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ON THE MOD-2 COHOMOLOGY OF SL3(Z[
1
2 , i])

HANS-WERNER HENN

Abstract. Let Γ = SL3(Z[
1

2
, i]), let X be any mod-2 acyclic Γ-CW complex on which

Γ acts with finite stabilizers and let Xs be the 2-singular locus of X. We calculate
the mod-2 cohomology of the Borel constructon of Xs with respect to the action of Γ.
This cohomology coincides with the mod-2 cohomology of Γ in cohomological degrees
bigger than 8 and the result is compatible with a conjecture of Quillen which predicts
the strucure of the cohomology ring H∗(Γ;Z/2).

1. Introduction

The mod-2 cohomology of the group SL3(Z[
1
2 , i]) can be approached in the same way

as that of SL3(Z[
1
2 ]). In a first step one uses a centralizer spectral sequence introduced in

[H1] in order to calculate the mod-2 cohomology of the Borel cohomology H∗
G(Xs;F2) where

X is any mod-2 acyclic G-CW complex on which a given discrete group G acts with finite
stabilizers and Xs is the 2-singular locus of X , i.e. the subcomplex consisting of all points
for which the isotropy group of the action of G is of even order. For G = SL3(Z[

1
2 ]) this

step was carried out in [H1] and for G = SL3(Z[
1
2 , i]) it is carried out in this paper. The

precise form of X does not really matter in this step.

The second step involves a very laborious analysis of the relative Borel cohomology
H∗

G(X,Xs;F2) and of the connecting homomorphism for the Borel cohomology of the pair
(X,Xs). In the case of G = SL3(Z[

1
2 ) this was carried out by hand in [H2]. A by hand

calculation looks forbidding in the case of G = SL3(Z[
1
2 , i]) and this paper makes no attempt

on such a calculation. However, we do make some comments on what is likely to be involved
in such an attempt.

Here are the main results of this paper. In these results the elements v2 respectively
v3 are of degree 4 resp. 6. They are related to the Chern classes of the tautological 3
dimensional complex representation of SL3(Z[

1
2 ], i). The indices of the other elements give

their cohomological degrees. These elements come from Quillen’s exterior cohomology classes
in the cohomology of GL3(Fp) for suitable primes p, for example for p = 5 (cf. section 5 for
more details). Furthermore Σn denotes n-fold suspension so that Σ4F2 is a one dimensional
F2-vector space concentrated in degree 4.

Theorem 1.1. Let Γ = SL3(Z[
1
2 ], i) and let X be any mod 2-acyclic Γ-CW complex such

that the isotropy group of each cell is finite. Then the centralizer spectral sequence of [H1]

lims
A∗(Γ)H

tCΓ(E);F2) =⇒ Hs+t
Γ (Xs;F2)

collapses at E2 and gives a short exact sequence

0 → Σ4F2 ⊕ Σ4F2 ⊕ Σ7F2 → H∗
Γ(Xs;F2) → F2[v2, v3]⊗ Λ(d3, d

′
3, d5, d

′
5) → 0

in which the second map is a map of graded algebras.
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Theorem 1.2. Let Γ = SL3(Z[
1
2 ], i) and X be as in the previous theorem.

a) If SD3(Z[
1
2 , i]) denotes the subgroup of diagonal matrices of Γ then the restriction

homomorphism H∗(BΓ;Z/2) → H∗(SD3(Z[
1
2 , i]);F2) coincides with the composition

ψ : H∗(Γ;F2) = H∗
ΓX → H∗

Γ(Xs;F2) → F2[v2, v3]⊗ Λ(d3, d
′
3, d5, d

′
5)

of the map induced by the inclusion Xs ⊂ X and the epimorphism of Theorem 1.1.

b) There exists a map of graded F2-algebras

ϕ : F2[c2, c3]⊗ Λ(e3, e
′
3, e5, e

′
5) → H∗(Γ;F2)

such that its composition with

ψ : H∗(Γ;F2) = H∗
ΓX → H∗

Γ(Xs;F2) → F2[v2, v3]⊗ Λ(d3, d
′
3, d5, d

′
5)

sends ci to vi, i = 2, 3, ei to di and e
′
i to d

′
i, i = 3, 5.

c) The homomorphism ψ is surjective in all degrees, an isomorphism in degrees ∗ > 8
and the kernel is finite dimensional in degrees ∗ ≤ 8.

Remark 1.3. In section 5 we will discuss the relation of Theorem 1.2 with a conjecture
of Quillen on the structure of the cohomology of H∗(GLn(Γ);F2) (cf. 14.7 of [Q1]) which
would hold in case n = 3 if the composition in part (b) of Theorem 1.2 turned out to be an
isomorphism.

The following result is an immediate consequence of Theorem 1.2.

Corollary 1.4. Let Γ = SL3(Z[
1
2 ], i) and X be as in Theorem 1.1. Then the following

conditions are equivalent.

a) The restriction homomorphism H∗(BΓ;Z/2) → H∗(SD3(Z[
1
2 , i]);F2) is an isomor-

phism.

b) There is an isomorphism

H∗
Γ(X,Xs;F2) ∼= Σ5F2 ⊕ Σ5F2 ⊕ Σ8F2

and the connecting homomorphism H∗
Γ(Xs) → H∗+1

Γ (X,Xs) is surjective. �

The paper is organized as follows. In section 2 we recall the centralizer spectral sequence
and in section 3 we prove Theorem 1.1. and Theorem 1.2. In Section 4 we make some
comments on step 2 of the program of a complete calculation of H∗(Γ;F2). Finally in
section 5 we discuss the relation with Quillen’s conjecture.

2. The centralizer spectral sequence

For the convenience of the reader we recall the centralizer spectral sequence introduced
in [H1].

Let G be a discrete group and let p be a fixed prime. Let A(G) be the category whose
objects are the elementary abelian p-subgroups E of G, i.e. subgroups which are isomorphic
to (Z/p)k for some integer k; if E1 and E2 are elementary abelian p-subgroups of G, then the
set of morphisms from E1 to E2 in A(G) consists precisely of those group homomorphisms
α : E1 → E2 for which there exists an element g ∈ G with α(e) = geg−1 for all e ∈ E1. Let
A∗(G) be the full subcategory of A(G) whose objects are the nontrivial elementary abelian
p-subgroups.
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For an elementary abelian p-subgroup we denote its centralizer in G by CG(E). Then
the assignment E 7→ H∗(CG(E);Z/p) determines a functor from A∗(G) to the category E
of graded Fp vector spaces. The inverse limit functor is a left exact functor from the functor

category EA∗(G) to E . Its right derived functors are denoted by lims. The p-rank rp(G) of
a group G is defined as the supremum of all k such that G contains a subgroup isomorphic
to (Z/p)k.

