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ON THE MOD-2 COHOMOLOGY OF SL3(Z[ 1
2 , i])

HANS-WERNER HENN

Abstract. Let Γ = SL3(Z[ 1
2
, i]), let X be any mod-2 acyclic Γ-CW complex on which

Γ acts with finite stabilizers and let Xs be the 2-singular locus of X. We calculate

the mod-2 cohomology of the Borel construction of Xs with respect to the action of Γ.
This cohomology coincides with the mod-2 cohomology of Γ in cohomological degrees

bigger than 8 and the result is compatible with a conjecture of Quillen which predicts

the structure of the cohomology ring H∗(Γ;F2).

1. Introduction

A major motivation for studying the mod-2 cohomology of SL3(Z[ 1
2 , i]) comes from a

conjecture of Quillen (Conjecture 14.7 of [Q1]) which concerns the structure of the mod-
p cohomology of GLn(Λ) where Λ is a ring of S-integers in a number field such that p is
invertible in Λ and Λ contains a primitive p-th root of unity ζp. The conjecture stipulates that
under these assumptionsH∗(GLn(Λ);Z/p) is free over the polynomial algebra Z/p[c1, . . . , cn]
where the ci are the mod-p Chern classes associated to an embedding of Λ into the complex
numbers. In the sequel we will denote this conjecture by C(n,Λ, p).

We will show in Theorem 5.1 that for Λ = Z[ 1
2 , i] conjecture C(n,Λ, 2) is equivalent to

the existence of an isomorphism

H∗(GLn(Z[
1

2
, i]);F2) ∼= F2[c1, . . . , cn]⊗ E(e1, e

′
1, . . . , e2n−1, e

′
2n−1)

where the classes ci are the Chern classes of the tautological n-dimensional complex repre-
sentation of GLn(Z[ 1

2 , i]), E denotes an exterior algebra and the classes e2i−1, e
′
2i−1 are of

cohomological degree 2i− 1 for i = 1, . . . , n.

Conjecture C(n,Z[ 1
2 , i], 2) is trivially true for n = 1 and has been verified for n = 2 in

[W]. On the other hand, Dwyer’s method in [D] using étale approximations Xn for the
homotopy type of the 2-completion of BGLn(Z[ 1

2 ]) and comparing the set of homotopy

classes of [BP,Xn] with that of [BP,BGLn(Z[ 1
2 ])] for suitable cyclic groups of order 2n can

be adapted to disprove C(16,Z[ 1
2 , i], 2). We will not dwell on this in this paper. However,

we note that étale approximations can also be used to show that if C(n,Z[ 1
2 , i], 2) fails then

C(2n,Z[ 1
2 ], 2) fails as well [HL]. We also note that C(n,Z[ 1

2 ], 2) is known to be true for
n = 2 by [M] and n = 3 by [H2] but is known to be false for n = 32 by [D] and even for
n ≥ 14 [HL].

In this paper we give a partial calculation of H∗(SL3(Z[ 1
2 , i]);F2) and make a first step

in an attempt to study conjecture C(3,Z[ 1
2 , i], 2). We propose the same strategy as the

one which was used in the case of SL3(Z[ 1
2 ]). In a first step one uses a centralizer spectral

sequence introduced in [H1] in order to calculate the mod-2 Borel cohomology H∗G(Xs;F2)
where X is any mod-2 acyclic G-CW complex on which a suitable discrete group G acts with
finite stabilizers and Xs is the 2-singular locus of X, i.e. the subcomplex consisting of all
points for which the isotropy group of the action of G is of even order. For G = SL3(Z[ 1

2 ])
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this step was carried out in [H1] and for G = SL3(Z[ 1
2 , i]) it is carried out in this paper.

The precise form of X does not really matter in this step.

The second step involves a very laborious analysis of the relative mod-2 Borel cohomology
H∗G(X,Xs;F2) and of the connecting homomorphism for the Borel cohomology of the pair
(X,Xs). In the case of G = SL3(Z[ 1

2 ]) this was carried out by hand in [H2]. A by hand

calculation looks forbidding in the case of G = SL3(Z[ 1
2 , i]) and this paper makes no attempt

on such a calculation. However, we do make some comments on what is likely to be involved
in such an attempt.

Here are the main results of this paper. In these results the elements b2 respectively b3 are
of degree 4 resp. 6. They are given as Chern classes of the tautological 3-dimensional complex
representation of SL3(Z[ 1

2 , i]). The indices of the other elements give their cohomological
degrees. These elements come from Quillen’s exterior cohomology classes in the cohomology
of GL3(Fp) for suitable primes p, for example for p = 5 (cf. section 3.2 for more details).
Furthermore Σn denotes n-fold suspension so that Σ4F2 is a one dimensional F2-vector space
concentrated in degree 4.

Theorem 1.1. Let Γ = SL3(Z[ 1
2 , i]) and let X be any mod-2 acyclic Γ-CW complex such

that the isotropy group of each cell is finite. Then the centralizer spectral sequence of [H1]

lims
A∗(Γ)H

tCΓ(E);F2) =⇒ Hs+t
Γ (Xs;F2)

collapses at E2 and gives a short exact sequence

0→ Σ4F2 ⊕ Σ4F2 ⊕ Σ7F2 → H∗Γ(Xs;F2)→ F2[b2, b3]⊗ E(d3, d
′
3, d5, d

′
5)→ 0

in which the second map is a map of graded algebras.

Next let

ψ : H∗(Γ;F2) = H∗Γ(X;F2)→ H∗Γ(Xs;F2)→ F2[b2, b3]⊗ E(d3, d
′
3, d5, d

′
5)

be the composition of the map induced by the inclusion Xs ⊂ X and the epimorphism of
Theorem 1.1.

Theorem 1.2. Let Γ = SL3(Z[ 1
2 , i]) and X be as in the previous theorem.

a) If SD3(Z[ 1
2 , i]) denotes the subgroup of diagonal matrices of Γ then the target of ψ can

be identified with a subalgebra of H∗(SD3(Z[ 1
2 , i]);F2) and ψ is induced by the restriction

homomorphism H∗(BΓ;F2)→ H∗(SD3(Z[ 1
2 , i]);F2).

b) There exists a map of graded F2-algebras

ϕ : F2[c2, c3]⊗ E(e3, e
′
3, e5, e

′
5)→ H∗(Γ;F2)

with ei and e′i of degree 2i − 1 such that the composition of ϕ with ψ is the isomorphism
which sends ci to bi, i = 2, 3, ei to di and e′i to d′i, i = 3, 5.

c) The homomorphism ψ is surjective in all degrees, an isomorphism in degrees ∗ > 8
and its kernel is finite dimensional in degrees ∗ ≤ 8.

