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ABSTRACT: Adoption of next-generation sequencing
(NGS) in a diagnostic context raises numerous questions
with regard to identification and reports of secondary vari-
ants (SVs) in actionable genes. To better understand the
whys and wherefores of these questioning, it is necessary
to understand how they are selected during the filtering
process and how their proportion can be estimated. It is
likely that SVs are underestimated and that our capacity
to label all true SVs can be improved. In this context,
Locus-specific databases (LSDBs) can be key by providing
a wealth of information and enabling classifying variants.
We illustrate this issue by analyzing 318 SVs in 23 ac-
tionable genes involved in cancer susceptibility syndromes
identified through sequencing of 572 participants selected
for a range of atherosclerosis phenotypes. Among these
318 SVs, only 43.4% are reported in Human Gene Mu-
tation Database (HGMD) Professional versus 71.4% in
LSDB. In addition, 23.9% of HGMD Professional vari-
ants are reported as pathogenic versus 4.8% for LSDB.
These data underline the benefits of LSDBs to annotate
SVs and minimize overinterpretation of mutations thanks
to their efficient curation process and collection of unpub-
lished data.
Hum Mutat 37:1299–1307, 2016. C© 2016 Wiley Periodicals, Inc.
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Introduction
Progress in sequencing technologies have led to the rapid adop-

tion of next-generation sequencing (NGS) in a research context to
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facilitate the identification of disease-causing genes, especially in
the field of rare genetic diseases. Based on their successes, these
technologies have been transferred to diagnosis. This switch was
not transparent but rather has been accompanied by new ethical
issues. In fact, patients are addressed for a specific set of symptoms
associated to a particular disease spectrum such as a neuromuscu-
lar disease. In the course of the Whole-Exome Sequencing (WES)
now routinely proposed in many countries, it is frequent to identify
potentially harmful mutations in genes unrelated to these symp-
toms but which may be of importance for patient follow-up. These
discoveries have been named “secondary findings,” “incidental find-
ings,” or “secondary variants (SVs)” and have to be distinguished
from “unsolicited findings” that are found in the genes linked to the
tested disease [Matthijs et al., 2016]. Depending on national guide-
lines, it may be mandatory or not to look for these “SVs” (for more
information, see dedicated paper in this issue). Because these find-
ings usually target genes involved in a completely different clinical
field, such as cancer predisposing genes, the diagnostic laboratory
may not be an expert of these genes while the interpretation of results
requires a strong expertise. During the last 25 years, Locus-specific
databases (LSDBs) have been slowly developed and maintained to
ensure optimal quality of data to facilitate data interpretation. Here,
we will review the various resources, LSDB and other databases, that
could be used to facilitate the interpretation of these findings and
discuss assets and drawbacks.

Materials and Methods
Variant list from Johnston et al. (2012) is available as Supp.

Table S1 in Johnston et al. (2012) and Matthijs et al. (2016).
List of actionable genes is available in Green et al. (2013).
Reports in LSDBs for each of the 318 variants were searched
for with an in-house designed Perl script for LOVD Bea-
con (http://mcupak.github.io/beacon-of-beacons/queries.html)
and LOVD Share (http://databases.lovd.nl/shared/genes) core
databases. Data from each UMD-LSDB (APC, BRCA1, BRCA2,
MEN1, MLH1, MSH2, MSH6, MUTYH, TP53, and VHL genes)
were searched online at http://www.umd.be. Finally, manual search
was performed in the 250 other LSDBs reported for each of the 23
genes and are listed in Supp. Table S2.

To homogenize variant classification, Human Gene Mutation
Database (HGMD) variant types have been matched as following:
disease-causing mutation (“DM”) = class 5, disease-causing
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mutation? (“DM?”) = class 3, disease-associated polymorphism
(DP) = class 1, functional polymorphism (FP) = class 2, and disease
functional polymorphism (DFP) = class 2. When two or more
databases had different variant classification, variant was classified
as variant of unknown significance (VUS).