For a G-space X and a fixed prime p we denote by Xs the p-singular locus, i.e. the
subspace of X consisting of points whose isotropy group contains an element of order p. Let
EG be the total space of the universal principal G-bundle. The mod-p cohomology of the
Borel construction EG×G X of a G space X will be denoted H∗

G(X). The following result
is a special case of part (a) of Corollary 0.4 of [H1].

Theorem 2.1. Let G be a discrete group and assume there exists a finite dimensional mod-p
acyclic G-CW complex X such that the isotropy group of each cell is finite. Then there is a
cohomological spectral sequence

Es,t
2 = lims

A∗(G)H
t(CG(E);Fp) =⇒ Hs+t

G (Xs;Fp)

with Es,t
2 = 0 if s ≥ rp(G) and t ≥ 0.

In [H1] we have used this spectral sequence in the case p = 2 and G = SL3(Z). Here we
will use it in the case p = 2 and G = SL(3,Z[ 12 , i]). In both cases we have r2(G) = 2 and
hence the spectral sequence collapses at E2 and degenerates into a short exact sequence

(2.1) 0 → lim1
A∗(G)H

t(CG(E);Fp) → Ht+1
G (Xs;Fp) → limA∗(G)H

t+1(CG(E);Fp) .

3. The centralizer spectral sequence for SL3(Z[
1
2 ], i)

We start by describing the Quillen category of Γ := SL3(Z[
1
2 ], i) for p = 2 and the functor

which sends E to H∗(CΓ(E);F2).

3.1. The Quillen category. Let K be any number field, let OK be its ring of integers
and consider the ring of S-integers OK [ 12 ]. Then, up to equivalence, the Quillen category of

G := SL3(OK [ 12 ]) for the prime 2 is independant of K. In fact, because 2 is invertible every
elementary abelian 2- subgroup is conjugate to a diagonal subgroup, and hence A∗(G) has
a skeleton, say A, with exactly two objects, say E1 and E2 of rank 1 and 2, respectively.
We take E1 to be the subgroup generated by the diagonal matrix whose first two diagonal
entries are −1 and whose third diagonal entry is 1, and E2 to be the subgroup of all diagonal
matrices with diagonal entries 1 or −1 and determinant 1.

The automorphism group of E1 is trivial, of course, while AutA(E2) is isomorphic to the
group of all abstract automorphisms of E2 which we can identify with S3, the symmetric
group on three elements. There are three morphisms from E1 to E2 and AutA(E2) acts
transitively on them.

3.2. The centralizers and their cohomology. For the centralizers in H := GL3(OK [ 12 ])

we find CH(E1) ∼= GL2(OK [ 12 ])×GL1(OK [ 12 ]) resp. CH(E2) ∼= D3(OK [ 12 ]) the subgroup of

diagonal matrices which is isomorphic to
∏3

i=1GL1(OK [ 12 ]). This implies that CG(E1) ∼=
GL2(OK [ 12 ]) and CG(E2) ∼= GL1(OK [ 12 ])×GL1(OK [ 12 ]).
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From now on we specialize to the case K = Q2[i] where we have OK [ 12 ] = Z[ 12 , i]. In this
case the cohomology of the centralizers is explicitely known. In fact, there is an isomorphism

Z/4× Z ∼= GL1(Z[
1

2
, i]), (n,m) 7→ in(1 + i)m

and therefore we get an isomorphism

(3.1) H∗(CΓ(E2);F2) ∼= H∗(GL1(Z[
1

2
, i])×GL1(Z[

1

2
, i]);F2) ∼= F2[y1, y2]⊗Λ(x1, x

′
1, x2, x

′
2)

with y1 and y2 in degree 2 and the other generators in degree 1. We agree to choose the
generators so that y1, x1 and x′1 come form the first factor with x1 and x′1 being the dual
basis to the basis of

H1(GL1(Z[
1

2
, i];F2) ∼= Z[

1

2
, i])×/

(

Z[
1

2
, i])×

)2

given by the image of i and (1+ i) in the mod-2 reduction of the abelian group GL1(Z[
1
2 , i]);

likewise with y2, x2 and x′2 coming from the second factor.

Furthermore, from Theorem 1 of [W] we know

(3.2) H∗(CΓ(E1);F2) ∼= H∗(GL2(Z[
1

2
, i]);F2) ∼= F2[c1, c2]⊗ Λ(e1, e

′
1, e3, e

′
3) .

In the sequel we give a short summary of his main result. The classes e1, e
′
1, e3 and e′3 are

pulled back from Quillen’s exterior classes q1 and q3 [Q2] in

H∗(GL2(F5);F2) ∼= F2[c1, c2]⊗ Λ(q1, q3)

via the two ring homomorphisms

(3.3) πk : Z[
1

2
, i] → F5 ,

k = 1, 2, where π1 sends i to 3 and π2 sends i to 2. The classes c1 and c2 can be also
obtained by pulling back, and pulling back via π∗

1 or via π∗
2 gives the same classes because

both restrict to the same elements in H∗(GL1(Z[
1
2 , i]) × GL1(Z[

1
2 , i]);F2), namely y1 + y2

respectively y1y2 (see (3.6) below) and Theorem 1 of [W] implies that this restriction is
injective.

In fact, in the cohomology of GL2(F5) the classes c1, c2, q1 and q3 are detected by
restriction to the cohomology of diagonal matrices

H∗(GL1(F5)×GL1(F5);F2) ∼= F2[y1, y2]⊗ Λ(x1, x2)

(3.4) c1 7→ y1 + y2, c2 7→ y1y2, q1 7→ x1 + x2 q3 7→ y1x2 + y2x1 .