Remark 1.3. In section 5 we will discuss the relation of Theorem 1.2 with a conjecture of
Quillen on the structure of the cohomology of H∗(GL(n,Λ);F2) for rings of S-integers Λ
in a number field satisfying suitable assumptions (cf. 14.7 of [Q1]). This conjecture would
hold in the case of n = 3 and Λ = Z[ 1

2 , i] if the maps ψ and ψ of part (b) of Theorem 1.2
turned out to be isomorphisms (cf. Proposition 5.5).

The following result is an immediate consequence of Theorem 1.2.
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Corollary 1.4. Let Γ = SL3(Z[ 1
2 , i]) and X be as in Theorem 1.1. Then the following

conditions are equivalent.

a) The restriction homomorphism H∗(BΓ;F2) → H∗(SD3(Z[ 1
2 , i]);F2) is injective and

H∗(BΓ;F2) is isomorphic as a graded F2-algebra to F2[b2, b3]⊗ E(d3, d
′
3, d5, d

′
5).

b) There is an isomorphism

H∗Γ(X,Xs;F2) ∼= Σ5F2 ⊕ Σ5F2 ⊕ Σ8F2

and the connecting homomorphism H∗Γ(Xs;F2)→ H∗+1
Γ (X,Xs;F2) is surjective. �

The paper is organized as follows. In section 2 we recall the centralizer spectral sequence
and in section 3 we prove Theorem 1.1 and Theorem 1.2. In Section 4 we make some
comments on step 2 of the program of a complete calculation of H∗(Γ;F2). Finally in
section 5 we discuss the relation with Quillen’s conjecture.

The author gratefully acknowledges numerous enlightening conversations with Jean Lannes
over many years on the topics discussed in this paper.

2. The centralizer spectral sequence

We recall the centralizer spectral sequence introduced in [H1].

Let G be a discrete group and let p be a fixed prime. Let A(G) be the category whose
objects are the elementary abelian p-subgroups E of G, i.e. subgroups which are isomorphic
to (Z/p)k for some integer k; if E1 and E2 are elementary abelian p-subgroups of G, then the
set of morphisms from E1 to E2 in A(G) consists precisely of those group homomorphisms
α : E1 → E2 for which there exists an element g ∈ G with α(e) = geg−1 for all e ∈ E1. Let
A∗(G) be the full subcategory of A(G) whose objects are the non-trivial elementary abelian
p-subgroups.

For an elementary abelian p-subgroup we denote its centralizer in G by CG(E). Then
the assignment E 7→ H∗(CG(E);Fp) determines a functor from A∗(G) to the category E of
graded Fp-vector spaces. The inverse limit functor is a left exact functor from the functor

category EA∗(G) to E . Its right derived functors are denoted by lims. The p-rank rp(G) of
a group G is defined as the supremum of all k such that G contains a subgroup isomorphic
to (Z/p)k.

For a G-space X and a fixed prime p we denote by Xs the p-singular locus, i.e. the
subspace of X consisting of points whose isotropy group contains an element of order p. Let
EG be the total space of the universal principal G-bundle. The mod-p cohomology of the
Borel construction EG ×G X of a G space X will be denoted H∗G(X;Fp). The following
result is a special case of part (a) of Corollary 0.4 of [H1].

Theorem 2.1. Let G be a discrete group and assume there exists a finite dimensional mod-
p acyclic G-CW complex X such that the isotropy group of each cell is finite. Then there
exists a cohomological second quadrant spectral sequence

Es,t2 = lims
A∗(G)H

t(CG(E);Fp) =⇒ Hs+t
G (Xs;Fp)

with Es,t2 = 0 if s ≥ rp(G) and t ≥ 0.

Remark 2.2. The edge homomorphism in this spectral sequence is a map of algebras

H∗G(Xs;Fp)→ limA∗(G)H
∗(CG(E);Fp)

which is given as follows.
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Let XE be the fixed points for the action of E on X. The G-action on X restricts to an
action of the centralizer CG(E) on XE and the G-equivariant maps

G×CG(E) X
E → Xs, (g, x) 7→ gx .

for E ∈ A∗(G) induce compatible maps in Borel cohomology

H∗G(Xs;F2)→ H∗G(G×CG(E) X
E ;F2) ∼= H∗CG(E)(X

E ;F2) ∼= H∗(CG(E);F2)

which assemble to give the map to the inverse limit. Here we have used that by classi-
cal Smith theory XE is mod p-acyclic if X is mod-p acyclic and hence we get canonical
isomorphisms H∗CG(E)(X

E ;F2) ∼= H∗CG(E)(∗;F2) ∼= H∗(CG(E);F2).

Furthermore the composition

(2.1) H∗(G;Fp) = H∗G(X;Fp)→ H∗G(Xs;F2)→ H∗(CG(E);F2)

is induced by the inclusions CG(E)→ G as E varies through A∗(G).

In [H1] we have used this spectral sequence in the case p = 2 and G = SL3(Z). Here we
will use it in the case p = 2 and G = SL(3,Z[ 1

2 , i]). In both cases we have r2(G) = 2 and
hence the spectral sequence collapses at E2 and degenerates into a short exact sequence

(2.2) 0→ lim1
A∗(G)H

t(CG(E);F2)→ Ht+1
G (Xs;F2)→ limA∗(G)H

t+1(CG(E);F2)→ 0 .

3. The centralizer spectral sequence for SL3(Z[ 1
2 , i])

3.1. The Quillen category. Let K be any number field, let OK be its ring of integers
and consider the ring of S-integers OK [ 1

2 ]. Then, up to equivalence, the Quillen category of

G := SL3(OK [ 1
2 ]) for the prime 2 is independant of K. In fact, because 2 is invertible every

elementary abelian 2-subgroup is conjugate to a diagonal subgroup, and hence A∗(G) has
a skeleton, say A, with exactly two objects, say E1 and E2 of rank 1 and 2, respectively.
We take E1 to be the subgroup generated by the diagonal matrix whose first two diagonal
entries are −1 and whose third diagonal entry is 1, and E2 to be the subgroup of all diagonal
matrices with diagonal entries 1 or −1 and determinant 1.

The automorphism group of E1 is trivial, of course, while AutA(E2) is isomorphic to the
group of all abstract automorphisms of E2 which we can identify with S3, the symmetric
group on three elements. There are three morphisms from E1 to E2 and AutA(E2) acts
transitively on them.

3.2. The centralizers and their cohomology. For the centralizers in H := GL3(OK [ 1
2 ])

we find CH(E1) ∼= GL2(OK [ 1
2 ]) × GL1(OK [ 1

2 ]) resp. CH(E2) ∼= D3(OK [ 1
2 ]) if Dn(OK [ 1

2 ])

denotes the subgroup of diagonal matrices in GLn(OK [ 1
2 ]). This implies

CG(E1) ∼= GL2(OK [
1

2
]), CG(E2) ∼= D2(OK [

1

2
]) ∼= OK [

1

2
]× ×OK [

1

2
]× .

