non-negative and convex regularizer
that bounds the A-norm, robustness with respect to df also generally holds
[36, Theorem 3.2]:

Theorem 3. Let Σ be union of subspaces. Let f be positively homogeneous,
non-negative and convex with f(x) < +∞ for x ∈ Σ. Consider a continuous
linear operator A satisfying the RIP on Σ −Σ with constant δ < δΣ(f), and
a noise level η ≤ ε. Denote CΣ the constant from Theorem 2, and assume
that for all u ∈ H, ‖u‖A,CΣ ≤ Cf,A,Σ · f(u) for some Cf,A,Σ <∞. Then, for
all x ∈ H, e ∈ F , such that ‖e‖H ≤ η ≤ ε, any minimizer x∗ of (2) satisfies
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‖x∗ − x‖H ≤ CΣ · (η + ε) + 2Cf,A,Σ · df (x0, Σ). (27)

Remark 3. To apply this theorem we need Cf,A,Σ < ∞. This is the case
for most classical examples (sparse recovery with `1-norm, low-rank matrix
recovery with the nuclear norm). It is also true for the case where f being a
convex gauge induced by a bounded closed convex set containing 0 and H is
of finite dimension.

Remark 4. Both Theorem 2 and Theorem 3 can be extended to the case where
Σ is a cone instead of a union of subspaces, with a definition of δΣ(f) adapted
compared to the one given later in Section 4.3 (See Section 5).

4.2.3 Example: the case of sparsity in levels

Consider the model set Σ corresponding to our running example of structured
sparsity in levels, and choose as a regularizer the weighted atomic norm fw(·)
defined in (21). One can show [36, Theorem 4.1] that δΣ(fw) ≥ 1√

2
for J = 1

and

δΣ(fw) ≥ 1√
2 + Jκ2w

for J ≥ 2, where κw := max(wj
√
kj)/min(wj

√
kj). In particular, for the

particular weights wj = 1/
√
kj , we have δΣ(fw) ≥ 1√

2+J
for J ≥ 2.

In comparison, Ayaz et al. [4] gave a uniform recovery result with the mixed
`1−`2-norm for structured compressed sensing under a RIP hypothesis. They
showed that a RIP constant δ <

√
2−1 for vectors in the secant set guarantees

the recovery of vectors from the model. The above result shows that the RIP
constant of Ayaz et al. can be improved to 1√

2
. In [1], a model of sparsity in

levels was introduced: it is in fact a structured sparsity in levels model with
classical sparsity (each group is reduced to a single coordinate) in each level.
In [6], Bastounis et al. showed that when the model Σ is sparsity in levels
and f(·) =

∑
j ‖ · ‖Aj = ‖ · ‖1 (i.e., with weights wj = 1, in this case, κ2w = κ21

is the maximum ratio of sparsity between levels), the RIP with constant
δ = 1/

√
J(κ1 + 0.25)2 + 1) on Σ − Σ guarantees recovery. This constant is

improved to the constant δΣ(fw) ≥ 1/
√

2 + J when weighting the norm of
each level with wj = 1/

√
kj . The above result further extends the work of

Bastounis et al. to general structured sparsity. The following theorem [36,
Theorem 4.3] summarizes the result with this optimal weighting:

Theorem 4. Let Σ be the model set associated to structured sparsity in levels,
and consider f = fw as a regularizer, with the adapted weights wj = 1/

√
kj.

Suppose the continuous linear operator A satisfies the RIP with constant δ <
δΣ(f) on the secant set Σ −Σ. Then for all x ∈ H, e ∈ F such that ‖e‖F ≤
η ≤ ε, and x∗ the result of minimization (2), we have

‖x∗ − x‖H ≤ CΣ(f, δ)(ε+ η) +DΣ(f, δ) · df (x,Σ) (28)
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where :

• For J = 1, δ0 = 1√
2

and CΣ(f, δ) ≤ 2
√
1+δ

1−δ
√
2

.

• For J ≥ 2, δ0 =
√

1
2+J and CΣ(f, δ) ≤ (1+

√
1+J)

√
1+δ

1−δ
√
2+J

.