In particular, if (by some abuse of notation)

(3.5) c1 = π∗
1(c1), c2 = π∗

1(c2), e1 = π∗
1(q1), e3 = π∗

1(q3), e′1 = π∗
2(q1), e′3 = π∗

2(q3)

then the restriction homomorphism from H∗(GL2(Z[
1
2 ]);F2) to the cohomology of the sub-

group of diagonal matrices is given by

(3.6)
c1 7→ y1 + y2 c2 7→ y1y2
e1 7→ x1 + x2 e3 7→ y1x2 + y2x1
e′1 7→ x1 + x′1 + x2 + x′2 e′3 7→ y1(x2 + x′2) + y2(x1 + x′1)

and the restriction of π∗
1(c1) and π

∗
2(c1) rspectively π

∗
1(c2) and π

∗
2(c2) agree. We also see from

(3.6) that the restriction homomorphism for H∗(GL2(Z[
1
2 ]);F2) is injective and therefore

π∗
1(ci) = π∗

2(ci) for i = 1, 2.

Furthermore we note that together with the isomorphisms (3.1) and (3.2) this restriction
also describes the map

α∗ : H∗(CΓ(E1);F2) → H∗(CΓ(E2);F2)
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induced from the standard inclusion of E1 into E2.

To finish the description of H∗CΓ(−);F2)) as a functor on A it remains to describe the
action of AutA(E2) ∼= S3 on H∗(CΓ(E2);F2) ∼= F2[y1, y2]⊗ Λ(x1, x

′
1, x2, x

′
2) and because of

the multiplicative structure we need it only on the generators.

If τ ∈ AutA(E2) corresponds to permuting the factors in CΓ(E2) ∼= GL1(Z[
1
2 , i]) ×

GL1(Z[
1
2 , i]) then

(3.7)
τ∗(y1) = y2 τ∗(x1) = x2 τ∗(x

′
1) = x′2

τ∗(y2) = y1 τ∗(x2) = x1 τ∗(x
′
2) = x′1

and if σ ∈ AutA(E2) corresponds to the cyclic permutation of the diagonal entries (in the
appropriate order) then

(3.8)
σ∗(y1) = y2 σ∗(x1) = x2 σ∗(x

′
1) = x′2

σ∗(y2) = y1 + y2 σ∗(x2) = x1 + x2 σ∗(x
′
2) = x′1 + x′2 .

3.3. Calculating the limit and its derived functors. In Proposition 4.3 of [H1] we
showed that for any functor F from A to Z(2)-modules there is an exact sequence

(3.9) 0 → limAF → F (E1)
ϕ

−→ HomZ[S3](StZ, F (E2)) → lim1
AF → 0

where StZ is the Z[S3] module given by the kernel of the augmentation Z[S3/S2] → Z, and
if a and b are chosen to give an integral basis of StZ on which τ and σ act via

(3.10)
τ∗(a) = b τ∗(b) = a
σ∗(a) = −b σ∗(b) = a− b

then ϕ is given via ϕ(x)(a) = α∗(x)− (σ∗)
2α∗(x) and ϕ(x)(b) = α∗(x) − σ∗α∗(x).

Because in our case the functor takes values in F2-vector spaces we can replace HomZ[S3]

by HomF2[S3] and StZ by its mod-2 reduction. The following elementary lemma is needed
in the analysis of the third term in the exact sequence (3.9).

Lemma 3.1.

a) Let St be the F2[S3]-module given as the kernel of the augmentation F2[S3/S2] → F2.
The tensor product St⊗ St decomposes as F2[S3]-module canonically as

St⊗ St ∼= F2[S3/A3]⊕ St

where A3 denotes the alternating group on three letters. In fact, the decomposition is given
by

St⊗ St ∼= Im(id+ σ∗ + σ2
∗)⊕Ker(id+ σ∗ + σ2

∗)

and the first summand is isomorphic to F2[S3/A3] while the second factor is isomorphic to
St.

b) The tensor product F2[S3/A3]⊗ St is isomorphic to St⊕ St.

Proof. a) It is well known that St is a projective F2[S3]-module, hence St ⊗ St is also
projective. It is also well known that every projective indecomposable F2[S3]-module is
isomorphic to either St or F2[S3/A3]. Both modules can be distinguished by the fact that
e := id+ σ∗ + σ∗ acts trivially on St and as the identity on F2[S3/A3].

Furthemore e is a central idempotent in F2[S3] and hence each F2[S3]-module M decom-
poses as direct sum of F2[S3]-modules

M ∼= Im(e :M →M)⊕Ker(e :M →M) .
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An easy calculation shows that in the case of St⊗ St both submodules are non-trivial and
this together with the fact these submodules must be projective proves the claim.

b) Again each of the factors in the tensor product is a projective F2[S3]-module, hence
the tensor product is a projective F2[S3]-module. Because σ acts trivially on F2[S3/A3]
we see that the idempotent e acts trivially on the tensor product and this forces the tensor
product to be isomorphic to St⊕ St. �

Lemma 3.2. The Poincaré series χ2 of HomF2[S3
](St,F2[y1, y2]⊗Λ(x1, x

′
1, x2, x

′
2)) is given

by

χ2 =
2t2(1 + 3t2 + 3t4 + t6) + 2t(1 + 2t2 + 2t4 + 2t6 + t8)

(1− t4)(1 − t6)
.

Proof. The isomorphism of (3.1) is an isomorphism of F2[S3]-modules where the action of
S3 is given (3.7) and (3.8). In particular we see that H∗(GL1(Z[

1
2 , i])×GL1(Z[

1
2 , i]);F2) is

isomorphic to St⊕ St and the exterior powers of H1 are given as

Λk(x1, x2, x
′
1, x

′
2)

∼= Λk(St⊕ St) ∼=∼=

k
⊕

j=0

ΛjSt⊗ Λk−jSt

and hence

Λk(x1, x2, x
′
1, x

′
2)

∼=



















ΣkF2 k = 0, 4

Σk(St⊕ St) k = 1, 3

Σ2F2 ⊕ Σ2(St⊗ St)⊕ Σ2F2 k = 2

0 k 6= 0, 1, 2, 3, 4

where F2 denotes the (necessarily) trivial F2[S3]-module whose additive structure is that of
F2. Therefore the Poincaré series χ2 of HomF2[S3](St,H

∗(CG(E2);F2)) decomposes accord-
ing to the decomposition of Λ(x1, x

′
2, x

′
1, x

′
2) as sum

(3.11) χ2 := (1 + 2t2 + t4)χ2,0 + t2χ2,1 + 2(t+ t3)χ2,2

where χ2,0 is the Poincaré series of HomF2[S3](St,F2[y1, y2]), χ2,1 is the Poincaré series of
HomF2[S3](St, St ⊗ St ⊗ F2[y1, y2]) and χ2,2 is that of HomF2[S3](St, St ⊗ F2[y1, y2]). It
is well known (and elementary to verify) that there is an isomorphism of F2[S3] modules
St⊕ St⊕ F2[S3/A3] ∼= F2[S3] and therefore an isomorphism

F2[y1, y2] ∼= HomF2[S3](St⊕ St⊕ F2[S3/A3],F2[y1, y2])

∼= HomF2[S3](St,F2[y1, y2])
⊕2 ⊕ F2[y1, y2]

A3 .

