Keywords: Descriptors (according to ACM CCS): I, 3, 7 [Computer Graphics]: Three-Dimensional Graphics and Realism -Raytracing-

We address the problem of constructing appearance-preserving level of details (LoDs) of complex 3D models such as trees. We propose a hybrid method that combines the strengths of mesh and volume representations. Our main idea is to separate macroscopic (i.e. larger than the target spatial resolution) and microscopic (sub-resolution) surfaces at each scale and to treat them differently, because meshes are very efficient at representing macroscopic surfaces while sub-resolution geometry benefits from volumetric approximations. We introduce a new algorithm that detects the macroscopic surfaces of a mesh for a given resolution. We simplify these surfaces with edge collapses and we provide a method for pre-filtering their normal distributions and albedos. To approximate microscopic details, we use a heterogeneous microflake participating medium and we introduce a new artifact-free voxelization algorithm that preserves local occlusion. Thanks to our macroscopic surface analysis, our algorithm is fully automatic and it generates seamless LoDs at arbitrarily coarse resolutions for a wide range of 3D models.

Hybrid mesh-volume LoDs for all-scale pre-filtering of complex 3D assets Figure 1: A 3D model pre-filtered with our method. (b,c): Top right, reference image. Bottom left, our results. Our LoDs use meshes for representing macroscopic surfaces and a heterogeneous participating medium to approximate sub-resolution geometry. This approach allows for preserving the appearance of complex geometry across scales while reducing memory usage drastically. These images have been rendered with 256 samples per pixel, a thin lens camera model and a sunsky emitter in Mitsuba [Jak10].

Introduction

Accurately pre-filtering 3D models is a major practical problem for rendering very detailed scenes, in particular for off-line rendering production environments such as film industry. Huge amounts of details can be prohibitive due to loading time, costly ray intersections and incoherent access to shading parameters [START_REF] Eisenacher | Sorted deferred shading for production path tracing[END_REF].

Input (mesh) LoD 1 LoD 2 LoD 3 A A S S V V A S V
Mesh analysis for macro-surface separation Mesh simplification and pre-filtering Voxelization A S V macro-surfaces sub-resolution geometry

Figure 2: Our pipeline: starting from an input textured mesh, we analyze and separate macro-surfaces from the rest of the geometry using our separation criterion (A , Section 3). Macro-surfaces are pre-filtered by edge collapse until they match the target resolution (S , Section 4).

The rest of the geometry, i.e. sub-resolution occluders, is voxelized at each scale (V , Section 5). Each output LoDs consists of a mesh containing pre-filtering macro-surfaces and voxels approximating sub-resolution occluders. They have to be rendered jointly. Our LoDs allow for seamless transitions (Section 6.2). ten have a semi-transparent macroscopic appearance that cannot be easily pre-filtered using surface representations. On the other hand, volumetric models are neither efficient nor accurate for representing macroscopic surfaces: voxelized macro-surfaces are either too transparent or too thick (Fig. 3). Complex 3D models such as trees often show both macro-surfaces and sub-resolution details at a given scale, meaning that both surface-only and volume-only LoDs fail to accurately preserve their appearance.

Our work aims at combining the strength of volume and mesh representations. We represent macro-surfaces with meshes to preserve large scale watertightness and accurate silhouettes. We approximate sub-resolution geometry with a heterogeneous participating medium model in order to drastically reduce memory usage while preserving local probabilities of occlusion. Recently, the ellipsoid/SGGX normal distribution has been used as a microfacet normal distribution in a BRDF model [START_REF] Walter | Predicting appearance from measured microgeometry of metal surfaces[END_REF] and as a microflake normal distribution [START_REF] Heitz | The SGGX microflake distribution[END_REF] in the microflake participating media model [JAM * 10]. We rely on this representation for pre-filtering normal distributions and preserving the appearance across scales.

Our pipeline is illustrated in Fig. 2. We generate LoDs at different resolutions. Seamless transitions can be achieved by interpolating meshes, surface reflectance parameters and volumetric data as described in Section 6.2. The choice of LoD for rendering may depend on the distance to the camera, the camera depth of field (Fig. 1) or other criteria such as the visibility (e.g. if the asset is out of frustum). In each LoD, the voxel size and edge lengths in the mesh match the target spatial resolution. We divide the target resolution by a factor 2 between two successive LoDs, so that 8 voxels in one LoD correspond to one voxel in the coarser LoD. Meshes and volumes are intended to be rendered jointly, i.e. meshes lie inside a heterogeneous participating medium.

Our work includes the following main contributions:

• We introduce a method for separating macro-surfaces from subresolution geometry at a given scale based on mesh analysis (Section 3). • We provide an algorithm for pre-filtering albedos and microfacet distributions on meshes simplified with edge collapses (Section 4). • We provide an artifact-free voxelization algorithm based on ray casting that preserves local occlusion (Section 5).