This result recovers classical guarantees with `1 minimization for sparse
recovery. Since δΣ(f) ≥ 1/

√
2 + J for J ≥ 2, combining Theorem 4 for

δ < 1/
√

2 + J with results from Section 3 yields [36] that

m ≥ O

J J∑
j=1

(
kjdj + kj log

(
3e|Gj |
kj

)) .

subgaussian measurements are sufficient to guarantee stable and robust re-
covery with fw, where wj = 1/

√
kj .

Remark 5. The factor J might seem pessimistic, and we attribute its presence
to the generality of the result. Should the structure of the observation matrix
A be taken into account, better results can be achieved. In fact, if A is a
block diagonal matrix where each block Aj has size mj×nj , uniform recovery
guarantees with the `1-norm hold if and only if uniform recovery holds on
each block: this is possible as soon as each block Aj of A satisfies the RIP
with some constant δj <

1√
2

on Σj −Σj , which is in turn exactly equivalent

to the RIP with constant δ < 1√
2

on Σ −Σ.

Remark 6. To make sense of Theorem 4 in the infinite-dimensional setting,
the domain where the regularizer f is finite must be extended outside of E(Σ)
while keeping a finite constant DΣ(f, δ) . This can be done on a case-by-case
basis when properties of A and f allow to conclude. For example, as Adcock
and Hansen in [1], consider the following setting: H = `2(N) with Hilbert
basis (ei)i=1,+∞. Consider Σ a sparsity in levels model in (e1, .., eN ). Let
f = ‖ ·‖1. Then f is an extension of the definition of fw in E(Σ) to the whole
space H (with wj = 1 for all j). In [1], the measurement operator A is a
collection of (Fourier) measurements that have a strong balancing property.
The important fact here is that this property requires ‖AHA‖∞ ≤ C ′ where
‖·‖∞ is the maximum of the `∞-norms of the coefficients of AHA (where AH

is the Hermitian conjugate of A). With such an hypothesis, for any u ∈ H,
we have: ‖Au‖22 = |〈u,AHAu〉| ≤ ‖AHAu‖∞‖u‖1 ≤ ‖AHA‖∞‖u‖1‖u‖1 ≤
C ′‖u‖21. Thus in this case the A-norm is bounded by the `1-norm: ‖ · ‖A,C ≤
(1 + C

√
C ′)‖u‖1.

4.3 Definition and calculation of δΣ(f)

When Σ is a union of subspaces, the sufficient RIP constant for recovery of
elements of Σ with f is defined as
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δΣ(f) := inf
z∈Tf (Σ)\{0}

sup
x∈Σ

δΣ(x, z). (29)

where

δΣ(x, z) :=
−Re〈x, z〉

‖x‖H
√
‖x+ z‖2Σ − ‖x‖2H − 2Re〈x, z〉

. (30)

(31)

and Tf (Σ) is the set of descent vectors of f at points of Σ:

Tf (Σ) := {z ∈ H : ∃x ∈ Σ / f(x+ z) ≤ f(x)} (32)

It is important to note that the constant δΣ(f) only depends on the ge-
ometry of Σ and f . This constant measures the quality of f as regularizer to
recover elements of Σ under a RIP assumption: the larger δΣ(f), the weaker
the assumption on the linear operator A to ensure stable and robust recovery
in Theorem 3.

To obtain concrete results, one needs to lower bound the above expression.
As the supremum in the expression of δΣ(f) is a priori hard to compute
explicitly, for z ∈ Tf (Σ) one can intuitively seek an element x ∈ Σ that
maximizes the correlation with −z (i.e., such that −Re〈x, z〉 is maximized).
For the model associated to structured sparsity in levels, with the regularizer
f = fw and weights wj = 1/

√
kj , this consists in taking x = −zT where T

is the support such that zT ∈ Σ and zT concentrates the most energy of z.
With such an x, denoting zTc = z − zT , one can show that

δ(−zT , z) =
1√

‖zTc‖2Σ
‖zT ‖2H

+ 1

(33)

Since z ∈ Tf (Σ), one shows that the fact that zT concentrates the most
energy implies that f(zTc) ≤ f(zT ), which in turns allows one to conclude
that ‖zTc‖2Σ/‖zT ‖2H ≤ 1 + J is bounded using a control of ‖zTc‖2Σ obtained
by extending Cai’s sparse decomposition of polytopes [9]. This leads to the
bound δΣ(fw) ≥ 1/

√
2 + J mentioned in Section 4.2.3.

