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ABSTRACT
The vibroacoustic behavior of a structure excited by a partially space-correlated random pressure fields such
as turbulent boundary layers or internal diffuse fields is of great interest for aeronautical or naval applications.
Many works have been carried out for structures such as plates or simple cylinders whereas little attention has
been paid on more complex cases. The aim of this paper is to study this problem for a ribbed cylindrical shell
coupled to internal structures. The proposed modeling is based on the combination of two methods developed
recently by the authors: the wavenumber-point (k,M) reciprocity technique and the Condensed Transfer
Function (CTF) method. The first one estimates the sensitivity functions at point M of the system from its
vibratory velocity field induced by a point excitation at M . This velocity field is estimated with the second
method. The CTF method is a substructuring approach which consists in coupling a semi-analytical model
of a submerged cylindrical shell with Finite Element models of axisymmetric (ribs, bulkheads) and non-
axisymmetric (floor partitions, engine foundations) internal frames. A numerical example of a submerged
stiffened cylindrical shell excited by random pressure fields will be given and the influence of the internal
frames will be discussed.

Keywords: Vibroacoustics, Cylindrical shell, Diffuse Sound Field, Turbulent boundary layer
I-INCE Classification of Subjects Numbers: 54.3, 76.9

1. INTRODUCTION

In many aeronautical or naval applications, ribbed structures are subject to random pressure fields such
as Diffuse Sound Fields (DSF) or fluctuations due to the turbulent flow induced by their movement. These
excitations yield vibrations, which knowledge is of primarily importance in practice. Many works can be
found in the literature for plates under a Turbulent Boundary Layer (TBL). Strawderman [1] reviews the
first existing models of finite and infinite plates. He points out that none of the models fully agrees with
experimental results but that the ones for the finite plate performs better. The complexity of the problem
is successively increased by taking heavy fluid loading into account [2, 3] or by stiffening the plates [4].
Maxit and Denis [5] use the wavevector-frequency analysis, earlier reviewed by Strawderman [6], and the
reciprocity principle to study the problem of a ribbed plate with heavy fluid loading. Their method consists
in determining the second order moment of the response thanks to the wall pressure fluctuations and the
sensistivity functions of the system. The sensitivity function at a point M of the system is estimated from
the vibratory field induced by a point excitation at M . As the formulation of this method is not only valid
for plates, the aim of the present work is to apply it to the case of submerged cylindrical shells with internal
structures. Nevertheless, the aim of this paper is not to characterize the TBL on a circular cylinder and
widespread models models such as Corcos’ [7] or Chase’s [8] will be used because of their simplicity of
implementation. Indeed, in the case where the TBL thickness is small compared with the radius of curvature
of the system, which is the case in this study, the boundary layer is similar to a planar one [9, 10].

A substructuring method is used to determine the sensitivity functions of the submerged cylindrical shell
with internal structures. The Condensed Transfer Function (CTF) method, previously developed by the au-
thors [11, 12], is an extension of the classical admittance approach [13] to allow coupling along lines. A set of
orthonormal functions called condensation functions is used as a basis for approximating the displacements
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and the forces at the junctions between the subsystems. Condensed transfer functions are then defined and
calculated for each uncoupled subsystems, and the superposition principle for passive linear systems leads
to the vibroacoustic behavior of the coupled system. One of the main advantage of the CTF method is that
the condensed transfer functions of the uncoupled subsystems can be described by different methods. In
this case, the submerged shell CTFs are calculated by solving the Flügge equations in the spectral domain,
whereas the internal frames are modeled by FEM, allowing flexibility on their geometry.

The paper is organized as follows:

• Section 2 presents the wavenumber-point (k,M) reciprocity technique.

• In section 3, the CTF method is applied to calculate the sensitivity functions of a submerged cylindrical
shell with internal structures.

• An application to a complex cylinder under a DSF and a TBL is proposed in section 4. The influence
of non-axisymmetric internal frames will be discussed.

• Conclusions are drawn in section 5.

2. THE WAVENUMBER-FREQUENCY (k,M) RECIPROCITY TECHNIQUE

This section is based on the wavenumber-frequency formulation which can be found in the literature
[3, 6, 14]. The wavenumber-frequency (k,M) reciprocity technique has been presented in details by Maxit
and Denis [5] and the general outline is briefly described in this section.