Thanks to our macro-surface analysis, our method automatically makes the best use of meshes and volumes at each scale without requiring a priori assumptions about the geometry. It can pre-filter a large class of 3D models with spatially varying details or mixtures of heterogeneous details (Fig. 1).

Related work

Our method relies on mesh-based LoDs, normal distribution prefiltering and volumetric approximations of small elements. The former use low-resolution 3D models and manage LoDs through tessellation of coarse polygons and displacement, often encoded in texture patches [JH12, DHI * 13, LBG16]. These methods cannot be used for pre-filtering the geometry at arbitrary scale because whole patches can themselves be sub-resolution.

Mesh simplification methods start with arbitrary meshes and reduce the mesh complexity by deleting or merging elements such as vertices. Luebke at al. proposed a comprehensive survey [LWC * 02]. Mesh simplification methods can generate accurate approximations as long as surfaces are large enough compared to the resolution, and they fail to preserve correct occlusion in the case of sub-resolution intricate details. For instance, mesh simplification algorithms cannot be used for pre-filtering trees at very coarse scales. We follow ideas of Hoppe et al. and use edge collapses for pre-filtering macroscopic surfaces in our method, because it supports seamless transitions between LoDs [START_REF] Hoppe | Progressive meshes[END_REF] and well-posed BRDF pre-filtering without ambiguities between front and back materials. It also preserves manifoldness, which allows for easier macro-surface analysis.

Other LoD representations for surface-like appearance. Hierarchical 3D data structures have been widely used for storing approximations of some input geometry. The underlying geometry in each voxel is often approximated with planar elements or similar representations [GM05, LK10, PES15]. For ray tracing applications, these methods face the problem of finding the best compromise between holes and shadowing artifacts due to disconnected primitives [WS05, LK10], and reflectance pre-filtering is often illposed. Other methods resort to distance fields represented with voxels [START_REF] Heitz | Representing Appearance and Prefiltering Subpixel Data in Sparse Voxel Octrees[END_REF] with a loss of generality. Some methods have been called hybrid [GM05] because they combine several representations depending on the scale. They typically use meshes for the finest LoDs. Our method is also hybrid but we use a participating medium approximation for sub-resolution geometry instead of surface primitives.

Surface reflectance pre-filtering. Many mesh simplification methods focused on geometry but some methods addressed the problem of pre-filtering reflectance parameters. Some authors proposed to estimate attributes at vertices minimizing some attribute error functions [GH98, Hop99]. Unfortunately, these approaches cannot accurately pre-filter surface reflectance and do not adapt well to current reflectance models based on microfacet normal distributions. Cohen occlusion due to small occluders, which is also our approach. They showed that pre-filtering occlusion can significantly reduce noise in rendered images. Their method is not fully automatic since the user must specify the scale at which the geometry can be approximated with a semi-transparent coarse occluder. On the contrary, our method automatically separates macro-surfaces from sub-resolution geometry (Section 3). We also pre-filter reflectance parameters and we propose an aliasingfree voxelization algorithm. * 10]. This model relies on normal distributions and projected areas of microflakes. We use this model in our work for approximating subresolution geometry and we directly estimate microflake normal distributions from microfacet normal distributions.

Microflake participating media

Jakob et al. proposed a physically-based anisotropic participating media framework based on a microflake model [JAM

Heitz et al. revisited Neyret's micro-ellipsoids model [Ney95,

Ney98] and proposed the SGGX microflakes distribution [START_REF] Heitz | The SGGX microflake distribution[END_REF]. They showed that a mix of SGGX distribution can be approximated with a single SGGX distribution by linear combination of SGGX parameters (this approximation is accurate enough if the mix of SGGX is indeed a SGGX-like distribution). We rely on this work to efficiently pre-filter normal distributions.

Recently, Zhao et al. [ZWDR16]

proposed a method for downsampling volumetric data based on the microflake model with the SGGX distribution. We address a different problem: our inputs are meshes and one of our goals is to preserve the appearance of macro-surfaces that cannot be accurately pre-filtered using volumetric representations. We also address the problem of voxelizing some geometry. Contrary to them, we do not directly down-sample our volumetric data since we voxelize sub-resolution geometry at each scale (Fig. 2).

Automatic macro-surface analysis

A key element of our approach is the separation of macro-surfaces from sub-resolution geometry. It corresponds to the step A in our pipeline (Fig. 2). The difficulty comes from the lack of a clear definition of what is a macro-surface. Examples of ambiguous cases include highly curved and chaotic surfaces as shown in Fig. 5b and5e.

