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Finite volume approximation of a
degenerate immiscible two-phase flow
model of Cahn-Hilliard type

Clément Cancès and Flore Nabet

Abstract We propose a two-point flux approximation Finite Volume scheme
for a model of incompressible and immiscible two-phase flow of Cahn-Hilliard
type with degenerate mobility. This model was derived from a variational
principle and can be interpreted as the Wasserstein gradient flow of the free
energy. The fundamental properties of the continuous model, namely the
positivity of the concentrations, the decay of the free energy, and the bound-
edness of the Boltzmann entropy, are preserved by the numerical scheme.
Numerical simulations are provided to illustrate the behavior of the model
and of the numerical scheme.
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1 Introduction

1.1 Description of the model

We are interested in the simulation of a model representing the flow of two
incompressible phases in an open polygonal convex subset Ω of Rd and on a
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finite time interval (0, T ). Since the fluid is incompressible, its composition
is fully described by the saturations (ci)i∈{1,2} ∈ [0, 1]2 of the phases (i.e., ci
is the volume ratio of the phase i in the fluid). The algebraic constraint

c1 + c2 = 1 in Ω × (0, T ) =: Q (1)

follows. The motion of the phase i is governed by a convection-diffusion

∂tci +∇ · (civi) = 0 in Q. (2)

The velocity vi of the phase i is supposed to be proportional to the gradient
of the potential ui of the phase i:

vi = − 1

µi
∇ui, in Q, (3)

where µi > 0 stands for the viscosity of the phase i. The last equation to be
prescribed in the bulk Q is obtained by imposing a relationship between the
difference of the potentials and the saturations

u1 − u2 = −κ∆c1 + χ(1− 2c1) + Ψ1 − Ψ2, (4)

where κ and χ are strictly positive parameters (with usually κ << χ), where
Ψi : Ω → R are smooth exterior potentials acting on the volume of the phase
i. For instance, when consider the gravitational potential Ψi(x) = ρix · g
where ρi is the density of the phase i and g is the gravity acceleration, the
term Ψ1 − Ψ2 represents the buoyancy force of the phase c1. The potentials
ui are defined up to a constant. In order to fix this degree of freedom, we
impose that∫

Ω

u(x, t)dx = 0 for a.e. t ∈ (0, T ), where u = c1u1 + c2u2. (5)

We prescribe initial saturations c0i ∈ H1(Ω) satisfying the constraint

c01 + c02 = 1 in Ω. (6)

We also impose no-flux boundary conditions for each phase

− ci
µi
∇ui · n = 0 on ∂Ω × (0, T ) (7)

and homogeneous Neumann boundary conditions for the saturations ci, i.e.,

∇ci · n = 0 on ∂Ω × (0, T ). (8)

Remark 1 (Link with classical degenerate Cahn-Hilliard model). Define the
total velocity vT by vT = c1v1 + c2v2, then it follows from (1)–(2) that



Approximation of a degenerate Cahn-Hilliard model 3

∇ ·vT = 0. Moreover, (8) ensures that vT ·n = 0 on the boundary. Then one
can check that the equation (2) for i = 1 rewrites

∂tc1 +∇ ·
(

c1
c1 + µ1

µ2
(1− c1)

vT −
c1(1− c1)

µ2c1 + µ1(1− c1)
∇ (u1 − u2)

)
= 0 (9)

where the formula (4) can then be used. This yields a classical degenerate
Cahn-Hilliard model [6] as soon as vT ≡ 0. This property is always fulfilled
in the one-dimensional case, but it is no longer the case when d ≥ 2.

1.2 Energy, energy dissipation, and entropy

The fourth order problem model (1)–(8) described above is closely related
to the one studied in [3]. It shares many common features with the classical
models of immiscible incompressible two-phase flows in porous media (see for
instance [8]). Indeed, both models can be interpreted as Wasserstein gradient
flows with singular energies (see [4, 5] for the case of porous media flows and
the monograph [2] for a extensive presentation on gradient flows in metric
spaces). The justification of this variational structure is not the purpose of
this contribution. However, the numerical scheme we present was designed
to preserve some important properties of the continuous equations that we
highlight now.

The free energy E(c) of a configuration c = (c1, c2) ∈ H1(Ω; [0, 1])2 is
given by

E(c) =

∫
Ω

(
κ

2
|∇c1|2dx + χc1c2 + c1Ψ1 + c2Ψ2 + Econs(c)

)
dx,

where the constraint (1) has been introduced in the energy via the term

Econs(c) =

{
0 if c1 + c2 = 1,

+∞ otherwise.