From now on we specialize to the case K = Q2[i] where we have OK [ 1
2 ] = Z[ 1

2 , i]. In
this case the cohomology of the centralizers is explicitly known. In the sequel we abbreviate
SL3(Z[ 1

2 , i]) by Γ.
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3.2.1. The cohomology of CΓ(E2). There is an isomorphism of groups

Z/4× Z ∼= Z[
1

2
, i]×, (n,m) 7→ in(1 + i)m

and therefore we get an isomorphism

(3.1) H∗(CΓ(E2);F2) ∼= H∗(Z[
1

2
, i]× × Z[

1

2
, i]×;F2) ∼= F2[y1, y2]⊗ E(x1, x

′
1, x2, x

′
2)

with y1 and y2 in degree 2 and the other generators in degree 1. We agree to choose the
generators so that y1, x1 and x′1 come from the first factor with x1 and x′1 being the dual
basis to the basis of

H1(Z[
1

2
, i]×;F2) ∼= Z[

1

2
, i])×/

(
Z[

1

2
, i])×

)2 ∼= Z/2× Z/2

given by the image of i and (1 + i) in the mod-2 reduction of the abelian group GL1(Z[ 1
2 , i])

and y1 coming from H2(Z/4;F2); likewise with y2, x2 and x′2 coming from the second factor.

3.2.2. The cohomology of CΓ(E1). This cohomology has been calculated in [W]. In fact,
from Theorem 1 of [W] we know

(3.2) H∗(CΓ(E1);F2) ∼= H∗(GL2(Z[
1

2
, i]);F2) ∼= F2[c1, c2]⊗ E(e1, e

′
1, e3, e

′
3) .

In the sequel we give a short summary of this calculation. The classes e1, e′1, e3 and e′3
are pulled back from Quillen’s exterior classes q1 and q3 [Q2] in

(3.3) H∗(GL2(F5);F2) ∼= F2[c1, c2]⊗ E(q1, q3)

via two ring homomorphisms

(3.4) π : Z[
1

2
, i]→ F5 , π′ : Z[

1

2
, i]→ F5 .

We choose π such that i is sent to 3 and π′ such that i is sent to 2.

Then consider the two commutative diagrams (with horizontal arrows induced by inclu-
sion and vertical arrows induced by π resp. π′)

(3.5)

D2(Z[ 1
2 ]) → GL2(Z[ 1

2 ])

↓ ↓

D2(F5) → GL2(F5) .

By abuse of notation we can write

(3.6) H∗(D2(F5);F2) ∼= H∗(F×5 × F×5 ;F2) ∼= F2[y1, y2]⊗ E(x1, x2)

with y1 ∈ H2(F×5 ;F2) and x1 ∈ H2(F×5 ;F2) coming from the first factor and likewise with
y2 and x2 coming from the second factor. Then these ring homomorphisms induce two
homomorphisms

π∗, π′∗ : H∗(D2(F5);F2))→ H∗(D2(Z[
1

2
]);F2)

which in term of the isomorphisms (3.6) and (3.1) are explicitly given by

(3.7) π∗(yi) = yi = π′∗(yi), π∗(xi) = xi, π′∗(xi) = xi + x′i for i = 1, 2 .

The cohomology of GL2(F5) is detected by restriction to the cohomology of diagonal
matrices and restriction is given explicitly as follows:

(3.8) c1 7→ y1 + y2, c2 7→ y1y2, q1 7→ x1 + x2 q3 7→ y1x2 + y2x1 .
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Then e1, e
′
1, e3, e

′
3 are defined via

(3.9) e1 = π∗(q1), e3 = π∗(q3), e′1 = π′∗(q1), e′3 = π′∗(q3) .

If c1 and c2 are the Chern classes of the tautological 2-dimensional complex representation
of GL2(Z[ 1

2 ], i), then the restriction homomorphism from H∗(GL2(Z[ 1
2 , i]);F2) to the coho-

mology of the subgroup of diagonal matrices is injective and by using (3.5) and (3.8) we see
that it is explicitly given by

(3.10)
c1 7→ y1 + y2 c2 7→ y1y2

e1 7→ x1 + x2 e3 7→ y1x2 + y2x1

e′1 7→ x1 + x′1 + x2 + x′2 e′3 7→ y1(x2 + x′2) + y2(x1 + x′1) .

3.2.3. Functoriality. We note that together with the isomorphisms (3.1) and (3.2) the re-
striction (3.10) also describes the map

α∗ : H∗(CΓ(E1);F2)→ H∗(CΓ(E2);F2)

induced from the standard inclusion of E1 into E2.

To finish the description of H∗(CΓ(−);F2) as a functor on A it remains to describe the
action of the symetric group AutA(E2) ∼= S3 of rank 3 on H∗(CΓ(E2);F2) ∼= F2[y1, y2] ⊗
Λ(x1, x

′
1, x2, x

′
2) and because of the multiplicative structure we need it only on the generators.

If τ ∈ AutA(E2) corresponds to permuting the factors in CΓ(E2) ∼= GL1(Z[ 1
2 , i]) ×

GL1(Z[ 1
2 , i]) then

(3.11)
τ∗(y1) = y2 τ∗(x1) = x2 τ∗(x

′
1) = x′2

τ∗(y2) = y1 τ∗(x2) = x1 τ∗(x
′
2) = x′1

and if σ ∈ AutA(E2) corresponds to the cyclic permutation of the diagonal entries (in
suitable order) then

(3.12)
σ∗(y1) = y2 σ∗(x1) = x2 σ∗(x

′
1) = x′2

σ∗(y2) = y1 + y2 σ∗(x2) = x1 + x2 σ∗(x
′
2) = x′1 + x′2 .

3.3. Calculating the limit and its derived functors. In Proposition 4.3 of [H1] we
showed that for any functor F from A to Z(2)-modules there is an exact sequence

(3.13) 0→ limAF → F (E1)
ϕ−→ HomZ[S3](StZ, F (E2))→ lim1

AF → 0

where StZ is the Z[S3] module given by the kernel of the augmentation Z[S3/S2]→ Z, and
if a and b are chosen to give an integral basis of StZ on which τ and σ act via

(3.14)
τ∗(a) = b τ∗(b) = a
σ∗(a) = −b σ∗(b) = a− b

then ϕ(x)(a) = α∗(x)− (σ∗)
2α∗(x) and ϕ(x)(b) = α∗(x)− σ∗α∗(x) if x ∈ F (E1).

Because in our case the functor takes values in F2-vector spaces we can replace HomZ[S3]

by HomF2[S3] and StZ by its mod-2 reduction. The following elementary lemma is needed
in the analysis of the third term in the exact sequence (3.13).