We propose an algorithm that robustly detects unambiguous macro-surfaces such as large smooth surfaces compared to the resolution (Fig. 5a), and that separates them from sub-resolution disconnected (Fig. 5d), cylinder-like and ribbon-like elements (Fig. 5c).

We propose a method based on local mesh analysis. We leverage the fact that in most 3D models, watertight macro-surfaces behaviors are modeled with a single connected surface. Our method looks for large connected macro-surfaces in a given neighborhood.

Our mesh analysis

The input of our analysis is a triangle mesh whose edges are smaller than the target resolution. We introduce a method for detecting macro-surfaces given a target resolution. In a first step, we find triangles that could belong to macro-surfaces. In a second step, we only keep connected surfaces that are large enough compared to the resolution (Fig. 4). Step 1. Let x be a point on the mesh M and r the target resolution. Let S be the sphere of radius r centered in x, and B the closed ball bounded by S (Fig. 5a). We call I the set of points p ∈ (M ∩ S) that are connected to x in M ∩ B. We say that x belongs to a potential macro-surface if I has one single connected component. Let's look at what happens in two simple cases:

• I is empty for all points on any disconnected geometry that is small compared to S (Fig. 5d). Points on such small elements are analyzed as not belonging to macro-surfaces. • For all points on cylinders whose radius is small compared to S, I has two connected components, as shown in Fig. 5c, meaning that such cylinders are analyzed as sub-resolution geometry.

In practice, we compute the topology of I one time per triangle with x being the triangle barycenter.

Step 2. We remove potential macro-surfaces given by the first step that are sub-resolution (Fig. 4b, upper part of the bump). We analyze each connected piece of potential macro-surfaces and keep only connected surfaces whose bounding sphere is larger than S.

Results of our mesh analysis are shown in Fig. 6. Pseudo code of our algorithm is given in Appendix A and implementation details can be found in Section 6.1.

Discussion

A limitation of our approach is that it only detects macro-surfaces due to connected and smooth enough meshes. It cannot detect large scale watertightness due to disconnected elements or very rough surfaces (Fig. 5e,14c). We also implemented an algorithm based on measurement of local directional occlusion but detecting largescale watertight macro-surface with local measurement lacks robustness.

Mesh simplification and surface pre-filtering

We now address the problem of simplifying meshes representing macro-surfaces (S in Fig. 2) while pre-filtering their reflectance. We propose a pre-filtering method that does not require any surface parametrization, unlike texture-based pre-filtering methods for example. We pre-filter microfacet normal distributions in world space and simplify macro-surfaces at arbitrary scale without being constrained by texture patches.

Again, we consider triangular meshes with edges smaller than the target resolution. We simplify the geometry using edge collapses until edge lengths match the target resolution. As triangles in our LoDs are never larger than the target resolution, we use pertriangle reflectance parameters (i.e. albedos and microfacet distributions). After each edge collapse, we update neighboring triangles with pre-filtered reflectance parameters.

We first describe our mesh simplification method and then we present our algorithm for pre-filtering albedos and microfacet distributions at each edge collapse.

Edge collapse simplification

It has two key ingredients: the way the algorithm builds a priority list of edges to be collapsed, and the strategy for vertex placement at each collapse.

Current vertex placement strategies based on the quadric error metric (or QEM) [GH97, Hop99] lack accuracy because they tend to shrink the geometry. We observed in our experiments that volume preserving methods such as the one proposed by Lindstrom et al. [LT98] performs better but lack robustness for thin geometry. We discuss this problem and we propose a new vertex placement method in our supplemental material. Unlike budget-based and fidelity-based strategies [LWC * 02], our method is resolution-based and we only apply edge collapse on macro-surfaces. We found that in this context, building the priority list for the collapses is less critical than the choice of the vertex placement strategy. We used a strategy based on the standard QEM provided by the OpenMesh library [BSBK02, Ope] and forbid collapses of edges larger than the target resolution.

Reflectance model

We use the microfacet-based BRDF model proposed by Dong et al. [START_REF] Walter | Predicting appearance from measured microgeometry of metal surfaces[END_REF]. We store the 6 coefficients of the SGGX distribution (called the ellipsoid NDF by Dong et al.) for each triangle as well as albedos for diffuse and specular reflections. The specular term is given by

fs(ω i , ωo, S) = D(h, S) G 2 (ω i , ωo, h, S) F(ω i • h) 4|ω i • n||ωo • n| (4.1)
with S the SGGX matrix, D the microfacet SGGX normal distribution, G 2 the masking-shadowing term, F the Fresnel term, h the half vector and n the normal. Analytic forms and sampling procedures can be found in the supplemental material provided by Dong et al. [START_REF] Walter | Predicting appearance from measured microgeometry of metal surfaces[END_REF]. For diffuse microfacets, we follow the formulation and sampling procedure proposed by Heitz et al. [HD15]. It is given by

f d (ω i , ωo, S) = 1 π 1 |ωo • n| Ω ωo, ω G 2 (ω i , ωo, h, S) G 1 (ω i , h, S) Dω i (ω, S)dω (4.
2) with Dω i the visible normal distribution in direction ω i and G 1 the masking term. , is the clamped dot product. Our per-triangle BRDF consists of specular and diffuse terms:

f i (ω i , ωo) = s i fs(ω i , ωo, S i) + d i f d (ω i , ωo, S i) (4.3)
with s i the triangle specular albedo and d i the diffuse albedo. S i is the SGGX matrix.