Multiplying (formally) the equation (2) by ui, integrate over Ω, summing
over i ∈ {1, 2}, and using equations (1) and (4), one gets the following energy
dissipation property:

d

dt
E(c) = −

∑
i∈{1,2}

∫
Ω

ci
µi
|∇ui|2 dx ≤ 0. (10)

In particular, the boundedness of the energy ensures that the solutions to (1)–
(8) remain uniformly bounded in H1(Ω).
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The second crucial estimate in the study of the problem is obtained by
multiplying equation (2) by µi log(ci), integrating over Q, summing over i ∈
{1, 2}, and using (1) together with (4) to get that

H(c(·, T ))+

∫∫
Q

(
κ|∆c1|2−2χ|∇c1|2+∇c1·∇(Ψ1−Ψ2)

)
dxdt ≤ H(c0) <∞,

(11)

where

H(c) =
∑

i∈{1,2}

µi

∫
Ω

(ci log(ci)− ci + 1) dx ≥ 0.

This estimates yields a uniform L2(Q) bound on u1 − u2, from which we
deduce a L2((0, T );W 1,1(Ω)) bound on u, hence a L2((0, T );Ld/(d−1)(Ω))
bound on ui.

2 An implicit two-point flux approximation scheme

We propose to discretize the system (1)–(8) thanks to an implicit Finite
Volume scheme with two-point flux approximation. This requires a so-called
admissible mesh in the sense of [7] with an orthogonality condition as detailed
in §2.1. Once this discretization at hand, we define the numerical scheme in
§2.2. We show in §2.3 some a priori estimates that allow to show the existence
of a discrete solution to the scheme.

2.1 Admissible discretization of Ω × (0, T )

Let us first discretize Ω into a triplet
(
T , E , (xK)K∈T

)
. The set T of the

control volumes is supposed to be made of convex disjoint open subsets K
of Ω such that Ω =

⋃
K∈T K. The d-dimensional Lebesgue measure of K is

denoted by mK . The set E of the faces is made of elements σ that are included
in hyperplanes and that have strictly positive (d − 1) dimensional Lebesgue
measure denoted by mσ. For all K ∈ T , we assume that there exists a subset
EK of E such that ∂K =

⋃
σ∈EK σ, and that there exists at most one element

in EK included in each hyperplane of Rd. As a consequence, the interface
between two control volumes K and L is reduced to at most one edge σ
denoted by K|L. We denote by Eext = {σ ∈ E | σ ⊂ ∂Ω}, Eint = E \ Eext,
and EK,int = EK ∩ Eint. The cell centers (xK)K∈T are such that xK ∈ K
for all K. Given two neighboring cell K,L ∈ T , we assume that the straight
line (xK ,xL) is orthogonal to the face σ = K|L. For all σ = K|L ∈ Eint, we
denote by
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dσ = dist(xK ,xL), dK,σ = dist(xK , σ), dL,σ = dist(xL, σ), τσ =
mσ

dσ
.

Our presentation is restricted to uniform discretizations of the time interval
(0, T ) only for the ease of presentation. Let N ≥ 1 denote the number of sub-
intervals of (0, T ), and let ∆t = T/N be the corresponding time step. For
n ∈ {0, . . . , N}, we denote by tn = n∆t.

In the numerical analysis sketched in §2.3, we are interested in getting
uniform bounds on the discrete solutions for families of meshes. To do so, we
need to assume regularity on the meshes. More precisely, for all K ∈ T , we
denote by hK = diam(K), and by h = maxK∈T hK . Then we assume that
there exist strictly positive constants α, β, and γ such that

mK ≥ αhdK , mσ ≥ βhd−1K , dK,σ ≥ γhK , ∀K ∈ T , ∀σ ∈ EK,int. (12)

2.2 Discretization of the equations and the initial data

The equations (2)–(3) for i ∈ {1, 2} are discretized into

mK

cni,K − c
n−1
i,K

∆t
+
∑

σ∈EK,int

σ=K|L

τσ

(
cni,σ
µi

(
uni,K − uni,L

))
= 0, ∀K ∈ T ,∀n ≥ 1. (13)

The values cni,σ (i ∈ {1, 2}) are defined thanks to a phase-by-phase upwind-
ing [8]:

cni,σ =

{
cni,K if uni,K − uni,L ≥ 0,

cni,L otherwise.
(14)

The equation (1) is discretized into

cn1,K + cn2,K = 1, ∀K ∈ T , ∀n ≥ 1, (15)

while (4) is discretized into: ∀K ∈ T , ∀n ≥ 1,

un1,K−un2,K =
κ

mK

∑
σ∈EK,int

σ=K|L

τσ
(
cn1,K − cn1,L

)
+χ(1−2cn−11,K )+Ψ1,K−Ψ2,K . (16)

Finally, we prescribe the following discrete counterpart to (5):∑
K∈T

mK

(
cn1,Ku

n
1,K + cn2,Ku

n
2,K

)
= 0, ∀n ≥ 1. (17)

Finally, the initial data c0 is discretized into
(
c0i,K

)
K∈T by setting
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c0i,K =
1

mK

∫
K

c0i (x)dx, ∀K ∈ T , ∀i ∈ {1, 2}. (18)

The scheme (13)–(17) yields a nonlinear system. Given
(
cn−11,K , c

n−1
2,K

)
K∈T

, the

existence of a discrete solution
(
cn1,K , c

n
2,K , u

n
1,K , u

n
2,K

)
K∈T is far from being

obvious. This motivates the analysis carried out in the next section.