Lemma 3.1.

a) Let St be the F2[S3]-module given as the kernel of the augmentation F2[S3/S2]→ F2.
The tensor product St⊗ St decomposes as F2[S3]-module canonically as

St⊗ St ∼= F2[S3/A3]⊕ St
where A3 denotes the alternating group on three letters. In fact, the decomposition is given
by

St⊗ St ∼= Im(id+ σ∗ + σ2
∗)⊕Ker(id+ σ∗ + σ2

∗)
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and the first summand is isomorphic to F2[S3/A3] while the second summand is isomorphic
to St.

b) The tensor product F2[S3/A3]⊗ St is isomorphic to St⊕ St.

Proof. a) It is well known that St is a projective F2[S3]-module, hence St ⊗ St is also
projective. It is also well known that every projective indecomposable F2[S3]-module is
isomorphic to either St or F2[S3/A3]. Both modules can be distinguished by the fact that
e := id+ σ∗ + σ∗ acts trivially on St and as the identity on F2[S3/A3].

Furthemore e is a central idempotent in F2[S3] and hence each F2[S3]-module M decom-
poses as direct sum of F2[S3]-modules

M ∼= Im(e : M →M)⊕Ker(e : M →M) .

An easy calculation shows that in the case of St⊗ St both submodules are non-trivial and
this together with the fact these submodules must be projective proves the claim.

b) Again each of the factors in the tensor product is a projective F2[S3]-module, hence the
tensor product is a projective F2[S3]-module. Because σ acts as the identity on F2[S3/A3]
we see that the idempotent e acts trivially on the tensor product and this forces the tensor
product to be isomorphic to St⊕ St. �

Lemma 3.2. The Poincaré series χ2 of HomF2[S3
](St,F2[y1, y2]⊗E(x1, x

′
1, x2, x

′
2)) is given

by

χ2 =
2t2(1 + 3t2 + 3t4 + t6) + 2t(1 + 2t2 + 2t4 + 2t6 + t8)

(1− t4)(1− t6)
.

Proof. The isomorphism of (3.1) is an isomorphism of F2[S3]-modules where the action of S3

is given by (3.11) and (3.12). In particular we see that H1(GL1(Z[ 1
2 , i])×GL1(Z[ 1

2 , i]);F2)

is isomorphic to St⊕ St generated by x1, x
′
1, x2, x

′
2. The exterior powers of H1 are given as

Ek(x1, x2, x
′
1, x
′
2) ∼= Ek(St⊕ St) ∼=

k⊕
j=0

EjSt⊗ Ek−jSt

and, because Ek(St) is isomorphic to ΣkF2 if k = 0, 2, isomorphic to ΣSt if k = 1, and
trivially otherwise, we obtain

Ek(x1, x2, x
′
1, x
′
2) ∼=


ΣkF2 k = 0, 4

Σk(St⊕ St) k = 1, 3

Σ2F2 ⊕ Σ2(St⊗ St)⊕ Σ2F2 k = 2

0 k 6= 0, 1, 2, 3, 4

where F2 denotes the trivial F2[S3]-module whose additive structure is that of F2.

Therefore the Poincaré series χ2 of HomF2[S3](St,H
∗(CG(E2);F2)) decomposes according

to the decomposition of Λ(x1, x
′
2, x
′
1, x
′
2) as sum

(3.15) χ2 := (1 + 2t2 + t4)χ2,0 + t2χ2,1 + 2(t+ t3)χ2,2

where χ2,0 is the Poincaré series of HomF2[S3](St,F2[y1, y2]), χ2,1 is the Poincaré series of
HomF2[S3](St, St⊗ St⊗ F2[y1, y2]) and χ2,2 is that of HomF2[S3](St, St⊗ F2[y1, y2]).
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Furthermore it is well known (and elementary to verify) that there is an isomorphism of
F2[S3]-modules St⊕ St⊕ F2[S3/A3] ∼= F2[S3] and therefore an isomorphism

F2[y1, y2] ∼= HomF2[S3](St⊕ St⊕ F2[S3/A3],F2[y1, y2])

∼= HomF2[S3](St,F2[y1, y2])⊕2 ⊕ F2[y1, y2]A3 .

Together with the elementary fact that the A3-invariants F2[y1, y2]A3 form a free module
over F2[y1, y2]S3

∼= F2[c2, c3] on two generators 1 and y3
1 + y1y

2
2 + y3

2 of degree 0 resp. 6 this
implies

2χ2,0 +
1 + t6

(1− t4)(1− t6)
=

1

(1− t2)2

and hence

(3.16) χ2,0 =
t2

(1− t2)(1− t6)
.

It is elementary to check that St and F2[S3/A3] are both self-dual F2[S3]-modules and
hence Lemma 3.1 gives

St⊗ St∗ ∼= F2[S3/A3]⊕ St
and

St⊗ St∗ ⊗ St∗ ∼= (F2[S3/A3]⊕ St)⊗ St∗
∼= (F2[S3/A3]⊗ St)⊕ (St⊗ St)
∼= St⊕ St⊕ St⊕ F2[S3/A3] .

Therefore, if χF2[y1,y2]A3 denotes the Poincaré series of the A3-invariants then

(3.17) χ2,1 = 3χ2,0 +χF2[y1,y2]A3 =
3t2

(1− t2)(1− t6)
+

1 + t6

(1− t4)(1− t6)
=

1 + 3t2 + 3t4 + t6

(1− t4)(1− t6)

(3.18) χ2,2 = χ2,0 + χF2[y1,y2]A3 =
t2

(1− t2)(1− t6)
+

1 + t6

(1− t4)(1− t6)
=

1 + t2 + t4 + t6

(1− t4)(1− t6)
.

Finally (3.15), (3.16), (3.17) and (3.18) give

χ2 =
(1 + 2t2 + t4)t2(1 + t2) + t2(1 + 3t2 + 3t4 + t6) + 2(t+ t3)(1 + t2 + t4 + t6)

(1− t4)(1− t6)

=
2t2(1 + 3t2 + 3t4 + t6) + 2t(1 + 2t2 + 2t4 + 2t6 + t8)

(1− t4)(1− t6)
,

and this finishes the proof. �

Theorem 1.1 is now an immediate consequence of Theorem 2.1 and the following result.

Proposition 3.3. Let p = 2 and Γ = SL3(Z[ 1
2 , i]).

a) There is an isomorphism of graded F2-algebras

limA∗(Γ)H
∗(CΓ(E);F2) ∼= F2[b2, b3]⊗ E(d3, d

′
3, d5, d

′
5) .

Furthermore, if we identify this limit with a subalgebra of H∗(CΓ(E1);F2) ∼= F2[c1, c2] ⊗
E(e1, e

′
1, e3, e

′
3) then

b2 = c21 + c2 b3 = c1c2
d3 = e3 d5 = c1e3 + c2e1

d′3 = e′3 d′5 = c1e
′
3 + c2e

′
1 .
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b) There is an isomorphism of graded F2-vector spaces

lim1
A∗(Γ)H

∗(CΓ(E);F2) ∼= Σ3F2 ⊕ Σ3F2 ⊕ Σ6F2 .

c) For any s > 1

lims
A∗(Γ)H

∗(CΓ(E);F2) = 0 .