Let us consider a vibroacoustic system made of a structure coupled to a fluid domain. The surface Σp is
excited by a random pressure field. The wall pressure pb(x̃, t) is expressed in a point x̃ ∈ Σp as a function
of the time t. The system is supposed to be linear and invariant in time, so that the displacement w at a point
x can be expressed as:

w(x, t) =

∫
Σp

∫ +∞

−∞
hw (x, x̃, t− τ̃) pb (x̃, τ̃) dτ̃dx̃ (1)

where hw (x, x̃, t) is the impulse response of the system at point x when excited by an impulse unitary force
at point x̃.

The excitation being random, the quantity of interest is the second order moment of the displacement.
Considering that the random process is ergodic, the inter-correlation function Rww(x,x′, t) is defined as:

Rww(x,x′, t) =

∫ +∞

−∞
w(x, τ)w(x′, t+ τ)dτ (2)

Injecting Eq. (1) into Eq. (2) and applying a Fourier transform in the time domain yields the space-frequency-
spectrum Sww(x,x′, f):

Sww(x,x′, f) =

∫
Σp

∫
Σp

H∗w (x, x̃, f)Spp
(
x̃, ˜̃x, f

)
Hw

(
x′, ˜̃x, f

)
dx̃d˜̃x (3)

whereHw (x, x̃, f) is the transfer function in displacement of point x when excited at point x̃, Spp
(
x̃, ˜̃x, f

)
is the space-frequency spectrum of the wall pressure, and ∗ denotes the conjugate.

The space Fourier transform of Spp
(
x̃, ˜̃x, f

)
can be written as a function of the wavenumber-frequency

spectrum of the wall pressure φpp(k, f):

Spp
(
x̃, ˜̃x, f

)
=

1

(2π)2

∫∫ +∞

−∞
φpp(k, f)e−jk(˜̃x−x̃)d2k (4)

φpp(k, f) is a power spectrum density that characterizes the excitation and is supposed to be known. This
value is expressed in Pa2.s and is defined for positive frequencies only. Let us define H̃w(x,k, f) as the
frequency response at point x when the system is excited by a plane wave with wavevector k:

H̃w(x,k, f) =

∫
Σp

Hw (x, x̃, f) ejkx̃dx̃ (5)
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Thus, injecting Eq. (4) into Eq. (3) and using Eq. (5), the space-frequency spectrum of displacement can be
written finally as:

Sww(x,x′, f) =
1

4π2

∫∫ +∞

−∞
H̃∗w(x,k, f)φpp(k, f)H̃w(x′,k, f)d2k (6)

If one is interested only in the spectral power density of the displacement at point x (i.e. x = x̃), Eq. (6) can
be written as follows:

Sww(x, f) =
1

4π2

∫∫ +∞

−∞
|H̃w(x,k, f)|2φpp(k, f)d2k (7)

The same developments can be made for the spectral power density of the pressure at point z:

Spp(z, f) =
1

4π2

∫∫ +∞

−∞
|H̃p(z,k, f)|2φpp(k, f)d2k (8)

where H̃p(z,k, f) represents the pressure at point z in the fluid when the system is excited by a plane wave of
wavevector k. It should be noted that this plane wave can be either propagating either evanescent, depending
on its value compared to the acoustic wavenumber k0 = 2πf

c0
, with c0 the sound velocity.

When solving a problem numerically, integrals over infinite domains such as in Eqs. (7) and (8) are an
issue. However, it can be shown on systems such as plates or shells that the transfer functions H̃w(x,k, f)

and H̃p(z,k, f) tend to 0 when |k| → ∞. Thus, a cutoff wavenumber Nk based on the response function
of the system along the wavenumbers can be defined [5], allowing the integration domain to be truncated.
The difficulty now lies in the calculation of the transfer functions over the integration domain. In practice, it
consists in determining the displacement at location x or the pressure at location z when the system is excited
by all the wavenumbers included in the integration domain. The number of excitations can thus be large and
leads to prohibitive computation time. To tackle this issue, the use of the Lyamshev reciprocity principle is
proposed [15]. It consists in exploiting the property that the transfer function between two points remains the
same if the observation and excitation point are exchanged:

Hw (x, x̃, f) = Hw (x̃,x, f) (9)

Eq. (5) can thus be written:

H̃w(x,k, f) =

∫
Σp

Hw (x̃,x, f) ejkx̃dx̃ (10)

This equivalence is called the wavenumber-point (k,M) reciprocity principle. It means that the power spec-
trum density of the displacement of the system at point x can be calculated through Eq. (7), knowing the
vibratory field of the system excited by a point force at point x. Similarly, the Lyamshev reciprocity principle
is also valid for a point z in the fluid domain. The pressure at point z for a point force at x is equal to the
displacement at point x when the system is excited by an acoustic monopole at point z. Hence, the power
spectrum density of the pressure at point z can be determined through Eq. (8), knowing the vibratory field of
the system excited by a monopole in z.

This paper focuses on the response of stiffened cylindrical shells with internal structures under random
excitation. The reciprocity technique is illustrated for such a system in Fig. 1. In this case, the calculation
of the power spectrum densities of displacement H̃w(x,k, f) and of pressure H̃p(z,k, f) used in Eq. (7)
and (8) is not straightforward. Therefore, the Condensed Transfer Function (CTF) method presented in the
next section is used to tackle this issue.

3. APPLICATION OF THE CONDENSED TRANSFER FUNCTION METHOD

3.1 Principle of the method

The Condensed Transfer Function (CTF) method is a substructuring method where the subsystems are
modeled by plates and shells and coupled along lines [11]. On each junction between subsystems, a set of
orthonormal functions (ϕn(s))1≥n≥N called condensation functions is defined, where s is the curvilinear
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Spectral radial displacements

(k,M) reciprocity technique

(a)
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non-axisymmetric frame
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Water
P?
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Spectral radial displacements

(k,M) reciprocity technique

monopole

(b)
Figure 1: The (k,M) reciprocity technique applied to a stiffened submerged cylindrical shell with internal struc-
tures to evaluate (a) the displacement at a point on the shell surface or (b) the pressure at a point in the fluid
domain.

abscissa along the junction. These functions are used to approximate the displacements and forces at the
junctions for each uncoupled system α and to define the condensed transfer functions:

Yα
nm =

[
〈Ūα

m,q,p, ϕn〉
〈Fα

m,q, ϕm〉

]
1≤p≤4,1≤q≤4

=
[
〈Ūα

m,q,p, ϕn〉
]
p,q
, (11)

where 〈•, •〉 is a scalar product. Fα
m is the vector of the efforts on the junction, where the components in each

direction of space is equal to ϕm. The indices p and q denote one of the four directions of space used in the
case of a cylindrical shell (the three translations or forces and the rotation or moment around the tangential
coordinate). Ūα

m,q is the displacements vector of the junction when the subsystem is excited in the direction
q by a force of magnitude Fα

m,q.
Thanks to the superposition principle for linear passive systems, and to the forces equilibrium and dis-

placements continuity, the coupling forces Fc between two subsystems α and β are deduced by the following
equation: (

Yα + Yβ
)
Fc = Ũβ − Ũα (12)

where Ũα =
[
〈Ũα

p , ϕn〉
]
n,p
, is the vector of free condensed displacements and is calculated by projecting

the displacement in the direction p on the condensation function ϕn when subsystem α is not coupled to the
other subsystems and only excited by external forces.

Once the coupling forces have been calculated by inverting Eq. (12), the displacement at the point x of
the coupled system can be deduced:

Uα(x) = Ũα(x) +
N∑
n=1

Yα
xnF

c
n (13)

where Ũα(x) is the displacement at the point x when the subsystem α is uncoupled and excited by the exter-
nal excitation. Yα

xn is the condensed transfer function between the observation point x and the condensation
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function ϕn (i.e. the displacement in x when the uncoupled subsystem is excited only by ϕn). Similarly, the
pressure at the point z of the coupled system can be deduced:

pre(z) = p̃αre(z) +
N∑
n=1

Yα
znF

c
n (14)

where p̃αre(z) is the pressure at the point z when the subsystem α is uncoupled and excited by the external
excitation. Yα

zn is the condensed transfer function between the observation point z and the condensation
function ϕn.