2.3 Stability and existence of a discrete solution

We define the piecewise constant approximate solution
(
c∆t1,T , c

∆t
2,T , u

∆t
1,T , u

∆t
2,T
)

by setting c∆ti,T (x, t) = cni,K and u∆ti,T (x, t) = uni,K if (x, t) ∈ K× (tn, tn+1]. We

also set c∆ti,T (x, 0) = c0i,K for all x ∈ K.

We first state a L∞(Q) a priori estimate on the phase saturations:

0 ≤ c∆ti,T ≤ 1, ∀i ∈ {1, 2}. (19)

It can be proved thanks to a simple contradiction argument (see, e.g., [1]).

Define the discrete energy EnT ' E(c(·, tn)) by

EnT =
κ

2

∑
σ=K|L

τσ
(
cn1,K − cn1,L

)2
+χ

∑
K∈T

mKc
n
1,Kc

n
2,K +

∑
i∈{1,2}

∑
K∈T

mKc
n
i,KΨi,K ,

then the following estimate is a discrete counterpart to (10):

EnT ≤ EnT +∆t
∑

i∈{1,2}

1

µi

∑
σ=K|L

τσc
n
i,σ

(
uni,K − uni,L

)2 ≤ En−1T , ∀n ≥ 1. (20)

Its proof consists in multiplying (13) by ∆tuni,K , on summing over K ∈ T ,
and on using the relations (15) and (16) together with a convexity inequality.

The next estimate is a discrete counterpart to
∫∫
Q
|∆c1|2dxdt ≤ C that

can be deduced from (11):

N∑
n=1

∆t
∑
K∈T

mK

(
1

mK

∑
σ∈EK

τσ
(
cn1,K − cn1,L

))2

≤ C. (21)

To derive (21), we multiply (13) by µi log(cni,K)∆t, sum over K ∈ T and
n ∈ {1, . . . , N}, and then combine it with elementary convexity inequalities
and a discrete L∞((0, T );H1(Ω)) estimate on c∆t1,T that follows from (20). As

a first consequence of (21), one gets a uniform L2(Q) bound on u∆t1,T − u∆t2,T .
Moreover, because of (21) and of the regularity of the mesh prescribed in (12),
we can prove that, provided the ratio ∆t/h4−d is large enough, one has
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cn1,σ + cn2,σ ≥ c? > 0, ∀n ≥ 1,∀σ ∈ Eint. (22)

Together with (17), this allows to derive uniform L2((0, T );L
d

d−1 (Ω)) bounds
on the phase potentials u∆ti,T . The following proposition states the existence
of (at least) one solution to the scheme (13)–(17).

Proposition 1 (existence of a discrete solution). Assume that the
ratio ∆t/hd−4 is large enough, then there exists (at least) one solution(
cn1,K , c

n
2,K , u

n
1,K , u

n
2,K

)
K∈T to the scheme (13)–(17). Moreover, it satisfies

the a priori estimates (19)–(21).

3 Numerical illustration

We present now a numerical simulation on a phase separation dynamics.
The initial saturation c01 is a random initial concentration with a fluctuation
between 0.49 and 0.51, whereas c02 is determined by (6). The computational
domain Ω is the square (0, 1)2. We consider a triangular mesh whose mesh
size h is approximately equal to 0.03. For any control volume K, the cell
center xK is the circumcenter of the triangle K. The final time is tf = 1
and we choose a fixed time step ∆t = 5 · 10−5. The viscosities which appear
in (3) are constant equal to 1 (µ1 = µ2 = 1) and we choose the parameters
appearing in (4) as follows: κ = 3 ·10−4 and χ = 0.96. The exterior potentials
Ψ1 and Ψ2 are both put to 0.

First, we represent the saturation c1 in Ω for different times (see Fig. 1).
The pure phase c1 = 0 appears in blue, the homogeneous saturation c1 = 0.5
in white and the pure phase c1 = 1 in red.

(a) t = 0.006 (b) t = 0.01 (c) t = 0.05 (d) t = 1

Fig. 1: Approximate saturation c∆t1,T (·, t) in Ω for different times t.

We recover the expected behaviour of the phase separation process. Indeed,
at first, the material becomes quickly inhomogeneous, the two components
spontaneously separate and form several distinct regions consisting of pure
phases (see Fig. 1a). Then, on a slower time scale, the pure phases gather
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together to form larger patterns (see Fig. 1b–1d). Moreover, throughout the
simulation the saturations c1 and c2 remain bounded between 0 and 1.
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Fig. 2: Evolution of the discrete energy along time.

In Fig. 2, we illustrate that the numerical method dissipates the discrete
energy, as predicted by (20). In our simulations, the condition (22) was ful-
filled with c? ' 0.171.
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