Proof. a) It is straightforward to check that the subalgebra of F2[c1, c2] ⊗ E(e1, e
′
1, e3, e

′
3)

generated by the elements c21 + c2, c1c2, e3, e
′
3, c1e3 + c2e1, c1e

′
3 + c2e

′
1 is isomorphic to the

tensor product of a polynomial algebra on two generators b2 and b3 of degree 4 and 6 and an
exterior algebra on 4 generators d3, d′3, d5 and d′5 of degree 3, 3, 5 and 5. In fact, it is clear
that c21 +c2 and c1c2 are algebraically independant and the elements e3, e

′
3, c1e3 +c2e1, c1e

′
3 +

c2e
′
1 are exterior classes; their product is given as c22e3e

′
3e1e

′
1 6= 0, and this implies easily

that the exterior monomials in these elements are linearly independant over the polynomial
algebra generated by c21 + c2, c1c2. From now on we identify b2, b3, d3, d′3, d5 and d′5 with
c21 + c2, c1c2, e3, e′3, c1e3 + c2e1 and c1e

′
3 + c2e

′
1.

Now we use the exact sequence (3.13) and the description of ϕ to determine the inverse
limit. Because α∗ is injective, we see that if we identify H∗(CΓ(E1);F2) with its image in
H∗(CΓ(E2);F2) then the inverse limit can be identified with the intersection of the image
of α∗ with the invariants in F2[y1, y2] ⊗ E(x1, x

′
1, x2, x

′
2) with respect to the action of the

cyclic group of order 3 of AutA(E2) ∼= S3 generated by σ. This action has been described
in (3.12) and with these formulas it is straightfoward to check that the elements

(3.19)

b2 = y2
1 + y1y2 + y2

2

b3 = y1y2(y1 + y2)
d3 = y1x2 + y2x1

d5 = (y1 + y2)(y1x2 + y2x1) + y1y2(x1 + x2) = y2
1x2 + y2

2x1

d′3 = y1(x2 + x′2) + y2(x1 + x′1)
d′5 = (y1 + y2)(y1(x2 + x′2) + y2(x1 + x′1)) + y1y2(x1 + x′1 + x2 + x′2)

= y2
1(x2 + x′2) + y2

2(x1 + x′1) .

all belong to the inverse limit.

Now consider the following Poincaré series

χ0 :=
∑
n≥0 dimF2

(F2[b2, b3]⊗ E(e3, e
′
3, e5, e

′
5)n)tn = (1+t3)2(1+t5)2

(1−t4)(1−t6)

χ1 :=
∑
n≥0 dimF2 H

n(CΓ(E1);F2)tn = (1+t)2(1+t3)2

(1−t2)(1−t4)

χ2 := 2t2(1+3t2+3t4+t6)+2t(1+2t2+2t4+2t6+t8)
(1−t4)(1−t6) .

Then we have the following identity

χ0 + χ2 − χ1 =
p

(1− t4)(1− t6)

with

p = (1 + t3)2(1 + t5)2 + 2t2(1 + 3t2 + 3t4 + t6)

+ 2t(1 + 2t2 + 2t4 + 2t6 + t8)− (1 + t)2(1 + t3)2(1 + t2 + t4)

= 2t3 + t6 − 2t7 − 2t9 − t10 − t12 + 2t13 + t16 = (2t3 + t6)(1− t4)(1− t6)

and therefore

(3.20) χ0 + χ2 = χ1 + (2t3 + t6) .
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This together with the fact that limA∗(Γ)H
∗(CΓ(E);F2) contains a subalgebra which is

isomorphic to F2[b2, b3]⊗ Λ(d3, d
′
3, d5, d

′
5) already implies that the sequence

0→ F2[b2, b3]⊗E(d3, d
′
3, d5, d

′
5)→ H∗(CΓ(E1);F2)

ϕ−→ HomF2[S3](St,H
∗(CΓ(E1);F2))→ 0

in which the left hand arrow is given by inclusion is exact except possibly in dimensions 3
and 6.

In order to complete the proof of a) it is now enough to verify that in degrees 3 and 6 the
inverse limit is not bigger than F2[b2, b3] ⊗ E(d3, d

′
3, d5, d

′
5). We leave this straightforward

verification to the reader.

Then b) follows immediately from (a) together with (3.20) and the exact sequence (3.13),
and (c) follows from Theorem 2.1 and the fact that r2(G) = 2. �

We can now give the proof of Theorem 1.2.

Proof. a) The exact sequence of Theorem 1.1 is obtained from the exact sequence (2.2) via
Proposition 3.3. Therefore the epimorphism of Theorem 1.1 is the edge homomorphism
of the centralizer spectral sequence. The result then follows from (2.1) by observing that
we have identified the target of the edge homomorphism with the subalgebra F2[b2, b3] ⊗
E(d3, d

′
3, d5, d

′
5) of H∗(CΓ(E1);F2) and by recalling that CΓ(E1) is equal to SD3(Z[ 1

2 , i]).

b) The two ring homomorphisms π, π′ : Z[ 1
2 , i]→ F5 of (3.4) determine homomorphisms

SL3(Z[ 1
2 , i]) ⊂ GL3(Z[ 1

2 , i])→ GL3(F5). By [Q2] we have

H∗GL3(F5);F2) ∼= F3[c1, c2, c3]⊗ E(q1, q3, q5) .

We get a well defined homomorphism of F2-graded algebras

ϕ : F2[c2, c3]⊗ E(e3, e
′
3, e5, e

′
5)→ H∗(Γ;F2)

by sending ci to the i-th Chern class of the tautological 3-dimensional representation of Γ
and by declaring ϕ(ei) = π∗(qi) and ϕ(e′i) = π′∗(q′i) for i = 3, 5. The classes q1 resp. q3

resp. q5 are the symmetrisations of x1 resp. y1x2 resp. y1y2x3 with respect to the natural
action of S3 on H∗(GL3(F5);F2) ∼= F2[y1, y2, y3]⊗ E(x1, x2, x3) (cf. (5.1) below).

Next we determine the composition ψφ. The universal Chern classes ci are the elementary
symmetric polynomials in variables, say yi, and the inclusion GL2(C) ⊂ SL3(C) ⊂ GL3(C)
imposes the relation y1 + y2 + y3 = 0. This implies that the behaviour of ψ on Chern classes
is given by

c1 7→ 0, c2 7→ c21 + c2 = y2
1 + y1y2 + y2

2 = b2, c3 7→ c1c2 = y1y2(y1 + y2) = b3 .