Together with the fact that the A3-invariants F2[y1, y2]
A3 form a free module over F2[v2, v3]

on two generators of degree 0 resp. 6 this implies

2χ2,0 +
1 + t6

(1 − t4)(1− t6)
=

1

(1 − t2)2

and hence

(3.12) χ2,0 =
t2

(1− t2)(1− t6)
.

Furthermore St and F2[S3/A3] are both self-dual F2[S3]-modules and hence Lemma 3.1
gives

St⊗ St∗ ∼= St⊕ F2[S3/A3]
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and

St⊗ St∗ ⊗ St∗ ∼= (F2[S3/A3]⊕ St)⊗ St∗

∼= (F2[S3/A3]⊗ St)⊕ (St⊗ St)

∼= St⊕ St⊕ St⊕ F2[S3/A3] .

Therefore, if χF2[y1,y2]A3 denotes the Poincaré series of the A3-invariants then

(3.13) χ2,1 = 3χ2,0+χF2[y1,y2]A3 =
3t2

(1− t2)(1 − t6)
+

1 + t6

(1− t4)(1− t6)
=

1 + 3t2 + 3t4 + t6

(1− t4)(1 − t6)

(3.14) χ2,2 = χ2,0 + χF2[y1,y2]A3 =
t2

(1− t2)(1− t6)
+

1 + t6

(1− t4)(1− t6)
=

1 + t2 + t4 + t6

(1 − t4)(1− t6)
.

Finally (3.11), (3.12), (3.13) and (3.14) give

χ2 =
(1 + 2t2 + t4)t2(1 + t2) + t2(1 + 3t2 + 3t4 + t6) + 2(t+ t3)(1 + t2 + t4 + t6)

(1 − t4)(1− t6)

=
2t2(1 + 3t2 + 3t4 + t6) + 2t(1 + 2t2 + 2t4 + 2t6 + t8)

(1− t4)(1 − t6)
,

and this finishes the proof. �

Theorem 1.1 is an immediate consequence of Theorem 2.1 and the following result.

Proposition 3.3. Let p = 2 and Γ = SL3(Z[
1
2 , i]).

a) There is an isomorphism of graded F2-algebras

limA∗(Γ)H
∗(CΓ(E);F2) ∼= F2[v2, v3]⊗ Λ(d3, d

′
3, d5, d

′
5) .

Furthermore, if we identify this limit with a subalgebra of H∗(CΓ(E1);F2) ∼= F2[c1, c2] ⊗
Λ(e1, e

′
1, e3, e

′
3) then

v2 = c21 + c2, v3 = c1c2
d3 = e3, d5 = c1e3 + c2e1
d′3 = e′3, d′5 = c1e

′
3 + c2e

′
1 .

b) There is an isomorphism of graded F2-vector spaces

lim1
A∗(Γ)H

∗(CΓ(E);F2) ∼= Σ3F2 ⊕ Σ3F2 ⊕ Σ6F2 .

c) For any s > 1

lims
A∗(Γ)H

∗CΓ(E);F2) = 0 .

Proof. a) Via the exact sequence (3.9) and (3.8) it is straightforward to check that the
elements v2, v3 and d3, d

′
3, d5, d

′
5 are in the inverse limit. Furthermore the subalgebra gener-

ated by them is isomorphic to the tensor product of the polynomial algebra F2[v2, v3] with
the exterior algebra Λ(d3, d

′
3, d5, d

′
5). In fact, it is clear that v2 and v3 are algebraically

independant and the elements d3, d
′
3, d5, d

′
5 are exterior classes; their product is given as

c22e3e
′
3e1e

′
1 6= 0, and this implies easily that the exterior monomials in the d’s are linearly

independant over F2[v2, v3].
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Now consider the following Poincaré series

χ0 :=
∑

n≥0 dimF2
(F2[v2, v3]⊗ Λ(e3, e

′
3, e5, e

′
5)

n)tn = (1+t3)2(1+t5)2

(1−t4)(1−t6)

χ1 :=
∑

n≥0 dimF2
HnCG(E1);F2)t

n = (1+t)2(1+t3)2

(1−t2)(1−t4)

χ2 := 2t2(1+3t2+3t4+t6)+2t(1r+2t2+2t4+2t6+t8)
(1−t4)(1−t6) .

Then we have the following identity

χ0 + χ2 − χ1 =
p

(1− t4)(1 − t6)

with

p = (1 + t3)2(1 + t5)2 + 2t2(1 + 3t2 + 3t4 + t6)

+ 2t(1 + 2t2 + 2t4 + 2t6 + t8)− (1 + t)2(1 + t3)2(1 + t2 + t4)

= 2t3 + t6 − 2t7 − 2t9 − t10 − t12 + 2t13 + t16 = (2t3 + t6)(1 − t4)(1− t6)

and therefore

(3.15) χ0 + χ2 = χ1 + (2t3 + t6) .

This together with the fact that F2[v2, v3]⊗Λ(e3, e
′
3, e5, e

′
5) is a subalgebra ofH

∗(CΓ(E1);F2)
already implies that the sequence

0 → F2[v2, v3]⊗ Λ(d3, d
′
3, d5, d

′
5) → H∗(CΓ(E1);F2) → HomF2[S3

](St,H∗(CΓ(E1);F2)) → 0

is exact except possibly in dimensions 3 and 6.