5 Generality of the whole framework

The proof of the existence of random linear maps that reduce dimension
while satisfying the RIP is valid for any finite-dimensional model set Σ in
any Hilbert space. The guarantees for convex decoders from Section 4 allow to
define a critical RIP value for any union of subspaces Σ and any regularizer f
(for some pairs this may yield δΣ(f) = 0, e,g, the right hand side of Figure 7).
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Overall, the compressive sensing framework described in this chapter is thus
very general and we give here an overview of examples where it applies.

5.1 A flexible way to guarantee recovery

The following list summarizes the results of the combined framework of Sec-
tion 3 and 4 for classical pairs of model Σ and regularizer f . It states the
model Σ, the considered regularizer f , a lower bound on our sufficient RIP
constant δΣ(f), and a sufficient number of (random subgaussian) measure-
ments m to guarantee recovery using the construction from Section 3.

• Σ = Linear subspace of dimension n, f = indicator function ιΣ or ‖ · ‖Σ .
- δΣ(f) = 1: this sufficient RIP constant was already known, e.g. [7].
- Sufficient number of measurements: m & n.

• Σ = k-sparse vectors in dimension n, f = `1-norm.
- δΣ(f) ≥ 1/

√
2. This is the sharp RIP constant of Cai et al. [9] (sharpness

will be discussed in the next section).
- Sufficient number of measurements: m & klog(n).

• Σ = Matrices of rank lower than r in dimension n×n, f = nuclear norm.
- δΣ(f) ≥ 1/

√
2. This is also the sharp RIP constant of Cai et al. [9].

- Sufficient number of measurements: m & rn.
• Σ = Finite union of k 1D-half-spaces with coherence µ(Σ), f = ‖ · ‖Σ .

- δΣ(f) ≥ 2(1−µ(Σ))
3+2µ(Σ) .

- Sufficient number of measurements: m & log(k)/δΣ(f)2.
• Σ = Permutation matrices of dimension n× n, f = ‖ · ‖Σ .

- δΣ(f) ≥ 2
3 .

- Sufficient number of measurements: m & n log(n).

Combining the formalism of [32] with that of [36], these models can also
be considered in an infinite-dimensional space H, which is convenient to han-
dle analog compressive sensing scenarios. Stable recovery guarantees are still
valid in this infinite-dimensional setting. For robustness, one must make sure
that the constant Cf,A,Σ is finite. For convex f , this might need some further
assumptions on the behaviour of f and A outside of the space E(Σ) (the
subspace spanned by Σ).

5.2 Uniform vs non-uniform recovery guarantees

The framework described in this chapter focuses on uniform recovery guar-
antees for arbitrary linear operators. Another trend of general framework
for compressive sensing focuses on non-uniform guarantees for Gaussian ob-
servations. In particular, Chandrasekaran et al [17] studied the general non-
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uniform recovery from Gaussian observations with atomic norms. In this case,
the goal is to show that, for any element x of the model, atomic norm min-
imization will recover x from Ax with high probability on the draw of A.
In contrast, in the framework presented in this chapter, we established con-
ditions so that (with high probability) the same linear operator A (i.e., a
particular draw of a random operator) allows to stably and robustly recover
all elements of the model with arbitrary regularizers. Moreover, these results
are proved for general random matrices (typically, subgaussian matrices).

5.3 Extensions

The guarantees for convex decoders for unions of subspaces from Section 4
have further been extended to the case where the model set is a cone (a
positively homogeneous sets) [36, Theorem 3.1]. This covers models such as
(subsets of) the cone of positive semi-definite matrices, or that of non-negative
matrices.