In these equations we have identified H∗(GL2(Z[ 1
2 , i];F2), as in the proof of Proposition 3.3,

via restriction with a subalgebra of F2[y1, y2]⊗ E(x1, x
′
1, x3, x

′
3).

In order to determine the composition ψϕ on the classes e3, e′3, e5 and e′5 we calculate at
the level of F5 and use naturality with respect to the homomorphisms induced by π and π′.
In fact, the inclusion

j : GL2(F5) ⊂ SL3(F5) ⊂ GL3(F5)

induce in cohomology a map

F3[c1, c2, c3]⊗ E(q1, q3, q5)→ F2[c1, c2]⊗ E(e1, e3) ⊂ F2[y1, y2]⊗ E(q1, q3)

which is easily determined from (5.1) below by imposing the relations y1 + y2 + y3 = 0
and x1 + x2 + x3 = 0 on the symmetrisation of the classes y1x2 resp. y1y2x3 with respect
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to the natural action of S3 on the cohomology of diagonal matrices H∗(D3(F5);F2) ∼=
F2[y1, y2, y3]⊗ E(x1, x2, x3). Explicitly we get

c1 7→ 0, c2 7→ y2
1 + y1y2 + y2

2 , c3 7→ y1y2(y1 + y2)

q1 7→ 0, q3 7→ y1x2 + y2x1, q5 7→ y2
1x2 + y2

2x1

and if i denotes the inclusion

GL2(Z[
1

2
, i]) ⊂ SL3(Z[

1

2
, i]) ⊂ GL3(Z[

1

2
, i])

then (3.7) and (3.19) imply

ψ(ϕ(e3)) = i∗(π∗(q3)) = π∗j∗(q3) = π∗(y1x2 + y2x1) = d3

ψ(ϕ(e5)) = i∗(π∗(q5)) = π∗j∗(q5) = π∗(y2
1x2 + y2

2x1) = d5

ψ(ϕ(e′3)) = i∗(π′∗(q3)) = π′∗j∗(q3) = π′∗(y1x2 + y2x1) = d′3
ψ(ϕ(e′5)) = i∗(π′∗(q5)) = π′∗j∗(q5) = π′∗(y2

1x2 + y2
2x1) = d′5

where we have identified the target of ψ with a subalgebra of H∗(GL2(Z[ 1
2 , i];F2) and the

latter via restriction with a subalgebra of F2[y1, y2]⊗ E(x1x
′
1, x3, x

′
3).

c) The space X can be taken to be the product of symmetric space X∞ := SL3(C)/SU(2)
and the Bruhat-Tits building X2 for SL3(Q2[i]). Now SL3(Q2[i])\X2 is a 2-simplex (cf. [B])
and the projection map X → X2 induces a map

SL3(Q2[i])\X → SL3(Q2[i])\X2

whose fibres have the homotopy type of a 6-dimensional SL3(Z[ 1
2 , i])-invariant deformation

retract (cf. section 4). Therefore we get Hn
G(X,Xs;F2) = 0 if n > 8 and the inclusion

Xs ⊂ X induces an isomorphism Hn
G(X;F2) ∼= Hn

G(Xs;F2) if n > 8. Then part c) simply
follows from a) except for the finiteness statement for the kernel for which we refer to (4.1)
and (4.2) below. �

4. Comments on step 2

The situation for p = 2 and G = SL3(Z[ 1
2 , i]) is analogous to the situation for p = 2

and G = SL3(Z[ 1
2 ]) for which step 2 was carried out in [H2] via a detailed study of the

relative cohomology H∗G(X,Xs;F2) for X equal to the product of the symmetric space
X∞ := SL3(R)/SO(3) with the Bruhat-Tits building X2 for SL3(Q2); the spaces involved
had a few hundred cells and the calculation was painful. In the case of SL3(Z[ 1

2 , i]) with X
the product of SL3(C)/SU(3) with the Bruhat-Tits building for SL3(Q2[i]) the calculational
complexity of the second step is much more involved and an explicit calculation by hand
does not look feasible. However, in recent years there have been a lot of machine aided
calculations of the cohomology of various arithmetic groups (for example [GG], [BRW]) and
a machine aided calculation seems to be within reach.

The natural strategy for undertaking this second step is to follow the same path as in
[H2]. The equivariant cohomology H∗Γ(X,Xs;F2) can be studied via the spectral sequence
of the projection map

p : X = X∞ ×X2 → X2 .

This gives a spectral sequence with

(4.1) Es,t1
∼=
⊕
σ∈Λs

Ht
Γσ (X∞, X∞,s;F2) =⇒ Hs+t

Γ (X,Xs;F2) .

Here Λs indexes the s-dimensional cells in the orbit space of X2 with respect to the action
of Γ. The orbit space is a 2-simplex, i.e. Λ0 and Λ1 contain 3 elements and Λ2 is a singleton.
Furthermore Γσ is the isotropy group of a chosen representative in X2 of the cell σ in the
quotient space. For fixed s all s-dimensional cells have isomorphic isotropy groups because
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the Γ-action on the Bruhat-Tits building is the restriction of a natural action of GL3(Z[ 1
2 , i])

on X2 and this action is transitive on the set of s-dimensional cells (cf. [B]).

Therefore all isotropy subgroups for the action onX2 are, up to isomorphism, subgroups of
SL3(Z[i]) which itself appears as isotropy group of a 0-dimensional cell in X2. The isotropy
groups of 1-dimensional and 2-dimensional cells are isomorphic to well-known congruence
subgroups of SL3(Z[i]). By the Soulé-Lannes method the fibre X∞ of the projection map
p admits a 6-dimensional SL3(Z[i])-equivariant deformation retract (the space of “well-
rounded hermitean forms” modulo arithmetic equivalence) with compact quotient (cf. [Ash])
and therefore we have

(4.2) Es,t1 = 0 unless s = 0, 1, 2, 0 ≤ t ≤ 6, and dimF2 E
s,t
1 <∞ for all (s, t) .

The E1-term of this spectral sequence should be accessible to machine calculation. The
spectral sequence will necessarily degenerate at E3 and the calculation of the d1-differential
and, if necessary the d2-differential, is likely to need human intervention, as it was necessary
in the case of SL(3,Z[ 1

2 ]) (cf. section 3.4 of [H2]). Likewise the calculation of the connecting
homomorphism for the mod-2 Borel cohomology of the pair (X,Xs) is likely to require human
intervention.

5. Relation to Quillen’s conjecture

The next result gives gives 2 reformulations of Quillen’s conjecture which we had briefly
discussed in the introduction. The classes e2k−1, e

′
2k−1 figuring in part c) will be introduced

in (5.1) below.