In order to complete the proof of a) it is now enough to verify that the inverse limit agrees
with F2[v2, v3]⊗Λ(d3, d

′
3, d5, d

′
5) in degrees 3 and 6. For this we need to analyze the map ϕ

in the exact sequence (3.9). We leave this straightforward verification to the reader.

Then b) follows immediately from (a) together with (3.15) and the exact sequence (3.9),
and (c) follows from Theorem 2.1 and the fact that r2(G) = 2. �

We can now give the proof of Theorem 1.2.

Proof. a) Let XE1 be the fixed points for the action of E1 on X . The map

Γ×CΓ(E1) X
E1 → Xs, (g, x) 7→ gx

followed by the inclusion Xs ⊂ X induces in Borel cohomology the map

H∗(Γ;F2) = H∗
Γ(X ;F2) → H∗

Γ(Γ×CΓ(E1) X
E1 ;F2) ∼= H∗

CΓ(E1)
(XE1 ;F2) ∼= H∗(CΓ(E1);F2)

which is induced by restriction. Here we note that the last isomorphism follows from classical
Smith theory which guarantees that XE1 is mod 2-acyclic if X is mod-2 acyclic. The claim
now follows from the exact sequences (2.1) and (3.9) which show that the epimorphism
of Theorem 1.1 is given by this map if we identify the inverse limit with a subalgebra of
H∗(CΓ(E1);F2).

b) The two ring homomorphisms πk : Z[ 12 , i] → F5 of (3.3) determine homomorphisms

SL3(Z[
1
2 , i]) ⊂ GL3(Z[

1
2 , i]) → GL3(F5). By [Q2] we have

H∗GL3(F5);F2) ∼= F3[c1, c2, c3]⊗ Λ(q1, q3, q5)

and (again by abuse of notation) we define ϕ via ϕ(ci) = π∗
1(ci) for i = 2, 3, ϕ(ei) = π∗

1(qi)
and ϕ(e′i) = π∗

2(e
′
i) for i = 3, 5. (Note that because we do not know whether the restriction

homomorphism from H∗GL3(Z[
1
2 , i]);F2) to the cohomology of the subgroup of diagonal
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matrices is injective we make a choice in the definition of ϕ(ci).) For the definition of the
classes qi we refer to section 5 below.

In order to determine the image of these classes with respect to ψ we can calculate at the
level of F5 and use naturality with respect to the homomorphisms induced by π1 and π2. In
fact, the inclusions

GL1(F5)×GL1(F5) → GL2(F5) ⊂ SL3(F5) → GL3(F5)

induce in cohomology a map

F3[c1, c2, c3]⊗ Λ(q1, q3, q5) → F2[y1, y2]⊗ Λ(x1, x2)

which is easily seen to be given by

c1 7→ 0, c2 7→ y21 + y1y2 + y22 , c3 7→ y1y2(y1 + y2)

q1 7→ 0, q3 7→ y1x2 + y2x1, q5 7→ y21x2 + y22x1 .

On the other hand by (3.4) we know the restriction map induced by the inclusion GL1(F5)×
GL1(F5) → GL2(F5) and by part a) of Proposition 3.3 it is now straightforward to check
that we have ψ(φ(ci)) = vi for i = 2, 3, ψ(φ(ei)) = di and ψ(φ(e

′
i)) = d′i for i = 3, 5.

c) The space X can be taken to be the product of symmetric space X∞ := SL3(C)/SU(2)
and the Bruhat-Tits building X2 for SL3(Q2[i]). Now SL3(Q2[i])\X2 is a 2-simplex (cf. [B])
and the projection map X → X2 induces a map

SL3(Q2[i])\X → SL3(Q2[i])\X2

whose fibres have the homotopy type of a 6-dimensional SL3(Z[
1
2 , i])-invariant deformation

retract (cf. section 4). Therefore we get Hn
G(X,Xs;F2) = 0 if n > 8 and the inclusion

Xs ⊂ X induces an isomorphism Hn
G(X ;F2) ∼= Hn

G(Xs;F2) if n > 8. Then part c) simply
follows from b) except for the finiteness statement for the kernel for which we refer to (4.1)
and (4.2) below. �

4. Comments on step 2

The situation for p = 2 and G = SL3(Z[
1
2 , i]) is analogous to the situation for p = 2

and G = SL3(Z[
1
2 ]) for which step 2 was carried out in [H2] via a detailed study of the

relative cohomology H∗
G(X,Xs;F2) for X equal to the product of the symmetric space

X∞ := SL3(R)/SO(3) with the Bruhat-Tits building X2 for SL3(Q2); the spaces involved
had a few hundred cells and the calculation was painful. In the case of SL3(Z[

1
2 , i]) with X

the product of SL3(C)/SU(3) with the Bruhat-Tits building for SL3(Q2[i]) the calculational
complexity of the second step is much more involved and an explicit calculation by hand
does not look feasible. However, in recent years there have been a lot of machine aided
calculations of cohomology of arithmetic groups (for example [GG], [BRW]) and a machine
aided calculation seems to be within reach.

The natural strategy for undertaking this second step is to follow the same path as in
[H2]. The equivariant cohomology H∗

Γ(X,Xs;F2) can be studied via the spectral sequence
of the projection map

p : X = X∞ ×X2 → X2 .

This gives a spectral sequence with

(4.1) Es,t
1

∼=
⊕

σ∈Λs

Ht
Γσ

(X∞, X∞,s(σ);F2) =⇒ Hs+t
Γ (X,Xs;F2) .

Here Λs indexes the s-dimensional cells in the orbit space of X2 with respect to the action
of Γ. The orbit space is a 2-simplex, i.e. Λ0 and Λ1 contain 3 elements and Λ2 is a singleton.
Furthermore Γσ is the isotropy group of a chosen representative in X2 of the cell σ in the
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quotient space. For fixed s all s-dimensional cells have isomorphic isotropy groups because
the Γ-action on the Bruhat-Tits building is the restriction of a natural action of GL3(Z[

1
2 , i])

on X2 which is transitive on the set of s-dimensional cells (cf. [B]).