Reported frequencies from each variant from Exome Sequenc-
ing Project (ESP), Exome Aggregation Consortium (ExAC), 1000G,
dbSNP (build 144) were extracted from the file provided by the An-
novar Tool [Wang et al., 2010] as well as information from ClinVar
(06-2015) (http://www.ncbi.nlm.nih.gov/clinvar/).

In silico predictions were performed with the UMD-Predictor
tool [Salgado et al., 2016] through the corresponding Web service.
Finally, data were merged into one table using a homemade Perl
script.

What Are SVs and What Is the Importance of Reporting
Them?

In 2013, the American College of Medical Genetics and Genomics
(ACMG) recommended identification and return of SVs collected
through NGS techniques such as WES and whole-genome sequenc-
ing (WGS) in diagnostic settings from a minimum set of 56 action-
able genes as these variants, unrelated to the indication for which
sequencing is ordered, are of medical value for patient care [Chris-
tenhusz et al., 2013; Green et al., 2013; ACMG Board of Directors,
2015]. These variants should be reported regardless of the age of
the patient as preventive measures and/or treatment are available
and individuals with pathogenic mutations might be asymptomatic
for long periods of time. It was expected that the clinician would
contextualize these variants for the patient in light of personal and
family histories and physical examination.

Identification and reporting of these SVs led to a broad discus-
sion in the last few years notably on: (1) clinicians’ obligations or
not to report them [Biesecker, 2013; Clayton et al., 2013; Gliwa
and Berkman, 2013; van El et al., 2013], (2) patient’s right “not to
know” [Andorno, 2004; American College of Medical Genetics and
Genomics, 2013; Scheuner et al., 2015], (3) extra workload needed
for variant interpretation and confirmation [Dorschner et al., 2013;
Hegde et al., 2015], (4) uncertain accuracy of genotypic predictions
in the absence of familial segregation data [Burke et al., 2013], (5)
or possibility of inadequate depth and breadth of sequencing cov-
erage at clinically relevant locations [Park et al., 2015], but also (6)
cost-effectiveness of this detection [Douglas et al., 2016], and finally
(7) whether this effort would be compensated [Hegde et al., 2015].
One of the emerging questioning is our real capacity to label all true
SVs.

How SVs Are Selected During the Variant Filtering
Process?

The filtering of candidate variants by frequency in unselected in-
dividuals is a key step in any pipeline for the discovery of causal
variants in Mendelian disease patients but also for the identifica-
tion of SVs. Several databases are used to filter out polymorphisms
(commonly variants with frequency above 1%). They can generally
be assigned to the broad category of core (also named general or
centralized) databases. They are markedly different in terms of size,
population diversity, and sequenced individual status (patient or
obviously healthy) or enrichment for specific clinical conditions.
It has also to be noted that many connections exist between them
(Fig. 1), eliminating the need to consult multiple sources.

� dbSNP: The Single-Nucleotide Polymorphism database (dbSNP)
(http://www.ncbi.nlm.nih.gov/snp) was established in Septem-
ber 1998, to address the need for a general catalog of genomic
variation [Sherry et al., 2001]. dbSNP was initially composed
of small-scale locus-specific submissions defined by flanking in-
variant sequences. Following the advent of high-throughput se-
quencing and the availability of complete genome assemblies
for many organisms, dbSNP now receives a greater number of
variants defined by sequence change at asserted locations on a ref-
erence sequence. dbSNP data evolved according to submissions
from public laboratories and private organizations and now con-
tains data from patients and controls of various ethnic groups. At
present, dbSNP combines results from HapMap, 1000 Genomes,
EVS, and ExAC projects (see below).

� 1000 Genomes Project: 1000 Genomes (1000G) Project
(http://www.1000genomes.org) includes today individual-level
genotype data from 2,504 individuals from 26 populations [1000
Genomes Project Consortium et al., 2015]. Data are recon-
structed genomes using a combination of low-coverage WGS,
deep exome sequencing, and dense microarray genotyping. Pop-
ulations are distributed as follows: 504 individuals with East Asian
Ancestry, 489 with South Asian Ancestry, 661 with African An-
cestry, 503 with European Ancestry, and 347 with American An-
cestry. All these individuals are assumed to be healthy.