Theorem 5.1. Suppose n ≥ 2. Then the following statements are equivalent.

a) C(n,Z[ 1
2 , i], 2) holds, i.e. H∗(GLn(Z[ 1

2 , i]);F2) is a free module over Z/2[c1, . . . , cn]
where the ci are the mod-2 Chern classes of the tautological n-dimensional complex repre-
sentation of GLn(Z[ 1

2 , i]).

b) The restriction homomorphism H∗(GLn(Z[ 1
2 , i]);F2) → H∗(Dn(Z[ 1

2 , i]);F2) is injec-

tive where Dn(Z[ 1
2 , i]) denotes the subgroup of diagonal matrices in GLn(Z[ 1

2 ]).

c) There are isomorphisms

H∗(GLn(Z[
1

2
, i]);F2) ∼= F2[c1, . . . , cn]⊗ E(e1, e

′
1, . . . , e2n−1, e

′
2n−1)

where the classes ck are the Chern classes of the tautological n-dimensional complex repre-
sentation of GLn(Z[ 1

2 , i]) and the classes e2k−1, e
′
2k−1 are of cohomological degree 2k− 1 for

k = 1, . . . , n.

Proof. It is trivial that (c) implies (a).

In order to show that (a) implies (b) we observe that Dn(Z[ 1
2 , i]) is the centralizer of the

unique, up to conjugacy, maximal elementary abelian 2-subgroup En of GLn(Z[ 1
2 , i]) given

by the subgroup of diagonal matrices of order 2. Now consider the top Dickson invariant
ω in H∗(BGLn(C);F2), i.e. the class whose restriction to H∗B(

∏n
i=1GL1(C));F2) is the

product of all non-trivial classes of degree 2. The image of ω in H∗(GLn(Z[ 1
2 , i]);F2) restricts

trivially to the cohomology of all elementary abelian 2-subgroups E of GLn(Z[ 1
2 , i]) of rank

less than n. If (a) holds then the image of ω is not a zero divisor in H∗(GLn(Z[ 1
2 , i]);F2)

and hence Corollary I.5.8 of [HLS] implies that the restriction to the centralizer of En is
injective.
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The implication (b)⇒ (c) follows from Proposition 5.3 below. �
(Up to here!)

Before we go on we introduce the classes e2k−1 and e′2k−1. As in the case of GL2 they

are obtained from Quillen’s classes q2k−1 ∈ H2k−1(GLn(F5);F2) [Q2] which restrict in the
cohomology of diagonal matrices in F5 to the symmetrization of the class y1 . . . yk−1xk where
yk is of cohomological degree 2 corresponding to the k-th factor in the product

∏n
k=1 F

×
5

and xk is of cohomological degree 1 of the same factor. Then we define

(5.1) e2k−1 := π∗(q2k−1), e′2k−1 := π′∗(q2k−1)

where π, π′ are the two ring homomorphisms Z[ 1
2 , i] → F5 with π sending i to 3 and π′

sending i to 2 which we considered earlier in section 3. If we identify the mod-2 cohomology
H∗(Dn(Z[ 1

2 , i]);F2) with F2[y1, . . . yn]⊗E(x1, x
′
1 . . . , xn, x

′
n) with yk, k = 1, . . . , n of degree

2 and xk, x
′
k, k = 1, . . . , n of degree 1 where as before we choose xk and x′k to be the basis

which is dual to the basis of the k-th factor in

Dn(Z[
1

2
, i])/Dn(Z[

1

2
, i])2 ∼=

(
Z[

1

2
, i]×/(Z[

1

2
, i]×)2

)n
given by the classes of i and 1 + i then we get the following lemma which generalizes (3.10)
and whose straighforward proof we leave to the reader.

Lemma 5.2. The class e2k−1 restricts in the cohomology of the subgroup of diagonal matri-
ces H∗(Dn(Z[ 1

2 , i];F2)) to the symmetrization of y1 . . . yk−1xk and the class e′2k−1 restricts
to the symmetrization of y1 . . . yk−1(xk + x′k). �

The following result determines the image of the restriction homomorphism and shows
that (b) implies (c) in Theorem 5.1. It resembles results of Mitchell [M] for GLn(Z[ 1

2 ]) for

p = 2 and of Anton [An1] for GLn(Z[ 1
3 , ζ3]) for p = 3.

Proposition 5.3. Let n ≥ 1 be an integer. The image of the restriction map

i∗ : H∗(GLn(Z[
1

2
, i]);F2)→ H∗(Dn(Z[

1

2
, i]);F2) ∼= F2[y1, . . . yn]⊗ E(x1, x

′
1 . . . , xn, x

′
n)

is isomorphic to

F2[c1, . . . cn]⊗ E(e1, e
′
1, . . . , e2n−1, e

′
2n−1) .

Here we have identified the Chern classes ci and the classes e2i−1 and e′2i−1 with their
image via i∗. The images of the elements ci are, of course, the elementary symmetric
polynomials in the yi and the images of the classes e2i−1 and e′2i−1 have been determined
in Lemma 5.2. We remark that even though i∗ need not be injective, it is injective on the
subalgebra of H∗(GLn(Z[ 1

2 , i]);F2) generated by the classes ci, e2i−1 and e′2i−1, 1 ≤ i ≤ n.

This proposition is an analogue of Proposition 3.6 of [An2]. Its proof uses crucially
condition (5.3) below, which also plays a central role in [An2].

Proof. In this proof we denote the subalgebra

F2[c1, . . . cn]⊗ E(e1, e
′
1, . . . , e2n−1, e

′
2n−1) .

of H∗(Dn(Z[ 1
2 , i]);F2) by Cn and the image of the restriction map by Bn. We need to show

that Bn = Cn. This is trivial if n = 1 and for n = 2 this follows from Theorem 1 of [W] (cf.
(3.2) and (3.8) and Lemma 5.2).

The classes c1, . . . , cn are in Bn as images of the Chern classes with the same name and
the classes e1, . . . e2n−1, e′1, . . . e

′
2n−1 are in Bn by Lemma 5.2. Therefore we have Cn ⊂ Bn.

We will show Bn ⊂ Cn for n ≥ 2 by induction on n. This will be done in three steps.
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1. From the inclusions

GLn−2(Z[ 1
2 , i])×GL2(Z[ 1

2 , i]) ⊂ GLn(Z[ 1
2 , i])

GLn−1(Z[ 1
2 , i])×GL1(Z[ 1

2 , i]) ⊂ GLn(Z[ 1
2 , i])

given by matrix block sum and the identifications ofDn−2(Z[ 1
2 , i])×D2(Z[ 1

2 , i]) withDn(Z[ 1
2 , i])

and of Dn−1(Z[ 1
2 , i])×D1(Z[ 1

2 , i]) with Dn(Z[ 1
2 , i]) we see that

Bn ⊂ Bn−1 ⊗B1 ∩Bn−2 ⊗B2

and by induction hypothesis the latter subalgebra is equal to

Cn−1 ⊗ C1 ∩ Cn−2 ⊗ C2 ,

in particular we have

(5.2) Bn ⊂ Cn−1 ⊗ C1 ∩ Cn−2 ⊗ C2 .