The advantage of this method is that the condensed transfer functions of each uncoupled subsystem can
be calculated by different techniques. In the case of a submerged cylindrical shell with internal structures,
the submerged shell admittances are calculated through the Flügge equations, while the internal structures
are modeled by Finite Elements.

The excitation of the coupled system is taken into account in the free displacement term, on the right
hand side of Eq. (12). In the case of a point force, the free displacements of the shell can be calculated
using the Függe equations and the free displacements of the internal frames can be determined using the
FEM. Examples and validations on a complex submerged shell are given in [12]. In the case of an acoustical
monopole, developments need to be done to calculate the free displacements of the shell. This is the aim of
the next subsection.

3.2 Free displacements of the submerged shell for a monopole excitation

In the fluid domain surrounding the cylindrical shell, the pressure is decomposed as the sum of the blocked
pressure pb and the reradiated pressure pre due to the system vibrations:

p = pb + pre (15)

The blocked pressure will be used as a source term in the spectral equations of movement of the submerged
cylindrical shell without internal structures [16]. The case of a monopole excitation outside the shell is
considered, as seen in Fig. 2.

x0
non-axisymmetric frame

A

A

er

Watermonopole (xs,rs,ϑs)

(a)

A-A

er

eθ
θ0θN+1

non-axisymmetric frame

monopole

(b)
Figure 2: Sections of a stiffened cylindrical shell model including a non-axisymmetric internal frame and an
acoustic monopole in the fluid domain. (a) View in the plane θ = 0. (b) View in the plane x = xA.

The blocked pressure pb(x, r, θ) is solution of the non-homogeneous Helmholtz equation:

∆pb(x, r, θ) + k2
0pb(x, r, θ) = qexc(x, r, θ) (16)

where qexc is the source term. The rigid boundary condition (Neumann) on the shell surface is written thanks
to Euler’s relation:

∂pb
∂r

(x,R, θ) = 0 (17)
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withR the radius of the shell. The blocked pressure pb is the sum of the incident pressure pi and the scattered
pressure ps: pb = pi + ps. The incident pressure is known and the scattered pressure needs to be calculated.
From the previous equations, one can write:

∆ps(x, r, θ) + k2
0ps(x, r, θ) = 0 (18)

and
∂

∂r
ps(x,R, θ) = − ∂

∂r
pi(x,R, θ) (19)

Applying a 2D-Fourier transform along the axial and tangential coordinates to Eq. (18) and (19) yields:

∂2

∂r2
˜̃ps(kx, r, n) +

1

r

∂

∂r
˜̃ps(kx, r, n) +

(
k2
r −

n2

r2

)
˜̃ps(kx, r, n) = 0 (20)

∂

∂r
˜̃ps(kx, R, n) = − ∂

∂r
˜̃pi(kx, R, n) (21)

where ˜̃ps is the 2D-Fourier transform of the scattered pressure, and k2
r = k2

0 − k2
x. For a given kx and n,

Eq. (20) corresponds to Bessel’s differential equation, which solutions can be written with Hankel’s functions
of the first and second kind of order n, H(1)

n and H(2)
n respectively:

˜̃ps(kx, r, n) = ArH
(1)
n (krr) +BrH

(2)
n (krr) (22)

The constant Ar and Br are calculated thanks to the Sommerfeld’s radiation condition and the Euler’s equa-
tion:  Ar = 0

Br = − 1

krH
(2)
n

′
(krR)

∂

∂r
˜̃pi(kx, R, n)

(23)

The incident pressure field for a monopole in (xs, rs, θs) can be expressed by:

pi = p0

ejk0d

d
(24)

with j2 = −1, p0 the source intensity and d the distance between the source and the observation point.
Applying a 2D-Fourier transform yields [17]:

˜̃pi(kx, r, n) = jπp0H
(2)
n (krrs)Jn(krr)e

−j(nθs+kxxs) for r < rs (25)

Injecting Eq. (25) in Eq. (23) and then in Eq. (22) yields:

˜̃ps(kx, r, n) = −jπp0

H(2)
n (krrs)J

′
n(krR)

H
(2)
n

′
(krR)

H(2)
n (krr)e

−j(nθs+kxxs) (26)

The blocked pressure is deduced by summing the incident and scattered pressure:

˜̃pb(kx, R, n) = jπp0

(
Jn(krR)− H(2)

n (krR)J ′n(krR)

H
(2)
n

′
(krR)

)
H(2)
n (krrs)e

−j(nθs+kxxs) (27)

Using that Jn(z)H(2)
n

′
(z)− J ′n(z)H(2)

n (z) = − 2j
πz

, Eq. (27) can finally be written as:

˜̃pb(kx, R, n) =
2p0

krR

H(2)
n (krrs)

H
(2)
n

′
(krR)

e−j(nθs+kxxs) (28)

This expression can be used in the right-hand term of the spectral Flügge equations to determine the free
displacements of the shell under a monopole excitation. This method is applied in the next section to discuss
the influence of the internal structures on the vibroacoustic behavior of a submerged shell under a random
excitation.
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4. TEST CASE APPLICATION

4.1 Description of the system

A 5 m radius, 42.3 m length and 30 mm thick cylindrical shell stiffened with 51 stiffeners and 2 spherical
bulkheads (10 mm thick, 30 m curvature radius) is considered in this section, as shown in Fig. 3a. There
are three different types of stiffeners and their spacing varies between 0.6 and 1 m. The whole system is
made of steel (η = 0.02) and is immersed in water. Clamped boundary conditions are used at the ends
of the shell, 2 m away from the first and the last stiffeners. A non-axisymmetric frame is linking the two
stiffeners at x = 11.5 m and x = 21.5 m. A model of this internal structure is shown in Fig. 3b, with the
colors representing the displacement magnitude of the eigenmode at 170 Hz. It consists in a plate assembly
made of a horizontal floor, a vertical stiffening plate and two disc sections that are linked to the stiffeners.
Displacements continuity is assumed at all the junctions.

In order to use the reciprocity principle, a point force is applied on the surface of the cylindrical shell at
the point M1 of coordinates (x, θ, r) = (11.5, 0, 5). Similarily, a monopole excitation is defined at the point
M2 of coordinates (x, θ, r) = (11.5, 0, 500). The response of the system is calculated through the CTF
method for both excitations separately, and thanks to the reciprocity principle, the sensitivity functions are
given by the response in the wavenumber-frequency space.

x (m)
0 2 9.5 23.5 42.3

F

(α) (β) (γ)

non-axisymmetric frame

monopole

M1

M2

5
0

0

(a) (b)
Figure 3: Submerged cylindrical shell with axisymmetric stiffeners: (α) spacing 0.75 m, T-cross-section (mm):
300×60/60×300; (β) spacing 1 m, T-cross-section (mm): 200×15/15×200; (γ) spacing 0.6 m, T-cross-section
(mm): 200× 25/15× 200. (a) Section in the plane θ = 0. (b) Mode at 170 Hz of the non-axisymmetric frame.

4.2 Examples of sensitivity functions

Sensitivity functions, i.e. accelerations of the shell in the wavenumber space, are calculated thanks to the
CTF method under the point force and under the monopole excitation. The results are plotted in Fig. 4 for
the point force at f = 207 Hz and in Fig. 5 for the monopole excitation at f = 568 Hz.

(a) (b)
Figure 4: Sensitivity function (acceleration in dB ref gµm.s−2) in the wavenumber space for a point force at M1

at f = 207 Hz. (a) Axisymmetric case. (b) Non-axisymmetric case.
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(a) (b)
Figure 5: Sensitivity function (acceleration in dB ref gµm.s−2) in the wavenumber space for a monopole at M2 at
f = 568 Hz. (a) Axisymmetric case. (b) Non-axisymmetric case.

These frequencies are chosen because differences can clearly ben seen in the spectra. Indeed, more
circumferential orders tend to play a role in the response of the structure when there is a non-axisymmetry [12,
18]. In Fig. 5, the white line represents the radiation circle. The spectral components inside this circle are
the main contributors to the pressure radiated in the far-field [19]. No clear difference can be seen inside
the radiation circle at this frequency, so no large difference is expected in the power spectral density of the
pressure at M2.