� ESP: Due to its goals, the NHLBI GO ESP (http://evs
.gs.washington.edu/EVS/) contains in its last release (ESP6500SI-
V2) exome variant data from 6,503 patients presenting with heart,
lung, and blood disorders [Fu et al., 2013]. A subset of these data
(ESP2500) having more stringent filtering criteria is available in
the latest release of dbSNP (build 134) [Tennessen et al., 2012].
Samples are from unrelated individuals (samples showing first-
degree to third-degree relatedness have been removed). Large-
scale validation of the variants was not performed. However,
sequencing validation of a small number of singletons (�200)
and high-frequency SNP calls (�800) was performed [Tennessen
et al., 2012]. The complete set of the SNP calls from the NHLBI
ESP project is included in the dbSNP build-138.

� ExAC: ExAC (http://evs.gs.washington.edu/EVS/) aggregates and
harmonizes exome sequencing data from 60,706 unrelated in-
dividuals sequenced as part of various disease-specific and
population-genetic studies [Lek et al., 2015]. Individuals affected
by severe pediatric diseases have been removed so this data set
could serve as a reference set of allele frequencies for severe disease
studies. ExAC contains today 7,404,909 high-quality variants, in-
cluding 317,381 indels. Although 1000G and ESP are contribut-
ing projects, the majority of variants have very low frequency and
72% are absent from both 1000G and ESP [Lek et al., 2015].

The first step of filtering-out frequent variations is followed by
matching the identified ACMG gene variants with the HGMD Pro-
fessional release and ClinVar to identify variants known as causative.
Origins of data and curation process are different for these two
databases.

� HGMD Professional: The HGMD (http://www.hgmd.org) is a
comprehensive collection of germline mutations in nuclear genes
that underlie, or are associated with, human-inherited disease
[Stenson et al., 2014]. HGMD is available in two versions: one
public (permanently 3 years out of date and without any of
the additional annotations) and one “Professional” obtainable
by subscription (up to date version with curatorial comments).
The mutation collection process is performed by automatic data
mining systems that extract mutations from the various publica-
tion sources and checks their validity in comparison to reference
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Figure 1. Interconnections between databases.

sequences using the international nomenclature. Manual cura-
tion is provided when necessary. By February 2016, the database
contained over 127,000 different lesions detected in over 4,860
different genes in the public version and over 179,000 lesions in
7,189 different genes in the Professional version.

� ClinVar: ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) is a
freely accessible, public archive of reports of the relation-
ships among human variations and phenotypes, with sup-
porting evidence [Landrum et al., 2016]. ClinVar is seeded
with records based on allelic variants described in OMIM
(http://www.omim.org), GeneReviews or UniProt, variants sub-
mitted with clinical information to dbSNP, voluntary sub-
missions from clinical testing laboratories, researchers, LSDBs,
expert panels, and groups establishing professional guidelines.
Submissions to ClinVar are categorized according to associated
data as the type of submission (clinical testing, results part of
research project, data extracted from the literature), the number
of submitters, evidence that supports interpretation (genetic test-
ing, family studies, comparison of tumor/normal tissue, animal
models, etc.). ClinVar does not curate interpretations of clinical
significance or arbitrate conflicts in interpretation. They invite
the clinical genetics community to form expert panels, which
should perform high-level curation for variant interpretations.
ClinVar contains to date 173,216 records among which 85,642
have assertion criteria. Novel variants submitted to ClinVar are
in turn submitted to dbSNP or dbVar.

Some teams also chose to evaluate pathogenicity of SVs according
to in silico analyses. The most used and reliable prediction tools are:
UMD-Predictor [Salgado et al., 2016], MutationTaster 2 [Schwarz
et al., 2014], CADD [Kircher et al., 2014], Polyphen 2.2.2 [Adzhubei
et al., 2013], SIFT 5.1.1 [Sim et al., 2012], Provean 1.1.3 [Choi et al.,
2012], Mutation Assessor 2 [Reva et al., 2011], and CONDEL 1.5
[González-Pérez and López-Bigas, 2011] for missense variations
and HSF [Desmet et al., 2009], ESE Finder [Smith et al., 2006],
MaxEntScan [Yeo and Burge, 2004], and NNsplice [Reese et al.,

1997] for variations potentially impacting splicing. Salgado et al.
(2016) discusses these tools in this issue.