Given an input textured mesh, per-triangle attributes can be retrieved with texture sampling. GGX roughness directly translates to the SGGX representation. Our method could be easily extended to specular and diffuse transmission terms [WMLT07, DWMG15].

BRDF pre-filtering during edge collapses

In this section, we show how to use the linear pre-filtering method proposed by Heitz et al. [START_REF] Heitz | The SGGX microflake distribution[END_REF] in the edge collapse framework. At each collapse, we linearly combine microfacet normal distributions and albedos of neighboring triangles in order to find new parameters for the new triangles. We address the problem of choosing appropriate weights for these linear combinations so that the surface appearance is preserved during the mesh simplification.

Assuming that triangles are sub-resolution, we want to pre-filter per-triangle parameters so that the mean appearance of M is preserved in M (Fig. 7) at each edge collapse. We consider the planar case, i.e. when triangles adjacent to the collapsed edge all lie in the same plane, and we derive a pre-filtering method based on the area of triangles. Non planar cases are discussed later.

Notations. Let's consider the collapse of the edge joining two vertices v 1 and v 2 as illustrated in Fig. 7. We call the new vertex v. We assume for clarity that neither v 1 nor v 2 are border vertices in this explanation. Our results extend straightforwardly to the general case. Let t i be the N triangles adjacent to v 1 and v 2 (i ∈ [1, N]) such that t 1 and t 2 are the collapsed faces. Let t i (i ∈ [3, N]) be the faces after the collapse such that each t i corresponds to t i . We call M the set of triangles t i and M the set of triangles t i (Fig. 7). Let A i and A i be the area of triangles t i and t i . We set A 1 = 0 and A 2 = 0 since t 1 and t 2 are collapsed. It is convenient to use the notation w i for the area of each triangle t i divided by the area of M:

∀i ∈ [1, N], w i = A i ∑ k A k . (4.4) Similarly, we define ∀i ∈ [1, N], w i = A i ∑ k A k . (4.5)
By definition, we have ∑ w i = 1 and ∑ w i = 1, w 1 = w 2 = 0.

Preserving the mean radiance. In the planar case, and assuming a locally uniform lighting, the mean radiance of surface M in direction ωo is given by:

Lmean(ωo) = ∑ i∈[1,N] w i Ω L(ω) f i (ω, ωo) ω, n dω. (4.6)
We want to find BRDFs f i for each triangle t i so that the mean radiance is preserved after the collapse, meaning Lmean(ωo) = L mean (ωo) with

L mean (ωo) = ∑ i∈[3,N] w i Ω L(ω) f i (ω, ωo) ω, n dω. (4.7)
Our approach. Our method consists in writing each BRDF f i as a linear combination of BRDFs f i :

∀ j ∈ [3, N], f j = ∑ i∈[1,N] w j i f i with ∀ j, ∑ i w j i = 1 (4.8)
The mean radiance of M in the planar case is given by

L mean (ωo) = ∑ j w j Ω L(ω) ∑ i w j i f i (ω, ωo) ω, n dω = ∑ i ∑ j w j w j i Ω L(ω) f i (ω, ωo) ω, n dω. (4.9)
Then, our problem is to find appropriate weights w j i so that L mean (ωo) = Lmean(ωo). Thus, we want to ensure that ∀i ∈ [1, N], ∑ j w j w j i = w i .

(4.10)

There is a simple and naïve solution, which consists in choosing w j i = w i ∀ j. This solution results in uselessly blurred surfaces: all the parameters are averaged in the neighborhood of the collapsed edge, even if the collapsed edge is actually very small compared to neighboring triangles. Instead, we propose a simple heuristic for the choice of weights w j i : we maximize weights w i i (i.e. the weight of f i in the new triangle t i) in order to avoid over-blurring, and so that BRDFs f i preserve the mean radiance in each direction. Finally, we use these weights for linearly pre-filter albedos and SGGX matrices per triangle as described later.

Let G = {i ∈ [1..N], w i < w i } be the set of triangles whose area increase with the edge collapse, and L = {i ∈ [1..N], w i ≥ w i } the other ones.