Therefore all isotropy subgroups for the action on X2 are, up to isomorphism, sub-
groups of SL3(Z[i]) which itself appears as isotropy group of a 0-dimensional cell in X2.
By the Soulé-Lannes method the fibre X∞ of the projection map p admits a 6-dimensional
SL3(Z[i])-equivariant deformation retract (the space of “well-rounded hermitean forms”
modulo arithmetic equivalence) with compact quotient (cf. [Ash]) and therefore we have

(4.2) Es,t
1 = 0 unless s = 0, 1, 2, 0 ≤ t ≤ 6, and dimF2

Es,t
1 <∞ for all (s, t) .

The E1-term of this spectral sequence should be accessible to machine calculation. The
spectral sequence will necessarily degenerate at E3 and the calculation of the d1-differential
and, if necessary the d2-differential, is likely to need human intervention, as it was necessary
in the case of SL(3,Z[ 12 ]) (cf. section 3.4 of [H2]). Likewise the calculation of the connecting
homomorphism for the mod-2 Borel cohomology of the pair (X,Xs) is likely to require human
intervention.

5. Relation to Quillen’s conjecture

A major motivation for studying the mod-2 cohomology of SL3(Z[
1
2 , i]) comes from a

conjecture of Quillen (Conjecture 14.7 of [Q1]) which concerns the structure of the mod
p-cohomology of GLn(Λ) where Λ is a ring of S-integers in a number field such that p is
invertible in Λ and Λ contains a primitive p-th root of unity ζp.

The conjecture stipulates that under these assumptions H∗GLn(Λ;Z/p) is free over
Z/p[c1, . . . , cn] where the ci are the mod-p Chern classes associated to an embedding of
Λ into the complex numbers. In the sequel we will denote this conjecture by C(n,Λ, p).

From now on we assume p = 2 and Λ = Z[ 12 , i]. The assumptions on C(n,Λ, 2) are clearly
satisfied in this case.

Proposition 5.1. Suppose n ≥ 2. Then the following statements are equivalent.

a) C(n,Z[ 12 , i], n) holds.

b) The restriction homomorphism H∗(GLn(Z[
1
2 , i]);F2) → H∗(Dn(Z[

1
2 , i]);F2) is injec-

tive where Dn(Z[
1
2 , i]) denotes the subgroup of diagonal matrices in GLn(Z[

1
2 ]).

c) There are isomorphisms

H∗(GLn(Z[
1

2
, i]);F2) ∼= F2[c1, . . . , cn]⊗ Λ(e1, e

′
1, . . . , e2n−1, e

′
2n−1)

where the classes ck are the Chern classes of the tautological n-dimensional complex repre-
sentation of GLn(Z[

1
2 , i]) and the classes e2k−1, e

′
2k−1 are of cohomological degree 2k− 1 for

k = 1, . . . , n which will be introduced in (5.1) below.

Proof. It is trivial that (c) implies (a).

In order to show that (a) implies (b) we observe that Dn(Z[
1
2 , i]) is the centralizer of

the unique, up to conjugacy, maximal elementary abelian 2-subgroup En of GLn(Z[
1
2 , i])

given by the diagonal matrices of order 2. Now consider the top Dickson invariant ω in
H∗(BGLn(C);F2), i.e. the class whose restriction to H∗B(

∏n
i=1GL1(C));F2) is the product

of all non-trivial classes of degree 2. The image of ω inH∗(GLn(Z[
1
2 , i]);F2) restricts trivially
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to the cohomology of all elementary abelian 2- subgroups E of GLn(Z[
1
2 , i]) of rank less than

n. If (a) holds then the image of ω is not a zero divisor in H∗(GLn(Z[
1
2 , i]);F2) and hence

Corollary 5.8 of [HLS] implies that the restriction to the centralizer of En is injective.

The implication (b) ⇒ (c) follows from Proposition 5.4 below. �

Remark 5.2. Conjecture C(n,Z[ 12 , i], 2) is trivially true for n = 1 and has been verified
for n = 2 in [W]. On the other hand, Dwyer’s method in [D] using étale approximations
Xn for the homotopy type of the 2-completion of BGLn(Z[

1
2 , i]) and comparing the set of

homotopy classes of [BP,Xn] with that of [BP,BGLn(Z[
1
2 ])] can be adapted to disprove

C(16,Z[ 12 , i], 2). We will not dwell on this in this paper because we will focus on more
elementary methods avoiding étale homotopy theory. However, we note that étale approxi-
mations can also be used to show that if C(3,Z[ 12 , i], 2) fails then C(6,Z[

1
2 ], 2) fails as well.

Before we go on we introduce the classes e2k−1 and e′2k−1. As in the case of GL2 they

are obtained from Quillen’s classes q2k−1 ∈ H2k−1(GLn(F5);F2) [Q2] which restrict in the
cohomology of diagonal matrices in F5 to the symmetrization of the class y1 . . . yk−1xk where
yk is of cohomological degree 2 corresponding to the k-th factor in the product

∏n
k=1 F

×
5

and xk is of cohomological degree 1 of the same factor. Then we define

(5.1) e2k−1 := π∗
1(q2k−1), e′2k−1 := π∗

2(q2k−1)

where π1, π2 are the two ring homomorphisms Z[ 12 , i] → F5 with π1 sending i to 3 and π2
sending i to 3 which we considered earlier in section 3. If we identify the mod-2 cohomology
H∗(Dn(Z[

1
2 , i]);F2) with F2[y1, . . . yn]⊗ Λ(x1, x

′
1 . . . , xn, x

′
n) with yk, k = 1, . . . , n of degree

2 and xk, x
′
k, k = 1, . . . , n of degree 1 where as before we choose xk and x′k to be the basis

which is dual to the basis of the k-th factor in

Dn(Z[
1

2
, i])/Dn(Z[

1

2
, i])2 ∼=

(

Z[
1

2
, i]×/(Z[

1

2
, i]×)2

)n

given by the classes of i and 1 + i then we get the following lemma whose straighforward
proof we leave to the reader.

Lemma 5.3. The class e2k−1 restricts in the cohomology of the subgroups of diagonal matri-
ces H∗(Dn(Z[

1
2 , i];F2)) to the symmetrization of y1 . . . yk−1xk and the class e′2k−1 restricts

to the symmetrization of y1 . . . yk−1(xk + x′k). �

The following result determines the image of the restriction homomorphism and shows
that (b) implies (c) in Proposition 5.1. It resembles results of Mitchell [M] for GLn(Z[

1
2 ])

for p = 2 and of Anton [An1] for GLn(Z[
1
3 , ζ3]) for p = 3.