Can the Number of Individuals with Expected Actionable
SVs Be Estimated?

This question is especially challenging as each identified variation
is not linked to a specific sample for evident patient confidentiality.
Various attempts have been made to evaluate the number of patients
with SVs. These estimates are mainly based on variants already re-
ported in HGMD Professional release followed by manual curation
by specialists using PubMed and/or pathogenicity evaluation with
different in silico tools that select only highly penetrant pathogenic
mutations. If we restrict these different analyses to the ACMG rec-
ommended list of 56 genes, SVs have been found in a range from
1% to 5.6% of the participants (6/179 individuals [3.35%] [Xue
et al., 2012], 19/1,000 participants [1.90%] [Dorschner et al., 2013],
12/1,092 participants [1.10%] [Olfson et al., 2015], 92/6,503 par-
ticipants [1.41%] [Amendola et al., 2015], 623/11,068 participants
[5.6%] [Gambin et al., 2015], 2/149 participants [2%] [Yavarna
et al., 2015]).

Is the Number of Expected Actionable SVs Underestimated?

The reported range of 1%–5.6% of studied samples with SVs
can be discussed. First, a high discordance among reviewers has
been noticed by Amendola et al. (2015). Reviewers are likely to
be inconsistent in their categorization and reports biased toward
more pathogenic categories. Second, even if population minor allele
frequency (MAF) is a useful factor for variant classification, data are
also limited by population diversity and by the number of tested al-
leles. Some populations are poorly or not represented such as South
Asian (Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal,
Pakistan, and Sri Lanka) and Latino individuals, or the Middle East
population (Egypt, Iran, Turkey, Iraq, Saudi Arabia, Yemen, Syria,
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United Arab Emirates, Israel, Jordan, Palestine, Lebanon, Oman,
Kuwait, Qatar, Bahrain, and Cyprus). Databases might benefit from
including a broader sampling of human diversity. Third, a possible
overestimation of some SVs frequencies could be observed due to
our inability to assess the MAF calculation. A bias could be intro-
duced if MAF is based on a population enriched for pathogenic or
likely pathogenic variants in specific ACMG genes. Several cohorts
were, for example, enriched for lipid disorders, vascular disease,
or chronic obstructive lung disease and are not a random sam-
pling of the population. Finally, selection of variants according to
their description in HGMD also introduces a bias as HGMD is not
a comprehensive database. The impossibility nowadays to publish
mutations in already known causing gene leads diagnostic labora-
tories to gather and store their variants in in-house databases. These
data are submitted to core databases (as ClinVar) or to LSDBs only
in the rare best case scenario.

In This Context, What About LSDBs for ACMG Genes?

LSDBs are a highly organized recording of variation data
for specific genes. Lists of some LSDBs are available at the
Human Genome Variation Society Website (HGVS, http://www
.hgvs.org/locus-specific-mutation-databases), the Universal Mutat-
ion Database (UMD, http:www.umd.be), the Leiden Open
Variation Database Website (LOVD, http://grenada.lumc.nl
/LSDB_list/lsdbs), or the Gen2Phen Knowledge center (G2P,
http://gen2phen.org/data/lsdbs). The majority of LSDBs presently
available have been constructed with a small number of database
management systems (DBMSs) among which the Leiden Open vari-
ation Database (LOVD, http:www.lovd.nl) [Fokkema et al., 2005]
and the Universal Mutation Database (UMD, http:www.umd.be)
[Béroud et al., 2005] that offer generic tools to build LSDBs. As
they include data from a single gene, they collect all mutations and
VUSs and often include unpublished data.