Our weights are the following:

                           w i i = 1 ∀i ∈ L w i j = 0 ∀i ∈ L and i = j w i i = w i w i ∀i ∈ G w i j = (1 - w i w i)c j ∀i ∈ G and i = j with c j = w j -w j ∑ i∈L w i -w i (4.11)
A proof that this solution satisfies Eq. 4.10 can be found in Appendix B.

Pre-filtering. Once all the weights w j i have been computed, we pre-filter parameters assuming that albedos and normal distributions are not correlated and we linearly pre-filter SGGX coefficients as follows:

∀ j ∈ [3, N], f j = ∑ i∈[1,N] w j i f i = ∑ i w j i s i fs(ω i , ωo, S i) + d i f d (ω i , ωo, S i) s j fs(ω i , ωo, S i) + d j f d (ω i , ωo, S i) (4.12)
with s j = ∑ i w j i s i the mean specular albedo, d j = ∑ i w j i d i the mean diffuse albedo and S i = ∑ i w j i S i the filtered normal distribution.

Discussion

Our pre-filtering method is fast because it relies on linear combinations and because weights are given by very simple formulas that only depend on the area of each triangle. In our implementation, it takes around 7 µs per collapse including the pre-filtering itself, which is small compared to the cost of the vertex placement (around 170 µs in our implementation). Our method can prefilter anisotropic roughness due to small surface details as shown in Fig. 8.

We focus on the planar case for the derivation of weights and use this algorithm for all edge collapses. Our method is less accurate on non planar cases, because the emitted radiance in direction ωo depends on cosine weights ωo, n i for each triangle with normal n i , and also on view dependent visibility terms taking into account masking between triangles, leading to a much more difficult problem.

Our method is also limited by the use of a single SGGX lobe: it cannot pre-filter surfaces with strong microscopic correlations between the geometry and albedos [START_REF] Han | Frequency domain normal map filtering[END_REF][START_REF] Heitz | Representing Appearance and Prefiltering Subpixel Data in Sparse Voxel Octrees[END_REF] or normal distributions that are very different from SGGX lobes. More accurate solutions could be computed using multi-lobe SGGX distributions similarly to Zhao et al. [ZWDR16] in order to handle more complex appearances and avoid accumulation of errors during the process, leading to overly rough normal distributions.

Voxelization

We now address the problem of converting the micro-geometry separated from macro-surfaces into a volumetric representation. This corresponds to step V in Fig. 2. We use heterogeneous participating media with the microflakes model [JAM * 10]. Our data for each voxel consists of a density parameter, 6 SGGX coefficients representing the microflake distribution [START_REF] Heitz | The SGGX microflake distribution[END_REF], specular and diffuse albedos. We first discuss the problem of object-space aliasing in voxelizations and then we propose an algorithm based on ray casting that avoids voxelization artifacts.

Background

Voxelization often refers to binary voxelizations with empty or nonempty voxels. We address a different problem: we want to estimate voxel parameters such as density to approximate some input geometry. Previous approaches measured occlusion due to the geometry contained in cubes or in cuboids [LBBS08,[START_REF] Panteleev | Practical real-time voxel-based global illumination for current GPUs[END_REF]. This leads to object-space aliasing artifacts in voxelized data as already noted in [WK93]. An example is given in Fig. 11. Artifacts can be avoided if the voxelization process satisfies the Nyquist sampling criterion. A low-pass filter must be used, meaning that a voxel should not represent a cubical domain but a blurry and large enough overlapping domain around the voxel center.

Our approach consists in casting rays around each voxel center and looking for intersection with the geometry in the voxel neighborhood. The main idea of our voxelization algorithm is that we give the same weight to each ray but we sample rays with probability density functions (pdf) that act like low-pass filters and prevent object-space aliasing. More specifically, we choose ray origins neither on a cube nor uniformly inside a cube. Instead, we use a smooth pdf around a given voxel. We sample a random direction uniformly on the spherical domain for each ray in order to prevent directional artifacts.

Occlusion estimation with ray casting

We cast rays with length ray l : we ignore intersections farther than ray l from ray origins. We only take into account the first intersec-tion with the geometry, if any. Therefore, we estimate the probability of occlusion in a voxel neighborhood along a distance ray l . Long rays due to a large value ray l would tend to over-blur the voxelization, while small rays (small ray l) would only measure how much the geometry fills the space. In our implementation, we set ray l to the voxel size.

When rays intersect the geometry, we store albedos and normal distributions, and we pre-filter them for each voxel. An estimation of the probability of occlusion in the voxel neighborhood over a distance ray l in given by Pocc = nbHits nbRays (5.1)

where nbRays is the number of rays casted for this voxel and nbHits is the number of rays that intersected some geometry at a distance smaller that ray l . We use Pocc to retrieve a density parameter for the voxel in Section 5.4.