Proposition 5.4. Let n ≥ 1 be an integer. The image of the restriction map

i∗ : H∗(GLn(Z[
1

2
, i]);F2) → H∗(Dn(Z[

1

2
, i]);F2) ∼= F2[y1, . . . yn]⊗ Λ(x1, x

′
1 . . . , xn, x

′
n)

is isomorphic to

F2[c1, . . . cn]⊗ Λ(e1, e
′
1, . . . , e2n−1, e

′
2n−1) .

Proof. The case n = 1 is trivial and for n = 2 this follows from Theorem 1 of [W] (cf. (3.2)
and (3.4)) and from Lemma 5.3. Furthermore Lemma 5.3 shows that the image of the map

H∗(GLn(F5 × F5);F2)
(π∗

1
,π∗

2
)

−→ H∗(GLn(Z[
1

2
, i]);F2)

i∗
−→ H∗(Dn(Z[

1

2
, i]);F2)

agrees with

F2[c1, . . . cn]⊗ Λ(e1, e
′
1, . . . , e2n−1, e

′
2n−1) .

Therefore the proposition is an immediate consequence of Proposition 5.5 below. �
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We note that matrix block sum determines associative algebra structures on the mod-2
homology of the spaces

∐

n≥0

BDn(Z[
1

2
, i]),

∐

n≥0

BGLn(Z[
1

2
, i]),

∐

n≥0

BGLn(F5 × F5)

such that the inclusions Dn(Z[
1
2 , i]) → GLn(Z[

1
2 , i]) and the homomorphisms π1 × π2 :

Z[ 12 , i] → F5 × F5 determine homomorphisms of bigraded algebras

⊕

n≥0

H∗(Dn(Z[
1

2
, i]);F2)

i∗−→
⊕

n≥0

H∗(GLn(Z[
1

2
, i]);F2)

and
⊕

n ≥ 0H∗(GLn(Z[
1

2
, i]);F2)

(π1,π2)∗
−→

⊕

n≥0

H∗(GLn(F5 × F5);F2) .

Proposition 5.5. The kernel of the map
⊕

n≥0

H∗(Dn(Z[
1

2
, i]);F2)

i∗−→
⊕

n≥0

H∗(GLn(Z[
1

2
, i]);F2)

(π1,π2)∗
−→

⊕

n≥0

H∗(GLn(F5 × F5);F2)

is the homogeneous ideal generated by the kernel of the map

H∗(D2(Z[
1

2
, i];F2)) → H∗(GL2(F5 × F5);F2) .

This result is implicit in Proposition 3.6 of [An2]. For the convenience of the reader we
give a short outline of a slightly modified proof. The ideas are due to [An2].

Proof. The monomial basis of

H∗(Dn(Z[
1

2
, i]);F2) ∼= F2[y1, . . . yn]⊗ Λ(x1, x

′
1 . . . , xn, x

′
n)

can be indexed by the set S(n) of sequences I = (k1, . . . , kn, ε1,1, . . . , ε1,n, ε2,1 . . . , ε2,n) where
the ki are integers ≥ 0 and εi,j ∈ {0, 1} for i = 1, 2 and 1 ≤ j ≤ n. More precisely to I we
associate the monomial

yI := yk1

1 . . . ykn
n x

ε1,1
1 . . . xε1,nn x′1

ε2,1 . . . x′n
ε2,n .

Likewise the monomial basis in the subalgebra Qn of

H∗(GLn(F5)×GLn(F5);F2) ∼= H∗(GLn(F5);F2)⊗H∗(GLn(F5);F2)

generated by the classes ci ⊗ 1, q2i−1 ⊗ 1, 1 ⊗ q2i−1, i = 1, . . . , n, can be indexed by the
same set of sequences which we prefer, however, to denote T (n). Here we associate to I the
monomial

cI := (c1 ⊗ 1)k1 . . . (cn ⊗ 1)kn(q1 ⊗ 1)ε1,1 . . . (qn ⊗ 1)ε1,n(1 ⊗ q1)
ε2,1 . . . (1⊗ qn)

ε2,n .

Here we have made a choice in privileging the classes ci ⊗ 1 over 1 ⊗ ci, but this choice is
not relevant for the sequel. We observe that both T (n) and S(n) can be and in the sequel
will be ordered lexicographically.

If we denote the map in the statement of Proposition 5.5 by t∗, its dual by t∗ and the
dual basis of the monomial basis yI of H∗(Dn(Z[

1
2 , i]);F2) by uI then we have for every

K ∈ T (n)

t∗(cK) =
∑

I∈S(n)

[K : I]yI

for unique elements [K : I] ∈ F2 which satisfy

[K : I] = 〈t∗(cK), uI〉 = 〈cK , t∗uI〉
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where 〈−,−〉 denotes the Kronecker product between cohomology and homology. Next we

consider the map

α : T (n) → S(n)

which sends

K = (a1, . . . , an, ε1,1, . . . , ε1,n, ε2,1 . . . , ε2,n) ∈ T (n)

to the maximal I ∈ S(n) such that [K : I] 6= 0. By using that ci restricts to the symmetriza-
tion of y1 . . . yi, that e2k−1 restricts to the symmetrization of y1 . . . yk−1xk and e′2k−1 to the
symmetrization of y1 . . . yk−1(xk + x′k) we see that α(K) is given by the sequence

α(K) = (k1, . . . kn, φ1,1, . . . φ1,n, φ2,1 . . . φ2,n)

with

k1 = a1 + . . . an + (φi,2 + . . . φi,n)

k2 = a2 + . . . an + (φi,3 + . . . φi,n)

. . . . . .

kj = aj + . . . an + (φi,j+1 + . . . φi,n)

. . . . . .

kn = an

φi,j = εi,j , 1 ≤ j ≤ n, i = 1, 2 .

From these identities it is obvious that α is injective and I is in the image of α if and only
if we have

(5.2) kj − kj−1 ≥ φ1,j+1 + φ2,j+1 for all 1 ≤ j ≤ n .

Furthermore, if we define for I ∈ S(n) its degree

deg(I) =

n
∑

j=1

(kj +

r
∑

i=1

εi,j)

then

(5.3) [K : I] = 0 if deg(I) 6= deg(α(K)) .

