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Abstract. We present a numerical study of the effect of a free-energy anisotropy of the solid-
solid interphase boundaries on the formation of tilted lamellar microstructures during directional
solidification of nonfaceted binary eutectic alloys. We used two different methods – phase-field
(PF) and dynamic boundary-integral (BI) – to simulate the growth of periodic eutectic patterns
in two dimensions. For a given Wulff plot of the interphase boundary, which characterizes a
eutectic grain with a given relative orientation of the two solid phases, the lamellar tilt angle
depends on the angle between the thermal axis z and a reference crystallographic axis. Both PF
and BI results confirm the general validity of a recent approximate theory which assumes that,
at the trijunctions, the surface tension vector of the interphase boundary is parallel to z. In
particular, a crystallographic locking of the lamellae onto a direction close to a deep minimum
in the Wulff plot is well reproduced in the simulations.

1. Introduction
In many nonfaceted eutectic alloys, two-phase microstructures that are delivered by coupled-
growth front patterns during directional solidification (DS) present a marked morphological
dependence on the crystal orientation of the two solid phases [1, 2, 3]. In spite of their pratical
importance, such crystallographic effects have been largely left aside in previous theories and
models. Let us consider the case of lamellar eutectics. Experimentally, it has been known for a
long time that eutectic lamellae can grow tilted with respect to the thermal-gradient axis z, and
that the lamellar tilt is eutectic-grain dependent (a eutectic grain is a region of uniform crystal
orientation of the solid phases α and β [4]). On the basis of in situ experimental observations
[5, 6, 7], two categories of eutectic grains have been previously distinguished (Fig. 1a), namely,
floating (eutectic) grains (Fig. 1b1), within which the growth dynamics is well described by the
standard theory of regular eutectics, and locked grains, within which the growth direction of
the eutectic lamellae is essentially aligned to a certain crystallographic plane, and is generally
inclined (or tilted) with respect to the main growth axis z. Lamellar patterns with a strong tilt
angle are usually observed when the two solid phases exhibit an epitaxial orientation relationship
and interphase-boundary planes with a low free energy [3]. Recently, an approximate theory has
been formulated that relates the value of the lamellar tilt to the surface free-energy anisotropy
of the α-β interphase boundaries (interfacial anisotropy) in the solid [6]. It has been proposed
in coherence with in situ observations indicating that, even for lamellae that grow at a large tilt



angle, the solid-liquid interface shape exhibits a mirror symmetry with respect to the mid-plane
of the lamellae, similar to the one observed for well-aligned lamellae. For isotropic solid-liquid
interfaces, a symmetric shape is obtained under the condition that the contact angles of the
solid-liquid interfaces at the trijunctions are the same on both sides of a lamella (Fig. 1b2)
[6, 7]. For anisotropic interphase boundaries, the symmetric-pattern (SP) approximation thus
entails that the Cahn-Hoffman surface tension vector ~σ [8] is aligned with z (it is assumed that,
in a nonfaceted alloy, the anisotropy of the solid-liquid interfaces has a negligible effect on the
lamellar growth dynamics).
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Figure 1. a) Two eutectic grains, one of the floating (lef-thand side) and the other of the
locked (right-hand side) type, during real-time DS of a slightly hypoeutectic CBr4-C2Cl6 alloy
in a 12-µm thin sample (V = 0.5µms−1 ; bar: 20 µm). Sketches: b1) steady lamellar pattern
with isotropic interfaces ; b2) tilted lamellar pattern in a locked eutectic grain under the SP
approximation (~σ ‖ z).

Here, we present a test of the SP approximation by numerical simulations. We carried
out two-dimensional calculations using two different simulation methods, namely, (i) a sharp-
interface code, which uses the dynamic boundary-integral (BI) formalism previously developed
by Karma and Sarkissian [9], and (ii) a multi-phase-field (PF) model, based on recent grand-
canonical formulations of alloy solidification [10, 11]. Both methods demonstrate that the tilt
angle follows quite closely the SP approximation. In addition, a strong locking of the lamellae
onto the direction of the peaked minimum of the anisotropy function is well reproduced in both
BI and PF simulations.