4.3 Diffuse Sound Field

As the radius of curvature of the shell is large compared with the wavelength, the expression of a diffuse
sound field (DSF) for a plate in the wavenumber-frequency space is taken as [20]:

φpp(kx, kθ, f) =

{
π
k0

Spp(f)√
k20−(k2x+k2θ)

if
√
k2
x + k2

θ < kin0

0 if
√
k2
x + k2

θ ≥ kin0
(29)

with Spp the frequency spectral density, taken constant equal to 1 Pa2.s in this example. kin0 = 2πf
cin0

is the
acoustic wavenumber. As air is considered inside the cylindrical shell (with weak coupling only), the sound
velocity is cin0 = 340 m.s−1.

In this example, the DSF excites only the cylinder on the section between the two bulkheads at x = 9.5

and x = 23.5 m. According to the reciprocity principle and to Eq. (10), it consists in calculating the
displacements of the structure under a point force at x only on x̃ ∈ Σp.

Fig. 6 shows the power spectral densities of the radial acceleration atM1 and pressure atM2 as a function
of the frequency with and without the non-axisymmetric internal frame. The red solid line shows the results
in the case of the axisymmetric stiffened shell (i.e. the stiffened submerged shell without the internal frame)
and the blue dashed line shows the case where the non-axisymmetric frame is taken into account. It can be
said that the non-axisymmetric internal frame has an influence on the response of the structure when it is
excited by the DSF. For the acceleration at M1, the power spectral density tends to decrease except for some
frequency ranges. The decrease can be explained from the reciprocity principle, by saying that the amplitude
of displacement is on average lower in the non-axisymmetric case [12, 21]. The increases can be explained
by looking at the sensity functions shown in Fig. 4 where more circumfenential orders play a role in the
non-axisymmetric case. For the power spectral density of pressure at M2, an increase smaller than 2 dB can
be seen.
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(a) (b)
Figure 6: Power spectral density of the system excited by a diffuse sound field with and without the non-
axisymmetric internal structure as a function of the frequency of the (a) radial acceleration at M1 and (b) pressure
at M2.

4.4 Turbulent Boundary Layer excitation

A structure immersed in a flow can be excited by a Turbulent Boundary Layer which is characterized
by the parameters shown in Table 1 [22]. These parameters can be calculated through CFD (computational
fluid dynamics) calculations. This is however not the aim of the present work and the values have thus been
arbitrarily chosen for naval applications, and used in simple models to calculate the wavenumber-frequency
spectrum of the wall pressure.

Table 1: Turbulent Boundary Layer parameters

Parameter Notation Value
Flow speed U∞ 15 m.s−1

Friction velocity UT 1 m.s−1

Thickness δ 0.01 m
Kinematic viscosity (at 20◦C) ν0 1.005 µ Pa.s
Fluid density ρ0 1000 kg.m−3

The strongest pressure fluctuations occur at the convective wavenumber kc and the acoustic wavenumber
k0 defined by:

kc =
2πf

Uc
and k0 =

2πf

c0

(30)

where Uc is the convection speed taken as Uc = 0.6U∞ [22, 23] and c0 = 1500 m.s−1. The acoustic,
convective and flexural wavenumbers are plotted as a function of the frequency up to 1000 Hz in Fig. 7a. The
flexural wavenumber is calculated for a h = 0.03 m thick plate made of steel (density ρs = 7800 kg.m−3,
Young modulus E = 210 GPa and Poisson coefficient ν = 0.3) through the following formula [24]:

kf =

√
2πf

h

(
12(1− ν2)ρs

E

)1/4

(31)

It can be seen in Fig. 7a that the convective wavenumber is much bigger than the acoustic and flexural
wavenumbers for the parameters chosen for this study. On the other hand, the radial accelerations of a cylinder
above the ring frequency, fr = 1