Beyond the pure Hilbert norm setting described in this chapter, the gener-
alized definition of the RIP from equation (11) or its further generalizations
to arbitrary norms in H can be used [32] to establish dimension reduction
results for structured acquisition. An example is the use of random rank one
projections (which are a subset of sub-exponential random matrices) [10],
which offer a computationally efficient way to gather linear observations of a
matrix, thus making them an interesting observation method for algorithmic
purposes in the low rank matrix recovery problem. While the RIP constant
δΣ(f) has not be extended to such settings yet, such developments seem
accessible.

5.4 Sharpness of results?

In [32] the finite dimension of the normalized secant set allows one to conclude
on the possibilities in terms of dimension reduction. Only a number of mea-
surements of the order of the dimension is sufficient. However, this hypothesis
is not necessary. It is possible to find a model Σ whose normalized secant set
S has infinite upper box counting dimension such that there exists a measure-
ment operator with the RIP on S. Hence a weaker necessary and sufficient
condition on the “dimension” of S could exist to guarantee the existence of
measurements operators with stable dimension reduction capabilities.

In terms of recovery for arbitrary regularizers, it has been shown that a
sufficient RIP constant can be provided. For classical families of models and
regularizers (sparse recovery with the `1 norm and low-rank matrix recovery
with the nuclear norm), as well as for structured sparsity and the associ-
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ated group norm the constant δΣ(f) is sharp in the following way: we know
that there exist RIP matrices with constant arbitrarily close to δΣ(f) (here
1/
√

2) which do not permit uniform recovery [19, 10] for some dimension of
H and some sparsity k (or rank r). Considering sparsity in levels, we observe
that δΣ(f) complies with the necessary dependency on the ratios of sparsity
between levels and the number of levels J [6]. These sharpness results all con-
sider families of models and regularizers: it is a worst case sharpness among
these families of regularizer. However, one can consider the question of strong
sharpness: for a given model Σ and regularizer f , what is the biggest RIP
constant sufficient to guarantee recovery?

5.5 New Frontiers: Super-resolution and compressive
learning

Much of the algorithmic and mathematical techniques revolving around the
notion of sparsity in the context of inverse problems and compressive sensing
have been developed with finite-dimensional models, involving e.g. a dis-
cretization of the time domain, or of the frequency domain. However, the
physical phenomena underlying the acquisition of modern data from the ana-
logue world are rather intrinsically continuous [38]. The generic framework
for inverse problems and dimension reduction presented in this chapter is di-
rectly set up in an arbitrary Hilbert space setting, and as such it opens new
perspectives for handling the analogue nature of many problems.

Super-resolution is one such problem. In super-resolution, one aims at re-
covering spikes combinations of few spikes from their low pass observation.
While spikes are usually modeled with Dirac measures, which can be consid-
ered as belonging to certain Banach spaces of measures (e.g., equiped with
the total variation norm), one way of bringing super-resolution close to the
content of this chapter is to consider a kernel metric, which will bring a
Hilbert structure to such Banach spaces. Intuitively, this amounts to choos-
ing a high resolution at which we will measure energy in the signal space. In
this context, all the results on recovery guarantees and dimension reduction
hold. Several questions remain standing: is it possible to find a sufficient RIP
constant δΣ(f) that also holds in this context? Do usual models in Banach
spaces have a normalized secant set with finite dimension? With the work of
[12, 16, 22], we already know that low pass filtering allows to recover spikes
up to some resolution with a convex decoder.

Another related problem is compressive learning. In [8, 28] it is shown em-
pirically that Gaussian mixtures can be recovered from a so-called sketch of
the data, which can be considered as random Fourier measurements of their
probability density. Recent works suggests that for an an appropriately cho-
sen kernel metric, the secant set of sufficiently separated mixtures of Diracs
is of finite dimension for appropriately chosen kernel metric [29]. It is then
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possible to guarantee the success of the ideal decoder with random observa-
tions. Practical results have been obtained using a greedy heuristic approach
to the problem [30]. These results seem to indicate a possible generalization
of the theory of dimension reduction and convex recovery to these problems.
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