Artifact-free voxelization

We now propose a sampling algorithm for casting rays around voxels in order to avoid object-space aliasing. Let v i be the center of a voxel i, and D i the probability density function used to randomly sample ray origins for that voxel (Fig. 10). We want to know how much (i.e. with what probability) each point x ∈ R 3 can be hit by a ray during the voxelization, because we need this probability to vary smoothly in space in order to prevent object-space aliasing. We introduce the function P i that gives, for each point x ∈ R 3 , the probability that a ray whose origin is sampled using the pdf D i intersects a spherical occluder with radius rad centered in x. This function P i should be smooth enough: it is the low-pass filter of the voxelization. Moreover, given that there are Nv voxels, we want the function P all defined by to be constant ∀x ∈ R 3 , i.e. all points in space have the same probability of being intersected by rays during the entire voxelization (this is also for preventing aliasing).

P all (x) = 1 Nv ∑ voxels i P i (x)
Probability of intersecting an occluder. Let's first consider a single ray with a given origin and a random direction. This ray can intersect the geometry around the ray origin with some probability that depends on the distance to the ray origin. Let Pr be the radial function that gives the probability that a ray hit a spherical occluder of radius rad, given that the occluder is at a distance d from the ray origin. Intuitively, Pr(d) decreases as long as d increases because the solid angle of the spherical occluder decreases. The solid angle of a cone with apex angle θ is given by 2π(1cos(θ)). The solid angle of a spherical occluder is the one of a cone with apex

θ = arccos √ d 2 -rad 2 d
where d is the distance between the ray origin and the occluder center. For d ≥ rad and d ≤ ray l , we have

Pr(d) = 1 2   1 -1 - rad 2 d 2  
which tends to rad 2 4d 2 when rad becomes very small compared to d.

Sampling strategies. Given D i (the pdf for ray origins) and Pr (the probability of intersection depending on the distance from a ray origin), we can write the probability P i of being intersected at x during the voxelization of voxel i as

P i (x) = R 3
Pr(dist(x, p)) D i (p) dp.

The probability of being intersected at x during the entire voxelization is the weighted sum of P i (x) over all the voxels:

P all (x) = 1 Nv ∑ i R 3 Pr(dist(x, p)) D i (p) dp = 1 Nv R 3 Pr(dist(x, p)) ∑ i D i (p) dp = 1 Nv R 3 Pr(dist(0, p)) ∑ i D i (p + x) dp.
Now P all is constant over space if ∑ i D i is constant. A simple solution is to choose a cubic uniform probability density function:

D cube i (x) =      1 voxelSize 3 if x -v i 1 ≤ voxelSize 0 otherwise
where 1 is the 1 norm. Moreover, any convolution of a solution with another probability density functions is also a solution. Smooth functions P i can be achieved using D i = D cube i * D smooth , with D smooth any smooth probability density function. In our implementation, we used a 3D Gaussian function with standard deviation σ = 0.6 voxelSize (example (c) in Fig. 11). Pseudo-code for our sampling method can be found in Algorithm 1. We sample a random direction for each ray in order to avoid artifacts.

Algorithm 1: Our sampling algorithm for ray origins (Section 5.3). We sample origins in a cube around the voxel and then use a 3D normal distribution in order to avoid objectspace aliasing.

Estimating density parameters

At a given voxel, Eq. 5.1 estimates the local probability occlusion of rays with length ray l in the voxel neighborhood. We need to estimate the voxel density parameter ρ so that attenuation equals Pocc for a distance ray l in the participating medium. In the microflakes framework, the unit projected area of microflakes in direction ω is given by

σu(ω) = Ω |ω • m|D(m) dm,
with D the microflake normal distribution function. We look for the density parameter ρ that ensures

1 - 1 4π Ω e -ρσu(ω)ray l dω = Pocc
In general, there is no closed-form for parameter ρ. One can show that the function f defined as 6. Implementation and results

f (ρ) = 1 4π Ω e -ρσu(ω)

Macro-surface analysis

We implemented our analysis with the OpenMesh library [BSBK02, Ope] and use the half-edge data structure for efficient mesh local exploration.

The cost of our analysis for a given point x depends on how many are connected to x in B. Our implementation is expensive if the mesh is very detailed compared to S because a lot of triangles will have to be considered. However, in our filtering pipeline (Fig. 2) the average triangle size increases at each LoD and their edge lengths are approximately r 2 . Moreover, only macro-surfaces from the previous LoD have to be analyzed. Consequently, our implementation is efficient for our pipeline. Parallel implementations are straightforward since each triangle analysis is independent. In our implementation, the mean cost of the analysis per triangle is around 15 µs if the mesh comes from the previous LoD (the analysis of the input mesh highly depends on its resolution compared to the first target resolution).