2. The monomial basis in

H∗(Dn(Z[
1

2
, i]);F2) ∼= F2[y1, . . . , yn]⊗ E(x1, . . . , xn, x

′
1, . . . , x

′
n)

is in bijection with the set S(n) of sequences

I = (a1, ε1,1, ε2,1, . . . , an, ε1,n, ε2,n)

where the ai are integers ≥ 0 and εi,j ∈ {0, 1} for i = 1, 2 and 1 ≤ j ≤ n. More precisely to
I we associate the monomial

yI := ya11 . . . yann x
ε1,1
1 . . . xε1,nn x′1

ε2,1 . . . x′n
ε2,n .

We equip S(n) with the lexicographical order and denote it by <n. This order has the
property that for each 1 ≤ k < n it agrees with the lexicographical order on S(k)×S(n−k)
if S(k) and S(n− k) are equipped with the orders <k and <n−k and S(n) is identified with
S(k)× S(n− k) via concetanation of sequences.

In the sequel we replace the symmetrizations of the elements y1 . . . yi−1(xi + x′i), i =
1, . . . , n, by the symmetrization of y1 . . . yi−1x

′
i and by abuse of notation we continue to

denote them by e′2i−1. This does not change the subalgebra Cn. This subalgebra

F2[c1, . . . cn]⊗ E(e1, e
′
1, . . . , e2n−1, e

′
2n−1) ⊂ F2[y1, . . . , yn]⊗ E(x1, . . . , xn, x

′
1, . . . , x

′
n)

has a monomial basis which is in bijection with the set T (n) of sequences

K = (k1, . . . , kn;φ1,1, . . . , φ1,n;φ2,1 . . . , φ2,n)

where the ki are integers ≥ 0 and φi,j ∈ {0, 1} for i = 1, 2 and 1 ≤ j ≤ n. More precisely to
K we associate the monomial

cK := ck11 . . . cknn e
φ1,1

1 . . . eφ1,n
n e

φ2,1

1 . . . eφ2,n
n .

We define a map

α : T (n)→ S(n)

by associating to K ∈ T (n) the largest monomial in S(n) which occurs in the decomposition
of cK as linear combination of elements xI with I ∈ S(n). The proof of the following result
is elementary and is left to the reader.

Lemma 5.4. The map α is explicitly given by

α((k1, . . . , kn;φ1,1, . . . , φ1,n;φ2,1 . . . , φ2,n)) = (a1, ε1,1, ε2,1, . . . , an, ε1,n, ε2,n)
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with

a1 = k1 + . . . kn +

2∑
i=1

(φi,2 + . . . φi,n)

a2 = k2 + . . . kn +

2∑
i=1

(φi,3 + . . . φi,n)

. . . . . .

aj = kj + . . . kn +

2∑
i=1

(φi,j+1 + . . . φi,n)

. . . . . .

an = kn

εi,j = φi,j , 1 ≤ j ≤ n, i = 1, 2 . �

From this lemma it is obvious that α is injective and a sequence

I = (a1, ε1,1, ε2,1, . . . , an, ε1,n, ε2,n) ∈ S(n)

is in the image of α if and only if we have

(5.3) aj − aj+1 ≥ ε1,j+1 + ε2,j+1 for all 1 ≤ j < n .

In particular, if an element x is in Cn then the maximal sequence which appears in the
decomposition of x as a linear combination of the monomials xI with I ∈ S(n) satisfies (5.3)
for all 1 ≤ j < n. Likewise, if x is in Ci ⊗ Cn−i then this maximal sequence is equal to the
maximal sequence which appears in the decomposition of x as a linear combination of the
monomials xI with I ∈ S(k) × S(n − k) and hence it satisfies (5.3) for all 1 ≤ j < i and
i+ 1 ≤ j < n.

3. Now let x be a homogeneous element of Bn and let I0 be the maximal sequence in
S(n) appearing in the decomposition of x as a linear combination of the monomials xI with
I ∈ S(n). By (5.2) we have x ∈ Cn−1⊗C1 and x ∈ Cn−2⊗C2, and I0 remains the maximal
sequence in S(n− 1)× S(1) resp. S(n− 2)× S(2) appearing in the decomposition of x as a
linear combination of the monomials xI with I ∈ S(n− 1)×S(1) resp. I ∈ S(n− 2)×S(2).
Hence I0 satisfies conditions (5.3) for 1 ≤ j < n − 1 resp. 1 ≤ j < n − 2 and j = n − 1.
In particular condition condition (5.3) holds for all 1 ≤ j < n and therefore there exists
K0 ∈ T (n) such that α(K0) = I0. Then x − cK0 is still in Bn and the maximal sequence
appearing in the decomposition of x − cK0 is smaller than that of x. By iterating this
procedure we see that x belongs to Cn. �

Finally we relate C(3,Z[ 1
2 , i], 2) to the behaviour of the restriction homomorphism

H∗(Γ;F2)→ H∗(CΓ(E2);F2) .

For this we observe that the subgroups Γ = SL3(Z[ 1
2 , i]) and the center Z ∼= Z[ 1

2 , i]
× of

GL3(Z[ 1
2 , i]) have trivial intersection and their product is the kernel of the homomorphism

GL3(Z[
1

2
, i])→ (Z[

1

2
, i])× → (Z[

1

2
, i])×/(Z[

1

2
, i])×)3 ∼= Z/3

given as the composition of the determinant with the natural quotient map. Therefore the
spectral sequence of the extension

1→ SL3(Z[
1

2
, i])× Z → GL3(Z[

1

2
, i])→ Z/3→ 1
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gives an isomorphism

(5.4) H∗(GL3(Z[
1

2
, i]);F2) ∼=

(
H∗(SL3(Z[

1

2
, i]);F2)⊗H∗(Z;F2)

)Z/3
.

Proposition 5.5. The conjecture C(3,Z[ 1
2 , i], 2) holds if and and only if either

a) H∗(SL3(Z[ 1
2 , i]);F2) ∼= F2[b2, b3]⊗ E(d3, d

′
3, d5, d

′
5) or

b) the kernel of the map ψ of Theorem 1.2 is a finite dimensional vector space for which
the action of Z/3 ∼= (Z[ 1

2 , i])
×/(Z[ 1

2 , i])
×)3 has trivial invariants.

Proof. The quotient Z/3 ∼= (Z[ 1
2 , i])

×/(Z[ 1
2 , i])

×)3 acts clearly trivially on H∗(Z;F2) and on
the image of the homomorphism ϕ of Theorem 1.2. Hence, the corollary follows immediately
from (5.4) and Theorem 1.2. �
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