Numerous LSDBs are available for ACMG actionable genes (Supp.
Table S2). All genes are represented in almost three different LSDBs,
from which many involve the same DBMS (LOVD) but in different
location (the number of variants was different). However, there
are several LSDBs (18) that, although installed, have no variant
documented.

LSDBs show a large heterogeneity in their contents and quality.
Curation process varies largely among them. Highest quality in
LSDB mutation collection process is provided by manual annotation
of variants. This is a tedious but critical step since up to 10% of
articles contain errors concerning mutation nomenclature: errors
in type or position of mutations [Soussi et al., 2006] or use of a
control sequence different from the current recognized reference.

Data commonly found in LSDBs are nucleotide position ac-
cording to the reference sequence, exon number, description of
the variation and nomenclature at the nucleotide (cDNA and ge-
nomic), and protein levels according to HGVS recommendations
(http://www.hgvs.org/mutnomen/), reference of description (liter-
ature, diagnostic laboratories, etc.). For example:

(FBN1: sample IDXX c.3761G>A p.Cys1254Tyr g.48776092C>T
[Stheneur et al., 2009] PMID19293843).

In some LSDBs, other data can be recorded such as associated
disease, gender, transmission type (de novo, familial), geographic
origin, specific location of the mutation at the protein level, con-
sequences at the mRNA level, or experimental associated data. In
silico analyses can also be available in some of them.

A wide heterogeneity is found for phenotypic data depending on
the DBMS used. Phenotype description is usually reduced to single
words in the great majority. Conversely, the UMD DBMS was de-

Table 1. Representation of the 318 Variations in Databases

Database Number of variations found

LSDBs 227
LOVD Beacon 43
LOVD Share 96
UMD databases 123

HGMD Pro 138
Reported in HGMD and absent in LSDBs 7

veloped notably to facilitate the collection of detailed phenotypes in
view of performing genotype/phenotype correlation studies. Over-
all, the time spent to collect data and submit them according to LSDB
needs is generally extensive and often restrains the involvement of
large numbers of submitters and thus restrains their dissemination
in the community.

Finally, LSDBs play a key role in the interpretation and classifica-
tion of variants. It is widely accepted that classification of variation
in genes is best performed by experts in those genes and/or pathol-
ogy. Classification can be performed by individual curator(s) or an
expert panel working with the curator and representing different ar-
eas of expertise (clinical, diagnostic, molecular, and computational).
They display conclusion related to pathogenicity if a consensus has
been reached. Pathogenicity was mainly based on familial segrega-
tion, evidence that supports a conclusion of pathogenicity, in silico
prediction and frequency reported in core databases. For this, all
these associated data have to be collected. Nevertheless, numerous
LSDBs still do not provide manual annotation or classification of
variants.

Use Case
In order to face a real situation, we searched for lists of vari-

ations identified by exome sequencing in the 56 ACMG genes
before any filtration by HGMD Pro. We based our analysis on
lists published by Johnston et al. (2012). They performed ex-
ome sequencing on 572 participants selected for a range of
atherosclerosis phenotypes, but not for personal or family his-
tories of cancer. They analyzed nonsense, frameshift, splice-site,
and nonsynonymous variants in 37 genes involved in cancer sus-
ceptibility syndromes among which 23 are part of the ACMG
gene list. They provided a list of 451 variants among which 318
are carried by genes of the ACMG list. Reports and classifica-
tion of each of these 318 variations were searched for by home-
made Perl scripts. We queried “core” LOVD databases as LOVD
share (http://databases.lovd.nl/shared/genes) and LOVD Beacon
(http://mcupak.github.io/beacon-of-beacons/queries.html). UMD
databases were queried online at http://umd.be. All other databases
listed in Supp. Table S2 were also manually queried. Frequencies
from ESP, ExAC, 1000G, and dbSNP (build 144), as well as in silico
predictions with the UMD-Predictor tool [Salgado et al., 2016] were
merged into one table (Supp. Table S1).