2. The symmetric-pattern approximation
The relative orientation of the α and β crystals (constant within a grain) determines the
interphase boundary free energy and its anisotropy. In two dimensions (ideally, thin-sample
DS), the grain orientation and the inclination of the interphase boundary are specified each by a
single angle with respect to the thermal axis. Let n̂ be the unit normal vector of the interphase
boundary, and θ the angle between n̂ and the x axis (t̂ = −dn̂/dθ is the tangent vector). For a
reference grain orientation, the anisotropic interphase boundary energy is given by

γαβ(θ) = γ̄αβac(θ), (1)

where γ̄αβ is a constant and ac(θ) is a dimensionless function. The Cahn-Hoffman ~ξ and ~σ
vectors [8] are defined by

~ξ = γαβn̂− γ′αβ t̂ ; ~σ = γαβ t̂+ γ′αβn̂ (2)

where γ′αβ = dγαβ/dθ. The Wulff plot is given by ~r(θ) = γαβ(θ)n̂ and the minimum-energy, or

Wulff shape, by the vector ~ξ(θ). For a given eutectic grain, we search the steady-state growth
pattern as a function of the orientation angle θR of the bicrystal with respect to z. The interphase
energy becomes

γαβ(θ) = γ̄αβac(θ − θR), (3)



where θR = 0 is chosen such that an interphase orientation of minimal energy is aligned with z.
In a sharp-interface model (with isotropic solid-liquid interfaces, and no diffusion in the solid),
the local equilibrium at the trijunction is given by a Young-Herring equation, that is,

γαLt̂αL + γβLt̂βL + ~σ = 0. (4)

As stated above, a strictly symmetric shape is thus possible only if ~σ (which is not parallel to
the interphase boundary) is aligned with z (Fig. 1b2), which writes

γ(θ − θR) sin θ + γ′(θ − θR) cos θ = 0. (5)

For a fixed eutectic-grain orientation θR, this is a nonlinear equation for the interface orientation,
which can easily be solved numerically for any γ(θ) function. We will note θsp the SP-
approximation value of the tilt angle, solution of Eq. (5), and θt the steady-state tilt angle
obtained in the numercial simulations.

3. Results and discussion
We simulated a model binary alloy with a symmetric eutectic plateau (and parallel liquidus and
solidus lines), equal α- and β-liquid capillary lengths, at eutectic concentration. Temperature
gradient, growth velocity, and lamellar spacing (close to the minimum undercooling spacing) are
held constant. In the BI model, the interfacial anisotropy is incorporated in the calculation of
the position of the trijunctions, using the Young-Herring condition (Eq. 4). In the PF model,
the anisotropy of the interphase boundary is directly incorporated in the free-energy functional
[11].

We implemented first a standard anisotropy function with a 4-fold symmetry [ac(θ) =
1−ε4 cos 4θ]. The results for ε4 = 0.04 are shown in figure 2a. Both sets of simulation data follow
quite closely the SP approximation, up to differences that do not exceed a degree. The value
of θt passes through a maximum for an orientation that depends on the anisotropy function (as
expected, symmetric, non-tilted patterns are found when either a minimum or a maximum of γ
is aligned with z). The tilt angle always remains much smaller than θR, which is characteristic of
a weak crystallographic effect. Note that the values of the capillary length, the thermal length,
and the lamellar spacing are actually slightly different for BI and PF, which demonstrates that
the influence of all of these parameters is weak in realistic conditions.

We then reproduced a strong lamellar-locking effect by using an anisotropy function with a
deep minimum, of the form ac(θ) = 1 − εg exp

[
−(θ/wg)

2
]

(the smoothed gaussian cusp allows
us to circumvent some obvious numerical difficulties [12]). Setting εg = 0.2 and wg = 0.1 entails
the appearance of two (quasi) facets in the Wulff shape of the interphase boundary (see inset

in Fig. 2b). In this case, the ~ξ(θ) plot has self-intersections. The Wulff shape is given by the
inner convex part of that plot. The other parts, often called “ears”, consist of three segments
delimited by turning points. The interface stiffness τ(θ) = γαβ(θ) + γ′′αβ(θ) is negative only on

the middle segment (a flat interface within this range is unstable with respect to the formation
of a hill-and-valley structure [13]), but all orientations located on the “ears” are missing from
the physically observable convex equilibrium shape. The SP approximation then predicts three
distinct parts in the θsp vs θR curve: (i) an essentially linear, strongly locked branch with a slope
close to 1, which runs from θR = 0 to a first τ = 0 turning point (noted θl); (ii) a symmetric-
pattern branch along which there is no anisotropy effect for θR ranging from a second turning
point (noted θu) to π/2; (iii) an intermediate, unstable branch. In the [θu, θl] interval, two kinds
of lamellar patterns (one is locked, the other is isotropic) are possible for a given eutectic-grain
orientation.