Seamless transitions between LoDs

We give some implementation details concerning seamless transitions between between successive LoDs, each one consisting of voxels and a mesh (Fig. 2) with per-triangle reflectance attributes.

Macro-surfaces. Given the macro-surfaces of LoD N , the set of edge collapses that leads to LoD N+1 defines a mapping between vertices of LoD N and vertices of LoD N+1 [START_REF] Hoppe | Progressive meshes[END_REF]. We interpolate vertex positions in order to achieve smooth transitions between the two LoDs.

For each triangle in LoD N+1 there is a corresponding triangle in LoD N . We smoothly interpolate their albedos and SGGX coefficients during the transition between LoD N and LoD N+1 . As we use SGGX coefficients in world space, specular reflections stay consistent during the transition even if triangles are changing.

From meshes to volume. Triangles of LoD N that are voxelized in LoD N+1 (Fig. 2) must smoothly fade out during the transition, while voxel densities smoothly increase. We simply use an opacity coefficient for each voxelized triangle that goes from 1 to 0 during the transition.

Interpolating volumes. 8 voxels in LoD N correspond to 1 voxel in LoD N+1 . In our implementation we linearly interpolate densities, albedos and SGGX coefficients of voxels in LoD N with the corresponding voxels in LoD N+1 . We do not use spatial interpolation between voxels of the same LoD because our voxelization algorithm prevents high frequencies in the volumetric data and because it facilitates seamless transitions.

Other implementation details

Voxelization. We used Jakob's Mistuba renderer [Jak10] for casting rays during our voxelization (Section 5). We casted 200 rays for each non-empty voxel and stored 16 bytes: 4 for the density parameter (a float), 6 for the SGGX coefficients (1 byte per coefficient), 3 for the specular albedo and 3 for the diffuse albedo (1 byte per color channel).

Rendering. We also used Mitsuba for rendering our LoDs. We implemented plugins for the diffuse and specular SGGX phase functions based on the code provided by Heitz et al. [START_REF] Heitz | The SGGX microflake distribution[END_REF]. We modified the core of the renderer in order to render microflake media with different specular and diffuse albedos. We also implemented the BRDF model of Dong at al. Efficiency. Pre-filtering computation times can be found in Fig. 13. Our macro-surface pre-filtering was run on a single core, while voxelization was using 8 hyperthreaded cores on a Intel Xeon E5-2609. For the first LoD of the weeping willow model the total computation time was 20 minutes, which includes 2 minutes for loading the input mesh and textures, 5 minutes for the macrosurface analysis and 4 minutes for the mesh simplification and prefiltering. The remaining time corresponds to various other tasks such as preparing and writing the outputs.

Results

We tested our method on complex surfaces (Fig. 8,9) and complex 3D assets including trees and a sailing ship model with tiny ropes and wood elements (Fig. 12). Seamless transitions between our LoDs are demonstrated in our supplemental video. Fig. 1 shows our LoDs rendered in a scene with different diaphragm apertures. Examples of limitations are shown in Fig. 14. As discussed in Fig. 3 and Section 3.2, they are mainly due to the limitations of our macrosurface analysis and the inappropriate use of volumes for representing almost surface-like appearance.

Conclusion and future work

The key idea of our work is that a large variety of 3D assets can be automatically pre-filtered at arbitrary scale if macro-surfaces and sub-resolution details are pre-filtered separately, using the most appropriate representations. We showed that using both meshes and volumes allows for preserving large scale watertightness and occlusion of complex geometry, unlike surface-only and volume-only methods. We relied on reflectance models that support linear prefiltering and that are memory efficient, and used the SGGX distribution for surfaces and volumes in the same framework. Our LoDs have low memory footprints and could be used for rendering very complex scenes that wouldn't have fitted into memory, with little loss in quality.

Our hybrid approach could be extended to other surface reflectance models and volumetric models in order to balance differently accuracy and efficiency. In particular, we think that multi-lobe approaches in the spirit of Zhao et al. [ZWDR16] could be adapted to our work in order to support a wider range of macroscopic appearances. Our approach would also benefit from more complex volumetric models with separated anisotropic occlusion and phase functions. We believe that the need for accurate pre-filtering will inspire future work on models for microscopic shadowing and viewdependent appearance, as well as new tools to link and unify surface and volumetric representations.