We first looked for the presence of variants in HGMD Pro
(03/15/2016), LOVD Share, LOVD Beacon, and UMD databases.
Results from all other databases listed in Supp. Table S2 (250
queried databases) were merged into a single category named “Other
databases.” Time to colligate all these data was estimated to be 16 hr.
Of the 318 variations reported by Johnston et al. [2012], 138 (43.4%)
were found in HGMD Pro (03/15/2016) (Table 1) and 227 (71.4%)
in LSDBs. Representation in other databases was wide and only
seven variations reported in HGMD (5%) were not found in LSDBs
(Table 1). For the 180 variations not found in HGMD, 96 (53.3%)
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Table 2. Representation of the 180 Variations Not Found in HGMD
Pro (2016) Database

Database Number of variations found

Not reported in LSDBs 84
Reported at least once in LSDBs 96

LOVD Beacon 23
LOVD Share 28
UMD databases 39

were at least reported in one LSDB and 84 (46.7%) were never
reported, highlighting the added value of LSDB data (Table 2).

The most common of the cancer susceptibility syndromes ana-
lyzed was hereditary breast and ovarian cancer linked to BRCA1/2
gene mutations with a combined frequency of �1/500. Conse-
quently, as Johnston et al. (2012), we considered that a variant
with a MAF of >1.5.10–2 was unlikely to cause a highly penetrant,
rare, dominant disorder. Using ExAC allele frequencies (Supp. Table
S1), a subset of 30/318 variations (9.4%) could be excluded with this
criterion.

When variant classification is available in LSDBs, it usually fol-
lows recommendation in guidelines [Richards et al., 2015] with five
gradations as (1) neutral variant, (2) likely neutral, (3) VUS, (4)
likely causal, and (5) causal. This is not the case for HGMD Pro.
To be able to compare variant classifications between all databases,
HGMD annotations were matched to these five classes as following:

- DMs were matched with class 5 (causal);
- the annotation DM? corresponds to (1) variants initially clas-

sified as damaging in publications but with a degree of un-
certainty, (2) variants reported by HGMD curators as having
limited evidence for pathogenicity, and (3) variant for which
pathogenicity was reconsidered after new evidence was pro-
vided. These variants were matched with class 3 (VUS);

- DPs are variants with evidence for a significant association with
a disease/clinical phenotype along with additional evidence that
the polymorphism is itself likely to be of functional relevance,
although there may be no direct evidence of a functional effect.
These variants were matched with class 1 (neutral);

- FPs correspond to variations that exert a direct functional effect
but with no disease association reported as yet. These variants
were matched with class 2 (likely neutral).

- DFPs correspond to variations that exert a direct functional
effect, with no disease association reported as yet and displaying
evidence of being of direct functional relevance. These variants
were matched with class 2 (likely neutral).

When classification was conflicting between different LSDBs,
class 3 (VUS) is assigned to variants.

In order to estimate the added value of LSDBs without involving
another curation process, classification of variations not reported
in databases were not evaluated.

Classifications of variants were compared between databases in
order to identify the respective numbers of variants to be reported
as SVs (Table 3). HGMD Pro (03/15/2016) reported 33 damaging
variants (63 in 2012). Johnston et al. (2012) reported eight mutations
after curation. Eleven variations in UMD databases and other LSDBs
are described in class 5 (Table 4). In these 11 causal variants, five
are not reported in HGMD Pro (Table 4), and three were classified
as VUS by Johnston et al. (2012) (another one was not evaluated as
described with poor quality, “class 0”). Three variations described
as causal by Johnston et al. (2012) were not reported in databases
(for two) or described as VUS (for one) (Table 4). In the 33 variants

Table 3. Classification of Variants According to Databases

Database Class 1 Class 2 Class 3 Class 4 Class 5 Total

HGMD Pro (03/15/2016) 15 9 81 0 33 138
HGMD Pro (2012) 11 7 51 0 63 132
Johnston classification (2012) 69 12 168 2 8 258
UMD classification 69 15 34 0 5 123
Other LSDBs classification 15 16 152 3 6 192

annotated as damaging by HGMD Pro 2016 (Table 4), 23 have been
classified as nonpathogenic by LSDBs (class 1 to 3), three as “not
reported,” and six as causal (Table 5).