2πR

√
E

ρs(1−ν2)
= 173 Hz, present generally maxima for wavenumbers

around the flexural wavenumber and then decreases when the wavenumber increases. Fig. 7b shows the
module of the radial acceleration as a function of the axial wavenumber for the circumferential order n = 0

at the frequency f = 1000 Hz. It clearly shows that the amplitude is maximum at the flexural wavenumber
kf , and then drops dramatically. It can thus be said that the structure acts as a filter on the high wavenumbers
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(a) (b)
Figure 7: (a) Acoustic (blue solid line), convective (black dotted line) and flexural (red dashed line) wavenumbers
as a function of the frequency. (b) Radial acceleration as a function of the axial wavenumber kx at 1000 Hz for the
circumferential order n = 0 and for a point force at M1

and that the vibrations are mainly due to the acoustic components of the TBL. As mentionned at the end of
section 2, a cutoff wavenumber Nk can thus be defined from the flexural waenumber and a margin coefficient
to numerically calculate the integrals of Eqs. (7) and (8). In this example, the margin coefficients are taken
equal to 4 for the axial wavenumbers and 1.2 for the circumferential wavenumbers.

In the present study, the wavenumber-frequency of the wall pressure φpp(kx, kθ, f) is expressed as:

φpp(kx, kθ, f) = Spp(f)Ψpp(kx, kθ, f) (32)

An empirical model proposed by Goody [25] is used for the frequency spectral density Spp(f):

Spp(f) =
4πC2τ

2
w(2πf)2δ3

U3
∞

([
C1 +

(
2πfδ
U∞

)0.75
]3.7

+
[
C3R

−0.57
T

(
2πfδ
U∞

)]7
) (33)

where C1, C2 and C3 are respectively 0.5, 1.5 and 1.1. RT = U2
T δ

ν0U∞
is the Reynolds number that takes

into account the ratio of intertial forces to viscous forces. τw = ρ0U
2
T is the shear constraint at the wall.

The cross-spectrum Ψpp(kx, kθ, f) is deduced from a spatial Fourier Transform of the expression given by
Corcos [7] and yields:

Ψpp(kx, kθ, f) =
4αβ[(

kx − 2πf
Uc

)2

+
(

2πfα
Uc

)2] [
k2
θ +

(
2πfβ
Uc

)2] (34)

with α = 0.11 and β = 0.77 empirical values.
The power spectral density of the acceleration at M1 and of the pressure at M2 are plotted as a function

of the frequency in Fig. 8a and 8b respectively. Similarily to the results from the diffuse sound field, it can
be said that the non-axisymmetric internal frame has an influence on the response of the system when it is
excited by a TBL. Differences up to 6 dB can be seen in Fig. 8a for the power spectral density of acceleration
at M1 between the axisymmetric and non-axisymmetric cases . For the power spectral density of pressure
at M2 shown in Fig. 8b, the differences between the two cases are smaller. No clear difference can be seen
below 250 Hz, and the non-axisymmetric case is between 1 and 2 dB higher in the rest of the frequency
range.
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(a) (b)
Figure 8: Power spectral density of the system excited by a turbulent boundary layer with and without the non-
axisymmetric internal structure as a function of the frequency of the (a) radial acceleration at M1 and (b) pressure
at M2.

5. CONCLUSION

The response of a submerged stiffened cylindrical shell with non-axisymmetric internal frames under
random excitations has been calculated. For this purpose, the wavenumber-frequency (k,M) reciprocity
technique has been presented and is based on sensitivity functions, that are the result of deterministic calcu-
lations of the system under a point force or a monopole. They are estimated with the CTF method, that is a
substructuring method that enables to take internal frames in a submerged shell into account. One of the main
advantage of this approach is that once the sensitivity functions are stored in a database, it is easy to change
the excitation by modifying the expression of the wall pressure spectrum φpp.

An application on a test case taken from the naval industry under different random excitations (DSF, TBL)
shows the versatility of the method. From the results it can be said that the non-axisymmetric internal frames
can have an influence on the response of the system under random excitations. As more circumferential
orders tend to play a role when the system is non-axisymmetric, the response tends to be higher in this case.
The method can now be used to further investigate physical phenomena (Bloch-Floquet waves propagation
for instance) involved in a stiffened submerged cylindrical shell under random excitation.
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