Guillaume

 Loubet † and Fabrice Neyret † INRIA, Univ. Grenoble Alpes/LJK, CNRS/LJK (a) Input mesh (b) LoD 1 Reference (c) LoD 2 Reference

Figure 3 :

 3 Figure 3: Several approximations of a mesh containing macrosurfaces (with respect to voxel size) using heterogeneous participating media. Volumes are rendered with volumetric path tracing in Mitsuba. All voxelization strategies fail to preserve both watertighness (b,c) and local occlusion (d). (a): Input mesh. (b): Isotropic participating medium approximation with preservation of the mean local occlusion (Section 5). (c): Using an anisotropic participating medium model (microflakes). (d): Increasing density preserves watertightness but leads to incorrect local occlusion and silhouettes.

2. 1 .

 1 Surface pre-filtering Mesh-based geometry simplification. Mesh-based methods for LoDs have a long history in computer graphics and divide in two c 2017 The Author(s) Computer Graphics Forum c 2017 The Eurographics Association and John Wiley & Sons Ltd.main categories: subdivision methods and mesh simplification algorithms.

Figure 4 :Figure 5 :

 45 Figure 4: Our two steps macro-surface analysis. (a): Detecting potential macro-surfaces (orange). Our criterion uses spheres whose radius is equal to the target resolution and whose centers are on the surface (Section 3.1). (b): Keeping only large connected surfaces (green). As the upper part of the bump is smaller that S, it is analyzed as sub-resolution geometry.sphere

Figure 6 :

 6 Figure 6: Results of our mesh-based macro-surface analysis with four different resolutions: blue circles represent the size of sphere S (Section 3.1) whose radius is equal to the target spatial resolution in the LoD. Green triangles are triangles analyzed as belonging to macro-surfaces by our algorithm. Top left: leaves and big twigs are macro-surfaces compared to the target resolution. Bottom right: the geometry has no surface wider than the target resolution.

Figure 7 :

 7 Figure 7: Our notations for one edge collapse. v 1 and v 2 are merged into a new vertex v. Triangles t 1 and t 2 are collapsed. Each other triangle t i in M corresponds to a new triangle t i in M .

Figure 8 :Figure 9 :

 89 Figure 8: Meshes simplified with edge collapses and pre-filtered with our method (Section 4.3). (a): Sphere with diffuse microfacets. (b): Sphere with specular microfacets. Coarse LoDs have rougher materials since our pre-filtering is done in world space and takes into account surface curvature. (c,d): Spheres with specular materials and grooves leading to anisotropic normal distributions in coarse LoDs.

c

 2017 The Author(s) Computer Graphics Forum c 2017 The Eurographics Association and John Wiley & Sons Ltd.

 Sampling ray origins using a smoother pdf.

Figure 10 :

 10 Figure 10: Sampling strategies for ray origins using different pdf.We sample a random direction for each ray in order to avoid artifacts.

Figure 11 :

 11 Figure11: Effect of voxelization strategies on object-space aliasing. The naïve voxelization (a) consists in measuring the occlusion of geometry in a small cube around the voxel center. Our voxelization algorithm can prevent object-space aliasing and acts as a lowpass filter (b,c). Images represent slices of the 3D probability density functions D i for sampling ray origins (Section 5.3) and slices of 3D functions P i giving for each point the probability of being intersected by a ray.

 [DWMG15] for specular and diffuse microfacets based on the work of Heitz et al. [HD15].

c 2017 The Author(s) Computer Graphics Forum c 2017 The Eurographics Association and John Wiley & Sons Ltd.

Acknowledgement

We would like to thank Antoine Bouthors for very helpful discussions, as well as Eric Heitz and Joëlle Thollot for their feedbacks on the paper. We also thank Edson for his sailing vessel 3D model and Olivier Ffrench † for the mossy stone wall.

Input mesh

Res. 512 3

Appendix A: Computation of I

The topology of I, as defined in section 3.1, can be computed with a mesh exploration, starting from the face containing the point x. We make sure that only triangle connected to x inside S are explored. We do not need the exact shape of I but just its topology.

Function IsOnMacroSurface (inputTri, sphere) I = ∅; trisToExplore = inputTri; exploredTris = ∅; while not IsVoid (trisToExplore) do currentTri = PopFirst (trisToExplore); Explore (currentTri, I, exploredTris); Add (currentTri, exploredTris); end return HasSingleConnectedComponent (I); End Function Explore (currentTri, I, exploredTris, trisToExplore, sphere) for e in edges of currentTri do if e intersect sphere or e is inside sphere then adjTri = triangle adjacent to currentTri at e; if adjTri is not in exploredTris and adjTri is not in trisToExplore then Add (trisToExplore, adjTri); end end end / * sphere ∩ currentTri could be 1, 2 or 3 sections of a circle, or void. Only the ends of each part is needed, because we just need the topology of I.

* / its = ComputeIntersections (currentTri, sphere); Add (its, I); End Appendix B: Pre-filtering the reflectance on edge-collapse

We check that contributions are preserved for each material (equation 4.10) by our method (Section 4.

Observing that