The proportion of SVs to report for cancer susceptibility syn-
dromes in 572 exomes varies largely with 5.77% in HGMD Pro,
1.40% in Johnston’s study, and 1.92% in LSDBs.

These results demonstrate the constant evolution of our knowl-
edge leading to reannotation of variants in HGMD and in LSDBs
over the years. Nevertheless, they also show that LSDBs give access to
more information and help in classifying variants identified thanks
to NGS.

Conclusion: How Can We Work Together?
LSDBs have evolved to serve many purposes to address the chang-

ing needs of the genetics community in evaluating and interpret-
ing human genetic variation [Dalgleish, 2016]. There is no perfect
generic design for LSDBs because of the heterogeneity of genetic
diseases, associated phenotypes, and goals. Nevertheless, some rec-
ommendations have recently been published [Vihinen et al., 2016].
The more they offer phenotypic information, the less they are easy
to maintain since quality of submitted data varies from center to
center and over time. Another key challenge is to make the LSDB
both easy to use and useful.

LSDBs are an ideal tool for integration and dissemination of data
to the medical community. As expected, LSDBs contain more muta-
tions than HGMD as they include up to 50% of unpublished varia-
tions (depending on the genes), often with phenotypic descriptions.
Consequently, LSDBs are extremely useful tools, contributing to the
identification of causative mutations, providing information about
phenotypic patterns associated with a specific mutation, enabling
researchers to define an optimal strategy for mutation detection,
and helping in the characterization of SVs. LSDBs data could in-
deed significantly advance the interpretation of missense variants
by facilitating estimates of the frequency of rare variants in pa-
tients presenting a given phenotype, of rare events co-occurring
with pathogenic/nonpathogenic variants, of allele frequencies in
specific populations and the association of variants with clinical or
pathological features.

Today, data are still fragmented and various attempts have been
made to develop unified databases. Nevertheless, they have mainly
been unsuccessful, not only because of a lack of funding to create
such databases. Indeed, first, LSDB have different goals reflected by
different contents, infrastructures, and quality making them some-
how hard to merge. Second, global efforts to gather genetic informa-
tion from different databases and registries into a common global
database have arisen [Bean and Hegde, 2016]. Such initiative must
strongly benefit from LSDBS but this could be achieved only if they
do not replace them, otherwise data sharing and expert curation
will be compromised, especially as LSDBs are facing sustainability
issues to offer accurate and updated data.

Database quality and accuracy depend on the involvement of
all players from the data production chain. Data acquisition and
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enrichment rely mostly on diagnostic laboratories but they face two
key obstacles:

1. to receive complete information about patient’s clinical presenta-
tion when a diagnostic test is ordered. As such data are usually not
available from the diagnostic laboratory itself, it is important to
involve clinicians in this data sharing. Indeed, clinical descrip-
tions are often scarce because of the lack of time in the course of
the medical consultation. Clinicians are also insufficiently in-
formed about the diagnostic laboratory possibility to transfer,
in agreement with patient consent, accurate phenotypic data
associated with mutations into databases.

2. to justify the time spent on collecting data to their trustees. This
aspect is a real concern for diagnostic laboratories but also for
clinicians. As previously mentioned, once a gene is described
as disease-causing, most of the subsequent mutation identifi-
cations take place in a clinical setting. These data often present
a low interest from journals because of the “lack of novelty.” A
large amount of curated sequence data therefore lies within the
clinical laboratories for their own activity, waiting to be shared
with the medical and research communities.

Attempts have been made to stimulate the sharing of those data by
various mechanisms as microattribution, which unfortunately never
expanded because of the lack of recognition by funding agencies or
by trustees as a positive effort made by the investigators. However,
although essential for optimum delivery of genetic healthcare and
for medical research, the main difficulty for LSDBs is obtaining
funding for the collection of such data. Only win-win approaches
will be sustainable. The future may lie in public–private partnerships
as illustrated by the successful BRCA-ShareTM initiative [Béroud et
al, 2016], to improve the detection of inherited risk of breast and
ovarian cancers.
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