In fact, all monomials yI occurring with nonzero coefficients in the expansion of cK have
the same degree and α(K) is one of these monomials.

Now let x ∈ H∗(Dn(Z[
1
2 , i]);F2) be a homogeneous element in the kernel of t and suppose

x 6= 0. Then we can write x as a linear combination in the dual basis uI , i.e.

x =
∑

I∈S(n)

(x : I)uI

for unique elements (x : I) ∈ F2 and (x : I) = 0 for all but a finite number of I. Iterated

application of the following lemma then shows that x is in the ideal generated byKer(t2). �

Lemma 5.6. Suppose n ≥ 2 and let x ∈ H∗(Dn(Z[
1
2 , i]);F2) be a non-trivial homogeneous

element in the kernel of tn and let I0 be the unique minimal sequence among those J ∈ S(n)
with (x : J) 6= 0. Then there exists a homogeneous element y =

∑

I∈S(n)(y : I)uI in the

ideal generated by the kernel of (t2)∗ such that

a) (y : I0) = (x : I0)

b) (y : I) = (x : I) for I < I0.
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Proof. First we note that I0 cannot be in the image of α. In fact, if K ∈ T (n) then

(5.4) 0 = 〈cK , t∗(x)〉 =
∑

I∈S(n)

(x : I)〈cK , uI〉 =
∑

I∈S(n)

[K : I](x : I)

and in this last sum we have [K : I] = 0 if I > α(K) and [K : α(K)] = 1 by definition
of α(K). If there exists K such that α(K) = I0 then (x : J) = 0 for all J < I0 and (5.4)
simplifies to 0 = [K : I0](x : I0) = (x : I0) in contradiction to the defining property of I0.

Because I0 is not in the image of α we see from (5.2) that there exists j with 1 ≤
j ≤ n and I1 ∈ S(j − 1), I2 ∈ S(2) and I3 ∈ S(n − j − 1) with I2 violating condition
(5.2) for this j such that I0 = I1I2I3 is the concatenation of I1, I2 and I3. Here the
concatenation of two sequences I = (k1, . . . , kr, δ1,1, . . . , δ1,r, δ2,1 . . . , δ2,r) ∈ S(r) and J =
(l1, . . . , ls, ε1,1, . . . , ε1,s, ε2,1 . . . , ε2,s) ∈ S(s) is defined to be the sequence IJ ∈ S(r+s) given
by

IJ = (k1, . . . , kr, l1, . . . , ls, δ1,1, . . . , δ1,r, ε1,1, . . . , ε1,s, δ2,1 . . . , δ2,r, ε2,1 . . . , ε2,s) .

By the definition of concatenation of sequences we have uIJ = uIuJ .

Therefore, if (t2)∗(uI2) = 0 then uI0 = uI1uI2uI3 and y = uI0 is the desired element. If

(t2)∗(uI2) 6= 0 we write

(t2)∗(uI2) =
∑

K∈T (2)

[K : I2]vK

with vK the dual basis to the monomial basis cK , K ∈ T (2). This is possible because we
already know that Proposition 5.4 is true for n = 2, i.e. the image of (t2)∗ is dual to the
vector space spanned by the cK with K ∈ T (2). Let us denote the set of those K ∈ T (2)
with deg(α(K)) = deg(I2) by T . Then T is finite because α is injective and because there
are only finitely many sequences in S(n) with a fixed degree. Hence the set α(T ) has a
minimum, say α(K0). Because I2 violates (5.2) it is not in the image of α and therefore by
the defining property of α(K0) we must have I2 < α(K0).

Then consider for each K ∈ T the following linear equation

0 = [K : I2] +
∑

J∈T

[K : α(J)]λL

for unknowns (λJ )J∈T . By definition of α we have [K : α(K)] = 1 and [K : α(J)] = 0
if α(J) < α(K). Therefore, if |T | denotes the cardinal of T these |T | equations for |T |
unknowns form a linear system of equations of triangular shape with 1’s on the diagonal.
Hence there exists a (unique) solution (λJ )J∈T . Furthermore if K ∈ T (2) does not belong
to T then by (5.3) we have [K : α(J)] = 0 and [K : I2] = 0 for all J ∈ T and hence

w := uI2 +
∑

J∈T

λJuα(J)

satisfies

(t2)∗(w) =
∑

K∈T2

([K : I2] +
∑

J∈T

λJ [K : α(J)])vK =
∑

K∈T

([K : I2] +
∑

J∈T

λJ [K : α(J)])vK = 0

and y = uI1wuI3 is the desired element. �

Finally we relate C(3,Z[ 12 , i], n) to the behaviour of the restriction homomorphism

H∗(Γ;F2) → H∗(CΓ(E2);F2) .
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For this we observe that the subgroups Γ = SL3(Z[
1
2 , i]) and the center Z ∼= Z[ 12 , i]

× of

GL3(Z[
1
2 , i]) have trivial intersection and their product is the kernel of the homomorphism

GL3(Z[
1

2
, i]) → GL1(Z[

1

2
, i])/(GL1(Z[

1

2
, i]))3 ∼= Z/3

which is induced by the determinant. Therefore

(5.5) H∗(GL3(Z[
1

2
, i];F2) ∼= (H∗(SL3(Z[

1

2
, i]);F2)⊗H∗(Z;F2))

Z/3 .

Corollary 5.7. If C(3,Z[ 12 , i], 2) is true then either

a) H∗(SL3(Z[
1
2 , i]);F2) ∼= F2[v2, v3]⊗ Λ(d3, d

′
3, d5, d

′
5) or

b) the kernel of the map ψ of Theorem 1.2 is a finite dimensional vector space on which
Z/3 ∼= GL3(Z[

1
2 , i])/(GL3(Z[

1
2 , i]))

3 acts without invariants.

Proof. The quotient Z/3 ∼= GL3(Z[
1
2 , i])/(GL3(Z[

1
2 , i]))

3 acts clearly trivially on H∗(Z;F2)

and on the subalgebra of H∗(SL3(Z[
1
2 , i]);F2) generated by v2, v3, d3, d

′
3, d5, d

′
5 and hence

the corollary follows immediately from (5.5) and Theorem 1.2. �
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