Both BI and PF simulations describe the two separate branches (figure 2b) and demonstrate
the existence of a strong locking effect over a large orientation range, as predicted by the SP



a) b) 

Figure 2. Lamellar tilt angle θsp predicted by the SP approximation (thick line), and θt
calculated with the BI (filled circles) and the PF codes (diamonds) as a function of the eutectic-
grain orientation angle θR. a) weak 4-fold anisotropy function; b) anisotropy function with a
peaked gaussian minimum (see text). Open circles: angle of the surface tension vector ~σ with
z (BI data). Inset: half view of the Wulff plot (thin line) and shape (thick line). Dotted lines:
Herring-unstable orientations.

approximation. The BI simulations clearly reproduce a hysteretic behavior, which is expected
for a bistable system. It should be noted, however, that the approach of the limit tilt angle
(about 50 degrees) along the locked branch also corresponds to a steep, apparently diverging
increase of the angle of the ~σ vector with respect to the thermal axis (Fig. 2b). This indicates
that, at large tilt angles, the SP approximation, while it still correctly predicts the locked-tilt
angle, becomes inaccurate with regards to other aspects of the dynamics. In contrast with the
BI simulations, no hysteresis is observed in the PF simulations.

We can draw an interesting conclusion, of practical relevance, from these results. It is related
to the recent development of an experimental method called rotating directional solidification
(RDS), during which solidification is performed in a fixed thermal gradient by slowly rotating a
thin alloy sample about an axis perpendicular to the xz plane [6, 7]. The crystal orientation of a
given eutectic grain (fixed in the sample reference frame) with respect to the main solidification
axis is then varied continuously while solidification proceeds. In the case of eutectic growth, a
lamellar pattern then adapts its shape in a quasistationary way. It was demonstrated in Ref.
[6] that, under the SP approximation, and with suitably chosen RDS settings, the solidification
microstructure is then homothetic to the Wulff shape of the interphase boundaries in the sample
plane, and that, accordingly, the morphological analysis of a RDS pattern gives direct access
to a two-dimensional section of the corresponding Wulff plot. The present study shows that
this method is accurate, within a few percents, which is quite satisfactory as compared to other
ordinary sources of experimental uncertainties.

4. Conclusion
We performed time-resolved numerical simulations of tilted lamellar patterns during directional
solidification of a model eutectic alloy in the presence of an anisotropy of the interphase
boundaries. The simulations confirm the semi-quantitative validity of the SP approximation
that assumes that the surface tension vector of the interphase boundary at the trijunctions is
parallel to the main growth axis. The most salient result is that a strong locking phenomenon
associated with the existence of a sharp minimum in the Wulff plot (this corresponds to a facet
in the equilibrium shape of the interphase boundary) is well reproduced by the simulations.



Another interesting conclusion, of practical relevance, is the establishment of the RDS method
as a good tool for extracting quantitative information on the Wulff plot of interphase boundaries
during a solidification experiment. Moreover, anisotropy functions with more detailed features
than the test ones used in the present work can be implemented in the simulation codes, and
could serve to reproduce “real” Wulff plots measured experimentally, or calculated by molecular-
dynamics methods [14]. Further simulations are planned to study the dependence of the lamellar
tilt on the lamellar spacing, and the influence of a non-symmetric phase diagram. Simulations in
large systems will be needed to study the dynamics of “sawtooth” patterns [5], which have been
observed experimentally, and may be associated with a bistable behavior in strongly anisotropic
cases. Phase-field simulations of eutectic-growth patterns with anisotropic interphase boundaries
will be extended to three-dimensional, bulk-solidification geometries.
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